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We study Fayet-Iliopoulos (FI) terms of six-dimensional supersymmetric Abelian gauge theory
compactified on a T2=Z2 orbifold. Such orbifold compactifications can lead to localized FI-terms and
instability of bulk zero modes. We study 1-loop correction to FI-terms in more general geometry than
the previous works. We find induced FI-terms depend on the complex structure of the compact space.
We also find the complex structure of the torus can be stabilized at a specific value corresponding to a
self-consistent supersymmetric minimum of the potential by such 1-loop corrections, which is applicable to
the modulus stabilization.
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I. INTRODUCTION

Effective theory of the superstring includes various
dimensional objects, i.e., branes. Branes are important
components for particle phenomenology. Branes can break
the supersymmetry (SUSY) and realize the chiral spectrum
[1–4]. They can be a source of generations of matter fields,
and flavor structure [5,6]. Antibranes can induce the
positive cosmological constant [7]. Such a brane mode
behaves as a localized mode in effective theory. Therefore it
is important to investigate interactions between bulk fields
and localized operators [8,9].
The Fayet-Iliopoulos term (FI-term) in supersymmetric

Abelian gauge theory was introduced as a source of
spontaneous SUSY breaking at first [10]. Later it was
shown that FI-term is not only a source of the SUSY
breaking, but has vast implications for theoretical particle
physics. The FI-term is prohibited by local SUSY unless
the gauge group is related to Uð1ÞR [11–13] or associated
with nonlinear terms [14]. Especially in higher dimen-
sional supersymmetric theory, it is related to anomaly
[15], and introduces instability of bulk superfields
[16,17]. (See also [18].)
Even in the higher dimensional theory, the bulk FI-term

is prohibited by local SUSY, but the FI-term localized at
special points, i.e., orbifold fixed points can appear [19].

Such a FI-term is called localized FI-term. The localized
FI-term is induced by quantum corrections in orbifold
compactification even if the FI-term is set to zero at the
tree level [20]. This is formally calculated by infinite sum
of all KK-modes of fields which have charges of the
corresponding Uð1Þ. In the trivial background without the
localized FI-term, mode expansion of bulk fields is given
by plane waves. Their infinite sum converges to the Dirac
delta function. Hence the localized FI-term is induced.
Since it is localized, the FI-term induces a local potential
for bulk fields. To cancel the FI-term, the vacuum expect-
ation values (VEVs) of auxiliary fields must also be
localized. It affects the wave function profiles of the bulk
fields. For the model of five-dimensional Abelian gauge
theory compactified on S1=Z2, the localized FI-term
induces localization of bulk zero modes at the fixed
points, and rejects wave functions of all the massive
modes from the fixed points [16,17]. Similar results are
obtained also for six-dimensional SUSY theory compac-
tified on T2=Z2 orbifold [21]. Thus it is a quite general
consequence for higher dimensional SUSY theory com-
pactified on orbifolds.
If the value of the localized FI-term is not zero, VEVs of

the auxiliary fields are shifted. The massive modes cannot
penetrate to the fixed points in this 1-loop corrected
vacuum. Hence 1-loop corrections to the FI-terms are only
due to the zero mode. The zero mode is localized at the
fixed points, and reproduces the localized FI-term, but it is
not the same as that of the infinite sum of the plane waves.
Bulk contribution is not canceled by brane mode contri-
butions in general, and the FI-term receives further cor-
rections. Thus this background is unstable. In our previous
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work we investigated this instability for the S1=Z2 com-
pactification model [22]. In the present paper we investigate
instability for T2=Z2 compactification. Toroidal compacti-
fication is a more realistic compactification for phenom-
enology; it has a concrete stringy origin [1]. It also can
realize the chiral spectrum of the Standard Model (SM).
(See, e.g., Refs. [23,24].) The localized FI-term on toroidal
orbifold may affect the flavor structure of the SM [25]. As
well as S1=Z2 compactification, loop correction of the
FI-term can lead to the instability of 1-loop corrected
vacuum. We find that the instability is related to the
complex structure of the torus. There are some applications
for moduli stabilization and extra dimensional models.
This paper is organized as follows. In Sec. II, we

examine the localized FI-term and zero mode of bulk
scalar field in six-dimensional SUSY gauge theory com-
pactified on T2=Z2 orbifold, whose geometry is described
by an arbitrary value of the complex structure modulus
τð∈ CÞ. The localized FI-term is induced by quantum
corrections, and it leads to nonzero VEVs of auxiliary
fields. It affects equations of motion for bulk fields and
their wave function profiles. In Sec. III, we focus on an
untilted torus, i.e., a torus whose complex structure is pure
imaginary, and recalculate the 1-loop corrections to the
FI-term in the SUSY vacuum which has nonzero VEV of
the auxiliary field. We see that 1-loop corrections can
cause the instability of the SUSY vacuum. In Sec. IV, we
extend the consequences in Sec. III to the torus that has an
arbitrary value of τ. We find these quantum corrections
depend on τ. We show the complex structure modulus must
take a specific value for the cancellation between loop
corrections from bulk and brane modes. In other words,
modulus stabilization of the complex structure is realized.
Section V is devoted to our conclusion. In Appendix A, we
study the validity of our evaluation of the FI terms. We also
confirm the localization of the wave function of bulk zero
mode by use of an explicit regularization of the Dirac delta
function. In Appendix B, we show the modular trans-
formation of elliptic theta functions.

II. LOCALIZED FI-TERMS ON T2=Z2 MODEL

In this section, we evaluate the localized FI-term induced
by quantum corrections in the T2=Z2 orbifold. We take the
following strategy. First we consider a 1-loop FI-term
induced by tree level wave functions. Then we investigate
mode expansion of the bulk fields in the 1-loop corrected
background including a singular configuration of the gauge
field. Finally we recalculate the quantum correction of the
FI-term induced by the 1-loop corrected wave functions,
and search a consistent configuration.
Before describing the multiplets that are contained in

T2=Z2 models, we describe the torus T2 and orbifold action
of Z2. We define the orthogonal coordinates of T2 as x5, x6,
and we denote the two-dimensional metric by gij:

gij ¼
�
1 0

0 1

�
ði; j ¼ 5; 6Þ: ð2:1Þ

The coordinates ðx5; x6Þ satisfy the following periodic
boundary conditions:

� ðx5; x6Þ ∼ ðx5 þ 2πR; x6Þ;
ðx5; x6Þ ∼ ðx5 þ 2πRRe τ; x6 þ 2πR Im τÞ:

where we introduced a complex structure τ, which takes an
arbitrary value in the upper half plane H. We define the Z2

orbifold action as

Z2∶ðx5; x6Þ → ð−x5;−x6Þ; ð2:2Þ

and there are four fixed points: ð0; 0Þ, ðπR; 0Þ, ðπRRe τ;
πR Im τÞ, and ðπRð1þ Re τÞ; πR Im τÞ. Hereafter these
fixed points are denoted by z1, z2, z3, and z4, respectively.
We introduce nonorthogonal coordinates ðx05; x06Þ which

are along the lattice vectors of the torus. In these non-
orthogonal coordinates, the two periodic boundary con-
ditions can be represented as

� ðx05; x06Þ ∼ ðx05 þ 2πR; x06Þ;
ðx05; x06Þ ∼ ðx05; x06 þ 2πRÞ: ð2:3Þ

We also define complex coordinates ðz; z̄Þ as Rz≡x05þτx06
and Rz̄≡ x05 þ τ̄x06. From now on, we use the notation of
indices as M;N ∈ f0; 1; 2; 3; 5; 6g, μ; ν ∈ f0; 1; 2; 3g, and
i; j; m; n ∈ f5; 6g. We also use the indices with prime,
M0; N0; i0; j0 to represent the nonorthogonal coordinates
ðx05; x06Þ. We summarize the relations of the coordinates
and the metrics in Table I.
We consider six-dimensional SUSY Abelian gauge

theory defined below the cutoff scale Λ. Such a theory
is described by four-dimensional N ¼ 2 supermultiplets:
Abelian vector multiplet and hypermultiplets. In addition
to the N ¼ 2 multiplets, we can introduce brane modes at
the fixed points. The brane modes preserve N ¼ 1 SUSY
and we assume that they consist of only chiral multiplets;
there are no extra gauge fields at the fixed points. We
introduce brane mode ΦI ¼ ðϕI;ψ IÞ at each fixed point zI .
The multiplets are summarized as follows:

TABLE I. Coordinates and metrics on the torus.

Nonorthogonal Complex

Coordinates x05 ¼ x5 − Re τ
Im τ x6 Rz ¼ x05 þ τx06

x06 ¼ 1
Im τ x6 Rz̄ ¼ x05 þ τ̄x06

Boundary x05 ∼ x05 þ 2πR z ∼ zþ 2π

Conditions x06 ∼ x06 þ 2πR z ∼ zþ 2πτ

Metric gi0j0 ¼
�

1 Re τ
Re τ jτj2

�
gmn ¼ 1

R2

�
0 2

2 0

�
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(i)

bulk mode∶

8>><
>>:

N ¼ 2Abelian vector multiplet

¼ fgauge fieldAM; gauginoΩ; auxiliary field D⃗g
hypermultiplet ¼ freal scalarsAi; hyperino ζg

(ii) brane mode∶ chiral multiplet ¼ fcomplex scalar ϕI;Weyl fermionψ Ig:
We should pay attention to the auxiliary fields in N ¼ 2 Abelian vector multiplet. It is decomposed into an N ¼ 1 vector
multiplet and a single chiral multiplet. The auxiliary field D of theN ¼ 1 vector multiplet is given by a linear combination
of a part of the auxiliary field D⃗ and the field strength F56. We chooseD ¼ −D3 þ F56 in this paper. The Z2 orbifold action
is defined to preserve this four-dimensionalN ¼ 1 structure, e.g., the parity assignment toD3 is even and those to other two
auxiliary fields D1 and D2 are odd. We also introduce two complex scalar fields ϕþ and ϕ−, which are linear combinations
of the real scalars of the hypermultiplet. ϕþ is parity even and ϕ− is parity odd.1

The bosonic Lagrangian is written as follows:

L ¼ −
1

4
FMNFMN þ iΩ̄ΓM∂MΩþ 1

2
D⃗2 þ

X
�
ðDMϕ

†
�D

Mϕ� ∓ gϕ†
�qϕ�D3Þ þ � � �

þ
X4
I¼1

δðx5 − xI5Þδðx6 − xI6Þ½Dμϕ
†
ID

μϕI þ gϕ†
I qIϕIð−D3 þ F56Þ þ � � ��; ð2:4Þ

where

DMϕ� ¼ ∂Mϕ� � igqϕ�AM:

The quantities q and qI are charges of the hypermultiplet and the brane modes respectively. g is the gauge coupling constant.
Four-dimensional effective potential is represented as follows:

V4d ¼
Z

dx5dx6

�
2g2jϕTþqϕ−j2 þ

X
�
ðD5ϕ� þ iD6ϕ�Þ†ðD5ϕ� þ iD6ϕ�Þ

þ 1

2
ðF56 − ξ − gðϕ†

þqϕþ − ϕ†
−qϕ−Þ − g

X
I

ϕ†
I qIϕIδ

ð2Þðx5 − xI5; x6 − xI6ÞÞ2

−
1

2
ðD3 − ξ − gðϕ†

þqϕþ − ϕ†
−qϕ−Þ − g

X
I

ϕ†
I qIϕIδ

ð2Þðx5 − xI5; x6 − xI6ÞÞ2

−
1

2
ðD1 þ gϕTþqϕ− þ gϕ†

−qϕ�þÞ2 −
1

2
ðD2 þ igϕTþqϕ− − igϕ†

−qϕ�þÞ2
�
; ð2:5Þ

where we include the contributions of FI-term LFI ¼ ξð−D3 þ F56Þ.
From (2.5), the SUSY conditions are written by

D3 ¼ F56 ¼ ξþ gðϕ†
þqϕþ − ϕ†

−qϕ−Þ þ g
X
I

ϕ†
I qIϕIδ

ð2Þðx5 − xI5; x6 − xI6Þ; ð2:6Þ

ϕTþqϕ− ¼ 0; D5ϕ� þ iD6ϕ� ¼ 0: ð2:7Þ

We study the situation where the Uð1Þ is unbroken, i.e., hϕ�i ¼ hϕIi ¼ 0. The SUSY solution is as follows:

hF56i ¼ ξðx5; x6Þ: ð2:8Þ

We also obtain the equation of motion (EOM) for the scalar fields ϕ� in terms of the compact directions:

1For precise calculation, see [21].
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ðzero modeÞ∶ ðD5 þ iD6Þϕ� ¼ 0; ð2:9Þ
ðmassive modeÞ∶ ð−D5 þ iD6ÞðD5 þ iD6Þϕ� ¼ λϕ�:

ð2:10Þ
The SUSY solution and the zero mode equation in

the nonorthogonal coordinates are represented simply as
follows:

ðSUSY conditionÞ∶ hF5060 i ¼ jIm τjξðx05; x06Þ; ð2:11Þ
ðzero mode EOMÞ∶ ðτD50 −D60 Þϕ�ðx05; x06Þ ¼ 0: ð2:12Þ
By evaluating (2.11) and (2.12), we will confirm that, if the
localized FI-term has a nonzero value, the zero mode of the
bulk field is localized at the fixed points z ¼ zI, that is
similar to [21].

A. KK-modes and 1-loop FI-term when ξ = 0

We calculate the FI-term induced by 1-loop corrections
of the scalar fields ϕ�. As the first step, we use the mode
expansions in the SUSY vacuum with ξ ¼ 0. In the SUSY
vacuum with ξ ¼ 0, the EOMs (2.9) and (2.10) become

∂∂̄ϕ�ðz; z̄Þ ¼
R2

4
λϕ�ðz; z̄Þ; ð2:13Þ

where we represent them in the complex coordinates ðz; z̄Þ.
The general solutions of EOMs are given by

ϕ�ðz; z̄Þ ¼ Aecz−c
0z̄; ð2:14Þ

where A is a complex constant, and c, c0 are also complex
constants satisfying

cc0 ¼ −
R2

4
λ: ð2:15Þ

By imposing the boundary conditions ϕ�ðzþ2πÞ¼ϕ�ðzÞ
and ϕ�ðzþ 2πτÞ ¼ ϕ�ðzÞ the complex constants c, c0 are
quantized:

2πðc − c0Þ ¼ 2πin ðn ∈ ZÞ; ð2:16Þ

2πðcτ − c0τ̄Þ ¼ 2πil ðl ∈ ZÞ: ð2:17Þ

Thus the solutions that satisfy the boundary conditions are
represented as follows:

ϕ�;nlðz; z̄Þ ¼ Anle
1

2Im τðnðτz̄−τ̄zÞþlðz−z̄ÞÞ; ð2:18Þ

λ ¼ −
1

R2ðIm τÞ2 fðnRe τ − lÞ2 þ ðn Im τÞ2g: ð2:19Þ

In the coordinates ðx05; x06Þ, these can be a more simple
form as

ϕ�;nlðx05; x06Þ ¼ Anle
iðnRx05þl

Rx
0
6
Þ: ð2:20Þ

Since ðn;lÞ and ð−n;−lÞ correspond to the same
eigenvalue,

ϕ�;nlðx05; x06Þ ¼ Anle
iðnRx05þl

Rx
0
6
Þ þ Bnle

−iðnRx05þl
Rx

0
6
Þ; ð2:21Þ

where n runs from 0 to þ∞ and l runs from −∞ to þ∞.
Under the action of Z2, the wave functions behave as

ϕþð−x05;−x06Þ ¼ ϕþðx05; x06Þ; ð2:22Þ

ϕ−ð−x05;−x06Þ ¼ −ϕ−ðx05; x06Þ: ð2:23Þ

We obtain mode expansions of the bulk scalars:

ϕþ;nlðx05; x06Þ ¼ Aλ cos

�
n
R
x05 þ

l
R
x06

�
; ð2:24Þ

ϕ−;nlðx05; x06Þ ¼ Aλ sin

�
n
R
x05 þ

l
R
x06

�
; ð2:25Þ

where the normalization factor Aλ is 1=πR
ffiffiffiffiffiffiffiffiffi
Im τ

p
for λ ≠ 0

up to phases, which are not relevant to the following
discussions. Zero modes are constant solutions. They are
given by

ϕþ;00 ¼ A0 ðA0 ¼ 1=2πR
ffiffiffiffiffiffiffiffiffi
Im τ

p
Þ; ð2:26Þ

ϕ−;00 ¼ 0; ð2:27Þ

up to a phase, which is not relevant to the following
discussions. 1-loop diagrams contributing to the FI-term
are written as Fig. 1 in the case of S1=Z2.

2 We can evaluate
the divergent part of the FI-term that is induced by 1-loop
diagrams of bulk scalars:

FIG. 1. The loop diagram that generates the FI-term.

2The loop diagram around which the scalars ϕ� run induces
only the linear term of D3. The same contribution to the linear
term of F5060 arises from the fermion’s loop the same as the ∂yΣ in
the S1=Z2 model unless the SUSY is broken.
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ξbulkðx05; x06Þ ¼ gtrðqÞ
�

Λ2

16π2
þ 1

4

lnΛ2

16π2
gi

0j0∂i0∂j0

�X∞
n¼0

X∞
l¼−∞

fjϕþ;nlj2 − jϕ−;nlj2g

¼ gtrðqÞ
�

Λ2

16π2
þ 1

4

lnΛ2

16π2
gi

0j0∂i0∂j0

�
1

4jIm τj
X

I¼1;…;4

δðx05 − x0I5Þδðx06 − x0I6Þ; ð2:28Þ

where the second derivative gi
0j0∂i0∂j0 ¼ 4

R2 ∂∂̄ is originated
from the log divergent term þ 1

4
λ lnΛ2 by use of the EOM.

In the second row, we use the Fourier expansion of the
Dirac delta function:

δðyÞ¼ 1

πR
þ 2

πR

X∞
n>0

cos

�
2ny
R

�
ð−πR<y<πRÞ: ð2:29Þ

Note that the factor 1=jIm τj is multiplied, which comes
from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gi0j0

p ¼ jIm τj when we normalize the wave
function. Considering the contributions from the brane
modes, we obtain the 1-loop induced FI-term:

ξðx05; x06Þ
¼ ξbulk þ ξbrane

¼ 1

jIm τj
X

I¼1;…;4

ðξI þ ξ00gi0j0∂i0∂j0 Þδðx05 − x0I5Þδðx06 − x0I6Þ;

ð2:30Þ

ξI ¼ g
Λ2

16π2

�
1

4
trðqÞ þ trðqIÞ

�
; ξ00 ¼ g

4

lnΛ2

16π2
1

4
trðqÞ:

ð2:31Þ

The FI-term is localized at the fixed points of the orbifold.
Thus we obtain a localized FI-term.

B. Zero mode when ξ ≠ 0

On the untilted torus, i.e., Re τ ¼ 0, the zero mode of
scalar field is localized at the fixed points by the localized
FI-term [21]. Here, we show that the FI-term localizes the
zero mode of scalar field similarly at the fixed points in the
general T2=Z2 orbifold with arbitrary τ.
From (2.11) and (2.12), the SUSY conditions and

the EOM of the zero mode for the bulk scalar are
represented by

hF5060 i ¼ jIm τjξðx05; x06Þ; ð2:32Þ

ðτD50 −D60 Þϕ�;0ðx05; x06Þ ¼ 0: ð2:33Þ

We concentrate on the parity even mode.3 We write them
explicitly by the derivatives ∂50 ; ∂60 and gauge fields A50 ; A60 :

∂50 hA60 i − ∂60 hA50 i ¼ jIm τjξðx05; x06Þ; ð2:34Þ

fðτ∂50 − ∂60 Þ þ igqðτhA50 i − hA60 iÞgϕþ;0ðx05; x06Þ ¼ 0:

ð2:35Þ

Here, we consider the following gauge fixing conditions:4

�
A50 ¼ ðIm τÞ−1ðRe τ∂50 − ∂60 ÞW;

A60 ¼ ðIm τÞ−1ðjτj2∂50 − Re τ∂60 ÞW:
ð2:36Þ

In this gauge, the SUSY condition and EOM become

1

Im τ
ðjτj2∂2

50 − 2Re τ∂50∂60 þ ∂2
60 ÞhWi ¼ jIm τjξðx05; x06Þ;

ð2:37Þ

fðτ∂50 − ∂60 Þ − gqðτ∂50 − ∂60 ÞhWigϕþ;0ðx05; x06Þ ¼ 0:

ð2:38Þ

In the complex coordinates Rz ¼ x05 þ τx06 and Rz̄ ¼
x05 þ τ̄x06, the derivatives ∂z; ∂ z̄ are given by

� ∂z

∂ z̄

�
¼ −

R
τ − τ̄

�
τ̄ −1
−τ 1

�� ∂50

∂60

�
: ð2:39Þ

Equations (2.37) and (2.38) are written as follows:

∂∂̄hWi ¼ R2

4
ξ; ð2:40Þ

f∂̄ − gqð∂̄hWiÞgϕþ;0ðz; z̄Þ ¼ 0; ð2:41Þ

where the 1-loop FI-terms (2.30) and (2.31) are represented
in the complex coordinate as

ξðz; z̄Þ ¼ 2

R2

X
I¼1;…;4

�
ξI þ ξ00

4

R2
∂∂̄

�
δð2Þðz − zIÞ; ð2:42Þ

ξI ¼ g
Λ

16π2

�
1

4
trðqÞ þ trðqIÞ

�
; ξ00 ¼ g

4

lnΛ2

16π2
1

4
trðqÞ;

ð2:43Þ

3Obviously the parity odd modes have no zero mode.

4Considering Reτ ¼ 0 and the differences of scale between x6
and x06, we see that this gauge (2.36) intrinsically corresponds to
the gauge in [21].
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where the factors come from the coordinate transformation.
From (2.40) and (2.42), we can split the SUSY solution into
two parts:

hWi ¼ hW0i=2þ hW00i; ð2:44Þ

∂∂̄hW0i ¼
X

I¼1;…;4

ξIδ
ð2Þðz − zIÞ;

hW00i ¼ 2

R2

X
I¼1;…;4

ξ00δð2Þðz − zIÞ: ð2:45Þ

The equation for hW0i is the Poisson equation with the
source ξI at the fixed points. The solution is obtained as

hW0i¼ 1

2π

X
I

ξI

�
ln





ϑ1
�
z−zI
2π





τ
�



2− 1

2πImτ
fImðz−zIÞg2

�
:

ð2:46Þ

Here ϑ1ðzjτÞ is the elliptic theta function, and our convention
is given by

ϑabðz; τÞ ¼
X∞
n¼−∞

eπiðnþa=2Þ2τþ2πiðnþa=2Þðzþb=2Þ; ð2:47Þ

ϑ1ðzjτÞ≡ −ϑ11ðz; τÞ; ϑ2ðzjτÞ≡ ϑ10ðz; τÞ;
ϑ3ðzjτÞ≡ ϑ00ðz; τÞ; ϑ4ðzjτÞ≡ ϑ01ðz; τÞ: ð2:48Þ

With this gauge background, the solution of the EOM (2.41)
can be formally represented by

ϕþ;0ðz; z̄Þ ¼ fðzÞegqhWi: ð2:49Þ

The holomorphic function fðzÞ must be constant because it
is a periodic holomorphic function. The zero mode of ϕþ is
represented as follows:

ϕþ;0ðz; z̄Þ ¼ f
Y

I¼1.::4





ϑ1
�
z − zI
2π





τ
�



gqξI=2π

× exp

�
−

gqξI
8π2Im τ

fImðz − zIÞg2

þ 2gqξ00

R2
δð2Þðz − zIÞ

�
: ð2:50Þ

Since this wave function includes the Dirac delta function in
the argument of exponential, it is not well defined. The Dirac
delta function implies that this wave function has serious
divergences at the fixed points, while the fixed points are the
zero points for the theta function. Integral of the wave
function on any small region including a fixed point seems to
be divergent. Whereas wave functions must be canonically
normalized. This divergence must be canceled by the
normalization factor f. As a result, normalized wave

function would be a localized mode at the fixed points such
as the Dirac delta function. Such a localized mode appears in
an explicit regularization scheme for the case of S1=Z2

compactification [16,22]. It is also true for toroidal orbifolds.
We can show it by use of an explicit regularization of the
delta function.5

C. 1-loop FI-term when ξ ≠ 0

Calculation of the 1-loop FI-term is affected by the
zero mode localization. It implies the instability of the
supersymmetric vacuum for the S1=Z2 model [22]. Such a
vacuum instability may happen in the present T2=Z2

model. Thus we should reevaluate the 1-loop FI-term again
with the background given by (2.44), (2.45) and (2.46), and
we should examine how stable configurations for the brane
mode are.
In our evaluation, we make the following two

assumptions:

Assumption 1: The massive mode profiles of the bulk scalar
are excluded at the fixed points.

Assumption 2: Corrections to the FI-term can be evaluated
by the square values of wave functions
near the fixed points only.

The first assumption means that the induced FI-term can be
evaluated by the zero mode of the bulk scalar field only. It is
true for the S1=Z2 model [22].6 The second assumption
means that the ratio of the 1-loop FI-term at each fixed
point z ¼ zI is equal to the ratio of jϕþ;0ðzI þ ϵ; z̄I þ ϵ̄Þj2
of (2.50).7

From (2.50), the zero mode near the fixed point z ¼ zI is
written as below:

ϕþ;0ðzI þ ϵ; z̄I þ ϵ̄Þ

¼ f exp

�
2gqξ00

R2
δð2Þρ ðϵÞ

�



ϑ1
�

ϵ

2π





τ
�



gqξI=2π

×
Y
J≠I





ϑ1
�
zI þ ϵ − zJ

2π





τ
�



gqξJ=2π

× exp

�
−

gqξJ
8π2Im τ

fImðzI þ ϵ − zJÞg2
�
; ð2:51Þ

where we introduce δð2Þρ ðzÞ, which is a regularization of

delta function; δð2Þρ ðzÞ is finite and δð2Þρ ðzÞ → δð2ÞðzÞ as

5See Appendix A.
6The massive mode of the bulk scalar field is evaluated in [21].

The evaluation was performed except the small regions that
contain the fixed points, and the analysis near the fixed points are
difficult.

7Since the zero mode wave function is localized at the
fixed points, this description is not exactly true. We provide a
more rigorous treatment and justify the second assumption in
Appendix A.
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ρ → þ0.8 We introduce ξmin, which denotes the minimum
of ξI . ϑ1ðϵ=2πjτÞ is approximated by ηðτÞ3ϵ near the origin
[21], where ηðτÞ is the Dedekind eta function. We find
ϑ1ðϵ=2πjτÞ → 0 in the limit of ϵ → 0. We redefine the
normalization factor by

f0 ≡ f exp

�
2gqξ00

R2
δð2Þρ ðϵÞ

�



ϑ1
�

ϵ

2π





τ
�



gqξmin=2π

: ð2:52Þ

f0 is a finite constant. The zero mode near the fixed point is
represented as

ϕþ;0ðzI þ ϵ; z̄I þ ϵ̄Þ

¼ f0




ϑ1

�
ϵ

2π





τ
�





gqðξI−ξminÞ
2π Y

J≠I





ϑ1
�
zI þ ϵ − zJ

2π





τ
�



gqξJ=2π

× exp

�
−

gqξJ
8π2Imτ

fImðzI þ ϵ − zJÞg2
�
:

If ξI is not equal to ξmin, because of the suppression of
jϑ1ðϵ=2πjτÞj, the wave function must vanish near the
fixed point z ¼ zI. Thus the part jϑ1ðϵ=2πÞjgqðξI−ξminÞ=2π
determines the point where the zero mode is localized.

For instance, if ξI� is the only minimum and ξJ≠I� > ξI� ,
the wave function is localized only at z�I . Thus it is
represented as

ϕþ;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δðz − zI� Þ

p
; ð2:53Þ

where the square root of the delta function denotes that the
wave function is localized at the fixed point zI� and
canonically normalized. If several ξI are the minimum
simultaneously, the zero mode is localized at the several
fixed points zI where ξI ¼ ξmin.
The ratio of the zero mode of bulk scalar fields at the

fixed points can be practically evaluated by

rI ≡
Y
J≠I





ϑ1
�
zI − zJ
2π

�



gqξJ=2π

× exp

�
−

gqξJ
8π2Im τ

fImðzI − zJÞg2
�
: ð2:54Þ

In the complex coordinates ðz; z̄Þ, the fixed points are

zI ¼ f0; π; πτ; πð1þ τÞg: ð2:55Þ

The explicit forms of fImðzI − zJÞg2 are summarized in
Table II. We define TI as

TI ≡
Y
J≠I





ϑ1
�
zI − zJ
2π

�



gqξJ=2π; ð2:56Þ

which is the elliptic theta function part of rI . From (2.55),
we find

TI ¼

0
BBBBB@
f 1 × jϑ1ð−1

2
jτÞjξ2 × jϑ1ð− τ

2
jτÞjξ3 × jϑ1ð−1þτ

2
jτÞjξ4 ggq=2π

f jϑ1ð12 jτÞjξ1 × 1 × jϑ1ð1−τ2 jτÞjξ3 × jϑ1ð− τ
2
jτÞjξ4 ggq=2π

f jϑ1ðτ2 jτÞjξ1 × jϑ1ð−1−τ
2
jτÞjξ2 × 1 × jϑ1ð−1

2
jτÞjξ4 ggq=2π

f jϑ1ð1þτ
2
jτÞjξ1 × jϑ1ðτ2 jτÞjξ2 × jϑ1ð12 jτÞjξ3 × 1 ggq=2π

1
CCCCCA;

where the first, second, third, and fourth rows correspond to
T1, T2, T3, and T4 respectively. The elliptic theta function
ϑ1 satisfies the following relations:

ϑ1ðvþ 1jτÞ ¼ −ϑ1ðvjτÞ; ð2:57Þ

ϑ1ðvþ τjτÞ ¼ −e−iπð2vþτÞϑ1ðvjτÞ; ð2:58Þ

and the elliptic theta functions ϑi (i ¼ 2, 3, 4) are related to
ϑ1 as

ϑ1

�
1

2





τ
�

¼ ϑ2ð0jτÞ; ð2:59Þ

ϑ1

�
τ

2





τ
�

¼ ie−iπτ=4ϑ4ð0jτÞ; ð2:60Þ

ϑ1

�
1þ τ

2





τ
�

¼ ϑ2

�
τ

2





τ
�

¼ e−iπτ=4ϑ3ð0jτÞ: ð2:61Þ

Therefore, by using ϑið0jτÞ (i ¼ 2, 3, 4), TI is simply
rewritten as

TABLE II. fImðzI − zJÞg2.
fImðzI − zJÞg2 J ¼ 1 J ¼ 2 J ¼ 3 J ¼ 4

I ¼ 1 0 0 π2ðIm τÞ2 π2ðIm τÞ2
I ¼ 2 0 0 π2ðIm τÞ2 π2ðIm τÞ2
I ¼ 3 π2ðIm τÞ2 π2ðIm τÞ2 0 0
I ¼ 4 π2ðIm τÞ2 π2ðIm τÞ2 0 0

8For a concrete example, see Appendix A.
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TI ¼

0
BBBBB@
f jϑ2ð0jτÞjξ2 × jϑ3ð0jτÞjξ4 × jϑ4ð0jτÞjξ3 × e

πImτ
4
ðξ3þξ4Þ ggq=2π

f jϑ2ð0jτÞjξ1 × jϑ3ð0jτÞjξ3 × jϑ4ð0jτÞjξ4 × e
πImτ
4
ðξ3þξ4Þ ggq=2π

f jϑ2ð0jτÞjξ4 × jϑ3ð0jτÞjξ2 × jϑ4ð0jτÞjξ1 × e
πImτ
4
ðξ1þξ2Þ ggq=2π

f jϑ2ð0jτÞjξ3 × jϑ3ð0jτÞjξ1 × jϑ4ð0jτÞjξ2 × e
πImτ
4
ðξ1þξ2Þ ggq=2π

1
CCCCCA: ð2:62Þ

The ratio of the absolute value of the wave functions at the fixed points is evaluated as

rI ¼

0
BBBBB@

f jϑ2ð0jτÞjξ2 × jϑ3ð0jτÞjξ4 × jϑ4ð0jτÞjξ3 ggq=2π
f jϑ2ð0jτÞjξ1 × jϑ3ð0jτÞjξ3 × jϑ4ð0jτÞjξ4 ggq=2π
f jϑ2ð0jτÞjξ4 × jϑ3ð0jτÞjξ2 × jϑ4ð0jτÞjξ1 ggq=2π
f jϑ2ð0jτÞjξ3 × jϑ3ð0jτÞjξ1 × jϑ4ð0jτÞjξ2 ggq=2π

1
CCCCCA: ð2:63Þ

Since the zero mode is localized at the fixed points, the
normalized wave function of the zero mode is given by

jϕþ:0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ξI¼ξmin
r2Iδðz− zIÞP

ξI¼ξmin
r2I

s
: ð2:64Þ

rI are transformed each other by the modular symmetry.
The modular symmetry is generated by two elements, S
and T, and these generators transform the modulus τ as

S∶ τ → −
1

τ
; T∶ τ → τ þ 1: ð2:65Þ

The elliptic theta functions are transformed each other
by S and T, and transformation behavior is shown in
Appendix B. The S transforms zero mode values at z1 and
z4, and z2 and z3, i.e., ϕþ;0ðz1; z̄1Þ ⟷ ϕþ;0ðz4; z̄4Þ and
ϕþ;0ðz2; z̄2Þ ⟷ ϕþ;0ðz3; z̄3Þ. On the other hand, the T
transforms zero mode values at z1 and z2, and z3 and z4,
i.e., ϕþ;0ðz1; z̄1Þ ⟷ ϕþ;0ðz2; z̄2Þ and ϕþ;0ðz3; z̄3Þ ⟷
ϕþ;0ðz4; z̄4Þ. When ξ1 ¼ ξ2 ¼ ξ3 ¼ ξ4, the above zero
mode profile is invariant under the modular symmetry.

III. STABILITY OF SUSY VACUA ON
UNTILTED TORUS

In the previous section, we have finished the preparations
to calculate the localized FI-term in the new SUSY back-
ground, where the VEV of F5060 has nonzero value. In
stable configuration, the bulk mode contribution cancels
the brane mode contributions. Thus we examine configu-
rations where the cancellation occurs. Under the second
assumption, the 1-loop FI-term that is induced by the bulk
mode can be evaluated by r2I. In the configurations where
the cancellation cannot occur, the 1-loop FI-term changes
the supersymmetric vacuum further, which leads to the
instability of the SUSY vacuum.

In this section, we investigate the stability of the SUSY
vacuum in the untilted torus, i.e., Re τ ¼ 0. In the untilted
torus, except for the differences from the scale of x6 and x06,
the zero mode profile ϕþ;0 and gauge fieldW coincide with
the results in [21].

A. Completely symmetric configuration

First we consider the completely symmetric configura-
tion of the brane charges, i.e., q1 ¼ q2 ¼ q3 ¼ q4. We
assume the sum ofUð1Þ charges is set to zero, which means
that the bulk charge is four times as big as that of the
localized charge: q ¼ −4q1. Furthermore, we assume the
tree level Lagrangian has no FI-term and hF5060 i ¼ 0. From
(2.30) and (2.31), we obtain the 1-loop induced FI-term:

ξ ¼ ξbulk þ ξbrane

¼ 2

R2

X
I¼1;…;4

�
ξI þ ξ00

4

R2
∂∂̄

�
δð2Þðz − zIÞ; ð3:1Þ

ξ1 ¼ ξ2 ¼ ξ3 ¼ ξ4 ¼ 0; ξ00 ¼ gq
16

lnΛ2

16π2
: ð3:2Þ

Solving the D-flat condition (2.32) in the gauge (2.36), we
obtain the corrected SUSY background solution:

hWi ¼ 2

R2

X
I¼1;…;4

ξ00δð2Þðz − zIÞ: ð3:3Þ

In this new SUSY background, we recompute the zero
mode of ϕþ. The zero mode can be evaluated from (2.63):

ϕþ;0ðz; z̄Þ ¼
ffiffiffi
2

p

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

X
I¼1;…;4

δð2Þðz − zIÞ
s

; ð3:4Þ

where the square root of the delta function denotes that the
wave function is localized at the fixed points and canoni-
cally normalized as mentioned before.
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Substituting (3.4) into the KK expansion of the bulk
fields in (2.28), we obtain the 1-loop FI-term again. From
the assumption 1 in Sec. II C, the massive modes do not
contribute to the 1-loop FI-term. We can evaluate the
contribution of the bulk fields:

ξbulk ¼ gq
Λ2

16π2
1

4

2

R2

X
I¼1;…;4

δð2Þðz − zIÞ: ð3:5Þ

The contribution of the brane fields is unchanged. It is
written as

ξbrane ¼ g
Λ2

16π2
2

R2

X
I¼1;…;4

qIδð2Þðz − zIÞ: ð3:6Þ

As a result, we obtain the quantum correction to the FI-term
in the new SUSY background,

ξðz; z̄Þ ¼ ξbulk þ ξbrane ¼ 0: ð3:7Þ

The quantum correction vanishes. The bulk zero mode
shields the brane charges completely. Thus the SUSY
vacuum does not shift further, i.e., it is a stable vacuum.

B. Partially symmetric configuration

Next, we consider a partially symmetric configuration
where the Uð1Þ charges of the brane fields are given by
q1 ¼ 0 and q2 ¼ q3 ¼ q4. We assume the sum of Uð1Þ
charges is set to zero, which means that the bulk charge is
three times as big as that of the localized charge: q ¼ −3q2.

Furthermore, we assume the tree level Lagrangian has
vanishing FI-term and hF5060 i ¼ 0. The 1-loop induced
FI-term is calculated as

ξ ¼ ξbulk þ ξbrane

¼ 2

R2

X
I¼1;…;4

�
ξI þ ξ00

4

R2
∂∂̄

�
δð2Þðz − zIÞ; ð3:8Þ

ξ1 ¼ κ; ξ2 ¼ ξ3 ¼ ξ4 ¼ −κ=3
�
κ≡ 1

4
gq

Λ2

16π2

�
;

ð3:9Þ

ξ00 ¼ gq
16

lnΛ2

16π2
: ð3:10Þ

Solving the D-flat condition (2.32) in the gauge (2.36), we
obtain the SUSY background solution corrected by 1-loop
effects as

hWi ¼ 1

4π

X
I¼1;…;4

ξI

�
ln





ϑ1
�
z − zI
2π





τ
�



2

−
1

2πImτ
fImðz − zIÞg2

�
þ 2

R2

X
I∶f:p:

ξ00δð2Þðz − zIÞ:

ð3:11Þ

The ratio of the zero mode at the fixed points in this new
background can be evaluated from (2.63):

rI ¼

0
BBBBB@

0

f jϑ2ð0jτÞjκ × jϑ3ð0jτÞj−κ=3 × jϑ4ð0jτÞj−κ=3 ggq=2π
f jϑ2ð0jτÞj−κ=3 × jϑ3ð0jτÞj−κ=3 × jϑ4ð0jτÞjκ ggq=2π
f jϑ2ð0jτÞj−κ=3 × jϑ3ð0jτÞjκ × jϑ4ð0jτÞj−κ=3 ggq=2π

1
CCCCCA:

Note that the wave function of the zero mode vanishes at z1 since ξ1 is bigger than ξmin ¼ −κ=3. The zero mode is
given by

ϕþ;0ðz; z̄Þ ¼
ffiffiffi
2

p

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϑ2ð0jτÞj

4gqκ
3π δð2Þðz − z2Þ þ jϑ4ð0jτÞj

4gqκ
3π δð2Þðz − z3Þ þ jϑ3ð0jτÞj

4gqκ
3π δð2Þðz − z4Þ

jϑ2ð0jτÞj4gqκ=3π þ jϑ3ð0jτÞj4gqκ=3π þ jϑ4ð0jτÞj4gqκ=3π

s
: ð3:12Þ

Substituting (3.12) into the KK expansion of the bulk fields in (2.28), we obtain the 1-loop FI-term again. The
contribution of the bulk field is given by

ξbulk ¼ gq
Λ2

16π2
2

R2
×
jϑ2ð0jτÞj

4gqκ
3π δð2Þðz − z2Þ þ jϑ4ð0jτÞj

4gqκ
3π δð2Þðz − z3Þ þ jϑ3ð0jτÞj

4gqκ
3π δð2Þðz − z4Þ

jϑ2ð0jτÞj4gqκ=3π þ jϑ3ð0jτÞj4gqκ=3π þ jϑ4ð0jτÞj4gqκ=3π
: ð3:13Þ

The contribution of the brane fields is unchanged, and is written as
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ξbrane ¼ g
Λ2

16π2
2

R2

X
I¼1;…;4

qIδð2Þðz − zIÞ: ð3:14Þ

As a result, we obtain the quantum correction to the FI-term
in the new SUSY background,

ξðz; z̄Þ ¼ ξbulk þ ξbrane ≠ 0: ð3:15Þ

The quantum correction does not vanish. Therefore, the
SUSY vacuum shifts further by the 1-loop FI-term, i.e., it is
an unstable vacuum. Unless we introduce a fine-tuned
FI-term at tree level, the vacuum is unstable in the partially
symmetric configuration.

C. Stable and unstable configurations

We have examined the stability of the SUSY vacuum in
the two configurations: completely symmetric one and
partially symmetric one. The former has the supersym-
metric stable vacuum, but the latter does not.
We summarize stability of various configurations in

Table III. In all of these examples, we assume that
the bulk mode has a charge q which cancels the charges
of the brane modes, i.e., qþP

I qI ¼ 0. The first and
second rows correspond to the results in the section III A
and III B, respectively. In the table, “stable” means that
the FI-term is not induced in the new SUSY vacuum. On
the other hand “unstable” means that the FI-term is
induced in the new SUSY vacuum. It is always possible
to introduce a localized FI-term at tree level which makes
the zero mode wave function of the bulk field shield the
brane charges completely. If such a fine-tuned FI-term is
available, unstable configurations can be stabilized. To
add the tree level FI-term, we should pay attention for
flux quantization. The localized FI-term corresponds to
localized magnetic flux[26–28]. The Wilson loop around
the fixed points in the SUSY background of (2.32) is
nontrivial,

WI ¼ exp

�
−iq

I
CI

A

�
¼ exp

�
−iq

Z
DI

ξ

�
; ð3:16Þ

where CI is a circle around zI and DI is the disc
including zI , and we use EOM of the gauge field (2.8).

Thus ξ can be interpreted as a localized flux. Since WI
must be �1 [28], tree level FI-term is not a free
parameter. It is not clear whether we can always put
appropriate ξI which make the localization of the zero
mode shield the brane charges completely, satisfying the
quantization condition. It might be interesting to inves-
tigate it.
Vacuum (in)stability will be also related to the anomaly

on the compact space. We observe that the stable configu-
rations are anomaly free since the charge of the bulk zero
modes is canceled by that of the brane modes everywhere.
On the other hands, anomaly is not canceled in the unstable
configurations locally. This may imply inconsistency of the
model. The local anomaly requires additional fields, e.g.,
antisymmetric fields, which cancel the anomaly via Green-
Schwarz mechanism, or other local operators. These addi-
tional terms may change the localized FI-term and vacuum
structure. For instance, the loop diagrams including anti-
symmetric fields would contribute to the localized FI-term,
and shift it. It may be interesting to investigate stability of
the bulk mode including such additional effects. We would
study it elsewhere.

IV. STABILITY OF SUSY VACUA
ON TILTED TORUS

We examine the stability of the SUSY vacuum in the
tilted torus T2=Z2, i.e., Re τ ≠ 0. Basically, the results are
the same as those of the untilted torus. The difference
comes only from the profiles of the zero modes, which
generally depend on the background geometry. Taking into
account general τ, we find a part of unstable vacuum can be
stabilized. Especially, the partially symmetric configuration
leads to different results.

A. Stable configuration and moduli stabilization

We are interested in the partially symmetric configura-
tion, i.e., the charges of three brane modes are the same, and
the charge of the other one is zero. Similar to Sec. III B, we
concentrate on the configuration that the charges of the
brane modes in the fixed points z ¼ z2; z3; z4 are the same
for concreteness. The charge of the bulk mode is three times
as big as that of the localized charge, which is required forP

I ξI ¼ 0. (See Fig. 2.)

TABLE III. Stable and unstable configurations of brane modes.

Charges of brane modes Stability of the vacuum

q1 ¼ q2 ¼ q3 ¼ q4 Stable
q1 ¼ q2 ¼ q3 ≠ q4 Unstable
q1 ¼ q2 ≠ q3 ¼ q4 Stable
fq1 ¼ q2 ≠ q3; q4g and fq3 ≠ q4g Unstable
qI ≠ qJðI ≠ JÞ Unstable

FIG. 2. The configuration of brane modes.
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In the SUSY vacuum with hF5060 i ¼ 0, the 1-loop
induced FI-term is written by

ξ1 ¼ κ; ξ2 ¼ ξ3 ¼ ξ4 ¼ −κ=3; ξ00 ≠ 0; ð4:1Þ

where κ ≡ 1
4
gq Λ2

16π2
.

The FI-term corrects the SUSY vacuum as hF5060 i ¼
jIm τjξðx05; x06Þ. Again we evaluate the 1-loop FI-term in
the new SUSY vacuum. Since (4.1) satisfies ξmin ¼ ξ2 ¼
ξ3 ¼ ξ4, the ϕþ;0ðzI; z̄IÞ is already given by (3.12). The
ratio of zero mode profiles at fixed points is given by

jϕþ;0ðz1Þj2∶jϕþ;0ðz2Þj2∶jϕþ;0ðz3Þj2∶jϕþ;0ðz4Þj2

¼ 0∶jϑ2ð0jτÞj
4gqκ
3π ∶jϑ4ð0jτÞj

4gqκ
3π ∶jϑ3ð0jτÞj

4gqκ
3π :

The 1-loop FI-term induced by the bulk field in the new
vacuum is induced as this ratio at the fixed points. In order
not to generate the 1-loop FI-term in the new vacuum, the
bulk contribution must cancel that from the brane modes.
Since the charges of the brane modes are the same at the
three fixed points of z2, z3, z4, we obtain the following
stability condition:9

jϑ2ð0jτÞj ¼ jϑ3ð0jτÞj ¼ jϑ4ð0jτÞj: ð4:2Þ
These conditions cannot be satisfied if Re τ ¼ 0. This is the
reason why we insisted that this configuration is unstable in
the untilted torus in Sec. III C. Whereas, in the tilted torus,
the condition (4.2) can be satisfied.
By use of modular transformation behavior of the elliptic

theta functions as shown in Appendix B, we find that
the complex structure, e.g., τ ¼ eiπ=3, satisfies the above
condition (4.2). The point τ ¼ eiπ=3 is on the boundary of
the fundamental domain of the modular group. Thus, in the
torus which has the complex structure τ ¼ eiπ=3, the 1-loop
induced FI-term in the new SUSY vacuum vanishes.
Accordingly the configuration of three brane modes has
a stable vacuum.
The 1-loop FI-term generates a D-term potential:

VD ∝
Z

dx05dx
0
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gi0j0

q
ðξþ � � �Þ2: ð4:3Þ

ξ contains the divergent term of cutoffΛ if ξ is not zero. The
D-term potential would be dominant. Thus, we consider
that τ would be stabilized in the value that cancels the
1-loop FI-term in the new SUSY vacuum.

B. Stabilized complex structure

In the configuration of three brane modes, we insist that
the complex structure is stabilized dynamically at τ ¼ eiπ=3

by the potential VD.

We show the stable configuration in Fig. 3. In this
configuration, there are the brane modes in the fixed points
except the origin, and the bulk mode is localized at the fixed
points except the origin, too. Figure 3 shows when the
vacuum is stable, the positional relations of fixed points
where the branes are located are equidistant each other. We
expect that the complex structure is stabilized in such a way
that the fixed points where the branes are located have
symmetric positional relations. Otherwise there are no
stable SUSY vacuums, and SUSY or gauge symmetry
would be broken.
Four-dimensional CP can be embedded into proper

Lorentz transformation in higher dimensional theory, where
extra dimensions are also reflected [29–34]. For example,
in six dimensional theory, four-dimensional CP is com-
bined with the reflection,

z → −z̄; ð4:4Þ

so as to be embedded into six-dimensional proper Lorentz
transformation. Under the above reflection, the modulus
transforms

τ → −τ̄: ð4:5Þ

Thus, when Re τ ¼ 0, CP is conserved. For other values
of Re τ, CP can be broken. Hence, the value τ ¼ eiπ=3 has
implication in CP violation physics.10

V. CONCLUSION

We have investigated the quantum corrections to the
localized FI-terms in six-dimensional SUSYAbelian gauge
theory compactified on the T2=Z2 orbifold.
In the S1=Z2 orbifold, the localization of bulk zero

mode causes the instability of the vacuum. Similarly, the
bulk zero mode is localized in the untilted T2=Z2 model,
too [21]. We find that the new supersymmetric vacuum
which is changed by 1-loop FI-term can be unstable in
untilted compactification. The instability is related to the

FIG. 3. Torus of τ ¼ eiπ=3.

9For other combinations of three fixed points where the three
brane modes are located, the equivalent conditions appear.

10If theory has modular symmetry, the transformation (4.5) is
meaningful up to the modular symmetry.(See e.g., [35–37].) That
implies that CP is conserved at the values of τ at the boundary of
the fundamental domain including τ ¼ eiπ=3.
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configuration of brane modes and their Uð1Þ charges. We
have shown that the 1-loop correction vanishes for the
completely symmetric configurations, but it is not true for
the asymmetric configurations. It is because the zero mode
profile and brane charges cancel each other for the former
case, but it does not happen for the latter case. Therefore, in
the asymmetric configurations the vacuum receives further
corrections and is unstable. If we put a fine-tuned FI-term in
the tree level Lagrangian, we can realize a stable vacuum
even for asymmetric configuration. In such a stable
vacuum, zero mode profile shields the brane charges
completely, and their corrections are canceled each other.
This result is the same as the one derived on the S1=Z2

orbifold [22].
As opposed to the S1=Z2 orbifold, the complex structure

exists in the T2=Z2 orbifolds. The 1-loop FI-term depends
on the complex structure, i.e., the complex structure
associates with the instability of the vacuum. Especially,
we can stabilize the complex structure τ by using the
cancellation of 1-loop FI-term that is induced in a new
supersymmetric vacuum. We have considered the configu-
ration with three brane modes that are located at each of
three fixed points and have the same charge. We have found
that the complex structure τ is stabilized at the value of
eiπ=3, which makes the three fixed points equidistant to
each other. We expect that the stabilization mechanism
which is caused by the cancellation of 1-loop FI-term
occurs in more general orbifolds, and the stabilized com-
plex structures make the positions of fixed points sym-
metric. It contrasts with the traditional moduli stabilization
mechanism by three form flux [38–40].11 We have focused
on 1-loop corrections and mainly investigated stable
configurations in the present paper. For unstable vacuum,
SUSY or gauge symmetry would be broken, and higher
loop correction might play important role. It is interesting
to consider these effects. We will study it elsewhere.
Magnetic flux also affects the profiles of the wave

function of the bulk fields, and increase the number of
the chiral zero modes [23,41–43]. It is interesting to extend
our analysis to the T2=Z2 orbifolds with magnetic fluxes.
Its flavor structure would be different from that of mag-
netized orbifold models without FI-terms [24,44,45]. In
magnetized orbifold models, zero modes transform each
other under the modular symmetry [46–48]. In addition,
our FI-term has already nontrivial behavior under the
modular symmetry. Thus, it is interesting to study localized
FI-terms from the viewpoint of modular flavor models [49]
and their modulus stabilization [37,50].
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APPENDIX A: LOCALIZATION
OF THE ZERO MODE

Here we show the zero mode of the bulk scalar in 1-loop
corrected background is localized at the fixed points. Since
the wave function includes the exponential of the delta
function, this function is not well defined. Here we evaluate
it by use of an explicit regularization of the delta function.
We regularize the delta function as follows (see Fig. 4):

δð2Þρ ðx; yÞ ¼

8>><
>>:

3
πρ2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=ρ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

≤ ρ
�
;

0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

> ρ
�
:

ðA1Þ

We can check
R
dxdy δð2Þρ ðx; yÞ ¼ 1 immediately.

Z
dxdy δð2Þρ ðx; yÞ ¼

Z
dr

Z
dθ rδð2Þρ ðr; θÞ

¼
Z

ρ

0

dr
Z

dθ r
3

πρ2
ð1 − r=ρÞ

¼ 2π

Z
ρ

0

dr
3

πρ2
ðr − r2=ρÞ

¼ 2π
3

πρ2
×
ρ2

6
¼ 1: ðA2Þ

The wave function of the zero mode is given by (2.50).
Substituting the regularization (A1) into the wave function,
we obtain

FIG. 4. A regularization of δð2Þðx; yÞ.

11Toroidal orbifolds have Kähler moduli in general. The
effective potential of our model does not include the Kähler
moduli, and its stabilization by the bulk instability is not realized.
We need another moduli stabilization mechanism such as non-
perturbative effects for the Kähler moduli [7].
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jϕþ;0ðz; z̄Þj2 ∼

8>><
>>:

jfj2 Q
I¼1;…;4

jψ Iðz; z̄Þj expf 3k
πρ2

ð1 − jz − zIj=ρÞg ðjz − zIj ≤ ρÞ

jfj2 Q
I¼1;…;4

jψ Iðz; z̄Þj ðjz − zIj > ρÞ ðA3Þ

where k ¼ 4gqξ00

R2 and ψ Iðz; z̄Þ is given by

jψ Iðz; z̄Þj2≡




ϑ1

�
z − zI
2π





τ
�



2gqξI=2π

× exp

�
−

gqξI
4π2Imτ

fImðz − zIÞg2
�
: ðA4Þ

We define DI as the disc with radius ρ around the fixed
points zI. Since ψ Iðz; z̄Þ is finite except for the vicinities of
the fixed points, we can evaluate the norm of the wave
function by the sum of integrals on DI:Z

T2

dzdz̄jϕþ;0j2 ¼
X

I¼1;…;4

Z
DI

dzdz̄jϕþ;0j2 þ C; ðA5Þ

where C is a finite constant, which is almost independent
of ρ. (More precisely ρ dependence is sub-leading.) C is
ignorable in the limit of ρ to zero. In the vicinity of the fixed
pints, ϑ1ðz − zIÞ is singular. It is approximated as

ϑ1

�
z − zI
2π





τ
�
∼ ηðτÞ3ðz − zIÞ; ðA6Þ

where ηðτÞ is the Dedekind eta function. Thus we can
evaluate the wave function around the fixed point zI by

jϕþ;0ðz; z̄Þj2 ∼ jfj2
�Y

J≠I
jψJðzI; z̄IÞj2

�
jηðτÞ3ðz − zIÞjgqξI=π

× exp

�
3k
πρ2

ð1 − jz − zIj=ρÞ
�
: ðA7Þ

Integral on DI is calculated as

NI ≡
Z

ρ

0

rdr
Z

2π

0

dθjηðτÞ3rjgqξI=π exp
�
3k
πρ2

ð1− r=ρÞ
�

¼ 2πjηðτÞj3gqξI=πe 3k
πρ2

�
πρ3

3k

�
2þgqξI=π

Z
3k
πρ2

0

dr0r01þgqξI=πe−r
0

∼ 2πjηðτÞj3gqξI=πe 3k
πρ2

�
πρ3

3k

�
2þgqξI=π

Γ
�
2þ gqξI

π

�
;

ðA8Þ

where ΓðzÞ is the gamma function, and we have approxi-
mated the integration range by Rþ. Γð2þ gqξI

π Þ is not zero
since gqξI=π is positive definite. NI diverges in the limit of
ρ → þ0. To normalize the zero mode, we obtain

f ¼
�X

I¼1;…;4
NI

Y
J≠IjψJðzI; z̄IÞj2

�
−1=2

→ 0:

Except for DI, we find jϕþ;0ðzÞj2 ¼ f2
Q jψ IðzÞj → 0 in

the limit of ρ → þ0. Thus the zero mode wave function is
localized at the fixed points. It behaves as a linear
combination of the delta functions δðz − zIÞ:

jϕþ;0ðz; z̄Þj2 ¼
X

I¼1;…;4

CIδ
ð2Þðz − zIÞ: ðA9Þ

The coefficients CI are calculated by the surface integrals
of jϕþ;0ðz; z̄Þj2 on small disc DI:

CI ¼
Z
DI

d2zjϕþ;0ðz; z̄Þj2

∼
Z
DI

jfj2
�Y

J≠I
jψJðzI; z̄IÞj2

�
jηðτÞ3ðz − zIÞjgqξI=π

× exp

�
3k
πρ2

ð1 − jz − zIj=ρÞ
�

¼ NI
Q

J≠IjψJðzI; z̄IÞj2P
I¼1;…;4NI

Q
J≠IjψJðzI; z̄IÞj2

: ðA10Þ

Extracting ρ dependence of NI, we obtain

NI ∝ e
3k
πρ2ρ3ð2þ

gqξI
π Þ; ðA11Þ

while ρ dependence of the denominator of (A10) is
evaluated as

X
I¼1;…;4

NI

Y
J≠I

jψJðzI; z̄IÞj2 ∼ e
− 3k
πρ2ρ−3ð2þ

gqξmin
π Þ; ðA12Þ

where ξmin is the minimum of ξ1;…; ξ4. If ξI is bigger than
ξmin, CI vanishes in the limit of ρ to zero. We obtain CI

CI ¼
8<
:

Q
J≠I

jψJðzI ;z̄IÞj2
ð
P

ξI¼ξmin

Q
J≠I

jψJðzI ;z̄IÞj2Þ
; ðξI ¼ ξminÞ

0: ðξI > ξminÞ

This is nothing but (2.54). Thus we can evaluate CI by the
absolute value of the wave function near the fixed point.
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APPENDIX B: MODULAR SYMMETRY OF
ELLIPTIC THETA FUNCTIONS

Here, we summarize modular symmetry of elliptic theta
functions. Under the S transformation, they satisfy the
relations,

ϑ1ð0j − 1=τÞ ¼ −i
ffiffiffiffiffiffiffi
−iτ

p
ϑ1ð0jτÞ;

ϑ2ð0j − 1=τÞ ¼
ffiffiffiffiffiffiffi
−iτ

p
ϑ4ð0jτÞ;

ϑ3ð0j − 1=τÞ ¼
ffiffiffiffiffiffiffi
−iτ

p
ϑ3ð0jτÞ;

ϑ4ð0j − 1=τÞ ¼
ffiffiffiffiffiffiffi
−iτ

p
ϑ2ð0jτÞ: ðB1Þ

Also, under the T transformation, they satisfy the relations,

ϑ1ð0jτ þ 1Þ ¼ eπi=4ϑ1ð0jτÞ;
ϑ2ð0jτ þ 1Þ ¼ eπi=4ϑ4ð0jτÞ;
ϑ3ð0jτ þ 1Þ ¼ ϑ4ð0jτÞ;
ϑ4ð0jτ þ 1Þ ¼ ϑ3ð0jτÞ: ðB2Þ
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