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We study a fermion field coupled to a scalar via a Yukawa term. The scalar field is the ¢* model with an
impurity that preserves half of the Bogomol'nyi-Prasad-Sommerfield (BPS) property. We analyze the
spectrum of the defects of the model and collisions between them both close to the BPS regime and not. As the
fermion binds to these defects, it may be transferred from one to the other, which we quantify via overlaps,
known as Bogoliubov coefficients. BPS collisions are less likely to transfer the fermion between defects and
can be adiabatic for nonrelativistic velocities, especially for small coupling constants. Moreover, closer to the
BPS limit only a small fraction of the fermion number is radiated away. In contrast, non-BPS collisions lead to
more radiation in the fermion field and excitation of the fermion to higher bound states, and the result is more

sensitive to the parameters.
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I. INTRODUCTION

Interactions of the fermion field with solitons have been
subject to intense research since the pioneering work of
Jackiw and Rebbi [1]. Interestingly, they found that solitons
may have an associated half-integer fermion number when-
ever there exists a bound zero-energy solution for the
fermion field. Later, a series of works has shown that a
soliton can have any fractional fermion number [2—4]. In
particular, Jackiw and Rebbi investigated a model where the
fermion is coupled with a ¢* kink via Yukawa coupling,
ignoring the backreaction. This model can be solved
analytically and has a well-known set of bound and
scattering states as shown for instance in [5,6] considering
amassless fermion field and in [7] a massive one. Since then
other kink-fermion systems have been studied. For instance,
it is possible to compute the Casimir energy of the fermion
field when the fermion is chirally coupled with a prescribed
scalar field [8—10]. Another example is the computation of
the energy and eigenfunctions of fermion bound states
where the background scalar field is a modified sine-
Gordon or a modified ¢4 [11,12]. Moreover, kink-fermion
interactions arise naturally in supersymmetric systems [13].
In higher dimensions, fermions have been studied in
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the background of vortices [14], chiral fields [15] and
skyrmions [16], for example.

This problem becomes more interesting when one
considers a kink-antikink pair, instead of just a kink, as
the background. This was done in [5] for the ¢* model
where the authors computed the energy spectrum and
eigenstates of a fermion in such background. They showed
that, as the distance of the kink-antikink increases, the
fermion bound states and energy approach the ones of a
single kink, as expected. This result was repeated in [17],
now considering sine-Gordon kink-antikink pair instead of
the ¢*. There, snapshots of the exact solution of a kink-
antikink collision were considered as the background field,
however, without any reference to the problem of bound
states after the collision. The issue here is that there are no
bound states after the collision. This problem arises in
many cases where the kink is not centered around the
origin. In [17] this problem was circumvented by shifting
the sine-Gordon kink to center it around the origin,
however, after the collision, this is not the case anymore
and there is no bound state. Therefore, it is hard to find
models where we can discuss fermion bound states in kinks
collision backgrounds that go beyond the ¢* model.

There is a more intriguing problem than computing
fermion bound states for a kink-antikink background which
is the exchange of fermions between the kinks or the
fermions transfer between fermion bound states during a
kink and antikink collision, as done in [18,19]. There, the
background scalar field is not fixed anymore and evolves
dynamically. During the collision, the fermion is affected
by the scalar field and can stay on the kink, be transferred
from the kink to the antikink or radiate. This is the type of
analysis that we focus on in the present paper. In [18,19],
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this analysis was motivated by previous works investigating
the possibility that higher-dimensional universes can
behave like a four-dimensional one if particles are bound
to a brane that localizes them in the extra dimensions
[20-23]. The authors in [18,19] tried to understand the fate
of fermions when such branes collide and it is interesting to
have this interpretation in mind.

It is worth pointing out that it is possible to add another
ingredient to the problem: the backreaction of the fermion on
the soliton. It has been shown that a prescribed soliton is a
good approximation for small coupling constants and
considering the backreaction can create bound soliton-
antisoliton pairs and also can mediate interactions between
the solitons [24-29]. Here, we study a fermion field coupled
to a scalar field via the Yukawa interaction in (1 + 1)
dimensions as in [25]. However, as in most works cited
above, we consider the scalar field as a background, even for
larger values of the coupling constant, because it greatly
simplifies the problem, allows some analytical treatment
and a more direct comparison to the works mentioned
before.

As the scalar field is evolving dynamically in our study, it
is important to highlight some relevant works involving
kink-antikink collisions. One of the pioneering ones was
done by Sugiyama [30] where the author estimated the
critical velocities in kink-antikink collisions using a collec-
tive coordinate approach. A few years laters, Campbell et al.
[31] did a precise numerical computation of the pattern of
resonance windows. Remarkably, the authors showed that
while a kink and an antikink annihilate for small relative
velocities and reflect for high relative velocities, there are
intermediate velocities where they collide multiple times
before separating. Furthermore, they gave an approximate
explanation for the resonance windows phenomena as an
energy exchange mechanism between the kink translational
and vibrational energy.

More recent works in kink-antikink interactions include
¢* model and modifications [32—34]; interaction of kinks in
higher-order models such as ¢° and ¢ [32,35-37]; coupled
two-component kinks [38,39]; models with power-law
asymptotics [40-42]; and others [43,44]. It is a rich field
of research with many interesting works and novel results.
More recently some attention has been directed toward the
¢* model with a half-BPS preserving impurity [45,46]. In
this model, the impurity is a term in the Lagrangian that
breaks translational invariance in such a way that the model
still admits one BPS solution. The model admits topologi-
cal and nontopological defects consisting of kinks, anti-
kinks, and lumps. During the collisions, some of the
interactions between the defects are BPS preserving versus
the others which are not. Similar half-BPS preserving
models with exactly solvable BPS sector were also con-
sidered in [47]. Supersymmetric extensions of these mod-
els, where the scalar field naturally couples to a fermion
field, were studied in [48].

Here, we take the solutions of the ¢* model with the half-
BPS preserving impurity as a background, coupled to a
fermion field similar to [48], although nonsupersymmetri-
cally. For a specific range of parameters, the model gives
rise to fermion bound states for the fermion interacting with
the scalar field configurations. We study fermion transfer
where the background is a collision between the defects of
this model, with both BPS and non-BPS interactions.

In Sec. II, we present the ¢* model with a half-BPS
preserving impurity, interacting with a fermion field via a
Yukawa coupling. In Sec. III, we study the time evolution
and transfer of the fermion field during a collision between
different components in the scalar field. Finally in Sec. IV,
we discuss and summarize our conclusions.

II. MODEL

A. Lagrangian and Euler-Lagrange equations

We study a model given by the following Lagrangian in
1 4+ 1 dimensions, which can be organized into three types
of terms

L= ‘csca.lar + ‘Cfermion + ‘Cint' (1)

The scalar Lagrangian is the soliton-impurity model studied
in [45]

Escalar :%¢% _%qﬁ,% - U(¢) -20 V U(¢) - \/§0¢x - 02’ (2)

that differs from the typical scalar field theories due to the ¢
term, which describes a half-BPS preserving impurity. The
parameter U(¢) is the scalar potential term depending on
the scalar field ¢ (x, ). The fermion Lagrangian is given by

'Cfermion = il/_/}/”aﬂl//, (3)
and we consider a Yukawa interaction
Line = =gy (4)

The scalar Lagrangian demands some deeper discussion.
Following [45], we choose the potential as in the ¢* theory

U() =5 (- P 5

The o terms are added to the Lagrangian such that the
system still has one BPS solution resulting from

b+ V20 + (1 —¢2) = 0. (6)

This should be compared with the ¢* model, where two
BPS solutions exist, associated with each of the two
topological sectors (kink and antikink), instead. The BPS
solution in Eq. (6) corresponds to the antikink solution of
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the ¢* model. Hence, to find the kink solution we solve the
full second-order field equation. To simplify the kink
solution, ¢ is chosen such that the ¢* kink at the origin
is still a solution. This leads to [45]

A
77 cosh? (x)° ™
where 1 is a constant in the range 1 > —/2. In other words,
¢k,(x) = tanh(x) solves the field equations when o is
given by Eq. (7). However, ¢ (x;xy) = tanh(x — x,) does
not solve the field equations for this choice of o, if xqy # 0.
For more details regarding the ¢* scalar field with this half-
BPS preserving impurity see Ref. [45].
The Euler-Lagrange equations for this model are

2v22
by — Pux +2(¢* = 1) = cosh?(x) (¢ —tanh(x)) (8)
ir'oy — gy = 0. )

In Eq. (8) we ignored the term proportional to gy,
meaning that we disregarded the back-reaction of the
fermion on the scalar field. To solve Eq. (9), let us choose
a representation for the gamma matrices. We choose the
complex representation y° = —¢2, y! = ic>. In this repre-
sentation, the fermion field can be split into two decoupled
Majorana fields

w =y + iy (10)
Each of these fields has two real components. We ignore
the second Majorana field w3’ because it has identical
equations to w4, Writing y} = (y,y,)7, the Euler-
Lagrange equation becomes

(11)

(12)

O = =0y, + gdw,,
Oy = =01 — gy

B. Scalar field solutions

The solutions discussed in this section were originally
found in [45]. Let us consider static solutions of the scalar
field first. The first interesting static solution is the kink-on-
impurity K, given by ¢, = tanh(x). The subscript 0
indicates that it is bound to the impurity. As discussed
before, the model was constructed such that this is still a
solution of the field equations as can be seen in Eq. (8).

The second interesting static solution is the antikink. As
the BPS property is preserved for antikink solutions, they
consist of a family of solutions related by a generalized
translational symmetry as shown in [45]. These solutions
@z (x;x0) are the full BPS antikink solutions. They can be
parametrized by a coordinate x,, and usually consist of a ¢*

¢
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FIG. 1. BPS solutions of the scalar field. The full line is the

lump solution, The dashed line is an antikink to the left and a
lump and the dotted line is the antikink-on-impurity solution.
This figure is a reproduction of results in [45].

antikink A and a lump L. They can be found numerically
integrating Eq. (6) with different initial conditions. We
choose the parameter x, such that the initial condition is
@z (x93 x9) = 0. We fix A = —1.0 for the reason which will
be discussed shortly. The antikink solution symmetric
around the origin is called antikink-on-impurity A,. It is
given by ¢, (x) = ¢4 (x;0) and is shown in Fig. 1 (dotted
line). This solution resembles a kink at the origin surrounded
by two symmetric antikinks. As we translate the antikink
from the origin the solution becomes a translated antikink A
and a lump which is near the origin, where the impurity is.
This is shown in Fig. 1 (dashed line). Finally, in the limit that
the antikink is translated to plus or minus infinity the solution
consists of only a lump ¢; = (x) = ¢4z (x; 00) as shown in
Fig. 1 (solid line) for L~. The two lump solutions L differ by
the property that ¢, (£o00) = 1, while ¢p;-(+o0) = —1.
Next, we would like to build approximate composite
solutions using the additive ansatz. This can be built using a
solution of the complete field equations (such as ¢, P4,
and ¢; ) and a ¢* solution far from the origin. For instance

d(x) = ¢, (x) + Palx; x0) + 1, (13)
where ¢p, = — tanh(x — x) is the solution of the ¢* antikink
A. This is an approximate solution only for xy, < —1. If one
replaces +1 by —1 in the above equation, the condition
changes to x, > 1. Itis easy to see that Eq. (13) is a solution
of the field equations except for an exponentially decreasing
overlap. The same is true if we add a boosted antikink
du(x,1;x9,v) = —tanh(y(x — vr — xy)) to the kink-on-
impurity

P(x.1) = i, (x) + alx. xo.0) + 1, (14)

where again xy << —1. We will discuss the evolution of this
solution in the following sections.
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Using a similar reasoning, we can approximate the BPS
solution ¢; 4 (x, xq) for xy < —1 using the additive ansatz
considering a static antikink ¢4 (x; xg)

$ra(x;x0) = ¢r-(x) + Palx;x0) + 1 (15)
or the boosted one ¢4 (x,1;xg, v), where the solution is
close to the BPS regime for small ». Moreover, it is also
possible to build solutions with the ¢* kink K the same
way. In the following sections, we will consider the

evolution of the aforementioned solutions treating the
scalar field classically.

C. Fermion bound states

Now, let us study the fermion field in the presence of
static or boosted solutions of the scalar field discussed
in the previous section. The bound states are found by
solving Egs. (11) and (12). First we use the ansatz y| =
14 cos(wt — @) and y, = n_sin(wt — ). After substituting
one equation into the other, this gives two decoupled
equations for 7.

—Rns + g(gp” F Oup)ne = 0’1, (16)
which is a Schrodinger-like equation with the potential
Vy = g(9¢* F O.¢). These equations have well-known
solutions for the ¢* kink and antikink as shown in [5,6]. For
instance, the fermion zero mode of the ¢* kink centered at
X, is given by

w, = Ncosh™(x —xy), w,=0, (17)
where N is the normalization constant. The full discrete
spectrum is given by

The fermion zero mode always exists for this model and the
first excited state appears for g > 1. Therefore, we set g > 1
to include the first excited state of the kink in our analysis.

The solutions can be boosted in the standard way. We set
x' =y(x—wt) and 7 = y(t — vx) together with

W' (x, 1) = cosh(y/2)y (', 7') + sinh(y /2)yr (&', 1),

i (x, 1) =sinh(y/2)y (X', ') +cosh(y/2)y (', 1),

(19)
(20)

where we defined the rapidity y = tanh~! v. For the other
static solutions ¢ 4 (x; xg), Eq. (16) is solved numerically
as discussed below.

We studied the spectrum of the fermion field bound to
the lump with g > 1 and found that there are only bound
states if 1 < 0 as shown in Fig. 2 for g = 2.0. Therefore, we
choose a negative value of A = —1.0. Moreover, for this
value of g, the system coincides with the supersymmetric
case and, similar to the discussion in [48], the spectrum of
the fermion bound to the lump is the same as the spectrum
of scalar field perturbations around the lump shown in [45].
The fermion spectrum in the lump background has no
bound states for 4 > 0 because V. has no minimum in this
case. As we decrease A below zero, a minimum in V.
appears together with a fermion bound state. Decreasing
further, we approach the limit where the lump becomes a
kink-antikink pair giving rise to a fermion zero mode and
two degenerate discrete modes with @* = 3. The depth of
the potential V. increases with g and more fermion bound
states appear accordingly.

The fermion spectrum bound to BPS antikink can also be
computed numerically. It is shown in Fig. 2(b) for 4 = —1.0
again in the supersymmetric case g = 2.0. This can also be
compared with the spectrum of the perturbations in the
scalar field shown in [45]. In the limit x, — oo we see that
the fermion spectrum approaches the values of the separate
lump and ¢* antikink, which consists of the zero fermion

= + . o
w, =/n(2g=n), 0<n<g, neZ'. (I18)  node and first excited state bound to the ¢* antikink and
(@ (b)
w” W’

1 4’ 4+
i /
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1
; 2 of
1
1
1 /
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1 /
1

|1L'l‘|..‘.|..‘..‘..ux...n/\l - i an
-1.5 -1.0 -0.5 0.5 1.0 -10 -5 5 10

FIG. 2. Spectrum of the fermion field coupled to (a) the lump and (b) to the BPS antikink with 1 = —1.0. We set g = 2.0 (the
supersymmetric case). The spectrum is identical to the scalar field spectrum in [45], as expected.
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the three discrete fermion states bound to the lump. For
Xy =~ 0, the spectrum is slightly deformed. Notice that the
highest excited state of the BPS antikink shown in Fig. 2(b)
disappear in the continuum for small values of x, similarly
to what happens in [46]. This could have interesting effects
and be the subject of future investigation. The result of the
study will be reported elsewhere.

III. RESULTS

A. Scalar field collisions

Now let us study collisions between defects of the scalar
field, as done in [45]. It is necessary to repeat the
computation here before including the fermion field,
however, we will be brief. The details of the numerical
integration are given in Appendix. Here, we consider two
types of collisions, one with and one without BPS inter-
actions, among the ones investigated in [45]. The first type
of collision is between an antikink and a lump. The initial

boosted antikink, which occurs very close to the BPS
regime as discussed in Sec. II B. For the value of the
parameters used, the kink passes smoothly through the
lump which is possible to see in Fig. 3(a). The process can
be written schematically as

A+L =Lt +A (21)

Notice that after the antikink passes through the lump L~,
the lump becomes L™ to adjust with the boundaries.

The next collision we consider is between an antikink
and a kink-on-impurity. The initial condition for this
collision is given by Eq. (14). The kink is tightly bound
to the impurity for the chosen values of the parameters.
Therefore, the antikink is reflected and the kink remains at
the impurity after the collision as shown in Fig. 3(b). This
can be written as

condition for this collision is given by Eq. (15) with a A+ Ky = A+ Ko (22)
(@)
¢
1.0
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FIG. 3. Upper graphs: Evolution of the scalar field during a collision between (a) an antikink and a lump and (b) an antikink and a
kink-on-impurity. These two graphs are the reproduced results in Figs. 14 and 24 in [45] with different parameters. Lower graphs:
Evolution of the fermion field during the background collision between (c) the antikink and the lump and (d) the antikink and the kink-

on-impurity. Parameters are g = 2.0, » = 0.3 and 1 = —1.0.
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Reflection happens for high velocities only, while for small
velocities the kink and the antikink annihilate or resonate.
This behavior is reminiscent of the ¢* theory and we will
consider only the values of v where the antikink reflects
because otherwise, the system does not have a well defined
final state. In the following subsections, we will study the
evolution of the fermion field in these two background
collisions.

B. Bogoliubov coefficients

We treat the fermion field quantum mechanically in
contrast with the scalar field which is treated classically.
Now let us discuss the formalism necessary to study the
time evolution of the fermion field in the two scenarios
discussed in the previous subsection. To do so, we consider
a fermion field localized on a defect before the collision in
the asymptotic past at + =0 and find the fermion field
evolution in time via the Bogoliubov coefficients B;_,;

() = DB a(ybult). (23)
k

where the indices j and k specify the type of the defects
present initially and after the collision, respectively, with
the fermion field bound to them. In the above equation,

! (1) is the initial fermion bound state evolved in time and
initially localized on the defect type j at one of its
associated bound states. Time evolution is done integrating
the equations of motion. On the other hand, w¥ (1) is the
final fermion state bound to the defect type k present after
the collision at time ¢. Therefore, the coefficients are
given by

Bix(1) = (pha(t) (1) = / (W) Tyl (Ddx (24)

FIG. 4.

The interpretation of the Bogoliubov coefficient is that
(Bj_)* is the fraction of fermion number transferred to the
state k in time ¢, starting from state j in the asymptotic past.
This is shown, for example, in [19], where one can see more
details regarding the Bogoliubov coefficients in this
context.

C. Adiabatic evolution

The numerical techniques employed here to evolve the
fermion field are discussed in Appendix A. Let us first
discuss the evolution of the scalar and fermion fields in the
BPS case for small velocities. When the velocities are
small, the scalar field evolves slowly and smoothly from
one BPS state to the next and, thus, the evolution is
adiabatic. Moreover, if the evolution is truly adiabatic,
the fermion field would evolve smoothly from one bound
state configuration to the next corresponding configuration
as the BPS antikink moves in moduli space.

We will specialize to the case where the fermion field
starts at the zero mode of the BPS antikink. A typical
collision in the BPS sector is shown in Fig. 3(a), for the
scalar field, and in Fig. 3(c), for the fermion field consid-
ering v = 0.3. The plot of the fermion field shows the
fermion density n defined as

n=wi+us. (25)
The adiabatic limit, however, occurs for » <0.1. The
difference between an adiabatic evolution and the non-
adiabatic one, the one shown in Fig. 3 for example, is that
the passage of the antikink through the lump in the
adiabatic evolution is smoother and the vibrational mode
of the lump is not excited. Moreover, in this case, there is no
fermion density near x = 0 after the collision, meaning that
the fermion field is not transferred from the zero mode to
the first excited state, located at the lump.

(a) Snapshots (solid) of the scalar field configuration during an adiabatic evolution of an antikink-lump collision with v = 0.02

and g = 2.0. Superimposed in the curves we have the static BPS antikink solution (dotted) and the two curves are indistinguishable.

(b) Same as before for the fermion density. The dotted curves
corresponding static BPS antikinks.

are now the density of the fermion eigenstates coupled to the
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To show that the evolution is adiabatic for small velocities
we show snapshots of the fields evolution in the BPS sector
for ¥ =0.02 and g = 2.0 in Fig. 4. In Fig. 4(a) we have
snapshots of the scalar field configuration when it crosses
Xg~-5.0, =3.0, 0.0, 3.0, and 5.0, from left to right.
Superimposed in the figure, dotted curves are corresponding
to the BPS antikink solution at these positions. The two
curves are indistinguishable corroborating the assumption
that the evolution is adiabatic. In Fig. 4(b) we show similar
plots of snapshots of the fermion density. As before, we
superimpose the fermion density of the fermion zero mode
bound to the corresponding BPS antikinks and, again, the
two curves are indistinguishable. Therefore, the fermion
field also evolves adiabatically. This also means that,
computing the Bogoliubov coefficient from the initial
fermion zero mode of BPS antikink to the same one in
the new position gives exactly 1.0 (within the numerical
precision) during the whole evolution.

D. Relativistic evolution

Now let us discuss the behavior of the fermion field in
relativistic collisions. We initialize the fermion field in the
fermion zero mode bound to the boosted ¢* antikink,
denoted by A as before. The result of the fermion field
evolution can be used to compute Bogoliubov coefficients of
the type B4_, j, where j is any defect present in the final state
with an attached fermion bound state. The fermion density is
plotted in Figs. 3(c) and (d) for a specific set of parameters.
In (c), we observe the evolution of the process in Eq. (21)
and, in (d), for the process in Eq. (22). In both graphs 7 is
localized around the antikink before the collision, reflecting
the initial condition chosen for the fermion field. After the
collision, the density is split between the defects and, in
general, the split is uneven. Interestingly, most of it is still
localized on some defect, instead of on the bulk, similarly to
what was found in [18,19]. The “amount” of the fermion
field transferred to each defect after the collision can be
quantified by the Bogoliubov coefficients and varies with
the parameters of the model. Moreover, after each collision,
some density may be lost as radiation.

(a)

]

T CAAnApASRANLR
aanfARAARASARASRANRRAM
AL BRI T R LR A AL

20 40 60 80 100

FIG. 5.

We make the following definitions

Byia=a, Byx=p, Baae=v,

Byxkp =06, Ba.p =, (26)
where K is the fermion zero mode bound to the ¢* kink,
while adding £ means we are considering the first excited
fermion bound state instead. Also L denotes the fermion
lowest state bound to the lump. Then, we investigate how
the Bogoliubov coefficients evolve with time t. However,
we must be careful with the definition of the coefficients
because the defects present before the collision may be
different from the defects present after the collision. In
particular, for the process in Eq. (21), the lump L~ becomes
L™ after the collision. Thus, we define & to be the amount of
fermion number transferred from A — L~ before the
collision and from A — L* after the collision. For the
process in Eq. (22), there is no confusion in the definitions
because there are a kink(-on-impurity) and an antikink both
before and after the collision.

The evolution of the Bogoliubov coefficients with time is
shown in Fig. 5(a) and (b) for the processes in Egs. (21) and
(22), respectively. The parameters are the same as in Fig. 3.
We observe that, before the collision, the fermion is
completely localized on the antikink, that is, @* = 1 and
the other coefficients are zero, due to our choice of initial
conditions. During the collision, our analysis is not reliable
due to the fact that one cannot separate different defects.
After the collision, the coefficients rapidly reach a steady
state, meaning that the fermion is now bound to the final
defects.

Some points should be noticed. First, the sine (or cosine)
dependence in the ansatz [above Eq. (16)] of the fermion
bound states means that the components of the fermion
fields oscillate with phase wt — 0. As w # 0 for &, y and &
we must be careful when we compute these Bogoliubov
coefficients. If the fermion is in one of these states the
fermion field y will oscillate with phase wt — 6, for some
unknown 6. As we do not know the phase 6, we project
the fermion field at the bound state with a different phase
wt — 0 to compute the Bogoliubov coefficients, which we

(b)

)

D Sl 3 LA Rt AL 2B

20 40 60 80 100

sl !
120

Evolution of the Bogoliubov coefficients as a function of the final time ¢. (a) Corresponds to the antikink-lump collision and

(b) to the collision between antikink and kink-on-impurity. Parameters are » = 0.3, g = 2.0 and 4 = —1.0.
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fix to an arbitrary constant. This constant will only be equal
to wt — 60, once in a full period. Thus, the coefficients
oscillate with time and the amplitude of this oscillation
should be taken as the real coefficient. Second, we also
see an oscillation in > in Fig. 5(b). This oscillation is
accompanied by a negatively correlated oscillation in the
amplitude of §°. Observing Fig. 3(b) closely, this can be
traced back to the oscillation of K, that occurs after the
collision. This means that X and yX* are not exact bound
states of this oscillating K, and, therefore, there is a
transition between the states which is an interesting
phenomenon. To clarify why this transition occurs,
recall from Sec. II C that we know how to compute the
Bogoliubov coefficients for two cases: static solutions and
their boosts. After the collision, the kinks and lumps can
also have the vibrational modes excited, but this effect is
usually small and the Bogoliubov coefficients can be
computed neglecting this effect still with high accuracy.
However, in the collision between an antikink and the kink-
on-impurity the final state is neither a static solution nor a
boosted one, it is an oscillating kink. The deviation from
the static kink solution is not small and cannot be neglected.
Luckily, even an oscillating kink has a confining potential
and the fermion density stays bound to this kink with the
difference that the fermion states bound to the static kink
are not the exact bound states of the oscillating kink.
Hence, there appears a transition between the states and
consequently an oscillation in the Bogoliubov coefficients.

Now let us investigate the behavior of the final
Bogoliubov coefficients as a function of the parameters
of the model, v and g. These parameters measure, respec-
tively, the velocity of the incoming antikink and the
strength of the coupling between the fermion and scalar
fields. The results are shown in Figs. 6 and 7 for the
processes in Eqgs. (21) and (22), respectively.

Consider the antikink-lump collision first. In Fig. 6(a) we
see the amount of fermion number associated with the zero
mode that stays bound to the antikink after the collision, a?.
For small v, the collision is close to the BPS regime and
most fermions stay at this mode. Moreover, in this case the
system is closer to the adiabatic limit, where only the
fermion zero mode is excited. On the other hand, as we
increase v, i.e., more distant from the BPS regime, more
fermions are transferred to the excited state or the lump.
This is quantified by y> and &> shown in Figs. 6(b) and (c).
Similarly, if we increase g, the fermions are more likely to
be affected by the collision and be transferred to the lump
even near the BPS regime. Clearly, > must be negatively
correlated with y? and £ as shown in the figures. Finally, in
Fig. 6(d) we plot the sum of the Bogoliubov coefficients in
the previous graphs. Table I, the left panel, show some
values of the sum for example. We find that close to the
BPS regime the sum is equal to 1, meaning that almost all
fermions stay at the lowest bound states. Nevertheless, as
we increase v more fermions are lost as radiation or
transferred to higher excited states, as expected intuitively.

(b)

FIG. 6. Bogoliubov coefficients versus g for an antikink-lump collision with different values of v. We take 1 = —1.0.
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(@)

2 B2+62

= v=0.3

FIG. 7.
take 1 = —1.0.

After this analysis, we could compare our results with a
non-BPS case from other models such as ¢*. The same
analysis we did here was done for the ¢* model in [18,19].
The main difference between the two results is that in the
non-BPS case the initial fermion zero mode is much more
likely to detach from the antikink and the coefficients are
more sensitive to the parameters of the model. Moreover,
more fermions are lost as radiation or transferred to higher
excited states. Nevertheless, it is also relevant to study a non-
BPS case within the same model. Therefore, to complete the
analysis, we will now study the Bogoliubov coefficients for
the collision between an antikink and the kink-on-impurity
in our model. We will show that the results are similar to the
ones found for the ¢* model in [18,19].

The final Bogoliubov coefficients for a collision between
an antikink and the kink-on-impurity are shown in Fig. 7. As
mentioned before, we consider only v 2 0.3 because for
smaller values of v the kink and antikink annihilate and we
donot have a well defined final state. We see the curve for the
coefficient &> in Fig. 7(a) which shows that for a large
interval of the parameters the fermion does not stay at zero
mode bound to the antikink in contrast with the BPS case.
The behavior is approximately sinusoidal. The curves follow
this behavior approximately as argued in [18] considering
the Dirac equation with an ansatz for the fermion field
symmetric concerning x with a time-dependent amplitude
and phase interacting with a scalar field approximated by its
maximum at the collision during a short time. In this
simplified model the authors discarded the bulk fermions

- v=0.4
- v=05
- v=0.6

Bogoliubov coefficients versus g for the collision between an antikink and the kink-on-impurity, with different values of v. We

and showed that with these approximations a sinusoidal
behavior is expected. In Fig. 7 the curve for o is negatively
correlated with the sum 2 + 6 shown in Fig. 7(b). We have
plotted the sum instead of the two individual quantities
because, as discussed before, there is a transition between
the two states and therefore, the separate quantities are not
reliable. It is clear from the curves that we can find very
different results varying the parameters of the model in the
range considered, meaning that the result is more sensitive to
these parameters. The curves (a) and (b) for v = 0.3 and
small values of g show strange behavior such as a jump in o
near g ~ 2. This can be traced back to the fact also observed

TABLE 1. The sum of the Bogoliubov coefficients for some
values of g and v. The left columns correspond to the BPS case
and the right columns to the non-BPS case.

v g a4+ & v g AP+
0.1 1.0 1.000 0.3 1.0 0.500
0.1 2.0 1.000 0.3 2.0 0.953
0.1 3.0 1.000 0.3 3.0 0.883
0.1 4.0 1.000 0.3 4.0 0.809
0.1 5.0 1.000 0.3 5.0 0.754
0.2 1.0 1.000 0.4 1.0 0.651
0.2 2.0 1.000 0.4 2.0 0.946
0.2 3.0 0.998 0.4 3.0 0.892
0.2 4.0 0.995 0.4 4.0 0.875
0.2 5.0 0.998 0.4 5.0 0.830
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in [18,19] that for small g the fermion bound states are too
delocalized compared with the kink size and are more likely
to escape when perturbed.

In Fig. 7(c) we have y2, the fermion excited state bound
to the antikink, which usually corresponds to a small
fraction of fermion number, but can go as high as 45%.
Finally, In Fig. 7(d) we have the total probability of the
fermions staying in the lowest bound states. Again we show
some of the values of the sum in Table I for reference. The
difference from unity is equal to the amount of fermion
number that is transferred to higher excited states or radiated
away. We observe that as we increase v the difference
from unity becomes larger (except for g < 2.0), as expected
to happen when the energy of the system is increased
leading to the loss of a larger fraction of fermions in the
form of radiation or excitation to higher states, as in
the antikink-lump collision. On the other hand, in the
antikink-lump collision close to the BPS regime with small
v almost no radiation is produced and higher states are not
excited.

IV. CONCLUSION

The main goal in this work is to compare the fermion
transfer between solitons when these solitons collide in
BPS and non-BPS cases. In order to do this, we added a
fermion field and a Yukawa interaction to a model
recently proposed in the literature [45] that consists of
the ¢* model with a half-BPS preserving impurity. This
model contains different defects that may interact in a
BPS or a non-BPS way and it is interesting because it may
serve as a guide for higher dimensional soliton inter-
actions where, contrary to the (1 + 1) dimensional case,
there might be multisoliton BPS solutions. The same is
true for our work: it may also serve as a guide for higher-
dimensional cases.

We discussed the spectrum of the defects of the model. In
particular, we showed that the lump has fermion bound
states only for 4 < 0 and that the spectrum of the BPS
antikink approaches separate spectra of the lump and the ¢*
antikink for large positions in moduli space. As one
expects, the spectrum of fermion field is similar to the
spectrum of scalar field excitations in the supersymmetric
limit. Then, we computed the time evolution of the scalar
and fermion fields for two scenarios: a collision between an
antikink and a lump and between an antikink and the kink-
on-impurity. In both cases, the fermion field is initially
bound to the antikink at the zero mode. We found that after
the collision, when the defects separate, most of the
fermion density is found at the defects and not at the bulk,
meaning that the fermion stays bound to the defects even
after the collision. Moreover, in the special case of non-
relativistic velocities, the BPS collision evolves adiabati-
cally, meaning that the scalar field is always in a BPS
antikink configuration, slowly evolving in moduli space

with time, while at each instant the fermion field lies
exactly at its respective zero mode.

We quantified fermion transfer between solitons through
the computation of Bogoliubov coefficients similar to the
ones studied in [18,19]. After the collisions in most cases,
the Bogoliubov coefficients reach a constant value which
quantifies the probability that fermion is transferred from
one state to the other. We found that close to the BPS case
most fermions stay localized on the initial soliton except for
high values of the coupling constant g. Moreover, as the
initial velocity v increases, the system moves further away
from the BPS regime and more fermions are transferred to
the other defect and to higher excited states or lost as
radiation. On the other hand, for the non-BPS cases the
fermions are much more likely, and in a higher amount, to
be transferred to the other defect or excited states and the
coefficients are more sensitive to the parameters of
the model.

An interesting continuation of our work can be to allow
the defects to receive the fermion backreaction. Thus, the
soliton collisions should be altered as well as the soliton
shapes. This would make the analysis based on the
Bogoliubov coefficients less straightforward. However,
we expect that some of our main results should be main-
tained. We plan to investigate this in a future work.
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APPENDIX: NUMERICAL TECHNIQUE

To integrate the field equations numerically we divide
spacetime in a grid with spacings 7 = h = 0.01. The scalar
field at the gridpoint (x;,1;) is ¢; ;, where i = 0,1,...,N
and j=0,1,...,M. Similar definitions are made for the
fermion field. We approximate the spatial derivatives by a
second order finite difference. For the scalar field we have,
for instance,

32(151‘,]' _ Div1j—2¢ij+ pimr
Ox? h? '

(A1)

The time integration is done using a Runge-Kutta fourth-
order algorithm. The boundaries are set at x = £100.0,
giving N = 20000. Boundary conditions are y ; = yy ; =
0.0 and ¢ ; = 1.0, while ¢y ; = 1.0, depending on the
case considered. We evolve the system to a final time 7, int
the range 100.0 < ¢, < 400.0, which is short enough so
that the boundary conditions do not interfere with the bulk
evolution. The fermion field is initially normalized to one
and the time evolution using this method conserves the
normalization with errors of the order 107> or less.
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