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Using the renormalization group improvement technique, we study the effective potential of a model
consisting of N scalar fields ϕi transforming in the fundamental representation of an OðNÞ group coupled
to an additional scalar field σ via cubic interactions, defined in a six-dimensional spacetime. We find that
the model presents a metastable vacuum, which can be long-lived, where the particles become massive.
The existence of attractive and repulsive interactions plays a crucial role in such phenomena.
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I. INTRODUCTION

Toy models have been intensely explored in scientific
literature, since they provide good theoretical laboratories
to discuss key concepts of quantum field theory. Although
we might have an unrealistic theory, it may highlight some
interesting features we want to study.
An instance of such toy models is the theory of a scalar

field with a cubic interaction in six dimensions. The ϕ3
6

model has been used to discuss a wide variety of topics.
For example, this model shares with QCD the interesting
phenomenon of asymptotic freedom [1] but is considerably
simpler than the latter, thus providing a useful tool to
explore this phenomenon [2]. Unlike QCD, however, this
model has an unbounded potential from below, and
although we might arrange for a stable local minimum,
this stability is lost at a critical temperature [3]. This model
was also used to study the behavior of quantum gravity
models with thermal instability [4]. Moreover, some
variations of this model are also fruitful in ideas. In [5],
for example, the authors quantized and solved the non-
commutative ϕ3

6 and were also able to compute the exact
renormalization of the wave function and coupling constant
by mapping it to the Kontesevich model.
In more recent years, the interest in a particular model

with N þ 1 scalar fields in d ¼ 6 − ϵ coupled via cubic

interactions has grown [6–10]. This model is described by
the Lagrangian,

L ¼ 1

2
ð∂μϕ

iÞ2 þ 1

2
ð∂μσÞ2 þ

g1
2
ðσϕiϕiÞ þ g2

6
σ3;

ði ¼ 1; 2;…; NÞ; ð1Þ

and it was argued in [6] that it provides an UV completion
to the OðNÞ symmetric scalar field theory with an inter-
action ðϕiϕiÞ2 in the dimension range 4 < d < 6, at least
for large N.
As it is well-known, spontaneous symmetry breaking is

one of such key concepts in particle physics, with a Higgs
mechanism playing a fundamental role in the Standard
Model. In that case, the symmetry breaking requires a mass
parameter in the Lagrangian but Coleman and Weinberg
demonstrated in [11] that a spontaneous symmetry break-
ing may occur due to radiative corrections when a quadratic
mass term is absent from the Lagrangian, as is the case in
conformally invariant theories, such as the ϕ3

6 model, where
we have a dimensionless coupling constant.
In order to discuss the Coleman-Weinberg (CW) mecha-

nism, the standard procedure is to compute the effective
potential, a powerful and convenient tool to explore many
aspects of the low-energy sector of a quantum field theory.
In several situations, the one-loop approximation is good
enough, but of course we want sometimes to improve it,
adding higher-order contributions in the loop expansion.
However, since calculations become very complicated
already at two-loop, some techniques were developed to
improve the calculation of the effective potential. In
particular, we cite [12], where the effective action for
the ϕ3

6 model was explicitly computed observing that the
appearance of an arbitrary mass scale μ2 introduced by
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renormalization imposes some conditions for the quantum
corrections to the classical potential. The so-called renorm-
alization group improvement has been intensely used to go
beyond one-loop approximation [13–21]. The general idea
is to use the renormalization group equations (RGE) to sum
up subseries of the effective potential.
In this work, we compute the improved effective

potential and use it to discuss the vacuum structure of a
massless theory of scalars with a cubic interaction in six
dimensions. Our model consists of N scalar fields ϕi

transforming in the fundamental representation of OðNÞ
coupled to an additional scalar field σ via cubic inter-
actions, described by the Lagrangian (1). This theory has a
potential unbounded from below, but it is nevertheless
possible that radiative corrections might generate a stable
false vacuum [22]. Our results indicate that the CW
mechanism does indeed provide a metastable vacuum
and a generation of mass.
This work is organized as follows: in Sec. II, we compute

the effective potential using the renormalization group
equation and explore some of its properties in d ¼ 6
dimensions. In Sec. III, we draw our conclusions.

II. THE EFFECTIVE POTENTIAL
IN d = 6 DIMENSIONS

We start by using the RGE to evaluate the effective
potential for the model defined by the Lagrangian (1) in
d ¼ 6 dimensions. The effective potential will be computed
to the σ field, including quantum fluctuations due to ϕi and
σ interactions, but we are assuming that hϕii ¼ 0 [so the
OðNÞ symmetry of this sector of the theory is kept
manifest]. That means σ is the only degree of freedom
in the effective potential. This choice is enough to study a
possible generation of mass in such a theory, as we discuss
in the Appendix.
Following the prescription for the RG improvement

technique [12], we start assuming that the effective poten-
tial has to satisfy the RGE,

�
μ
∂
∂μþ βg1

∂
∂g1 þ βg2

∂
∂g2 þ γσ

∂
∂σ

�
VeffðσÞ ¼ 0; ð2Þ

where βg1 and βg2 are the two β functions to this model, and
γσ is the anomalous dimension for the scalar field σ.
In order to determine the effective potential, it is useful to

write Veff as

Veff ¼
1

6
σ3Seffðg1; g2; LðσÞÞ; ð3Þ

where Seffðg1; g2; LðσÞÞ is a function of the coupling
constants and LðσÞ ¼ ln σ2

μ2
.

Now, we observe that

μ
∂Veff

∂μ ¼ −2
σ3

6

∂Seff
∂L ¼ −2

∂Veff

∂L ð4Þ

σ
∂Veff

∂σ ¼ 1

6
σ3
�
3þ 2

∂
∂L

�
Seff ¼

�
3þ 2

∂
∂L

�
Veff ; ð5Þ

so we can rewrite (2) in terms of derivatives with respect to
L, and thus, we find the RGE for Seff to be

�
2ð−1þ γσÞ

∂
∂Lþ βg1

∂
∂g1 þ βg2

∂
∂g2 þ 3γσ

�
Seff ¼ 0: ð6Þ

The one-loop renormalization group functions for the
model (1) were computed in [6], namely,

γσ ¼
1

ð4πÞ3
Ng21 þ g22

12
;

βg1 ¼
ðN − 8Þg31 − 12g21g2 þ g1g22

12ð4πÞ3 ;

βg2 ¼
−4Ng31 þ Ng21g2 − 3g32

4ð4πÞ3 : ð7Þ

It should be noted that these functions were computed in
the minimal subtraction (MS) renormalization scheme, and
technically, they should be adapted to our applications at
hand, namely, the Coleman- Weinberg procedure, as pointed
out in [23]. However, at the order we are interested in here,
that will not make any difference in our results, so it should
not bother us any longer, and we may put that matter aside.
For a more detailed discussion, see, for instance, [21].
In order to solve (6) and thus find the effective potential,

we first observe that when Veff is calculated perturbatively,
the result can be organized as a power series in
LðσÞ ¼ ln σ2

μ2
, so we will assume the following Ansatz:

Seff ¼ Aþ BLþ CL2 þDL3 þ � � � ; ð8Þ

where the coefficients are power series of the coupling
constants gi, that is,

A ¼
X∞
n¼1

An; with

8>>>>><
>>>>>:

A1 ¼ a11g1 þ a12g2
A2 ¼ a21g21 þ a22g1g2 þ a23g22
A3 ¼ a31g31 þ a32g21g2 þ a33g1g22 þ a34g32

..

.

; ð9Þ

and similarly, for the other coefficients, B, C, etc.
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The core idea behind the method is the observation that
the coefficients in (8) are not all independent, since changes
in μ must be compensated for by changes in the other
parameters, according to the renormalization group. Let us
then first reorganize the perturbative expansion (8) alter-
natively in the so-called leading-log series expansion. By
simple power counting, we assemble the effective potential
as follows:

Veff ¼
σ3

6

�X∞
n¼0

CLL
n g2nþ1Lnþ

X∞
n¼1

CNLL
n g2nþ3Lnþ���þδ

�
;

ð10Þ

where CLL
n and CNLL

n are, respectively, the coefficients to
the leading logarithms (LL) and next-to-leading logarithms

(NLL) contributions; dots represent higher order contribu-
tions; and δ is the counterterm defined by a renormalization
condition. In the above expression, g2nþ1 denotes some
combination of g1 and g2 at that order, such that g3, for
example, includes g31, g

2
1g2, g1g

2
2, and g32.

To compute the leading-log contributions to the effective
potential, we consider only the LL series,

Veff ¼
σ3

6

�X∞
n¼0

CLL
n g2nþ1Ln þ δ

�
: ð11Þ

In order to find the coefficients CLL
n , we plug (8) in (6)

and consider each order in the expansion in L to obtain the
set of equations,

�
β1

∂
∂g1 þ β2

∂
∂g2 þ 3γσ

�
Aþ 2ð−1þ γσÞB ¼ 0; ðorderL0Þ

�
β1

∂
∂g1 þ β2

∂
∂g2 þ 3γσ

�
Bþ 2ð−1þ γσÞð2CÞ ¼ 0; ðorderL1Þ

�
β1

∂
∂g1 þ β2

∂
∂g2 þ 3γσ

�
Cþ 2ð−1þ γσÞð3DÞ ¼ 0; ðorderL2Þ

..

. ð12Þ

Now, each equation can also be expanded in powers of the
coupling constants, and thus, we find

2B3 ¼
�
β1

∂
∂g1 þ β2

∂
∂g2 þ 3γσ

�
A1 ðorder g3L0Þ;

4C5 ¼
�
β1

∂
∂g1 þ β2

∂
∂g2 þ 3γσ

�
B3 ðorder g5L1Þ;

6D7 ¼
�
β1

∂
∂g1 þ β2

∂
∂g2 þ 3γσ

�
C5 ðorder g7L2Þ;

..

. ð13Þ

where we have considered that γσ ∼ g2, βi ∼ g3, An ∼ gn,
Bn ∼ gn, etc. [cf. Eqs. (7) and (9)].
The above set of equations allows us to identify the

following recurrence relation for the LL coefficients:

CLL
nþ1 ¼

�
β1

∂
∂g1 þ β2

∂
∂g2 þ 3γσ

�
CLL
n

2ðnþ 1Þ : ð14Þ

We are now able to compute the LL effective potential
up to any order. In particular, it is important to note that the
LL effective potential up to g3L order represents the full
one-loop effective potential.

A. The effective potential at one-loop order

We can now use (14) for n ¼ 0 to compute CLL
1 , with

CLL
0 ¼ g2 being an input established from a tree-level

potential,

CLL
0 ¼ g2;

CLL
1 ¼

�
β1

∂
∂g1 þ β2

∂
∂g2 þ 3γσ

�

CLL
0

2
¼ −

2g31N − g21g2N þ g32
256π3

: ð15Þ

The one-loop effective potential Veff is then given by

Veff ¼
σ3

6

�
g2 þ δþ 1

2

�
g2ðg21N þ g22Þ

256π3
þ −4g31N þ g21g2N − 3g32

256π3

�
ln

�
σ2

μ2

��
: ð16Þ
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In order to fix the counterterm δ, we use the Coleman-
Weinberg renormalization condition,

d3Veff

dσ3

����
jσj¼μ

¼ g2; ð17Þ

where μ > 0 is the renormalization scale. Thus, we find that
the renormalized effective potential is

Veff ¼
σ3

6

�
g2 þ

11ð2g31N − g21g2N þ g32Þ
768π3

−
ð2g31N − g21g2N þ g32Þ

256π3
ln

�
σ2

μ2

��
: ð18Þ

The classical potential is unbounded from below, but it is
possible to have a metastable vacuum due to radiative
corrections. Let us assume we have a local minimum and
explore this possibility by imposing the renormalization
scale to be around the (possible) local minimum of the
effective potential. The conditions for its existence are
given by

dVeff

dσ

����
jσj¼μ

¼ 0; ð19aÞ

d2Veff

dσ2

����
jσj¼μ

¼ m2
σ > 0; ð19bÞ

wherem2
σ is the mass for the σ field (possibly) generated by

the radiative corrections.
Equation (19a) imposes that

g2 ¼ −
3

256π3
ð2g31N − g21g2N þ g32Þ; ð20Þ

and therefore, the conditions (19) are perturbatively sati-

sfied for σ ¼ −μ and g2 ≈ − 3g3
1
N

128π3
. Around the metastable

vacuum, Veff can be written as

Veff ¼
g31Nσ3

2304π3

�
2 − 3 ln

�
σ2

μ2

��
; ð21Þ

where the generated masses are given by

m2
σ ¼

d2Veff

dσ2

����
σ¼−μ

¼ g31N
128π3

μ; ð22aÞ

m2
ϕ ¼ −g1hσi ¼ g1μ: ð22bÞ

We can see that both masses are positive, assuming
g1 > 0. The effective potential is plotted for different values
of N in Fig. 1.

The vacuum induced by radiative corrections is a local
minimum, and thus, we have a metastable vacuum state, and
at some time, it will decay to the real vacuum. However, the
potential is unbounded from below, which means that there
is no global minimum, and therefore, no stable solution to

the potential with an energy smaller than −g3
1
Nμ3

1152π3
.

Our results to the effective potential reveal three intere-
sting phenomena. First, the model exhibits a dimensional
transmutation, since the potential was initially described by
two dimensionless parameters (g1 and g2), and now, it is
described by a dimensionless parameter and a dimensionful
one (g1 and μ, respectively). Second, there is generation of
mass to both fields in the OðNÞ-symmetric phase. Third,
these phenomena are due to the appearance of a metastable
vacuum.
The decay rate of the vacuum is in general computed

through the Callan-Coleman formalism [24], but this
formalism can not be used in theories in which the
symmetry breaking is due to radiative corrections, since
it assumes a bounce solution to the classical potential. In
order to compute such decays in theories in which
spontaneous symmetry breaking is induced by radiative
corrections, we apply a slightly changed form of the Callan-
Coleman formalism developed by Weinberg [25].
In the case where there is no bounce solution (such as a

potential unbounded from below) and the interactions are
attractive, González et al. [22] showed that there is no
vacuum decay and the metastable vacuum is indeed the true
vacuum. The authors carried out the analysis considering
the Callan-Coleman formalism, but the results should be
the same for Weinberg’s formalism.
Physically, the tunneling between false and true vacuum

states occurs because when the system is in the false
vacuum, quantum fluctuations create bubbles of the true
vacuum, continually. Now thinking about the tunneling of
the state as a phase transition, the bubble must be large
enough to grow, i.e., a bubble with a sufficiently large
radius to enclose the true vacuum solution.
However, the negative value of g2 (assuming g1 > 0)

plays a central role in this analysis because, as the bubble

FIG. 1. One-loop effective potential for different values of N.
As large is N as deeper is the valley of Veff .
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grows, the repulsive interaction becomes more relevant. To
see this, let us study the behavior of the potential near the
metastable vacuum, by Taylor expanding it to obtain

Veff ¼ −
g31Nμ3

1152π3
þ g31μNðσ þ μÞ2

256π3

−
g31Nðσ þ μÞ3

256π3
þOððσ þ μÞ4Þ: ð23Þ

For small fluctuations around the local minimum of the
effective potential σ ¼ −μ, this potential is similar to the
discussed in [26]; in this case, the potential can simulate
the dynamics of a long chain. In this way, when the bubble is
large enough, the repulsive interaction becomes dominant,
and we observe the fracture of the chain. As expected, as N
grows, the metastable vacuum becomes more stable, once
theϕ fields interacts via an attractive interaction. This feature
can be viewed graphically, because when N is larger, the
metastable vacuum is deeper, as showed in Fig. 1.

B. The leading log effective potential

Using the recurrence relation (14), we can determine
higher order corrections to the LL effective potential. The
relevant observables of the theory around the metastable
vacuum are sensitive up to g7L3 order, since the counter-
term is determined up to g7 order because of the renorm-
alization condition (17). Therefore, in order to obtain the
radiative generated masses, it is enough to get only the first
four terms in (14). Following the prescription described in
the previous section, the renormalized LL effective poten-
tial up to Oðg7Þ is given by

Veff ¼
σ3

6

�
Ãþ B ln

�
σ2

μ2

�
þ Cln2

�
σ2

μ2

�
þDln3

�
σ2

μ2

��
;

ð24Þ

where

Ã ¼ g2 þ
g71N

3

9437184π9
−

7g71N
2

28311552π9
þ 5g71N
7077888π9

−
5g61g2N

3

169869312π9
−

109g61g2N
2

169869312π9
þ 73g61g2N
42467328π9

þ g51g
2
2N

1179648π9

þ g51N
2

24576π6
−

g51N
12288π6

þ 5g41g
3
2N

2

56623104π9
−

g41g
3
2N

18874368π9
−

g41g2N
2

73728π6
−

7g41g2N
73728π6

þ 11g31g
4
2N

28311552π9
þ 11g31N
2304π3

−
49g21g

5
2N

169869312π9
þ g21g

3
2N

36864π6
−
11g21g2N
4608π3

þ 7g72
18874368π9

−
g52

24576π6
þ 11g32
4608π3

B ¼ g21Nðg2 − 2g1Þ − g32
1536π3

;

C ¼ −3g51ðN − 2ÞN þ g41g2NðN þ 7Þ − 2g21g
3
2N þ 3g52

589824π6
;

D ¼ −
g71N

3

75497472π9
þ 7g71N

2

226492416π9
−

5g71N
56623104π9

þ 5g61g2N
3

1358954496π9
þ 109g61g2N

2

1358954496π9

−
73g61g2N

339738624π9
−

g51g
2
2N

9437184π9
−

5g41g
3
2N

2

452984832π9
þ g41g

3
2N

150994944π9
−

11g31g
4
2N

226492416π9

þ 49g21g
5
2N

1358954496π9
−

7g72
150994944π9

:

Just as in the one-loop case, the conditions (19) are perturbatively satisfied for σ ¼ −μ, but the coupling constant g2
receives corrections up to Oðg71Þ given by

g2 ¼ −
3g31N
128π3

−
g51Nð17N − 16Þ

32768π6
−
g71Nð651N2 þ 464N þ 320Þ

75497472π9
: ð25Þ

Therefore, the LL effective potential is

Veff ¼
g31Nσ3

2304π3

�
2þ g41Nð17N − 16Þ þ 768π3g21N

32768π6
−
�
3þ 3g21Nðg21ð17N − 16Þ þ 768π3Þ

65536π6

�
ln
�
σ2

μ2

�

−
3ðg41NðN þ 7Þ þ 128π3g21ðN − 2ÞÞ

32768π6
ln2

�
σ2

μ2

�
−
g41ðð7 − 3NÞN − 20Þ

98304π6
ln3

�
σ2

μ2

��
: ð26Þ
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The fields acquire mass induced by radiative corrections
given by

m2
σ ¼

d2Veff

dσ2

����
σ¼−μ

¼ g31Nμ

128π3

�
1þ g21ð13N − 8Þ

768π3
þ g41Nð59N þ 8Þ

196608π6

�
; ð27Þ

where m2
ϕ is the same as (22b). The LL corrections to m2

σ

become larger asN grows. For instance, if we have g1 ∼ 0.2
and N ∼ 103, the corrections to the one-loop mass is of
order of 2%, and for N ∼ 104, the corrections are about
27%. Therefore, the LL corrections become very relevant in
the large N limit of the effective potential. In the Fig. 2, we
plot the comparison between one-loop (21) and LL (26)
effective potentials for N ¼ 104 and g1 ¼ 0.2.

C. The large N limit

One interesting case to explore general OðNÞ models is
the large N expansion [27]. The large N expansion is an
alternative way to organize the perturbative series and has
important phenomenological applications, such as in QCD
[28] and condensed matter phenomena, e.g., through non-
linear sigma models [29–32]. To discuss some features of a
large N limit in the six-dimensional cubic theory, let us
redefine the coupling constants in (1) as g1 → g1=

ffiffiffiffi
N

p
and

g2 → g2=
ffiffiffiffi
N

p
,

L ¼ 1

2
ð∂μϕ

iÞ2 þ 1

2
ð∂μσÞ2 þ

g1
2

ffiffiffiffi
N

p ðσϕiϕiÞ þ g2
6

ffiffiffiffi
N

p σ3;

ði ¼ 1; 2;…; NÞ: ð28Þ

Through this redefinition, the RGE functions (7) become

γσ ¼
1

ð4πÞ3
g21
12

;

βg1 ¼
g31

12
ffiffiffiffi
N

p ð4πÞ3 ;

βg2 ¼
−4g31 þ g21g2
4

ffiffiffiffi
N

p ð4πÞ3 : ð29Þ

The effective potential in the large N expansion have the
general structure,

Veff ¼
σ3

6
ffiffiffiffi
N

p
�X∞

i¼0

CiLi þ 1

N

X∞
i¼0

CiLi þ � � �
�
; ð30Þ

from which we can see that while the LL expansion (10) is
based on a relation between powers of L and the coupling
constants, in the largeN expansion, we can have a complete
series of L at same leading order of N.
In our case, to obtain a large N effective potential up to

some order of L (or coupling constants), we can just use the
LL effective potential presented in the previous section. In
fact, the leading power terms of N can be taken from (24),
and then, we can apply the redefinition of the coupling
constants g1 → g1=

ffiffiffiffi
N

p
and g2 → g2=

ffiffiffiffi
N

p
to obtain

Veff ¼
σ3

6
ffiffiffiffi
N

p
�
Ãþ B ln

�
σ2

μ2

�
þ Cln2

�
σ2

μ2

�
þDln3

�
σ2

μ2

��
;

ð31Þ

with

Ã ¼ g2 þ
g71

9437184π9
−

5g61g2
169869312π9

þ g51
24576π6

−
g41g2

73728π6
þ 11g31
2304π3

−
11g21g2
4608π3

;

B ¼ g21ðg2 − 2g1Þ
1536π3

;

C ¼ −3g51 þ g41g2
589824π6

;

D ¼ −
g71

75497472π9
þ 5g61g2
1358954496π9

;

where the counterterm δ was fixed by the condition,

d3Veff

dσ3

����
jσj¼μ

¼ g2ffiffiffiffi
N

p : ð32Þ

The CW effective potential is then given by

FIG. 2. Comparison between one-loop Eq. (21) and LL Eq. (26)
effective potentials for N ¼ 104 and g1 ¼ 0.2. Leading log
corrections become relevant for large N.
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Veff ¼
g31σ

3

2304π3
ffiffiffiffi
N

p
�
2þ g21ð17g21 þ 768π3Þ

32768π6
−
�
3þ 3g21ð17g21 þ 768π3Þ

65536π6

�
ln

�
σ2

μ2

�

−
3g21ðg21 þ 128π3Þ

32768π6
ln2

�
σ2

μ2

�
þ g41
32768π6

ln3
�
σ2

μ2

��
; ð33Þ

where the conditions (19) were satisfied for σ ¼ −μ, with
the following relation between the coupling constants:

g2 ¼ −
3g31

128π3

�
1þ 17g51

768π6
þ 217g71
589824π9

�
: ð34Þ

One interesting feature of large N expansion is that at
same order of N, we have contributions of different orders
in coupling constants, as we can see from (33).
In the large N limit, the mass of the σ field becomes

m2
σ ¼

d2Veff

dσ2

����
σ¼−μ

¼ g31μ

128π3
ffiffiffiffi
N

p
�
1þ 13g21

768π3
þ 59g41
196608π6

�
:

ð35Þ

It is important to note that higher order powers of L will
not contribute to the generated mass because the counter-
term δ receives corrections only up to the L3 order, due to
the renormalization condition (32).

III. CONCLUSIONS

In this work, we studied the possibility of a spontaneous
generation of mass, induced by radiative corrections via the
Coleman-Weinberg mechanism, in a model consisting of N
scalar fields ϕi transforming in the fundamental represen-
tation of OðNÞ coupled to an additional scalar field σ via
cubic interactions, defined in a six-dimensional spacetime.
We computed the improved effective potential and use it to
discuss the vacuum structure of the model. This model has
a potential unbounded from below, but it is nevertheless
possible that radiative corrections might generate a stable
false vacuum, as discussed in [22]. Our results indicate that
the Coleman-Weinberg mechanism does indeed provide a
metastable vacuum and a generation of mass in the model
presented here.
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APPENDIX: THE (METASTABLE) VACUUM
STRUCTURE

In the main text, since we are only interested in the mass
generation, we have assumed that hϕii ¼ 0, and thus, σ is
the only degree of freedom in the effective potential. In this
Appendix, we discuss the vacuum structure of the model
and show that it has two phases, only one with a mass
generation.
We start shifting the quantum fields in (1) by the

corresponding classical field backgrounds,

ϕN → ðϕN − φcÞ and σ → ðσ − σcÞ: ðA1Þ

As the careful reader will notice, in our work, we have
implicitly considered a shift to the left for σ and thus, a
minimum of the potential in a negative value of the field. In
this Appendix, however, such a choice would be incon-
venient since we are dealing with propagators; so here, we
have made the choice above instead.
In terms of the redefined fields (A1), the Lagrangian is

L ¼ 1

2
ð∂μϕ

iÞ2 þ 1

2
ð∂μσÞ2 þ

g1
2
ðσϕiϕiÞ þ g2

6
σ3

−
g1σc
2

ðϕiÞ2 þ 1

2
ð3g2σ2c þ g1φ2

cÞσ þ g1σcφcϕ
N

−
3g2σc
2

σ2 − g1φcσϕ
N; ði ¼ 1; 2;…; NÞ: ðA2Þ

Due to the presence of a term that mixes σ and ϕN , the
quadratic part of the Lagrangian can be written as

L ¼ −
1

2
ðσ;ϕNÞ

�
□þ 3g2σ2c g1σcφc

g1σcφc □þ g1σ2c

��
σ

ϕN

�

−
1

2
ϕjð□þ g1σ2cÞϕj þ � � � ; ðA3Þ

where j ¼ 1; 2;…; ðN − 1Þ.
The propagators of the model in the momenta space can

be cast as

hTϕjðpÞϕjð−pÞi ¼ i
p2 − g1σc

ðj ¼ 1; 2;…; N − 1Þ;

ðA4aÞ
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hTϕNðpÞϕNð−pÞi

¼ iðp2 − g1σcÞ
p2ðp2 − 3g2σc − g1σcÞ − g21σ

2
cφ

2
c þ 3g1g2σ2c

;

ðA4bÞ

hTσðpÞσð−pÞi

¼ iðp2 − 3g2σcÞ
p2ðp2 − 3g2σc − g1σcÞ − g21σ

2
cφ

2
c þ 3g1g2σ2c

;

ðA4cÞ

hTϕNðpÞσð−pÞi

¼ ig1σcφc

p2ðp2 − 3g2σc − g1σcÞ − g21σ
2
cφ

2
c þ 3g1g2σ2c

:

ðA4dÞ

It is easy to see that for σc ¼ 0, the above propa-
gators reduce to propagators of massless fields, and
hTϕNðpÞσð−pÞi vanishes. Taking φc ¼ 0, such propaga-
tors reduce to

hTϕjðpÞϕjð−pÞi¼ i
p2−g1σc

ði¼1;2;…;NÞ; ðA5aÞ

hTσðpÞσð−pÞi ¼ i
p2 − 3g2σc

; ðA5bÞ

hTϕNðpÞσð−pÞi ¼ 0: ðA5cÞ

At tree level, from (A2), we see that the tadpole
equations for σ and ϕN are given by

hσð0Þi ¼ i
2
ð3g2σ2c þ g1φ2

cÞ ¼ 0; ðA6aÞ

hϕNð0Þi ¼ −ig1σcφc ¼ 0; ðA6bÞ

which possess only σc ¼ φc ¼ 0 as solution.
But the situation is different at the one-loop level. In fact,

due to the mixing hTϕNðpÞσð−pÞi, the tadpole equation for
ϕN is given by

hϕNð0Þi ¼ −ig1σcφc

�
1 −

i
2

Z
d6k
ð2πÞ6

1

k2ðk2 − 3g2σc − g1σcÞ − g21σ
2
cφ

2
c þ 3g1g2σ2c

	
¼ 0; ðA7Þ

where it is easy to see that the expression inside brackets is nonvanishing, so the condition σcφc ¼ 0 still holds.
Choosing φc ¼ 0, we have the following σ tadpole equation:

hσð0Þi ¼ 3i
2
g2σ2c −

g2
2

Z
d6k
ð2πÞ6

1

k2 − 3g2σc
−
Ng1
2

Z
d6k
ð2πÞ6

1

k2 − g1σc
¼ 0: ðA8Þ

The integral over k is given by

Z
dð6−2ϵÞkμ̃2ϵ

ð2πÞ6
−i

k2 −m2
¼ m4

128π3ϵ
−

m4

256π3

�
2 ln

�
m2

μ̃2

�
þ C

�
þOðϵÞ; ðA9Þ

where C ¼ 2γ − 3þ 2 logðπÞ, and γ is the Euler-Mascheroni constant.
Therefore, (A8) can be cast as

hσð0Þi ¼ i
2
σ2c

�
3g2 −

9g32 þ Ng31
256π3ϵ

þ 9g32 þ Ng31
512π3ϵ

ln

�
σ2c
μ2

�
þ C̃ðg1; g2Þ

�
¼ 0; ðA10Þ

where C̃ðg1; g2Þ is a constant function of g1 and g2, and
μ ¼ μ̃2 is a scale with the same dimension as σc.
The pole (ϵ ¼ 0) can beMSremovedby the introductionof

a linear contraterm (see, for instance, [33]). It is easy to see
that one possible solution to the tadpole equation (A10) is
σc ¼ 0. But σc ¼ 0 corresponds to an inflection point
of the effective potential, as we see from the Fig. (1). The

solution σc ¼ þμfðg1; g2Þ ≠ 0, with fðg1; g2Þ being an
exponential function of g1 and g2, corresponds to the local
minimum of Veff , while σc ¼ −μfðg1; g2Þ to the local
maximum. The difference in the value of σc found here
and in the Sec. II A is due to the difference on renormalization
schemes (theCWrenormalization scheme forVeff andMSfor
the tadpole equation) and has no physical significance.
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Like the nonlinear sigma models [29–32], the present
theory exhibits two phases. In the OðNÞ symmetric
phase, φN

c ¼ 0 and σc ≠ 0, the model presents spontaneous
generation of mass (due to generation of a metastable

vacuum as discussed in this article). In the other phase,
φN
c ≠ 0 and σc ¼ 0, the OðNÞ symmetry is spontaneously

broken to OðN − 1Þ, and there is no spontaneous mass
generation.
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