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Using the renormalization group improvement technique, we study the effective potential of a model
consisting of N scalar fields ¢’ transforming in the fundamental representation of an O(N) group coupled
to an additional scalar field o via cubic interactions, defined in a six-dimensional spacetime. We find that
the model presents a metastable vacuum, which can be long-lived, where the particles become massive.
The existence of attractive and repulsive interactions plays a crucial role in such phenomena.
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I. INTRODUCTION

Toy models have been intensely explored in scientific
literature, since they provide good theoretical laboratories
to discuss key concepts of quantum field theory. Although
we might have an unrealistic theory, it may highlight some
interesting features we want to study.

An instance of such toy models is the theory of a scalar
field with a cubic interaction in six dimensions. The ¢g
model has been used to discuss a wide variety of topics.
For example, this model shares with QCD the interesting
phenomenon of asymptotic freedom [1] but is considerably
simpler than the latter, thus providing a useful tool to
explore this phenomenon [2]. Unlike QCD, however, this
model has an unbounded potential from below, and
although we might arrange for a stable local minimum,
this stability is lost at a critical temperature [3]. This model
was also used to study the behavior of quantum gravity
models with thermal instability [4]. Moreover, some
variations of this model are also fruitful in ideas. In [5],
for example, the authors quantized and solved the non-
commutative ¢} and were also able to compute the exact
renormalization of the wave function and coupling constant
by mapping it to the Kontesevich model.

In more recent years, the interest in a particular model
with N + 1 scalar fields in d = 6 — e coupled via cubic
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interactions has grown [6—10]. This model is described by
the Lagrangian,

Lo »
£ =3O +5 0,00 + 5 (o' p') + 2
(i=1.2,....N), (1)

and it was argued in [6] that it provides an UV completion
to the O(N) symmetric scalar field theory with an inter-
action (¢'¢")? in the dimension range 4 < d < 6, at least
for large N.

As it is well-known, spontaneous symmetry breaking is
one of such key concepts in particle physics, with a Higgs
mechanism playing a fundamental role in the Standard
Model. In that case, the symmetry breaking requires a mass
parameter in the Lagrangian but Coleman and Weinberg
demonstrated in [11] that a spontaneous symmetry break-
ing may occur due to radiative corrections when a quadratic
mass term is absent from the Lagrangian, as is the case in
conformally invariant theories, such as the qbg model, where
we have a dimensionless coupling constant.

In order to discuss the Coleman-Weinberg (CW) mecha-
nism, the standard procedure is to compute the effective
potential, a powerful and convenient tool to explore many
aspects of the low-energy sector of a quantum field theory.
In several situations, the one-loop approximation is good
enough, but of course we want sometimes to improve it,
adding higher-order contributions in the loop expansion.
However, since calculations become very complicated
already at two-loop, some techniques were developed to
improve the calculation of the effective potential. In
particular, we cite [12], where the effective action for
the ¢ model was explicitly computed observing that the
appearance of an arbitrary mass scale y? introduced by
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renormalization imposes some conditions for the quantum
corrections to the classical potential. The so-called renorm-
alization group improvement has been intensely used to go
beyond one-loop approximation [13-21]. The general idea
is to use the renormalization group equations (RGE) to sum
up subseries of the effective potential.

In this work, we compute the improved -effective
potential and use it to discuss the vacuum structure of a
massless theory of scalars with a cubic interaction in six
dimensions. Our model consists of N scalar fields ¢’
transforming in the fundamental representation of O(N)
coupled to an additional scalar field ¢ via cubic inter-
actions, described by the Lagrangian (1). This theory has a
potential unbounded from below, but it is nevertheless
possible that radiative corrections might generate a stable
false vacuum [22]. Our results indicate that the CW
mechanism does indeed provide a metastable vacuum
and a generation of mass.

This work is organized as follows: in Sec. II, we compute
the effective potential using the renormalization group
equation and explore some of its properties in d =6
dimensions. In Sec. III, we draw our conclusions.

II. THE EFFECTIVE POTENTIAL
IN d =6 DIMENSIONS

We start by using the RGE to evaluate the effective
potential for the model defined by the Lagrangian (1) in
d = 6 dimensions. The effective potential will be computed
to the o field, including quantum fluctuations due to ¢; and
o interactions, but we are assuming that (¢;) = 0 [so the
O(N) symmetry of this sector of the theory is kept
manifest]. That means o is the only degree of freedom
in the effective potential. This choice is enough to study a
possible generation of mass in such a theory, as we discuss
in the Appendix.

Following the prescription for the RG improvement
technique [12], we start assuming that the effective poten-
tial has to satisfy the RGE,

0

0 0 0
< +ﬂg1 +ﬂgz —"_yﬁa > eff(g) = 07 (2)

where f, and 3, are the two 3 functions to this model, and
7. 1s the anomalous dimension for the scalar field o.

In order to determine the effective potential, it is useful to
write Vg as

103Seff(gl’92’l‘(0))’ (3)

Vet = G

where Sg;(g1, 92, L(6)) is a function of the coupling

constants and L(c) = In%
u

Now, we observe that

OV et 03 DS OV et
=T Pt _ _y 4
* o 6 oL L “)
W 1 V. )
(o2 80 6 (3 + 2(9L> Seff = <3 + 2 8L> eff s (5)

so we can rewrite (2) in terms of derivatives with respect to
L, and thus, we find the RGE for S. to be

0

) )
{2(—1%) +ho 5 +ﬂﬁ +3y5}Seff—0. (6)

The one-loop renormalization group functions for the
model (1) were computed in [6], namely,

, — 1 Ngita
> (4} 12 7
B — (N -8)gi — 12919, + 9193
d 12(4x)3 ’
,B _ _4Ng? + Ng%g2 - 39% (7)
e 4(4x)? ‘

It should be noted that these functions were computed in
the minimal subtraction (MS) renormalization scheme, and
technically, they should be adapted to our applications at
hand, namely, the Coleman- Weinberg procedure, as pointed
out in [23]. However, at the order we are interested in here,
that will not make any difference in our results, so it should
not bother us any longer, and we may put that matter aside.
For a more detailed discussion, see, for instance, [21].

In order to solve (6) and thus find the effective potential,
we first observe that when Vg is calculated perturbatively,
the result can be organized as a power series in

L(o) =

In ;—j, so we will assume the following Ansarz:

Sef =A+BL+CL>+DL> + -, (8)

where the coefficients are power series of the coupling
constants g;, that is,

A= iAn, with
n=1

Al =angi +ang
Ay = ay gt + ang19 + angs
Ay = a31g3 + angio + ang13 + ang’ ©)

and similarly, for the other coefficients, B, C, etc.
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The core idea behind the method is the observation that
the coefficients in (8) are not all independent, since changes
in 4 must be compensated for by changes in the other
parameters, according to the renormalization group. Let us
then first reorganize the perturbative expansion (8) alter-
natively in the so-called leading-log series expansion. By
simple power counting, we assemble the effective potential
as follows:

3 ) 00
O
Veff :g <§ C%LQZn-HLn + E CI’;ILLg2n+3Ln 4. +5> ,
n=0

n=1

(10)

where CLY and CY are, respectively, the coefficients to
the leading logarithms (LL) and next-to-leading logarithms
J

(NLL) contributions; dots represent higher order contribu-
tions; and ¢ is the counterterm defined by a renormalization
condition. In the above expression, g*"*t! denotes some
combination of g, and g, at that order, such that ¢*, for
example, includes g3, ¢3g,, 9193, and g.

To compute the leading-log contributions to the effective
potential, we consider only the LL series,

3 ©
Vigr :% (Z CLL i +5>. (11)
n=0

In order to find the coefficients CL", we plug (8) in (6)
and consider each order in the expansion in L to obtain the
set of equations,

0 0
4 B—+3y, |JA+2(-1+7,)B =0, order L°
(Pt B3 ) A+ 2141 (order L)

0 0
—+ ——|—3G>B+2—1+ -)(2C) =0,
(ﬂl £ P> £ 7 ( 4 )( )

<ﬂ1 i+ﬂzai+ 3}’0>C+ 2(=1+47,)(3D) =0,
92

99,

Now, each equation can also be expanded in powers of the
coupling constants, and thus, we find

2B; = <ﬂ1 % + /5 Gigz + 375)141 (order g°L?),

4Cs = <ﬂli+ﬁzi+37 >B3 (order g°L")
99, 09> ’ '

6D; = <ﬁ1 9 + P A + 3y > Cs (orderg’L?)
g, dgy 7 ’

(13)

where we have considered that y, ~ ¢, f; ~¢°, A, ~ ¢",
B, ~ ¢", etc. [cf. Egs. (7) and (9)].

The above set of equations allows us to identify the
following recurrence relation for the LL coefficients:

Cl = ﬁ—+ﬂ + _GF (14)
G =P 299, )2t 1)

3
Vet =

%(gIN + 3)

(order L")

(order L?)

(12)

We are now able to compute the LL effective potential
up to any order. In particular, it is important to note that the
LL effective potential up to ¢°L order represents the full
one-loop effective potential.

A. The effective potential at one-loop order

We can now use (14) for n = 0 to compute Ci*, with
Chl = g, being an input established from a tree-level
potential,

C%L = O,

0
CLL < 19— + ﬂZ + 370’)

at 291N 9192N+gz (15)
2 2567 '

The one-loop effective potential V. is then given by

O
6 [92+5+2< 25677

—4gIN + g3g:N — 3¢5 o2
In{— ) |. 1
+ 25673 2 (16)
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In order to fix the counterterm 6, we use the Coleman-
Weinberg renormalization condition,

PV gy

= 92, (17)

where u > 0 is the renormalization scale. Thus, we find that
the renormalized effective potential is

v =7 [ AN~ GigN + g5)
6 |7 7687

3a7 2 3 2

25673 u?

The classical potential is unbounded from below, but it is
possible to have a metastable vacuum due to radiative
corrections. Let us assume we have a local minimum and
explore this possibility by imposing the renormalization
scale to be around the (possible) local minimum of the
effective potential. The conditions for its existence are
given by

dV s
Neer)  _ (19a)
do |y
d?V o 2

= > 0, 19b
e (190)

where m2 is the mass for the ¢ field (possibly) generated by
the radiative corrections.
Equation (19a) imposes that

g = (2iN = 1N + 53). (20)

3
2567

and therefore, the conditions (19) are perturbatively sati-
l3
sfied for 6 = —u and g, & — % Around the metastable

vacuum, V4 can be written as

37,3 2

giNo c
Vir=———=12-3Inl— ||, 21
eff 230471'3[ n(ﬁ)} (21)

where the generated masses are given by

d*v N
2 _ eff _ 4 . 2
M T e |, 1280 (222)
mé = —g1(0) = gip. (22b)

We can see that both masses are positive, assuming
g1 > 0. The effective potential is plotted for different values
of N in Fig. 1.

Veff
g
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N
s
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e\ _
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N 7 f
" 4 —0.0001 v
e
\ -0.0002 \
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FIG. 1. One-loop effective potential for different values of N.

As large is N as deeper is the valley of V.

The vacuum induced by radiative corrections is a local
minimum, and thus, we have a metastable vacuum state, and
at some time, it will decay to the real vacuum. However, the
potential is unbounded from below, which means that there
is no global minimum, and therefore, no stable solution to
the potential with an energy smaller than _lfzg: 33.

Our results to the effective potential reveal three intere-
sting phenomena. First, the model exhibits a dimensional
transmutation, since the potential was initially described by
two dimensionless parameters (g; and ¢,), and now, it is
described by a dimensionless parameter and a dimensionful
one (g; and u, respectively). Second, there is generation of
mass to both fields in the O(N)-symmetric phase. Third,
these phenomena are due to the appearance of a metastable
vacuum.

The decay rate of the vacuum is in general computed
through the Callan-Coleman formalism [24], but this
formalism can not be used in theories in which the
symmetry breaking is due to radiative corrections, since
it assumes a bounce solution to the classical potential. In
order to compute such decays in theories in which
spontaneous symmetry breaking is induced by radiative
corrections, we apply a slightly changed form of the Callan-
Coleman formalism developed by Weinberg [25].

In the case where there is no bounce solution (such as a
potential unbounded from below) and the interactions are
attractive, Gonzalez et al. [22] showed that there is no
vacuum decay and the metastable vacuum is indeed the true
vacuum. The authors carried out the analysis considering
the Callan-Coleman formalism, but the results should be
the same for Weinberg’s formalism.

Physically, the tunneling between false and true vacuum
states occurs because when the system is in the false
vacuum, quantum fluctuations create bubbles of the true
vacuum, continually. Now thinking about the tunneling of
the state as a phase transition, the bubble must be large
enough to grow, i.e., a bubble with a sufficiently large
radius to enclose the true vacuum solution.

However, the negative value of g, (assuming g; > 0)
plays a central role in this analysis because, as the bubble
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grows, the repulsive interaction becomes more relevant. To
see this, let us study the behavior of the potential near the
metastable vacuum, by Taylor expanding it to obtain

_giNg?

115272

_giN(o +p)’
25673

giuN (o + p)?
2561

+ O((o + u)*). (23)

Ve =

For small fluctuations around the local minimum of the
effective potential 6 = —pu, this potential is similar to the
discussed in [26]; in this case, the potential can simulate
the dynamics of a long chain. In this way, when the bubble is
large enough, the repulsive interaction becomes dominant,
and we observe the fracture of the chain. As expected, as N
grows, the metastable vacuum becomes more stable, once
the ¢ fields interacts via an attractive interaction. This feature
can be viewed graphically, because when N is larger, the

B. The leading log effective potential

Using the recurrence relation (14), we can determine
higher order corrections to the LL effective potential. The
relevant observables of the theory around the metastable
vacuum are sensitive up to g7L3 order, since the counter-
term is determined up to g’ order because of the renorm-
alization condition (17). Therefore, in order to obtain the
radiative generated masses, it is enough to get only the first
four terms in (14). Following the prescription described in
the previous section, the renormalized LL effective poten-
tial up to O(g’) is given by

o [~ o’ o’ o’
Ve = < [A + Bln (2> + Cln? <2> + DIn? (2)] ,
p p u

(24)

metastable vacuum is deeper, as showed in Fig. 1. where
|
Agat giN* 19N’ 59N 5gN®  109¢8gN*  T3gfg,N RN
27 04371842° ~ 283115527° ' 707788877  1698693127°  1698693127° « 424673287° | 11796487°
LGNt N S5AAN*  glgN  glgN*  TglgpN | 1lgigN | 11giN
245767°  1228872° ' 566231047°  188743687° 737282 737282° ' 283115527° ' 230473
_ M9giN | gipN  1lgigpN T @ g3
1698693127° ' 3686475  46087° | 188743687° 2457675 = 46087
5 _ 9N —291) - 5
15367° ’
o - RN =N + gigN(N +7) - 26N + 363
5898247 ’
_ giN? Tg]N? 591N 5659, N° 109459, N*
T 77549747220 ' 2264924162°  566231047° | 13589544967° | 13589544967
_ BeN @GN 5gigN? gipN  llgigiN
3307386247° 943718477 4529848327° | 1509949447° 2264924167
YgpN g
135805449677  1509949447° "

Just as in the one-loop case, the conditions (19) are perturbatively satisfied for 6 = —u, but the coupling constant g,

receives corrections up to O(g]) given by

_3gIN _ gIN(ITN = 16) _gIN(65IN? + 464N + 320)

= 25
P2 12873 3276875 754974727° (25)
Therefore, the LL effective potential is
_ giNo® 5 giN(17N = 16) +7687°giN 3 33N (g7 (17N — 16) + 76873) i o’
Vet = 3|2+ 6 + 6 nl-s
2304 32768x 655367 u
3 3(¢IN(N +7) + 12823¢3(N - 2)) I 3 g((7=3N)N —20) 13 0_2 (26)
32768x° 9830475 W)l
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FIG.2. Comparison between one-loop Eq. (21) and LL Eq. (26)
effective potentials for N = 10* and g, = 0.2. Leading log
corrections become relevant for large N.

The fields acquire mass induced by radiative corrections
given by

mz _ dZVeff
° do? ——s
_GiNp [ gi(13N —8)  giN(59N +8) 27)
12872 7687 1966087° |’

where mj is the same as (22b). The LL corrections to m;

become larger as N grows. For instance, if we have g; ~ 0.2
and N ~ 10%, the corrections to the one-loop mass is of
order of 2%, and for N ~ 10%, the corrections are about
27%. Therefore, the LL corrections become very relevant in
the large NV limit of the effective potential. In the Fig. 2, we
plot the comparison between one-loop (21) and LL (26)
effective potentials for N = 10* and g; = 0.2.

C. The large N limit

One interesting case to explore general O(N) models is
the large N expansion [27]. The large N expansion is an
alternative way to organize the perturbative series and has
important phenomenological applications, such as in QCD
[28] and condensed matter phenomena, e.g., through non-
linear sigma models [29-32]. To discuss some features of a
large N limit in the six-dimensional cubic theory, let us
redefine the coupling constants in (1) as g, — ¢,/+/N and

92 —’92/\/N,

L=

i 1 g1 i 92
(0, )2+§(3ﬂa)2+2\/ﬁ(0¢¢)+6\/ﬁa3,

(i=12...N). (28)

N —

Through this redefinition, the RGE functions (7) become

1 g
Yo~ ny 127
p=— O
' 12¢/N(4n)*’
—4g1 + 919>
_ M 919 29
P = /N any )

The effective potential in the large N expansion have the
general structure,

o > 1S .
V=2 (S cri+~ScLi+---), (30

from which we can see that while the LL expansion (10) is
based on a relation between powers of L and the coupling
constants, in the large N expansion, we can have a complete
series of L at same leading order of N.

In our case, to obtain a large N effective potential up to
some order of L (or coupling constants), we can just use the
LL effective potential presented in the previous section. In
fact, the leading power terms of N can be taken from (24),
and then, we can apply the redefinition of the coupling

constants g; — ¢;/v/N and g, — ¢,/+/N to obtain

o> [- o’ o’ o’
Veg = —— |A+ BIn[ — —|—Cln2<—>+Dln3<—>},
T 6UN [ <ﬂ2> I p

(31)
with
5 7 5 () 5
A=g + 91 5 - 9192 ; i .
9437184x” 1698693127° 24576«
gl gl llgig
737282°%  2304x° 460873°
5 9192~ 291)
===
15367
c— 39 +4io
5898247°
4 59192
754974727°  13589544967°°
where the counterterm 6 was fixed by the condition,
v ff 9
e =22 32
45 s~ VN .

The CW effective potential is then given by
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#1742 + 76873)

93 63
Vg = ! 6
230473+/N 327687
_3g(gt +1287) ()

327687° 12

where the conditions (19) were satisfied for 6 = —u, with
the following relation between the coupling constants:
3q3 17¢; 217¢]
= — 1 . 34
%= " Tog | V76800 T ss082400) Y

One interesting feature of large N expansion is that at
same order of N, we have contributions of different orders
in coupling constants, as we can see from (33).

In the large N limit, the mass of the o field becomes

_ gim 5941
o——p 1287°V/N 1966087
(35)

2 _ d?V o
‘ do?

139%
768713

m

It is important to note that higher order powers of L will
not contribute to the generated mass because the counter-
term & receives corrections only up to the L? order, due to
the renormalization condition (32).

III. CONCLUSIONS

In this work, we studied the possibility of a spontaneous
generation of mass, induced by radiative corrections via the
Coleman-Weinberg mechanism, in a model consisting of N
scalar fields ¢’ transforming in the fundamental represen-
tation of O(N) coupled to an additional scalar field ¢ via
cubic interactions, defined in a six-dimensional spacetime.
We computed the improved effective potential and use it to
discuss the vacuum structure of the model. This model has
a potential unbounded from below, but it is nevertheless
possible that radiative corrections might generate a stable
false vacuum, as discussed in [22]. Our results indicate that
the Coleman-Weinberg mechanism does indeed provide a
metastable vacuum and a generation of mass in the model
presented here.
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APPENDIX: THE (METASTABLE) VACUUM
STRUCTURE

In the main text, since we are only interested in the mass
generation, we have assumed that (¢;) = 0, and thus, o is
the only degree of freedom in the effective potential. In this
Appendix, we discuss the vacuum structure of the model
and show that it has two phases, only one with a mass
generation.

We start shifting the quantum fields in (1) by the
corresponding classical field backgrounds,

PN > (¢¥ —¢) and o (c-0,). (Al)
As the careful reader will notice, in our work, we have
implicitly considered a shift to the left for ¢ and thus, a
minimum of the potential in a negative value of the field. In
this Appendix, however, such a choice would be incon-
venient since we are dealing with propagators; so here, we
have made the choice above instead.

In terms of the redefined fields (A1), the Lagrangian is

_1 2, 1 2 9t iy 92 3
£_2(a,,¢) +2<a”6) +2(0(f)¢)+66

G916¢ a1

=T+ 5 30:00 + 9100)0 + G109

3

—%oz—glqycaw, (i=1,2,....N). (A2)

Due to the presence of a term that mixes ¢ and ¢, the
quadratic part of the Lagrangian can be written as

1 D 3 % ctc
o Lo (Bt e (1)
2 gio.0.  O+gior ) \ @
1. .
—Eff”(m +gi62)p) + -, (A3)

where j =1,2,..., (N =1).
The propagators of the model in the momenta space can
be cast as

(T¢/(p)#' (=p)) = 7= g0,
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(TN (p)p" (=p))

_ i(Pz - G16)
p*(p* =390 — g10.) — gioews + 319200
(Adb)
(To(p)o(=p))
_ i(p* = 3g,0,)
p*(p* =390 — g10.) — gioew: + 3g19:00
(Adc)
(T$™ (p)a(=p))
_ 19100,
p*(p* =390 — g10.) — gioews + 3919200
(Add)

It is easy to see that for o. =0, the above propa-
gators reduce to propagators of massless fields, and
(T¢" (p)o(—p)) vanishes. Taking ¢, = 0, such propaga-
tors reduce to
|

i

(T$ (p) (~p)) =———— (i=1.2...N). (ASa)
P 910,

(To(p)o(=p)) =75 (ASb)

(T¢"(p)o(=p)) = 0. (ASc)

At tree level, from (A2), we see that the tadpole
equations for ¢ and ¢" are given by

(0(0) =5 (30 + g1?) =0, (AG)

(#"(0)) = —igio.p. = 0, (A6D)
which possess only . = ¢, = 0 as solution.

But the situation is different at the one-loop level. In fact,
due to the mixing (T¢" (p)o(—p)), the tadpole equation for
¢V is given by

i [ d°% 1
N(0)) = —i 1-— i/ =0, A7
oD lgl(wc{ 2) @a)° k(K =3g:0. - gi0,) — gioewe + 3919263} (A7
where it is easy to see that the expression inside brackets is nonvanishing, so the condition ¢.¢,. = 0 still holds.
Choosing ¢. = 0, we have the following ¢ tadpole equation:
3i g [ d% Ng, d°k 1
0)) == 2 _JZ —_ 7 —  =0. AR
(0(0)) =7 920¢ =3 22K —3g0. 2 ) 22K — g0, (A8)
The integral over k is given by
d(6_2€)kﬁ26 —i mt mt m2
= - 2In| — C| + O(e), A9
/ 2n)° K—-m’ 1282% 2567° [ n<ﬂ2> + } +00e) (A9)
where C = 2y — 3 + 2log(x), and y is the Euler-Mascheroni constant.
Therefore, (A8) can be cast as
i 933 +Ng@ 9¢3 +Ng3  [o? .
0)) =-02|3gy — =3 e Lin{ =5 ) + C(g1.92)| =0. A10
(0(0)) =3¢ { 2= sere | sizde M) TCne) (A10)

where C(g,,9,) is a constant function of g, and g,, and
u = ji is a scale with the same dimension as o,.

The pole (¢ = 0) can be MS removed by the introduction of
a linear contraterm (see, for instance, [33]). It is easy to see
that one possible solution to the tadpole equation (A10) is
6, =0. But 6. =0 corresponds to an inflection point
of the effective potential, as we see from the Fig. (1). The

|
solution 6, = +uf(g;,9,) #0, with f(g;,g,) being an
exponential function of ¢g; and g,, corresponds to the local
minimum of V., while 6, = —uf(g;,9,) to the local
maximum. The difference in the value of . found here
and in the Sec. II A is due to the difference on renormalization
schemes (the CW renormalization scheme for V¢ and MS for
the tadpole equation) and has no physical significance.
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Like the nonlinear sigma models [29-32], the present
theory exhibits two phases. In the O(N) symmetric
phase, @Y = 0 and 6, # 0, the model presents spontaneous
generation of mass (due to generation of a metastable

vacuum as discussed in this article). In the other phase,
@Y # 0 and 6, = 0, the O(N) symmetry is spontaneously
broken to O(N — 1), and there is no spontaneous mass
generation.
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