
 

Casimir energy and topological mass for a massive scalar
field with Lorentz violation

M. B. Cruz ,1,* E. R. Bezerra de Mello ,2,† and H. F. Santana Mota 2,‡

1Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 882,
58428-830 Campina Grande, Paraíba, Brazil

2Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008,
58051-970 João Pessoa, Paraíba, Brazil

(Received 23 May 2020; revised 19 July 2020; accepted 23 July 2020; published 6 August 2020)

A Lorentz symmetry violation aether-type theoretical model is considered to investigate the Casimir
effect and the generation of topological mass associated with self-interacting massive scalar fields obeying
Dirichlet, Newman, and mixed boundary conditions on two large and parallel plates. By adopting the path
integral approach, we find the effective potential at one- and two-loop corrections, which provides both the
energy density and the topological mass when taken in the ground state of the scalar field. We then analyze
how these quantities are affected by the Lorentz symmetry violation and compare the results with previous
ones found in literature.
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I. INTRODUCTION

The Casimir effect was predicted by H. B. Casimir in
1948 [1] and, although not with great precision, exper-
imentally verified ten years later by M. J. Sparnaay [2].
Since then, it has been confirmed by several high-
precision experiments [3–9], leading currently to one of
the most interesting topics of research. The Casimir effect
consists of a direct manifestation of the existence of
quantum fluctuations of the vacuum and was noted to
arise for the first time when considering two parallel
conducting plates placed very close to each other in the
vacuum, separated by a very small distance when com-
pared with the plates’ dimensions. In this case, the
theoretical prediction and experimental observation that
the two plates attract each other [1] was not credited to
the gravitational or electromagnetic forces, but to mod-
ifications of the quantum vacuum fluctuations of the
electromagnetic field by the presence of the plates. The
gravitational interaction between the plates is far too weak
to be observed, while the electromagnetic interaction is
absent, since the plates are neutral.

Other quantum-relativistic fields, such as scalar and
fermion fields, can also present modifications in the
quantum fluctuations of their vacua by some sort of
boundary condition, leading to a Casimir-like effect. The
formal and standard approach to investigating the Casimir
interactions is in the realm of quantum field theory, which is
based on the assumption that the Lorentz symmetry is
preserved. However, one may well assume other scenarios
where the Lorentz symmetry is violated, which is normally
the case in models that look for probing high-energy
phenomena. This, in fact, has been done from both
theoretical and experimental points of view. In the context
of several of these Lorentz symmetry violation scenarios,
the spacetime becomes anisotropic in one (or more)
direction, including time, and inevitably the quantum field
whose modes propagate in it has its energy spectrum
modified. Lorentz symmetry violation in string theory
can be found in Ref. [10] and in low-energy scale scenarios
in Refs. [11–19]. In these contexts, Casimir energy has
been considered in Refs. [20,21] and [22–24], respectively.
Therefore, with such a great number of theoretical works, it
is natural that the search for Lorentz symmetry violations
also acquire experimental interest and, in this sense, the
Casimir effect becomes an even more interesting topic to
study, since it can be related with Lorentz symmetry
violation models.
Although the Casimir effect is more often calculated in

terms of the zero-point energy of a quantized field, this
effect can also be investigated by adopting the path integral
formalism for quantum field theory, developed by Jackiw
[25], in which an effective potential, presented in terms
of loop expansions, allows us to obtain the energy density
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as well as the generation of topological mass.1 Studies of
radiative corrections for the Casimir energy were reported
in Refs. [26–28] and in Refs. [29–31]. In the latter, the
generation of topological mass for a self-interacting mass-
less scalar field obeying different boundary conditions on
two large and parallel plates was also considered. By
following the same line of investigation as in Ref. [30], in
the present work, we study the loop expansions to the
Casimir energy and generation of topological mass for self-
interacting massive and massless scalar fields subject to
Dirichlet, Newman, and mixed boundary conditions in the
context of a CPT-even aether-type Lorentz symmetry
violation model [32–34].
This paper is organized as follows: In Sec. II, we briefly

describe the theoretical model that we want to investigate,
which consists of a self-interacting massive scalar field in a
CPT-even aether-type Lorentz symmetry violation
approach. We then calculate the one- and two-loop radi-
ative corrections to the Casimir energy and the generation
of topological mass, admitting that the scalar field obeys
Dirichlet, Newman, and mixed boundary conditions on two
large and parallel plates. Because these calculations are
divergent, we adopt the Riemann zeta-function renormal-
ization procedure to provide finite and well-defined results.
Finally, in Sec. III, we present our conclusions. Throughout
the paper, we use natural units ℏ ¼ c ¼ 1 and the metric
signature ð−;þ;þ;þÞ.

II. LOOPS CORRECTIONS AND GENERATION
OF TOPOLOGICAL MASS

A. Theoretical model

We first introduce the aether-type Lorentz symmetry
violation model that we want to consider to investigate the
vacuum energy and generation of topological mass. The
model is composed of a self-interacting scalar field that
presents a CPT-even and aether-like Lorentz violation term
implemented by direct coupling between the derivative of
the field with an external constant four-vector. (For a more
detailed review, see Refs. [32,34]). The model is described
by the action below:

SðϕÞ ¼
Z
M

d4xLðxÞ; ð2:1Þ

where M is a flat manifold and L is a Lagrangian density,
given by

LðxÞ ¼ −
1

2
ð∂μϕÞð∂μϕÞ þ 1

2
χðu · ∂ϕÞ2 −UðϕÞ: ð2:2Þ

In the above expression, the scalar field of mass m is
represented by ϕðxÞ. The four-vector, uμ, is responsible for

a privileged direction in spacetime; and the dimensionless
parameter χ, which codifies the Lorentz violation, is much
smaller than unity. The last term on the rhs of Eq. (2.2) is
the classical potential UðϕÞ, which, for a massive and self-
coupling λϕ4 theory, is given by

UðϕÞ ¼ m2ϕ2

2
þ λϕ4

4!
þ ϕ4

4!
δ1 þ

ϕ2

2
δ2 þ δ3; ð2:3Þ

where the parameters δ1, δ2, and δ3 correspond to the
renormalization constants of the theory and will be deter-
mined later. Before we proceed, we want to make clear
that the analysis we want to develop in this paper will take
into consideration the four-vector, uμ, in two types: timelike
and spacelike. The timelike component is represented by
ut ¼ ð1; 0; 0; 0Þ; while the spacelike is represented by ux ¼
ð0; 1; 0; 0Þ if the privileged direction is in the x axis, uy ¼
ð0; 0; 1; 0Þ if the privileged direction is in the y axis, and
uz ¼ ð0; 0; 0; 1Þ if the privileged direction is in the z axis.
In order to adopt the path integral approach described in

detail in Ref. [30], we need to allow the field ϕðxÞ to
fluctuate about a fixed background field, Φ, with its
quantum fluctuations represented by φ. Thus, after per-
forming a Wick rotation ðt → −itÞ in the Lorentzian action
[Eq. (2.1)] and defining a Euclidean one, we can make use
of the generating function of the one-particle-irreducible
Green function [30]. This provides a description in terms of
a Φ-dependent effective potential which, up to two-loop
corrections, is written as

VeffðΦÞ ¼ VclðΦÞ þ Vð1ÞðΦÞ þ Vð2ÞðΦÞ; ð2:4Þ

where VclðΦÞ ¼ UðΦÞ is the tree-level (classical) contri-
bution to the effective potential in a flat manifold, and
Vð1ÞðΦÞ and Vð2ÞðΦÞ are the one- and two-loop correction
contributions, respectively. Note that we have performed a
linear expansion of ϕ (ϕ → Φþ φ) about the classical
field, Φ. The two-loop contribution in the last term on the
rhs of Eq. (2.4) is a contribution of two graphs to the
effective Euclidian action [30]. Wewill postpone to the next
sections how to calculate it for each case we consider.
As to the one-loop contribution to the effective potential,

we will follow the same method as Ref. [30], which is to
define this contribution in terms of the Riemann zeta
function ζðsÞ, i.e.,

Vð1ÞðΦÞ ¼ −
1

2volðEÞ ½ζ
0ð0Þ þ ζð0Þ lnðμ2Þ�; ð2:5Þ

where volðEÞ is the Euclidian volume, ζ0ðsÞ the derivative
of the zeta function with respect to the parameter s, and
the term ζð0Þ lnðμ2Þ is to be removed by renormalization.2

1In fact, both calculations are divergent. The standard pro-
cedure to renormalize them and obtain finite results is through the
use of the Riemann zeta function.

2The parameter μ is associated with a measure on the space of
function [30].
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As is known, the (generalized) Riemann zeta function, ζðsÞ,
is defined as

ζðsÞ ¼
X
β

Λ−s
β ; ð2:6Þ

where Λβ is the spectrum of eigenvalues associated with a
self-adjoint elliptic operator, which in our case is given by

Δ ¼ −∂μ∂μ þ χuμuν∂μ∂ν þm2 þ λΦ2

2
: ð2:7Þ

Note that β stands for the set of quantum numbers
associated with the quantum field eigenfunction, φ, of
the operator, Δ. Although the zeta function (2.6) is defined
in terms of the complex parameter s, for ReðsÞ > 1, an
analytic continuation to the whole complex plane can be
obtained for it, including in s ¼ 0.
The renormalization condition that enables us to elimi-

nate the term ζð0Þ lnðμ2Þ in Eq. (2.5) is considered in
analogy to Coleman-Weinberg and should fix the coupling
constant [30,35]. This condition is written as

d4Veff

dΦ4

����
Φ¼0

¼ λ: ð2:8Þ

As we will see, this condition will fix the renormalization
constant δ1.
On the other hand, the condition that makes it possible to

obtain a topological mass is given by

d2Veff

dΦ2

����
Φ¼0

¼ m2: ð2:9Þ

This condition fixes the renormalization constant δ2 and
also provides the topological mass when using the renor-
malized effective potential, as we will see. Note that Φ ¼ 0
is the value that minimizes the effective potential and
represents the minimum of the potential only if it obeys the
extremum condition

dVeff

dΦ

����
Φ¼0

¼ 0; ð2:10Þ

leading to Eq. (2.9) being positive.
Moreover, in order to find the constant δ3, we also need

to use an additional renormalization condition, which is
given by

Veff jΦ¼0 ¼ 0: ð2:11Þ

From now on in our discussion, we will assume that
the quantum field φ is confined between two large
parallel plates, as shown in Fig. 1. The quantum field φ
is an eigenfunction of the self-adjoint elliptic operator
[Eq. (2.7)], with eigenvalues Λβ. In this sense, the

eigenvalues we are interested in are the ones obtained
by requiring that φ must satisfy specific boundary con-
ditions on the plates placed at z ¼ 0 and z ¼ a for all cases
of four-vector uμ: timelike and spacelike.

B. Dirichlet and Neumann boundary conditions

We will start by considering the case where the scalar
field, φ, satisfies Dirichlet and Neumann boundary con-
ditions on the plates—that is,

φðxÞjz¼0 ¼ φðxÞjz¼a; and

∂φðxÞ
∂z

����
z¼0

¼ ∂φðxÞ
∂z

����
z¼a

; respectively: ð2:12Þ

The complete set of normalized solutions of the scalar field,
φ, under these conditions has been reported, for instance, in
Ref. [36]. These solutions provide the following eigenval-
ues of the operator (2.7):

Λβ ¼ k2t þ k2 þ n2π2

a2
− χuμuνkμkν þm2 þ λΦ2

2
; ð2:13Þ

where kμ ¼ ðkt; kx; ky; kzÞ are the four-momentum compo-
nents, k2 ¼ k2x þ k2y and kz ¼ nπ=a, for n ¼ 1; 2; 3;….
Hence, the set of quantum numbers is β ¼ ðkt; kx; ky; nÞ.
Note that kt, kx, and ky are continuum quantum numbers. In
addition, we want to point out that for a constant timelike
vector, ut, in Eq. (2.13), we have to consider the Euclidean
version of the zero component of the four-momentum; i.e.,
we have to take kt → −ikt, in the term associated with the
Lorentz-violating parameter, χ.

1. Timelike vector

We want to begin considering the timelike type of the
four-vector uμ, in which case ut ¼ ð1; 0; 0; 0Þ, meaning that
the privileged direction chosen to have the Lorentz sym-
metry violated is the time one. This leads the eigenvalues
(2.13) to be written as

FIG. 1. Schematic configuration for the two parallel plates with
area L2 separated by a distance a (a ≪ L).
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Λβ ¼ ð1þ χÞk2t þ k2 þ π2n2

a2
þm2 þ λΦ2

2
: ð2:14Þ

The set of eigenvalues in Eq. (2.14) allows us to build the
zeta function by using the definition (2.6). This provides

ζðsÞ ¼ V3

ð2πÞ3
X∞
n¼1

Z
d3k

×

�
ð1þ χÞk2t þ k2 þ π2n2

a2
þm2 þ λ

2
Φ2

�−s
; ð2:15Þ

where V3 is a continuum volume associated with the
coordinates t, x, y and d3k ¼ dktdkxdky. After defining
a new variable κt ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
kt, the integrals in κt, kx, and ky

can be performed by using the identity

1

ω2s ¼
1

ΓðsÞ
Z

∞

0

dττ2s−1e−ω
2τ2 : ð2:16Þ

Consequently, Eq. (2.15) becomes

ζðsÞ ¼ V3

ð2πÞ3
π3=2ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p Γðs − 3=2Þ
ΓðsÞ w3−2s

X∞
n¼1

ðn2 þ ν2Þ3=2−s;

ð2:17Þ

where

ν2 ≡ λΦ2

2w2
þm2

w2
and w≡ π

a
: ð2:18Þ

The sum in n present in Eq. (2.17) can be worked out by
making use of the Epstein-Hurwitz zeta function [37]:

ζEHðs; νÞ≡
X∞
n¼1

ðn2 þ ν2Þ−s

¼ −
ν−2s

2
þ π1=2

2

Γðs − 1=2Þ
ΓðsÞ ν1−2s

þ 21−sð2πÞ2s−1=2
ΓðsÞ

X∞
n¼1

n2s−1fðs−1=2Þð2πnνÞ;

ð2:19Þ

where the function fγðxÞ is defined in terms of the modified
Bessel functions [37], KγðxÞ, by the following relation:

fγðxÞ≡ KγðxÞ
xγ

: ð2:20Þ

Thus, using Eq. (2.19) in Eq. (2.17), we get

ζðsÞ ¼ V3

ð2πÞ3
1ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
�
−
π3=2w−2s̄ν−2s̄

2

Γðs̄Þ
Γðs̄þ 3=2Þ þ

π1=2π3=2w−2s̄

2

Γðs̄ − 1=2Þ
Γðs̄þ 3=2Þ ν

1−2s̄

þ 21−s̄ð2πÞ2s̄−1=2π3=2w−2s̄

Γðs̄þ 3=2Þ
X∞
n¼1

n2s̄−1fðs̄−1=2Þð2πnνÞ
�
; ð2:21Þ

where s̄ ¼ s − 3=2. We should note that in order to obtain the one-loop correction to the effective potential, we have to take
the limit, s → 0, which means s̄ → −3=2. Consequently, Eq. (2.21) provides

ζð0Þ ¼ V3a
2ð2πÞ4

π2b4ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p ð2:22Þ

and

ζ0ð0Þ ¼ V3a
ð2πÞ3

�
−
2π2

3

b3ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a
þ 3

8

πb4ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p −
π

2

b4 lnðbÞffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ 2πb2ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a2

X∞
n¼1

K2ð2banÞ
n2

�
; ð2:23Þ

where the parameter b is defined as

b≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΦ2

2
þm2

r
: ð2:24Þ

Hence, substituting the results in Eqs. (2.22) and (2.23) into Eq. (2.5), we find the one-loop correction to effective potential;
that is,

Vð1ÞðΦÞ ¼ b3

24π
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a
−

3b4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ
b4 lnðb2

μ2
Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p −
b2

8π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a2

X∞
n¼1

K2ð2banÞ
n2

: ð2:25Þ
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This allows us to write the effective potential (2.4) up to one-loop correction as

VeffðΦÞ ¼ m2Φ2

2
þ λΦ4

4!
þΦ2

2
δ2 þ

Φ4

4!
δ1 þ δ3 þ

b3

24π
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a
−

3b4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p

þ
b4 lnðb2

μ2
Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p −
b2

8π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a2

X∞
n¼1

K2ð2banÞ
n2

: ð2:26Þ

The effective potential above still needs to be renormal-
ized, requiring that we find the renormalization constants
δ1, δ2, and δ3 as we take the limit a → þ∞ [30,38]. This is
done by making use of the conditions (2.8), (2.9), and
(2.11) taken at Φ ¼ 0. The condition (2.8) fixes the
renormalization constant δ1; i.e.,

δ1
4!

¼ λ2 lnðμ2m2Þ
256π2

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p : ð2:27Þ

Furthermore, the renormalization conditions (2.9) and
(2.11) fix, respectively, the constants δ2 and δ3, providing

δ2
2
¼ λm2

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ λm2 lnðμ2m2Þ
64π2

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p ð2:28Þ

and

δ3 ¼
3m4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ m4 lnðμ2m2Þ
64π2

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p : ð2:29Þ

The renormalization constants above, when taken into
account in Eq. (2.26), allow us to obtain the renormalized
effective potential at one-loop level:

VR
effðΦÞ ¼ m2Φ2

2
þ λΦ4

4!
−

3b4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ 3m4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ b3

24π
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a

þ m2λΦ2

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ b4 lnðb2m2Þ
64π2

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p −
b2

8π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a2

X∞
n¼1

K2ð2banÞ
n2

: ð2:30Þ

This expression for the renormalized effective potential is
clearly affected by the Lorentz symmetry violation param-
eter χ, as it should be.
The renormalized effective potential, Eq. (2.30), when

taken at the vacuum state Φ ¼ 0, provides a nonvanishing
vacuum Casimir-like potential energy by unit area of the
plates, given by

EC

L2
¼ aVR

effð0Þ ¼ −
m2

8π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a

X∞
n¼1

K2ð2amnÞ
n2

: ð2:31Þ

As we can see, the Casimir potential energy density
above is affected by the Lorentz symmetry violation
parameter χ through a multiplicative factor. Although this
potential energy is given in terms of a sum of the modified
Bessel functions, K2ð2manÞ, it is a convergent expression,
since for large values of n this function is exponentially
suppressed.
It is possible to provide closed expressions for the

asymptotic behaviors, as am ≫ 1 and am ≪ 1, of the
vacuum potential energy density. Thus, in the case am≫1,
by using the asymptotic expression for the modified
Bessel function for large arguments [37], we get

EC

L2
≈ −

1

16
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
�
m
πa

�
3=2

e−2am: ð2:32Þ

In this limit, the dominant term in Eq. (2.31) is for
n ¼ 1, and we can clearly see that for large values of
am the vacuum potential energy density is exponentially
suppressed.
As to the case when am ≪ 1, it is convenient first to

use the integral representation for the modified Bessel
function [39]:

KνðzÞ ¼
ffiffiffi
π

p ð1
2
zÞν

Γðνþ 1=2Þ
Z

∞

1

e−ztðt2 − 1Þν−1=2dt: ð2:33Þ

By substituting the above representation into Eq. (2.31), it
is possible to develop the sum over n. Doing this, we get

EC

L2
¼ −

am4

6π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
Z

∞

1

dv
ðv2 − 1Þ3=2
e2amv − 1

: ð2:34Þ

In the regime of am ≪ 1, the integral in Eq. (2.34) is
dominated by large values of v, so we may approximate
Eq. (2.34) to
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EC

L2
≈ −

am4

6π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
Z

∞

1

dv
v3

e2amv − 1
: ð2:35Þ

Now, we can obtain an expression to the integral in
Eq. (2.35), which, developing a series expansion in powers
of am ≪ 1, provides

EC

L2
≈ −

π2

1440
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a3

þ m3

36π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p −
am4

48π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p :

ð2:36Þ

Note that the leading term in the first term on the rhs of
Eq. (2.36) is the contribution of the massless scalar field,
which becomes an exact expression in the limit m → 0.
Moreover, we also recover from Eq. (2.31) results for the
Casimir effect for a real scalar field which satisfies Dirichlet
and Neumann boundary conditions on two parallel plates
without Lorentz violation [36,40,41].
As has been said before, the two-loop contribution to

the effective potential comes from the two graphs to the
effective Euclidian action given in Refs. [30,31]. As we are
only interested in the two-loop contribution to the vacuum
energy, its only nonzero term, at Φ ¼ 0, is given by

Vð2ÞðΦ ¼ 0Þ ¼ λ

8
S1ðΦ ¼ 0Þ: ð2:37Þ

The function S1ðΦÞ is obtained by means of the expression

S1ðΦÞ ¼
�X∞

n¼1

1

a

Z
d3k
ð2πÞ3

�
ð1þ χÞk2t þ k2

þ π2n2

a2
þm2 þ λΦ2

2

�
−s
	

2

; ð2:38Þ

where s has been introduced in order to regularize the
expression above. After we subtract the divergent part of
Eq. (2.38), we should take s ¼ 1. This allows us to write the
finite contribution of the function S1ðΦÞ in terms of the zeta
function (2.21) as

S1ðΦÞ ¼
�
ζRð1Þ
V3a

�
2

: ð2:39Þ

Note that ζRð1Þ is the zeta function [Eq. (2.21)] taken at
s ¼ 1 after subtracting the divergent part of it given by
the second term on the rhs. This term, when divided by
V3a, is independent of a and presents a divergent con-

tribution at s ¼ 1 proportional to Γðs−2Þ
ΓðsÞ ≈ s

1−s. As is usually

done, this term should be subtracted, since it does not
depend on the boundary condition parameter—that is, a.
Hence, Eqs. (2.37) and (2.39) provide the two-loop con-
tribution to the effective potential as

EðλÞ
C

L2
¼ aVð2Þð0Þ ¼ m2λ

128π4ð1þ χÞa
�X∞
n¼1

K1ð2amnÞ
n

�
2

:

ð2:40Þ

Also, we can see that E
ðλÞ
C
L2 depends on the Lorentz violation

parameter by a multiplicative factor; moreover, it is an
exact and a convergent function, which can be seen by
noting that the modified Bessel function K1ð2manÞ is
exponentially suppressed for large values of n.
We can also obtain closed expressions for Eq. (2.40) in

the regimes where am ≫ 1 and am ≪ 1. Considering first
the case am ≫ 1, we have

EðλÞ
C

L2
≈

λme−4am

512π3ð1þ χÞa2 ; ð2:41Þ

which is dominated by the term n ¼ 1 in the sum and is
exponentially suppressed. This feature is shown in Fig. 2.
For the opposite regime—that is, when am ≪ 1—we

should use again the integral representation in Eq. (2.33)
for the modified Bessel function KμðxÞ. Developing a
similar procedure as before, we obtain

EðλÞ
C

L2
≈

λ

18432ð1þ χÞa3 −
λm

768π2ð1þ χÞa2 ; ð2:42Þ

which give us as the leading contribution the massless
scalar field expression in the first term on the rhs of it. This
becomes an exact expression in the limit m → 0.
In the left panel of Fig. 2, we exhibit the behavior of the

Casimir energy per unit area given by Eq. (2.31), as a
function of the dimensionless parameter ma, considering
different values for the parameter χ. We can see that it
increases as the Lorentz symmetry violation parameter
increases. In the right plot, on the other hand, we exhibit the
two-loop correction to the Casimir energy per unit area,
Eq. (2.40), as a function of am. It is clear that both plots are
in agreement with the asymptotic behaviors (2.32) and
(2.36) for the Casimir energy, and with (2.41) and (2.42) for
the two-loop correction.
At one-loop level, the massive scalar field we are con-

sidering will get quantum corrections to its mass. This
correction can be obtained by using condition (2.9), at
Φ ¼ 0, for the renormalized effective potential [Eq. (2.30)]
at one-loop level; i.e.,

m2
T ¼ d2VR

effðΦÞ
dΦ2

����
Φ¼0

¼ m2

�
1þ λ

16π
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
am

þ λ

8π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
am

X∞
n¼1

K1ð2amnÞ
n

�
: ð2:43Þ
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This expression presents a topological contribution, which
depends on a, to the mass m of the scalar field given by the
terms proportional to the self-coupling constant λ. Even for
the massless scalar field, which remains massless at the tree
level, there appears a topological mass generated at the one-
loop correction, as we can see from Eq. (2.43). Moreover,
the third term inside the bracket is convergent, since it is
exponentially suppressed for large values of n. In fact, the
leading contribution for am ≫ 1 is given by the first term
on the rhs of Eq. (2.43). This asymptotic behavior can be
obtained by using the expressions for the modified Bessel
function for large arguments [37]. The asymptotic expres-
sion for Eq. (2.43) in the regime am ≫ 1 is

m2
T ≈m2 þ λm

16π
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a
þ λ

16π3=2

ffiffiffiffiffi
m
a3

r
e−2amffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p : ð2:44Þ

On the other hand, for am ≪ 1, the leading term is mass
independent, followed by terms that depend on the mass of
the scalar field. Once more, this behavior can be obtained
by using the integral representation for the function KμðzÞ,
Eq. (2.33). After some intermediate steps, we obtain

m2
T ≈

λ

96
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a2

þ λm
16π

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a
−

λm
8π2

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a
þm2:

ð2:45Þ

The asymptotic results, Eqs. (2.44) and (2.45), are in
agreement with the plot of Fig. 3, which exhibits the
behavior of the ratio of the topological mass to the field’s
mass itself, mT=m, as a function of am for different

parameters χ. Note that the topological mass decreases
as χ increases.

2. Spacelike vector

Now, we consider the case that the constant four-
vector is spacelike—that is, of the types ux ¼ ð0; 1; 0; 0Þ,
uy ¼ ð0; 0; 1; 0Þ, or uz ¼ ð0; 0; 0; 1Þ. The first two types are
parallel to the plates and provide essentially the same
results, while the third type is perpendicular to the plates.
Let us then begin by considering the parallel cases by
assuming, for instance, that a breaking of Lorentz sym-
metry happens in the x direction—i.e., ux ¼ ð0; 1; 0; 0Þ.
This gives us the set of eigenvalues

Λβ ¼ k2 þ ð1 − χÞk2x þ
π2n2

a2
þm2 þ λ

2
Φ2; ð2:46Þ

where k2 ¼ k2t þ k2y. Thereby, from Eq. (2.7), the set of
eigenvalues above is associated with the elliptic operator
given by

Δ ¼ −∂μ∂μ þ χ∂2
x þm2 þ λ

2
Φ2: ð2:47Þ

So, in this case, the zeta function (2.6) is written as

ζðsÞ ¼ V3

ð2πÞ3
Z

d3k

×
X∞
n¼1

�
k2 þ ð1 − χÞk2x þ

π2n2

a2
þm2 þ λ

2
Φ2

�−s
:

ð2:48Þ

FIG. 2. The behavior of the Casimir energy per unit area EðamÞ ¼ a3

L2 EC given by Eq. (2.31) as a function of am is exhibited in the left

panel, and the two-loop contribution to the Casimir energy per unit area EλðamÞ ¼ a3

L2 E
ðλÞ
C in Eq. (2.40) as a function of am is presented

in the right panel, considering λ ¼ 10−3. For both plots, different values for the parameter χ are considered.
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The integrals in kt, kx, and ky can be solved using the
identity (2.16), providing

ζðsÞ ¼ V3

ð2πÞ3
π3=2ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p Γðs − 3=2Þ
ΓðsÞ w3−2s

X∞
n¼1

ðn2 þ ν2Þ3=2−s;

ð2:49Þ

where

ν2 ¼ λΦ2

2w2
þm2

w2
and w ¼ π

a
: ð2:50Þ

Clearly, we can see that this result is very similar to the one
obtained in the timelike case, with a different dependence
on the Lorentz violation parameter, χ. In fact, the timelike
and spacelike expressions for the zeta function, Eqs. (2.17)
and (2.49), respectively, are related by the change χ → −χ.
Hence, we expect that all the results for the vacuum energy,
its loop correction, and the topological mass will be related
by this same change.
Let us now turn to the most important type of spacelike

Lorentz symmetry violation—namely, the one in the
perpendicular direction to the plates given by

uz ¼ ð0; 0; 0; 1Þ: ð2:51Þ

This provides, from Eq. (2.7), the following differential
elliptic operator:

Δ ¼ −∂μ∂μ þ χ∂2
z þm2 þ λΦ2

2
: ð2:52Þ

Consequently, the set of eigenvalues associated with this
operator is found to be

Λβ ¼ k2 þ ð1 − χÞ π
2n2

a2
þm2 þ λΦ2

2
: ð2:53Þ

Note that k2 ¼ k2t þ k2x þ k2y. Thereby, the zeta function
(2.6), taking into consideration Eq. (2.53), is written as

ζðsÞ ¼ V3

ð2πÞ3
X∞
n¼1

Z
d3k

�
k2 þ ð1− χÞπ

2n2

a2
þm2 þ λΦ2

2

�−s
;

ð2:54Þ

where, again, V3 is the continuum volume associated with
the dimensions t, x, y and d3k ¼ dktdkxdky. Thus, the
identity (2.16) allows us to perform the integrals in kt, kx,
and ky in Eq. (2.54). The resulting expression, in analogy
with Eq. (2.49), can be written in terms of the Epstein-
Hurwitz function (2.19), providing that

ζðsÞ ¼ V3

ð2πÞ3
�
−
π3=2w−2s̄ν−2s̄

2

Γðs̄Þ
Γðs̄þ 3=2Þ þ

π1=2π3=2w−2s̄

2

Γðs̄ − 1=2Þ
Γðs̄þ 3=2Þ ν

1−2s̄

þ 21−s̄ð2πÞ2s̄−1=2π3=2w−2s̄

Γðs̄þ 3=2Þ
X∞
n¼1

n2s̄−1fðs̄−1=2Þð2πnνÞ
�
; ð2:55Þ

FIG. 3. The behavior of the ratio of the topological mass to the scalar field mass as a function of am is plotted assuming λ ¼ 10−3 and
different values for the Lorentz-violating parameter χ.
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where s̄ ¼ s − 3=2, and

ν2 ¼ λΦ2

2w2
þm2

w2
and w≡ ffiffiffiffiffiffiffiffiffiffiffi

1 − χ
p π

a
: ð2:56Þ

Note that one should consider the limit s → 0, or analo-
gously s̄ → −3=2. In this limit, we can get the expressions
for ζð0Þ and ζ0ð0Þ, respectively, given by

ζð0Þ ¼ V3a
2ð2πÞ4

π2b4ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p ; ð2:57Þ

ζ0ð0Þ ¼ V3L
ð2πÞ3

�
−
2π2

3

b3

a
þ 3

8

πb4ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p −
π

2

b4 lnðbÞffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p

þ 2π
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
b2

a2
X∞
n¼1

K2ð 2abnffiffiffiffiffiffi1−χ
p Þ
n2

�
: ð2:58Þ

Consequently, from Eq. (2.5), the one-loop correction to
the effective potential is

Vð1ÞðΦÞ ¼ b3

24πa
−

3b4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ
b4 lnðb2

μ2
Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p

−
b2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
8π2a2

X∞
n¼1

K2ð 2abnffiffiffiffiffiffi1−χ
p Þ
n2

; ð2:59Þ

where the parameter b is defined as

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΦ2

2
þm2

r
: ð2:60Þ

Hence, the effective potential up to one-loop correction,
given by the expression (2.4), is obtained as

VeffðΦÞ ¼ m2Φ2

2
þ λΦ4

4!
þΦ2

2
δ2 þ

Φ4

4!
δ1 þ δ3

þ b3

24πa
−

3b4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p

þ
b4 lnðb2

μ2
Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p −
b2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
8π2a2

X∞
n¼1

K2ð 2abnffiffiffiffiffiffi1−χ
p Þ
n2

:

ð2:61Þ
We should now obtain the renormalization constants δ1, δ2,
and δ3, which can be done by using the conditions (2.8),
(2.9), and (2.11), respectively. Thus, the renormalization
constant δ1 is found to be

δ1
4!

¼ λ2 lnðμ2m2Þ
256π2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p ; ð2:62Þ

δ2
2!

¼ m2λ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ m2λ lnðμ2m2Þ
64π2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p ; ð2:63Þ

and

δ3 ¼
3m4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ m4 lnðμ2m2Þ
64π2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p : ð2:64Þ

Hence, substituting the renormalization constants above in
Eq. (2.61), the renormalized effective potential, up to one-
loop correction, is found to be

VR
effðΦÞ ¼ m2Φ2

2
þ λΦ4

4!
þ b3

24πa
−

3b4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ m2λΦ2

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ 3m4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p

þ b4

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p ln

�
b2

m2

�
−
b2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
8π2a2

X∞
n¼1

K2ð 2abnffiffiffiffiffiffi1−χ
p Þ
n2

: ð2:65Þ

The vacuum energy per unit area of the plates is obtained
when we take the vacuum state (Φ ¼ 0). Thus, from
Eq. (2.65), we get

EC

L2
¼ aVR

effð0Þ ¼ −
m2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
8π2a

X∞
n¼1

K2ð2amnffiffiffiffiffiffi
1−χ

p Þ
n2

; ð2:66Þ

which is convergent, and therefore finite. This expression
for the vacuum energy per unit area is exponentially
suppressed for ma ≫ 1 and provides the massless scalar
field expression for ma ≪ 1.
We can mathematically obtain an asymptotic expression

for Eq. (2.66) in the regimes ma ≪ 1 and ma ≫ 1. By
considering the latter, we have

EC

L2
≈ −

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
16

�
m
πa

�
3=2

e
− 2amffiffiffiffiffi

1−χ
p

; ð2:67Þ

which, as mentioned before, is exponentially suppressed.
It is the dominant term for n ¼ 1 in the sum.
As to the limit am ≪ 1, we should first use the integral

representation for the modified Bessel function, KμðxÞ, in
Eq. (2.33). This provides

EC

L2
≈ −

π2ð1 − χÞ3=2
1440a3

þ m3

36π2
−

am4

48π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p : ð2:68Þ
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Note that the dominant term is the first one on the rhs and
represents the vacuum energy per unit area in the massless
scalar field case.
Let us turn to the two-loop contribution to the effective

potential calculated at Φ ¼ 0 in the case in which the four-
vector is orthogonal to the parallel plates. The S1ðΦÞ
function in Eq. (2.37) is now written as

S1ðΦÞ ¼
�X∞

n¼1

1

a

Z
d3k
ð2πÞ3

×

�
k2 þ ð1 − χÞ π

2n2

a2
þm2 þ λΦ2

2

�
−s
	

2

; ð2:69Þ

which should be taken at s ¼ 1 after subtracting the
divergent contribution. This can be done by using the zeta
function (2.55) in a similar way as in the previous case
shown in Eq. (2.39). In the present case, the divergent
contribution comes from the second term on the rhs of
Eq. (2.55) and, after subtracted, the two-loop contribution
Vð2Þð0Þ at s ¼ 1 can be found, leading to the two-loop
correction to the vacuum energy:

EðλÞ
C

L2
¼ aVð2Þð0Þ ¼ m2λ

128π4a

"X∞
n¼1

K1ð2amnffiffiffiffiffiffi
1−χ

p Þ
n

#
2

: ð2:70Þ

This is a completely convergent expression, since the
modified Bessel function, KμðxÞ, is exponentially sup-
pressed. This is also clear when one considers the asymp-
totic limit ma ≫ 1. In the opposite limit, ma ≪ 1, the
expression for the two-loop contribution to the vacuum
energy for a massless scalar field is obtained, as the leading
contribution.

We can also obtain the asymptotic expressions for
Eq. (2.70) in the regimes ma ≪ 1 and ma ≫ 1. In the
latter, we have

EðλÞ
C

L2
≈
λm

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
e
− 4amffiffiffiffiffi

1−χ
p

512π3a2
; ð2:71Þ

which is exponentially suppressed and dominated by the
term n ¼ 1 in the sum.
In the opposite limit, ma ≪ 1, we need to use the

integral representation (2.33) for the modified Bessel
function, KμðxÞ. This provides

EðλÞ
C

L2
≈
λð1 − χÞ
18432a3

−
λm

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
768π2a2

: ð2:72Þ

Note that the first term on the rhs is the massless scalar field
contribution which becomes exact when ma → 0.
In the left panel of Fig. 4, we plot the behavior of the

Casimir energy per unit area [Eq. (2.66)] as a function of
am considering different values for the parameter χ. This
plot shows that as χ increases, the vacuum energy also
increases. On the other hand, in the right figure we plot the
two-loop correction to the vacuum energy per unit area
[Eq. (2.70)] as a function of am, assuming λ ¼ 10−3. This
plot shows that as χ increases, the two-loop correction
decreases. Moreover, one should note an important feature
here—namely, the vacuum energy (2.66) and its radiative
correction (2.70) not only depend on χ by means of a
multiplicative factor but also depend on χ in the argument
of the modified Bessel function, KμðxÞ. This stronger

FIG. 4. The behavior of the Casimir energy per unit area EðamÞ ¼ a3

L2 EC given by Eq. (2.66) as a function of am is presented in the left

panel, and the two-loop correction EλðamÞ ¼ a3

L2 E
ðλÞ
C given by Eq. (2.70) as a function of am is in the right one. In the latter, we have

taken λ ¼ 10−3 and considered different values for χ.
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dependence is shown in the plots of Fig. 4. The shift in the
curves is stronger than in the previous timelike case.
A topological mass in this case will also be generated and

can be obtained by using the condition (2.9). Thus, by
applying the latter in the renormalized effective potential
[Eq. (2.65)], we find

m2
T ¼ m2

"
1þ λ

16πam
þ λ

8π2am

X∞
n¼1

K1ð2amnffiffiffiffiffiffi
1−χ

p Þ
n

#
: ð2:73Þ

This is an exact convergent expression, and in the limit
ma ≫ 1 is dominated by the first term on the rhs, while in
the limit ma ≪ 1 is dominated by the third term, the
massless scalar field contribution.
Mathematically, the asymptotic behavior ma ≫ 1 of

Eq. (2.73) is given by

m2
T ≈m2 þ λm

16πa
þ λ

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ4

p
16π3=2

ffiffiffiffiffi
m
a3

r
e
− 2amffiffiffiffiffi

1−χ
p

; ð2:74Þ

while the asymptotic behavior ma ≪ 1 is

m2
T ≈

λ
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
96a2

þ λm
16πa

þm2: ð2:75Þ

The asymptotic results, Eqs. (2.74) and (2.75), are in
agreement with the plot of Fig. 5, which exhibits
the behavior of the ratio of the topological mass to the
field’s mass as a function of ma for a fixed value of λ and
different values of χ. Note that, due to the dependence of
the topological mass (2.73) on χ in the argument of the
modified Bessel function, KμðxÞ, the curves in Fig. 5 are
shifted down as χ increases, more than in the timelike case.

It is important to point out that all the results obtained
up to this point, adopting the Dirichlet boundary condition
for the timelike and spacelike types of Lorentz symmetry
violation, are the same ones obtained when we consider the
Neumann boundary condition, as it should be. In the next
section, we will consider a mix of these two boundary
conditions, which we will refer to as a mixed boundary
condition.

C. Mixed boundary condition

After the analysis of the effective potential, Casimir-like
effect, and topological mass assuming Dirichlet and
Neumann boundary conditions obeyed by a massive scalar
field on two parallel plates, now we want to consider the
case in which the field satisfies a mixed boundary con-
dition. In other words, we assume that the field obeys
Dirichlet and Neumann boundary conditions on each of the
plates separately. The conditions are then written as

φðxÞjz¼0 ¼
∂φðxÞ
∂z

����
z¼a

¼ 0 and
∂φðxÞ
∂z

����
z¼0

¼ φðxÞjz¼a:

ð2:76Þ
The complete set of normalized solutions of the scalar field,
φ, under these conditions has also been reported in
Ref. [36]. These solutions provide the following eigenval-
ues of the operator (2.7):

Λβ ¼ k2t þ k2 þ
��

nþ 1

2

�
π

a

�
2

− χuμuνkμkν þm2 þ λΦ2

2
;

ð2:77Þ
where k2 ¼ k2x þ k2y and n ¼ 0; 1; 2; 3;…. Hence, we
will consider the set of eigenvalues (2.77) representing

FIG. 5. Plot exhibiting the behavior of the ratio of the topological mass by the mass of the field as a function of am. The plot considers
λ ¼ 10−3 and different variations of χ.
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the mixed boundary condition case to calculate the renor-
malized effective potential, the vacuum energy, and topo-
logical mass, taking into consideration the two types of
Lorentz symmetry violation—namely, the timelike and
spacelike types.

1. Timelike vector

In the case that the four-vector uμ is of the timelike
type—i.e., ut ¼ ð1; 0; 0; 0Þ—the eigenvalues (2.77) of the
elliptic operator (2.7) become

Λβ ¼ ð1þ χÞk2t þ k2 þ
��

nþ 1

2

�
π

a

�
2

þm2 þ λΦ2

2
: ð2:78Þ

Consequently, the zeta function (2.6) is now written as

ζðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p V3

ð2πÞ3
X∞
n¼0

Z
d3k

�
κ2t þ k2 þ

��
nþ 1

2

�
π

a

�
2

þm2 þ λΦ2

2

	−s
: ð2:79Þ

Furthermore, by using the identity (2.16), we are able to perform the integrals in κt, kx, and ky, providing that

ζðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p V3

ð2πÞ3
π3=2Γðs − 3=2Þ

ΓðsÞ w3−2s
X∞
n¼0

��
nþ 1

2

�
2

þ ν2
�
3=2−s

; ð2:80Þ

where

ν2 ¼ λΦ2

2w2
þm2

w2
and w ¼ π

a
: ð2:81Þ

We can see that there is still a sum in n to be performed in the zeta function expression [Eq. (2.80)]. In this sense, in order to
apply the Epstein-Hurwitz zeta function (2.19), we can write the sum in n as

X∞
n¼0

��
nþ 1

2

�
2

þ ν2
�
3=2−s

¼ 1

23−2s

�X∞
n¼1

ðn2 þ 4ν2Þ3=2−s − 23−2s
X∞
n¼1

ðn2 þ ν2Þ3=2−s
�
: ð2:82Þ

By using now Eqs. (2.82) and (2.19) in Eq. (2.80), we have the final form of the generalized zeta function as given by

ζðsÞ ¼ V3

ð2πÞ3
�
π2w−2s̄ν1−2s̄Γðs̄ − 1=2Þ
2Γðs̄þ 3=2Þ ffiffiffiffiffiffiffiffiffiffiffi

1þ χ
p þ 2s̄þ1=2π2s̄þ1w−2s̄

Γðs̄þ 3=2Þ ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p

×
�
4s̄

X∞
n¼1

n2s̄−1fs̄−1=2ð4πnνÞ −
X∞
n¼1

n2s̄−1fs̄−1=2ð2πnνÞ
�	

; ð2:83Þ

where s̄ ¼ s − 3=2. Thus, by using Eq. (2.83), we can obtain ζð0Þ and ζ0ð0Þ, leading to the one-loop correction to the
effective potential (2.5), written as

Vð1ÞðΦÞ ¼ −
3b4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ
b4 lnðb2

μ2
Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p −
b2

16π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a2

×
X∞
n¼1

½K2ð4banÞ − 2K2ð2banÞ�
n2

; ð2:84Þ

where

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΦ2

2
þm2

r
: ð2:85Þ

Hence, from Eqs. (2.3) and (2.84), the effective potential up to one-loop correction is found to be
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VeffðΦÞ ¼ m2Φ2

2
þ λΦ4

4!
þΦ2

2
δ2 þ

Φ4

4!
δ1 þ δ3 −

3b4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ
b4 lnðb2

μ2
Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p

−
b2

16π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a2

X∞
n¼1

½K2ð4banÞ − 2K2ð2banÞ�
n2

; ð2:86Þ

where the renormalization constants δ1, δ2, and δ3 need to
be determined in order to find the renormalized form for the
effective potential [Eq. (2.86)]. For this purpose, the
conditions (2.8), (2.9), and (2.11) provide

δ1
4!

¼ λ2 lnðμ2m2Þ
256π2

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p ; ð2:87Þ

δ2
2
¼ λm2 lnðμ2m2Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ λm2

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p ; ð2:88Þ

and

δ3 ¼
m4 lnðμ2m2Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ 3m4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p : ð2:89Þ

The renormalization constants found above, when used in
Eq. (2.86), allow us to obtain the renormalized effective
potential up to one-loop correction:

VR
effðΦÞ ¼ m2Φ2

2
þ λΦ4

24
−

3λ2Φ4

512π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p −
λm2Φ2

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p

þ λ2Φ4 lnðb2m2Þ
256π2

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ λm2Φ2 lnðb2m2Þ
64π2

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ m4 lnðb2m2Þ
64π2

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p

−
b2

16π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a2

X∞
n¼1

½K2ð4abnÞ − 2K2ð2abnÞ�
n2

:

ð2:90Þ

The renormalized effective potential above, at Φ ¼ 0,
provides the vacuum energy per unit area of the plates as

EC

L2
¼ aVR

effð0Þ

¼ −
m2

16π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a

X∞
n¼1

½K2ð4amnÞ − 2K2ð2amnÞ�
n2

:

ð2:91Þ

This expression is a convergent and exact expression for
the vacuum energy. From it, we can consider asymptotic
expressions for small and large arguments of the modified
Bessel function KμðxÞ.
Let us now show the asymptotic expressions in the

regimes ma ≪ 1 and ma ≫ 1. In the latter, the vacuum

energy (2.91) is exponentially suppressed and dominated
by the term n ¼ 1 of the modified Bessel function in the
sum; i.e.,

EC

L2
≈

1

32
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
�
m
πa

�
3=2

e−2am: ð2:92Þ

On the other hand, in the regime ma ≪ 1, the vacuum
energy is given by

EC

L2
≈

7π2

11520
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a3

−
am4

48π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p þ a2m5

60π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p :

ð2:93Þ

This approximated expression is dominated by the first
term on the rhs, associated with the massless scalar field.
Now we turn to the calculation of the two-loop correc-

tion to the effective potential. As in the previous sections,
we can also make use of the zeta function, which in the
present case is given by Eq. (2.83). Thus, the function
S1ðΦÞ is written in the form

S1ðΦÞ ¼
�X∞

n¼0

1

a

Z
d3k
ð2πÞ3

�
ð1þ χÞk2t þ k2

þ
��

nþ 1

2

�
π

a

�
2

þm2 þ λΦ2

2

�
−s
	

2

ð2:94Þ

and can be expressed in terms of the zeta function (2.83) as

S1ðΦÞ ¼
�
ζRð1Þ
V3a

�
2

; ð2:95Þ

where ζRð1Þ is the zeta function (2.83) taken at s ¼ 1 after
subtracting the divergent part of it given by the first term on
the rhs. As explained before, this divergent part, when
divided by V3a, does not depend on a, and as is customary,
must be subtracted. Thus, from Eqs. (2.95) and (2.37), we
obtain the two-loop correction to the vacuum energy as

EðλÞ
C

L2
¼ aVð2Þð0Þ

¼ λm2

128π4ð1þ χÞa
�X∞

n¼1

½K1ð4amnÞ − K1ð2amnÞ�
n

	
2

;

ð2:96Þ
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which is also a convergent and exact expression. It is also
exponentially suppressed for ma ≫ 1 and provides the
massless contribution for ma ≪ 1.
The exponentially suppressed mathematical expression

for Eq. (2.96) in the regime ma ≫ 1 is given by

EðλÞ
C

L2
≈

λme−4am

512π3ð1þ χÞa2 ; ð2:97Þ

while in the regime ma ≪ 1, the vacuum energy is
written as

EðλÞ
C

L2
≈

λ

73728ð1þ χÞa3 −
λm2

3072π2ð1þ χÞa

þ λm3

4608π2ð1þ χÞ ; ð2:98Þ

where we can clearly see that the first term on the rhs is the
dominant one and is associated with the massless sca-
lar field.
In the left panel of Fig. 6, we exhibit the Casimir energy,

given by Eq. (2.91), as a function of am, whereas in the
right panel we exhibit the behavior of the two-loop
correction to the Casimir energy per unit area, given by
Eq. (2.96), as a function of am, considering different values
for χ and fixing λ ¼ 10−5. By these plots, we can infer that
the vacuum energy and its two-loop correction decrease as
χ increases. Note that this is different from the timelike case
considering only the Dirichlet or Neumann boundary
condition, in which case the vacuum energy increases,
whereas its radiative correction decreases, as χ increases.
The mixed boundary condition we are considering here

will also generate, at the one-loop level, a topological mass.

In this sense, we can obtain the topological mass by using
Eqs. (2.90) and (2.9). It is given by

m2
T¼m2

�
1þ λ

8π2
ffiffiffiffiffiffiffiffiffiffi
1þχ

p
am

X∞
n¼1

½K1ð4amnÞ−K1ð2amnÞ�
n

	
:

ð2:99Þ

We have plotted in Fig. 7 the behavior of mT
m by using

Eq. (2.99) in terms of am. The plot shows that the
topological mass increases as the Lorentz symmetry vio-
lation parameter, χ, increases. This is different from the
timelike case considering only the Dirichlet or Neumann
boundary condition, in which case the topological mass
decreases as χ increases. Figure 7 also shows that in the
regime ma ≫ 1, the topological mass is dominated by the
first term on the rhs of Eq. (2.99), while in the opposite
limit ma ≪ 1, the topological mass is the one associated
with a massless scalar field.
Mathematically, for ma ≫ 1, we have

m2
T ≈m2 −

λ

16
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
ffiffiffiffi
m

p
e−2am

ðπaÞ3=2 ; ð2:100Þ

which shows that the topological mass is dominated by the
first term, m2.
In the opposite regime, ma ≪ 1, we obtain

m2
T ≈m2 −

λ

192
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
a2

þ λm2

16π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p −
λam3

24π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p

þ λa3m5

120π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p : ð2:101Þ

FIG. 6. The behavior of the Casimir energy per unit area EðamÞ ¼ a3

L2 EC given by Eq. (2.91) as a function of am is exhibited in the left

plot. The behavior of the two-loop contribution EλðamÞ ¼ a3

L2 E
ðλÞ
C , given by Eq. (2.96), is exhibited in the right plot. For the latter, we

assume λ ¼ 10−3, and consider different values for the parameter, χ.
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In this limit, the dominant term is the second one on the rhs
of the above approximation, associated with a massless
scalar field.

2. Spacelike vector

We want now to consider the case in which the constant
four-vector, uμ, is of the spacelike type. As before, there are
three spacelike components specifying the broken sym-
metry direction: ux ¼ ð0; 1; 0; 0Þ, uy ¼ ð0; 0; 1; 0Þ, both
parallel to the plates, and uz ¼ ð0; 0; 0; 1Þ, orthogonal to
the plates. In the two first cases, specifying the x and y
directions, parallel to the plates, the results for the effective

potential, Casimir energy, and topological mass are the
same. Let us then consider the x direction:

ux ¼ ð0; 1; 0; 0Þ: ð2:102Þ
In this case, from Eq. (2.77), the set of eigenvalues is
given by

Λβ ¼ k2 þ ð1 − χÞk2x þ
��

nþ 1

2

�
π

a

�
2

þm2 þ λΦ2

2
;

ð2:103Þ
where k2 ¼ k2t þ k2y. So, using Eq. (2.6), the zeta function
is written as

ζðsÞ ¼ V3

ð2πÞ3
Z

d3k
X∞
n¼1

�
k2 þ ð1 − χÞk2x þ

��
nþ 1

2

�
π

a

�
2

þm2 þ λΦ2

2

	−s
: ð2:104Þ

Again, by using the identity (2.16), we are able to solve the integrals in kt, kx, and ky to obtain the zeta function in the form

ζðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p V3

ð2πÞ3
π3=2Γðs − 3=2Þ

ΓðsÞ w3−2s
X∞
n¼0

��
nþ 1

2

�
2

þ ν2
�
3=2−s

; ð2:105Þ

where

ν2 ¼ λΦ2

2w2
þm2

w2
and w ¼ π

a
: ð2:106Þ

We can notice that the expression (2.105) can be obtained
from Eq. (2.80) by making χ → −χ. Consequently, all the
results for the renormalized effective potential, Casimir
energy, and topological mass can be obtained from the
timelike case considered previously. This is also valid if we
consider the vector uy.

The most important type of Lorentz symmetry violation
in this section is one occurring in the orthogonal direction
to the plates; that is,

uz ¼ ð0; 0; 0; 1Þ: ð2:107Þ

In this case, the set of eigenvalues (2.77) becomes

Λβ ¼ k2 þ ð1 − χÞ
��

nþ 1

2

�
π

a

�
2

þm2 þ λΦ2

2
; ð2:108Þ

FIG. 7. The ratio of the topological mass to the field mass as a function of am. The plot considers λ ¼ 10−3 and different values of χ.
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where k2 ¼ k2t þ k2x þ k2y. Thus, substituting Eq. (2.108) into Eq. (2.6), we have the zeta function expression written as

ζðsÞ ¼ V3

ð2πÞ3
X∞
n¼0

Z
d3k

�
k2 þ ð1 − χÞ

��
nþ 1

2

�
π

a

�
2

þm2 þ λΦ2

2

	−s
: ð2:109Þ

Once again, by using Eq. (2.16), we obtain

ζðsÞ ¼ V3

ð2πÞ3
π3=2Γðs − 3=2Þ

ΓðsÞ w3−2s
X∞
n¼0

��
nþ 1

2

�
2

þ ν2
�
3=2−s

; ð2:110Þ

where

ν2 ≡ λΦ2

2w2
þm2

w2
and w≡ ffiffiffiffiffiffiffiffiffiffiffi

1 − χ
p π

a
: ð2:111Þ

We need now to find an expression for the sum in n present in the zeta function above. In order to do that, we can make use
of Eq. (2.82). This provides

ζðsÞ ¼ V3

ð2πÞ3
π3=2Γðs̄Þ

Γðs̄þ 3=2Þ
�
w
2

�
−2s̄

�X∞
n¼1

ðn2 þ 4ν2Þ−s̄ − 2−2s̄
X∞
n¼1

ðn2 þ ν2Þ−s̄
�
; ð2:112Þ

where we have s̄ ¼ s − 3=2. Hence, the Epstein-Hurwitz zeta function (2.19) allows us to obtain Eq. (2.112) as

ζðsÞ ¼ V3

ð2πÞ3
�
π2w−2s̄ν1−2s̄Γðs̄ − 1=2Þ

2Γðs̄þ 3=2Þ þ 2s̄þ1=2π2s̄þ1w−2s̄

Γðs̄þ 3=2Þ

×

�
4s̄

X∞
n¼1

n2s̄−1fs̄−1=2ð4πνnÞ −
X∞
n¼1

n2s̄−1fs̄−1=2ð2πνnÞ
�	

: ð2:113Þ

Consequently, in the limit s → 0, we have

ζð0Þ ¼ V3a
2ð2πÞ4

π2b4ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p ð2:114Þ

and

ζ0ð0Þ ¼ V3a
ð2πÞ3

�
3πb4

8
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p −
πb4 lnðbÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ πb2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
a2

X∞
n¼1

½K2ð 4abnffiffiffiffiffiffi1−χ
p Þ − 2K2ð 2abnffiffiffiffiffiffi1−χ

p Þ�
n2

	
: ð2:115Þ

The one-loop correction (2.5) to the effective potential is now possible to obtain by using the results above for ζð0Þ and
ζ0ð0Þ. This gives

Vð1ÞðΦÞ ¼
b4 lnðb2

μ2
Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p −
3b4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p −
b2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
16π2a2

X∞
n¼1

½K2ð 4abnffiffiffiffiffiffi1−χ
p Þ − 2K2ð 2abnffiffiffiffiffiffi1−χ

p Þ�
n2

; ð2:116Þ

where

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΦ2

2
þm2

r
: ð2:117Þ

Furthermore, the effective potential up to one-loop correction, from Eqs. (2.3) and (2.116), is written as

VeffðΦÞ ¼ m2Φ2

2
þ λΦ4

4!
þΦ2

2
δ2 þ

Φ4

4!
δ1 þ δ3 þ

b4 lnðb2
μ2
Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p −
3b4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p

−
b2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
16π2a2

X∞
n¼1

½K2ð 4abnffiffiffiffiffiffi1−χ
p Þ − 2K2ð 2abnffiffiffiffiffiffi1−χ

p Þ�
n2

; ð2:118Þ
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where the renormalization constants δ1, δ2, and δ3 are to be
found by using Eq. (2.118) and the conditions given by
Eqs. (2.8), (2.9), and (2.11). This provides

δ1
4!

¼ λ2 lnðμ2m2Þ
256π2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p ; ð2:119Þ

δ2
2
¼ λm2 lnðμ2m2Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ λm2

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p ; ð2:120Þ

and

δ3 ¼
m4 lnðμ2m2Þ

64π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ 3m4

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p : ð2:121Þ

Finally, by using the renormalization constants found
above in Eq. (2.118), we obtain the renormalized effective
potential up to one-loop correction; i.e.,

VR
effðΦÞ ¼ m2Φ2

2
þ λΦ4

24
−

λm2Φ2

128π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p −
3λ2Φ4

512π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p

þ λm2Φ2 lnðb2m2Þ
64π2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ m4 lnðb2m2Þ
64π2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ λ2Φ4 lnðb2m2Þ
256π2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p

−
b2

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
16π2a2

X∞
n¼1

½K2ð 4abnffiffiffiffiffiffi1−χ
p Þ − 2K2ð 2abnffiffiffiffiffiffi1−χ

p Þ�
n2

:

ð2:122Þ

At this point, we can, by using the renormalized effective
potential (2.122), obtain the vacuum energy per unit area of
the plate. This is done by taking Eq. (2.122) at Φ ¼ 0. This
gives

EC

L2
¼ aVR

effð0Þ ¼ −
m2

ffiffiffiffiffiffiffiffiffiffi
1− χ

p
16π2a

X∞
n¼1

½K2ð4amnffiffiffiffiffiffi
1−χ

p Þ− 2K2ð2amnffiffiffiffiffiffi
1−χ

p Þ�
n2

:

ð2:123Þ

This exact and closed expression for the vacuum energy is
exponentially suppressed for ma ≫ 1, while for ma ≪ 1 it
provides the expression for the vacuum energy in the
massless scalar field case.
The exponentially suppressed expression for the vacuum

energy in the regime ma ≫ 1 is dominated by the n ¼ 1
term of the sum, providing

EC

L2
≈
ð1 − χÞ3=4

16

�
m
πa

�
3=2

e
− 2amffiffiffiffiffi

1−χ
p

: ð2:124Þ

The opposite regime, ma ≪ 1, provides the approximated
expression for the vacuum energy

EC

L2
≈
7π2ð1 − χÞ3=2
11520a3

−
am4

48π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p þ a2m5

60π2ð1 − χÞ ;

ð2:125Þ

which is dominated by the first term on the rhs. This is the
term associated with the vacuum energy of the massless
scalar field.
We can now turn the calculation of the two-loop

correction to the effective potential at Φ ¼ 0. The S1ðΦÞ
function, as before, is given by

S1ðΦÞ ¼
�X∞

n¼0

1

a

Z
d3k
ð2πÞ3

�
k2 þ ð1 − χÞ

��
nþ 1

2

�
π

a

�
2

þm2 þ λΦ2

2

�
−s
	

2

; ð2:126Þ

which can be expressed in terms of the zeta function
(2.113) as

S1ðΦÞ ¼
�
ζRð1Þ
V3a

�
2

; ð2:127Þ

where ζRð1Þ is the zeta function (2.83) taken at s ¼ 1 after
subtracting the divergent part of it given by the first term
on the rhs. Again, this divergent part, when divided by
V3a, does not depend on a and, as customary, must be
subtracted. Thus, from Eqs. (2.127) and (2.37), we obtain
the two-loop correction to the vacuum energy as

EðλÞ
C

L2
¼ aVð2Þð0Þ ¼ λm2

128π4a

�X∞
n¼1

½K1ð4amnffiffiffiffiffiffi
1−χ

p Þ−K1ð2amnffiffiffiffiffiffi
1−χ

p Þ�
n

	2

:

ð2:128Þ

This is an exact and convergent expression for the correc-
tion of the vacuum energy per unit area. The asymptotic
behaviors for the above expression are explicitly pro-
vided below.
The exponentially suppressed expression for the vacuum

energy correction in the regime ma ≫ 1 is dominated by
the n ¼ 1 term:

EðλÞ
C

L2
≈
λm

ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
e
− 4amffiffiffiffiffi

1−χ
p

512π3a2
: ð2:129Þ

On the other hand, the expression for the vacuum energy
correction in the opposite regime ma ≪ 1 is given by

EðλÞ
C

L2
≈
λð1 − χÞ
73728a3

−
λm2

3072π2a
þ λm3

4608π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p

þ λam4

512π4ð1 − χÞ : ð2:130Þ
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This expression is dominated by the first term on the rhs
and is associated with the vacuum energy correction in the
massless scalar field case.
In the left panel of Fig. 8, we exhibit the behavior of

the Casimir energy, Eq. (2.123), as a function of am. In
the right panel is exhibited the vacuum energy radiative
correction, Eq. (2.128), also as a function of am. In both
cases, the energy values decreases as χ increases. The
curves are shifted down more than in the timelike case.
This is due to the dependence of the vacuum energy
(2.123) and its radiative correction (2.128) on χ, in the
argument of the modified Bessel function, KμðxÞ. The

vacuum energy (2.123) also depends on χ as a multi-
plicative factor.
We want now to analyze the generation of topological

mass. The latter can be obtained by using the renormalized
effective potential (2.122) in the condition (2.9). This
provides the exact expression for the topologicalmass; that is,

m2
T ¼ m2

8<
:1þ λ

8π2am

X∞
n¼1

h
K1



4amnffiffiffiffiffiffi
1−χ

p
�
− K1



2amnffiffiffiffiffiffi
1−χ

p
�i

n

9=
;:

ð2:131Þ

FIG. 8. The left plot presents the behavior of Casimir energy per unit area EðamÞ ¼ a3

L2 EC, given by Eq. (2.123), as a function of am.

The two-loop contribution EλðamÞ ¼ a3

L2 E
ðλÞ
C , given by Eq. (2.128), is exhibited in the right panel as a function of am, fixing λ ¼ 10−3. In

both plots, we have considered various values of χ.

FIG. 9. Graph presenting behavior of the ratio of the topological mass to the mass of the field as a function of am. The plot considers
λ ¼ 10−3 and different values for the Lorentz-violating parameter, χ.
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This expression is plotted in Fig. 9. We can see that in the
regime ma ≫ 1, the topological mass is dominated by the
first term on the rhs and grows to infinity. In the opposite
regimema ≪ 1, the topological mass tends to the expression
associated with the massless scalar field. We can also see in
Fig. 9 that the topological mass increases as χ increases. The
curves are shifted up more than in the previous timelike case
as a consequence of the dependence of the topological mass
[Eq. (2.131)] on χ, in the argument of the modified Bessel
function.
The topological mass (2.131) in the regime ma ≫ 1 is

given by

m2
T ≈m2 −

λ
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ4

p
16π3=2

ffiffiffiffiffi
m
a3

r
e
− 2amffiffiffiffiffi

1−χ
p

; ð2:132Þ

while in the opposite regime, ma ≪ 1, it is

m2
T ≈m2 −

λ
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p
192a2

−
λm2

16π2
ffiffiffiffiffiffiffiffiffiffiffi
1 − χ

p −
λam3

24π2ð1 − χÞ

þ λa3m5

120π2ð1 − χÞ2 : ð2:133Þ

Note that the second term on the rhs of Eq. (2.133) is
associated with a massless scalar field.

III. CONCLUDING REMARKS

In this work, we have investigated the Casimir effect and
the generation of topological mass associated with a scalar,
self-interacting λϕ4 field theory in the context of an aether-
type Lorentz symmetry violation model, implemented by
direct coupling between the derivative of the field with an
external constant four-vector. Specifically, we have con-
sidered the situation in which the field is confined between
two parallel plates, assuming that it obeys, on each of the
plates, Dirichlet, Newman and mixed boundary conditions,
separately. The area of the plates has been taken to be L2,
whereas the distance between them has been taken as
a (a ≪ L).
Furthermore, we have found exactly Φ-dependent renor-

malized effective potentials, up to one-loop correction,
considering both timelike and spacelike cases of the four-
vector uμ, where Φ is the classical and fixed background
field. These renormalized effective potentials, at Φ ¼ 0,
provided a Casimir-like energy and topological mass for
all cases. We have also obtained an exact two-loop
correction to the effective potential when Φ ¼ 0, which
allows us to find a radiative correction to the Casimir-like
energy obtained from the renormalized effective potential
up to one-loop correction. The Casimir-like energies from
Dirichlet and Neumann boundary conditions are equal and
differ from the Casimir-like energy arising from the mixed
boundary condition by a numerical factor and also by a
change of sign.

The Casimir-like effect and its radiative correction, as
well as the topological mass, depend upon specific boun-
dary conditions imposed on the fields and the Lorentz-
symmetry-breaking parameter, χ. It is worth pointing out
that in all boundary condition cases considered, our results
are more affected by χ in the spacelike type of broken
symmetry—specifically, in the z direction, orthogonal to
the plates. Note that the results obtained here considering
Dirichlet, Neumann, and mixed boundary conditions at
one-loop level agree with well-known results in the case
where the Lorentz symmetry is preserved—that is, χ ¼ 0
[41,42]. This is also true at two-loop levels—i.e., we also
recover, in the massless scalar field case, the expressions
obtained for the Casimir energy density and topological
mass in Ref. [30], and the Casimir energy, considering the
three boundary conditions, in the massless field limit, given
in Refs. [43,44]. These last three papers used the Riemann
zeta-function renormalization to obtain the Casimir energy.
The two-loop correction to the Casimir energy associated
with the scalar field under the Dirichlet boundary con-
dition, in the absence of Lorentz symmetry violation, was
also calculated in Ref. [45], using the box renormalization
scheme (BRS). However, in the latter, the Casimir energy
correction in the massless limit disagrees with the results
found in Refs. [30,43,44] by a negative sign. The reason for
this is the convention adopted in the definition of the two-
loop correction in Ref. [45], which presents a minus sign in
the expression analogue to Eq. (2.37) of our present paper.
Consequently, the total Casimir energy will be decreased.
From the physical point of view, it is expected that the
scalar self-interaction would increase the Casimir energy,
and not the opposite. Our results are in accordance with this
assumption.
The analysis for the Casimir energy density considering

an aether-type Lorentz symmetry violation term in the case
of a Dirichlet self-interacting scalar field has also been
considered in Ref. [46]. There the authors have obtained
the first-order radiative correction in λ to the Casimir
energy density by using BRS. Moreover, the definition
adopted to evaluate this correction is the same as that given
in Ref. [45]; consequently, a negative contribution to the
Casimir energy is obtained. Finally, we want to emphasize
that in our present paper we have considered, besides the
Dirichlet boundary condition, also the Neumann and mixed
ones to obtain the first-order correction in λ to the Casimir
energy. Furthermore, we have used a different renormal-
ization method based on the zeta function. We have also
shown that in each one of the boundary conditions
considered, a topological mass is generated.
Let us now, before ending the conclusions, discuss

implications and the possibility of observational detection
of a violation in the Lorentz symmetry in light of our
results. As is known, the energy scale where the Lorentz
symmetry is expected to be broken is of the order of the
Planck scale, something around 1019 GeV. This makes it
difficult in principle to envisage an experiment capable of
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detecting signals of Lorentz symmetry violation. Never-
theless, a Casimir energy density analysis considering
models of Lorentz symmetry violation, such as the one
considered here, can offer a possible way of detecting
signals in low-energy scales. In particular, one can con-
sider, for instance, extensions of the Standard Model of
particle physics where violations in the Lorentz symmetry
are taken into consideration. In these scenarios, looking at
the Higgs sector where a beta decay is observed, a bound
of χ < 10−6 is obtained. Also, a bound of χ < 10−19 is
obtained considering lasers based on interferometry [15]. If
these bounds are used in our results, finite values could be
obtained and experiments for the detection of the Casimir
energy could confirm the theoretical results. Likewise,
if the detailed observations and measurements for the

Casimir-like effect were possible, one could use the
modifications of it by the Lorentz symmetry violation
model considered here to estimate the values of the
parameter χ describing the spacetime anisotropy. This
would certainly contribute to the experimental measure-
ment attempts to get an upper bound on χ.
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