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The Unruh effect is the phenomenon that accelerated observers detect particles even when inertial
observers experience the vacuum state. In particular, uniformly accelerated observers are predicted to
measure thermal radiation that is proportional to the acceleration. Here we consider the Unruh effect for a
detector that follows a quantum superposition of different accelerated trajectories in Minkowski spacetime.
More precisely, we analyze the excitations of a pointlike multilevel particle detector coupled to a massless
real scalar field and moving in the superposition of accelerated trajectories. We find that the state of the
detector excitations is, in general, not a mere (convex) mixture of the thermal spectrum characteristics of the
Unruh effect for each trajectory with well-defined acceleration separately. Rather, for certain trajectories
and excitation levels, and upon the measurement of the trajectory state, the state of the detector excitations
features in addition off-diagonal terms. The off-diagonal terms of these “superpositions of thermal states”
are related to the distinguishability of the different possible states in which the field is left after its
interaction with detector’s internal degrees of the freedom.
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I. INTRODUCTION

The Unruh effect is one of the cornerstone results of
quantum field theory in noninertial frames or curved
spacetime (QFT-CS), and the paradigmatic example of
the frame-dependent notion of the particle content of a
field. In simple words, this effect consists of the perception
of a thermal bath of particles of a quantum field by
observers following constant acceleration trajectories in
Minkowski spacetime, when the field is in the Minkowski
vacuum state (the vacuum state for inertial observers). The
temperature of the bath is the Unruh temperature
TU ≔ aℏ=ð2πkBcÞ, proportional to the acceleration of
the trajectory a, with ℏ, kB, and c being the Planck
constant, the Boltzmann constant, and the speed of light,
respectively. First proposed by Unruh in [1] as an effect
closely related to the celebrated black hole radiation
proposed by Hawking [2], the phenomenon has been
widely studied in the literature from different perspectives.
See, for example, Ref. [3] for an introductory approach,
Ref. [4] for a mathematically rigorous derivation, and
Ref. [5] for an extensive review on the Unruh effect and
its applications.

Out of the different aspects of the Unruh effect, arguably
one of the most important is the fact that it provides a clear
example on how the description of a quantum field changes
in terms of particle content when the reference frame used
to describe it changes. This nontrivial change in the
description of the field is peculiar to QFT-CS. Notice that
in this theory the background geometry and the reference
frames in which the field is described are classical. In
contrast, in nonrelativistic quantum mechanics (QM) a
change to a noninertial classical reference frame at most
introduces an effective gravitational potential in the dynam-
ics under observation.
However, in QM one can introduce the notion of a

quantum reference frame (QRF) and changes between
QRFs as a generalization which allows one to consider
quantum mechanical systems as reference frames. In a
recent work [6] it has been shown that changes between
QRFs in nonrelativistic QM give rise to the frame depend-
ence of the notions of quantum superposition and entan-
glement, and a generalization of the covariance principle. It
seems natural then to attempt to extend the construction of
QRFs to QFT-CS, and see whether further novel effects
arise of the construction. Developing a fully consistent
construction of a notion of QRFs for QFT-CS seems,
however, a highly nontrivial task. On the road to it, we can
nonetheless approach more concrete problems that have
their own interest and can help to shed some light on
the topic.
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In this work, we develop a description of the Unruh
effect for observers which do not have a well-defined
acceleration, but rather follow a superposition of trajecto-
ries with different accelerations in Minkowski spacetime.
With this development we provide a first description of the
Unruh effect in a particular family of QRFs, namely those
which correspond to the superposition of accelerated
trajectories which share the same Rindler wedge. We tackle
this problem through the approach to the Unruh effect
which makes use of particle detectors (see e.g., [1,3,7]). As
our cornerstone result, we will find that the excitation
of a particle detector interacting with the field and under-
going a superposition of accelerations is not always just an
incoherent mixture of the thermal excitations that it
would experience along each of the superposed trajectories
individually. Rather, in addition to the mixture of Planckian
distributions for the different trajectories, coherent super-
positions of excited states of the detector appear under
certain conditions. In that sense, we can speak about the
“superposition of thermal states.” These coherences appear
because, under the superposition of accelerations, the
internal and external degrees of freedom of the detector
can get entangled through the interaction with the field, this
entanglement remaining even after tracing out the field.
Therefore, after measuring the external degrees of freedom
in a certain basis, the state of the internal degrees of
freedom can present coherences between different energy
levels. This is in contrast to the usual role played by the
Unruh effect as a source of decoherence for accelerated
systems (see e.g., [8–10]) [11].
The most common particle detector model for the study

of the Unruh effect is the Unruh-DeWitt detector [7], which
corresponds to a pointlike detector with two internal energy
levels, weakly coupled to a real scalar field through a
monopole interaction. As it will become clear in the article,
this simplest model would not allow for the coherences that
we mention before, and it is therefore not enough for our
purposes. In this work we will consider a model of detector
identical to the Unruh-DeWitt detector except for two
major modifications: Our model contains three or more
(eventually infinite) internal energy levels, and its trajectory
is not a classically well-defined one, but rather can be a
quantum superposition of different well-defined trajecto-
ries. The introduction of more than two internal energy
levels already gives rise to the coherences we wish to
describe. In particular, this model includes the use of a
harmonic oscillator for the internal degree of freedom of the
detector considered in [17–20].
The explicit consideration of the trajectory of the

detector as a quantum degree of freedom, which can
present an in principle arbitrary delocalization, is the real
novelty of our approach, and what introduces a first step
toward the description of the Unruh effect in a QRF. There
are some previous works which consider coherent super-
positions of trajectories of the detector, which, however,

use different constructions and/or for different purposes. In
[21], the authors consider a pair of Rindler observers in
Minkowski background in a state of quantum superposition
of having two different values of proper acceleration, their
purpose being to realize indefinite causal order—a situation
in which causal relations between events are subjected to
quantum superposition. In [9] a modeling of a particle
detector using wave packets of two massive quantum fields
with slightly different rest mass is considered, the locali-
zation of the wave packets being then a quantum degree of
freedom; but only highly localized wave packets are
considered, the purpose of introducing the external degree
of freedom being to give account for the recoils on the
detector produced by the emission of particles. In [18] the
authors describe an experiment involving the superposition
of an Unruh-DeWitt detector along an inertial and an
accelerated trajectory. The purpose would be to detect the
difference in the Berry phase produced by the Unruh effect
in the interference pattern of the two trajectories. However,
this would be the only aim of the superposition of
trajectories, which is otherwise not explicitly considered
as a quantum degree of freedom. More recently, in [22] the
authors consider explicitly a first quantization of the
trajectory of the detector in a way similar to the one
considered in this article, but staying in the nonrelativistic
regime and thus not giving account for the Unruh effect.
Finally, in a very recent article [23] the authors consider an
Unruh-DeWitt detector in a superposition of trajectories
with a construction of such superposition analogous to the
one considered here. However, their computations are
focused on the excitation rate of the detector for different
superpositions of trajectories and different switching func-
tions, finding the usual (fully decohered) Unruh effect just
as a particular side result. We shall also point out that the
spatial quantum superposition of trajectories considered
here is completely different to the use of finite-size
detectors, as for example in [1,24–27], which may consists
of finite-size boxes or spatially smeared interactions with
the field.
In describing the Unruh effect under the superposition of

accelerations, we also discuss the state in which the field is
left after the detector got excited. This discussion arises
naturally when addressing the physical reason for the
coherences that we find in the detector. These coherences
have their origin in the overlap between the states in which
the field is left when the detector gets excited along two
trajectories with different well-defined acceleration and to
different well-defined internal levels. These states of the
field are not always fully distinguishable, and therefore no
full decoherence is introduced after tracing out the field in
order to describe the state of the detector. In analyzing the
overlap between those different states of the field, we will
be able to further characterize them. A characterization of
these states in the Minkowski reference frame can be found
in [28]. Under the circumstances that we consider for the
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interaction (large interaction time with weak interaction,
and superpositions of spatially localized trajectories), the
states in which the field is left are those in which a Rindler
particle from the thermal bath has been absorbed by the
detector [29,30], this absorption being almost fully delo-
calized in time, and therefore the absorbed particle having
negligible dispersion in frequency, while being partially
localized in space around the trajectory of the detector,
which in the Rindler reference frame is a static trajectory.
We find that a critical condition for the states in which the
field is left, corresponding to different trajectories and
different excitation levels of the detector, not to be fully
distinguishable is that the energy of the absorbed particle is
the same as measured by any Rindler (accelerated) observer
in the given Rindler wedge. This is in complete agreement
with the fact that Minkowski vacuum state is indeed a
thermal bath as perceived by any accelerated observer, the
local temperature perceived by different observers being
different simply because of the nontrivial Tolman factor
[31] of the metric in the Rindler wedge.
The article is organized as follows. In Sec. II we set up

the problem, introducing the field, the detector model,
the trajectories, and the interaction. In Sec. III we give the
results obtained for the state of the detector after the
interaction, both for the full internal and external degrees
of freedom and for the internal degrees of freedom after
measuring the external ones. We discuss physically the
interpretation of the different results. In Sec. IV we give an
example of a detector following a superposition of trajec-
tories, in which we can visualize the structure of coherences
present for the internal degrees of freedom. Finally, in
Sec. V we discuss possible extensions of the construction
considered in this article. In Appendix A we provide the
detailed calculations yielding the results in Sec. III. In
Appendix B we provide some further analytic expressions
for the factor that determines the intensity of the coherences
appearing in the state of the detector. In Appendix C we
briefly consider the case in which the degrees of freedom of
the detector (both the internal and the external) have a
continuous spectrum.

II. STATEMENT OF THE PROBLEM

Throughout the article we will consider natural units
ℏ ¼ c ¼ kB ¼ 1. Let us consider a real scalar massless
quantum field ϕ̂ðT; X; Y; ZÞ in Minkowski spacetime.
Coupled to it, we consider a pointlike detector with several
internal excitation levels fj0iD; jω1iD; jω2iD;…g, with
energies 0 < ω1 < ω2 < � � � (there can be a finite or an
infinite number of levels). The detector has also an external
degree of freedom corresponding to the trajectory that it
follows. We will consider trajectories with constant accel-
eration in the Rindler wedge Z > jTj (therefore, accelerated
in the Z-direction toward increasing Z). This wedge is
covered by the Rindler coordinates ðt; x; y; zÞ, with z > 0,
related to the Minkowski coordinates ðT; X; Y; ZÞ by

T ¼ z sinhðatÞ; X ¼ x;

Y ¼ y; Z ¼ z coshðatÞ; ð1Þ

where a > 0 is an arbitrary parameter with a dimension of
acceleration. The metric in these coordinates reads

ds2 ¼ −ðazÞ2dt2 þ dx2 þ dy2 þ dz2: ð2Þ

The Hilbert space of the external degree of freedom of
the detector (its trajectory) is spanned by the states
fj1iT; j2iT;…g. For the states in this basis, the trajectory
of constant acceleration is well-defined and given by

ðt̂ðτÞ; x̂ðτÞ; ŷðτÞ; ẑðτÞÞjniT¼ðτ=ðaznÞ;xn;yn;znÞjniT; ð3Þ

where τ is the proper time of the detector and xn, yn, and zn
are constants. This corresponds to a semiclassical trajectory
of constant acceleration an ≔ 1=zn. We consider that all
trajectories are fully distinguishable, so that hnjmiT ¼ δnm.
For convenience, we organize them by increasing zn
(decreasing acceleration), 0 < z1 ≤ z2 ≤ � � � (again, the
different trajectories considered may be finite or infinite).
We notice here that the time in which the unitary evolution
of the system takes place is the detector’s proper time τ,
which stays as a parameter. The operator t̂ðτÞ corresponds
to the Rindler coordinate time at which the detector is at
some given τ along a given trajectory, which will take
different values for the different trajectories. In Fig. 1 we
plot an example of a superposition of these trajectories.

FIG. 1. A multilevel Unruh-DeWitt detector moves in a super-
position of constant-acceleration trajectories. Each trajectory in
the superposition is depicted by a hyperbola. The different colors
mean that each hyperbola corresponds to a branch of the
superposition. The detector interacts with a quantum field, getting
excited in a way that depends on its state of motion. Upon
measurement in a “superposition of trajectories” (see main text),
the state of the detector can exhibit coherences between the
different accelerations (corresponding to different temperatures)
of the superposition.
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We will work in the interaction picture. The detector is
coupled to the field with the following interaction term in
the action:

ŜI ¼ ε

Z
∞

−∞
dτχðτÞm̂ðτÞϕ̂ðx̂ðτÞÞ; ð4Þ

where 0 < ε ≪ 1 is a weak coupling constant; χðτÞ ≥ 0 is a
switching function that controls the intensity of the cou-
pling in time; x̂ðτÞ is the “trajectory operator,” where the
action is given in (3); and m̂ðτÞ is the monopole moment of
the detector. We will work in first order perturbation theory
in the coupling constant ε.
We consider the switching function to be given by the

square root of a Gaussian function with width T, which is
the approximate time duration of the interaction:

χðτÞ ¼ 1

ð2πÞ1=4 e
−τ2=ð4T2Þ: ð5Þ

When considering switching functions in the interaction,
the switching on and off process can itself excite the
detector, this effect getting scrambled with the excitations
due to the Unruh effect in a way which does not always
allow for a clear separation [32–34]. In order to avoid this
situation, we need to consider smooth switching functions
with an interaction time much larger than the inverse of the
minimum frequency ω1 that we wish to explore. As we will
be able to check in the results, any effect due to the finite-
time interaction then becomes negligible as compared to
those due to the Unruh effect. On the other hand, too large
interaction times can yield an excitation probability that
goes beyond first order in ε, breaking the validity of the
results of the perturbative approach. As one can check
following the computations in Appendix A, a compromise
value for the interaction time T, which avoids the con-
tribution of switching transients while keeping the con-
sistency with first order perturbation, is the following:

T ∼
1

εω1

≫
1

ω1

≥
1

ωi
: ð6Þ

Too high accelerations may also yield an excitation
probability beyond first order in ε. Because of that,
consistency with first order perturbation also requires the
following limitation for the highest acceleration a1 ¼ 1=z1
(see the end of Appendix A):

a1 ≲ ω1=μ; μ ≔
1

2π
log

�
1

2π
þ 1

�
≃ 0.02: ð7Þ

This limitation implies that ωi ≥ ω1 ≳ μa1 ≥ μan, and
therefore that the arbitrarily low frequency regime cannot
in principle be explored. However, notice that the symbol
∼ must be understood as a limitation in order of magnitude
as compared to ε; that is, we could have ωi=ðμanÞ < 1 as

far as the quotient remains significantly greater than ε
[ωi=ðμanÞ ≫ ε]. Therefore, for arbitrarily weak coupling,
one could expand the lower limit of the frequency range as
desired.
The monopole moment evolving with the free

Hamiltonian of the detector is given by

m̂ðτÞ ¼
X
i

ζieiωiτjωiih0jD þ H:c: ð8Þ

with ζi being the coupling amplitudes from the ground state
to the different excited states (we only consider coupling
with the ground state since we only work in first order
perturbation theory around this state). We impose that
jζij≲ 1 to keep the interaction term of order ε.
We consider the initial state of the system (detector and

field) to be

jΨðτ → −∞Þi ¼ j0iDj0iF
�X

n

AnjniT
�
; ð9Þ

where j0iF is the Minkowski vacuum state of the field and
An are the normalized amplitudes of the different accel-
erated trajectories of the detector. After the interaction has
taken place, the state to first order in ε is

jΨðτ → ∞Þi ≈ ðÎþ iŜIÞjΨðτ ¼ −∞Þi: ð10Þ

III. RESULTS

A. State of the detector after the interaction

We need to compute the second term in (10), which will
contain excited states of internal energy levels of the
detector that will be different for each component of the
acceleration. In most approaches to the computation of the
excitation of the detector (see e.g., [3,23,35]) the tracing out
of the field degrees of freedom is taken in the first place,
yielding expressions for the excitation probabilities or rates
in terms of two-point correlation functions of the field. In
contrast, for the present work it is more convenient to
compute the different states of the field explicitly, before
taking the trace. In a generic way, we can write

jΨðτ → ∞Þi ≈ j0iDj0iF
�X

n

AnjniT
�

þ iε
X
i;n

ζiAnjωiiDjωi; niFjniT; ð11Þ

where

jωi; niF ≔ ðiεζiAnÞ−1hωijDhnjTjΨðτ → ∞Þi
¼ ðεζiÞ−1hωijDhnjTŜIj0iDj0iFjniT ð12Þ
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is the (not normalized) state in which the field is left for the trajectory jniT and the excited state jωiiD of the detector. In (12)
we have used the fact that the trajectory operator contained in the action is diagonal in the basis of well-defined trajectories
[see (3)]. If we now trace out the field in the final state in (11), we obtain generically the final state of the detector:

ρDT ≔ TrFðjΨðτ → ∞ÞihΨðτ → ∞ÞjÞ ≈ j0ih0jD
�X

n;m

A�
nAmjmihnjT

�

þ ε2
X
i;j;n;m

ζ�i A
�
nζjAmhωi; njωj; miFjωjihωijDjmihnjT: ð13Þ

The quantities that remain to be calculated are the scalar products hωi; anjωj; amiF. These quantities are computed in
detail in Appendix A, under approximations consistent with the first order perturbation theory, including the large time
approximation in (6). The state of the detector after the interaction is finally given by

ρDT≈ j0ih0jD
�X

n;m

A�
nAmjmihnjT

�
þε2T

2π

�X
m

jAmj2jmihmjT
X
j

jζjj2
ωj

e2πqjm −1
jωjihωjjD

þ
X
n;m
n≠m

A�
nAmjmihnjT

Xcond
i;j
i≠j

ζ�i ζjΛ
ij
nm

ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
e2πqjm −1

jωjihωijD
�
; ð14Þ

where

qjm ≔ ωjzm ¼ ωj

am
; ð15Þ

the label “cond” in the sum means that only the terms for
which the condition

qin ≈ qjm ð16Þ

holds to order ε are considered; and

Λij
nm ≔

hωi; njωj; miFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihωi; njωi; niFhωj; mjωj; miF
p ð17Þ

is the scalar product between the normalized states of the
field left for the trajectory jniT and the excited state jωiiD,
and for the trajectory jmiT and the excited state jωjiD. As
shown in Appendix A, when (16) is satisfied, this normal-
ized scalar product is given by a function of qjmð≈qinÞ in
(15) and the relative quantities between the trajectories

Δξmn ≔ log

�
zm
zn

�
;

Δx̄mn ≔ Δx⊥mn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=z2m þ 1=z2n

2

r
;

Δx⊥mn ≔ jx⃗⊥m − x⃗⊥n j; x⃗⊥m ≔ ðxm; ymÞ; ð18Þ

as

Λij
nm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2
sechΔξmn

r P−1=2
iqjm−1=2

ðuðΔξmn;Δx̄mnÞÞ
½uðΔξmn;Δx̄mnÞ2 − 1�1=4 ; ð19Þ

with

uðΔξmn;Δx̄mnÞ ≔ coshΔξmn þ
Δx̄2mn

2
sechΔξmn ð20Þ

and Pμ
νðxÞ being the associated Legendre function of the

first kind [36]. We plot the value of Λij
nm as a function of

ðΔξmn;Δx̄mnÞ for different values of qjm in Fig. 2. In
Appendix B we provide simpler formulas and graphs for
the cases Δξmn ¼ 0 and Δx̄mn ¼ 0.
Two important remarks about (14) are in order. First,

even if the perturbative terms appear with a factor of ε2, this
does not mean that the terms are always of order ε2, since
one has to take into account the factor T and its relative
order of magnitude given by (6), which also involves ε. At
the end of Appendix A it is proven that the perturbative
terms remain of order ε or smaller. Second, although the
total time of interaction T still appears in (14), it is just a
multiplicative factor, and its appearance does not mean that
the finite time considered introduces spurious contribu-
tions. The physically relevant large-time limit has already
been taken by using (6), and no contributions due to the
transients remain in the expressions. Indeed, one can make
T arbitrarily large by taking ε arbitrarily small (more
interaction time with weaker coupling), and all the results
obtained remain formally identical, while all approxima-
tions taken still hold, in fact more accurately.
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B. Physical interpretation

Let us comment on the different terms appearing in (14).
First of all, we highlight that the parameter awith which we
constructed the Rindler coordinates (1) does not appear in
any of the terms, as it should happen since it was just an
auxiliary parameter with no physical meaning in the
construction. The first term in (14) is the contribution to
zeroth order in ε and corresponds to the case in which the
detector does not interact with the field. The terms with the
factor ε2T correspond to the contribution of the interaction
with the field. There are both diagonal and off-diagonal
terms. The diagonal terms for each trajectory m follow a
Planckian probability distribution with the Unruh temper-
ature am=ð2πÞ, simply filtered by the coupling amplitudes
ζi for each frequency. These are the contributions of the

Unruh effect for each trajectory separately, combined in an
incoherent way. Therefore, our construction reproduces the
canonical Unruh effect for quantum detectors as a particular
case: A detector following a well-defined classical trajec-
tory with constant acceleration am would get excited as if
immersed in a thermal bath with temperature am=ð2πÞ.
The novel result consists of the off‐diagonal terms in the

second line of (14), corresponding to coherences between
different trajectories. These terms only appear between
trajectories and excited states for which the condition (16)
holds. Physically, this condition entails that the quotients
qjm and qin of the frequencies ωj and ωi being excited
along each trajectory jmiT and jniT, with the Tolman factor
[31] along the corresponding trajectory [1=ðazmÞ and
1=ðaznÞ; see the metric (1)], are (approximately) the same
in both trajectories compared. Taking into account the role

FIG. 2. Scalar product Λij
nm as a function of ðΔξmn;Δx̄mnÞ for qjm ¼ 0, qjm ¼ 1, qjm ¼ 2, and qjm ¼ 10.
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of the Tolman factor, this condition means that the two
excited states of the detector must be degenerate in energy
as described by any Rindler observer. We will comment in
short why the coherences appear only when such a
condition is fulfilled. When (16) is satisfied, the corre-
sponding off-diagonal term is the product of the square root
of the Planckian spectra for the two corresponding trajec-
tories and excited frequencies [38], weighted with the
scalar product Λij

nm given in (19).
As we already advanced, the origin of the coherences

found can be traced back to the properties of the state of the
field left any time the detector gets excited jωi; niF, as the
presence of the scalar product between states of the field
Λij
nm in the off-diagonal terms clearly shows. The pertur-

bations left on the field corresponding to transitions to
different energy levels of the detector and through different
trajectories are not always distinguishable, but rather may
overlap. When this is the case, the scalar product Λij

nm is
nonzero and the off-diagonal terms appear. This happens
because, when the compared field states are not fully
distinguishable, no full entanglement is created between
the excited states of the detector and the field due to the
interaction. Therefore, tracing out the field does not
introduce full decoherence in the state of the detector.
Let us discuss now in more detail the nondistinguish-

ability of the states of the field, depending on the trajecto-
ries and excited states of the detector to which the
compared states of the field correspond. The nondistin-
guishability is clearly encoded in the condition (16) and the
properties of the scalar product Λij

nm. Before discussing the
functional dependence ofΛij

nm in (19), let us bring out in the
first place the geometric significance of the two quantities it
depends on (beyond the already described quotient qjm),
namely Δξmn and Δx̄mn. Δξmn=a is the difference between
the so-called Lass coordinate ξLass ≔ logðazÞ=a of the two
trajectories [39], which is proportional to the radar distance
[40] between two accelerated observers with the same
coordinates ðx; yÞ. Also, from the metric (1) we can see that
Δx̄mnzm is the radar distance in any direction perpendicular
to the acceleration for two trajectories for which zn ¼ zm.
Therefore, the quantities Δξmn and Δx̄mn provide a notion
of (normalized) distance in the respective directions (par-
allel and perpendicular to the acceleration) in the Rindler
reference frame.
Let us now describe the functional dependence of the

scalar product Λij
nm in (19) (plotted in Fig. 2). It reaches its

maximum value of 1 only for Δξmn ¼ Δx̄mn ¼ 0, that is,
only if the compared trajectories coincide, which because
of condition (16) means that the excited states of the
detector also coincide. In this case, the term would simply
not be an off-diagonal term, but rather a diagonal one. The
functional dependence is even both in Δξmn and in Δx̄mn,
and it decays to zero for large values of jΔξmnj or jΔx̄mnj,
with oscillations around Λij

nm ¼ 0 that become relatively
more significant for higher qjm. The size of the region in the

arguments ðΔξmn;Δx̄mnÞ for which the function takes
non-negligible values scales approximately as ∼1=qjm
except for low values of qjm, for which it approaches a
finite maximum size. Taking into account the geometric
meaning of the arguments described before, the results
obtained indicate that the coherence between trajectories
decays for distant trajectories in the Rindler reference
frame, the decay being sharper for higher frequencies.
Given the above discussion on the off-diagonal terms, we

are in a condition to give a clear physical picture for the
appearance of the coherences that we find. In the Rindler
reference frame, the excitation of the detector happens
because it absorbs a particle of the thermal bath that it
perceives [29,30]. We can interpret better the presence of
both the condition (16) and the scalar product Λij

nm for the
off-diagonal terms in light of this picture of the interaction.
On the one hand, the absorption of the particle is almost
fully delocalized in time along all the interaction period,
and therefore the absorbed particle in the Rindler frame has
very little dispersion in frequency. This explains the
necessity of the fine-tuning of the frequencies required
in (16): If the condition is not satisfied, the particles
absorbed along the different trajectories would have fully
distinguishable energies as described by any Rindler
observer, the states of the field left would be fully
distinguishable, and no off-diagonal terms would be left
after tracing out the field. On the other hand, we can
interpret the dependence of the scalar product Λij

nm in the
arguments ðΔξmn;Δx̄mnÞ as providing a notion of spatial
localization of the particle absorbed, which would be
neither fully localized nor fully delocalized. Since two
trajectories can have some finite non-negligible distance in
the Rindler reference frame and still the effect of an
absorption along each of them on the field may not be
fully distinguishable, we can conclude that the absorbed
particles are delocalized “in the surroundings” of each
trajectory, these surroundings having the shape as in Fig. 2
in the Rindler reference frame in the transformed distances
Δξmn and Δx̄mn. We can identify the average size of the
delocalization with a sort of wavelength of the absorbed
particle in the corresponding coordinates. This wavelength
is always finite, although it becomes arbitrarily small for
high frequencies. However, as we already mentioned for
arbitrarily low frequencies it does not become arbitrarily
large, but rather reaches a maximum size, in which the
order of magnitude (in the usual Rindler coordinates) is
determined by the inverse of the accelerations involved.
A remarkable fact of our approach is that the scalar

product between the states of the field Λij
nm is computed

using their representation in the Fock quantization asso-
ciated with the Minkowski modes, in which the excitation
of the detector is accompanied by the emission of a particle
(see Appendix A). However, the results have a much clearer
physical interpretation in the Rindler reference frame. This
further supports that the description of the effect in the two

UNRUH EFFECT FOR DETECTORS IN SUPERPOSITION OF … PHYS. REV. D 102, 045002 (2020)

045002-7



reference frames is complementary and yields no contra-
dictions [5,29,30], as far as the different quantities (in
particular the interaction time) and states involved are kept
finite and normalizable, respectively.

C. State of the internal energy levels

We would like to have also a description of the state of
the internal energy levels of the detector alone. If we trace
the state in (14) for the degree of freedom of the trajectory,
we obtain

ρTrD ≔ TrTðρDTÞ ≈ j0ih0jD
þ ε2T

2π

X
n

jAnj2
�X

i

jζij2
ωi

e2πωi=an − 1
jωiihωijD

�
:

ð21Þ

The detector has some probability to get excited
given by a weighted mixture of thermal states (filtered
by the coupling amplitudes ζi for each frequency) with
different temperatures proportional to the corresponding
accelerations. Since we have assumed all the trajectories to
be fully distinguishable, this is again consistent with the
standard result on the Unruh effect (for well-defined
trajectories) for the particle detector that we have
considered.
We can also consider the state of the internal energy

levels left when measuring the trajectory in some comple-
mentary basis and finding it to be e.g., jηiT ≔

P
n BnjniT.

Such a state is (without normalization)

ρmeasure
D ≔ TrTðjηihηjTρDTÞ ≈

�X
n;m

B�
mA�

nBnAm

�
j0ih0jD þ ε2T

2π

X
m

�
jBmj2jAmj2

�X
j

jζjj2
ωj

e2πqjm − 1
jωjihωjjD

�

þ
X
n;m
n≠m

B�
mA�

nBnAm

�Xcond
i;j
i≠j

ζ�i ζjΛ
ij
nm

ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
e2πqjm − 1

jωjihωijD
��

: ð22Þ

This is the main result of our work. We notice
that the diagonal terms corresponding to the thermal
contribution remain as in (21), just with different weights.
Added to this thermal contribution, some off-diagonal
terms appear. Therefore in general the internal state of
the detector is not just a mixture of states with well-defined
energy.
Notice also that, if the state jηiT is taken to be orthogonal

to the initial trajectory state, then the coefficient of the
element j0ih0jD vanishes. This means that the detector
could be found in a trajectory orthogonal to the initial given
only if it got excited and the trajectory got entangled with
the internal levels through the field (this entanglement
remaining even after tracing out the field). Notice also that
this entanglement between the trajectory and the internal
levels can happen only if the different trajectories have
different values of zn (different accelerations), since other-
wise the same excitations appear along all the trajectories.
The fact that the trajectory state can be found to be
orthogonal to the initial one after the interaction exempli-
fies that, within the construction that we consider, the
trajectory is not simply a fixed constraint of the problem.
Rather, the trajectory is truly a quantum degree of freedom
subject to the interaction with the field, which will actually
be modified by this interaction unless the initial state is a
well-defined trajectory (since in the basis of well-defined

trajectories the interaction term is diagonal acting over the

trajectory degree of freedom).

IV. AN EXPLICIT EXAMPLE

Let us consider the simple case of a detector where
internal energy levels correspond to those of a harmonic
oscillator. We normalize the dimensions by fixing the
frequencies to ωi ¼ i. For simplicity, we consider that
the detector does not discriminate frequencies in the
coupling, so we take ζi ¼ 1. We prepare the detector in
a superposition of three accelerated trajectories
at xn ¼ yn ¼ 0 for all n (they are not perpendicularly
displaced with respect to each other) and z1 ¼ 0.5, z2 ¼ 1,
and z3 ¼ 1.5 (a1 ¼ 2, a2 ¼ 1, and a3 ¼ 2=3) in the
following way:

jΨðτ → −∞Þi ¼ 1ffiffiffi
3

p j0iDj0iFðj1iT þ j2iT þ j3iTÞ: ð23Þ

After the interaction, we measure the trajectory in
some basis containing the initial state of the trajectory,
and consider the case in which we find it to be in such a
state; that is, we consider Bn ¼ An ¼ 1=

ffiffiffi
3

p
for all n

in (22).
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Writing down the explicit numerical results obtained is of no particular interest, but rather showing the structure of the
nonvanishing matrix terms in (22) and their order of magnitude is. We provide below a matrix in which elements are minus
the logarithm of the absolute value of the elements in (22) divided by ε2T, for the first 12 excited states:

ð−log10ðjðρmeasure
D Þjij=ðε2TÞÞÞ1≤j;i≤12≃

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

3.1 4.4 6.0

4.4 4.2 9.7 7.0 11

6.0 9.7 5.4 9.8 14

7.0 6.6 18 13 19

7.9 16

11 9.8 18 9.2 26 18

10

13 12 34

14 26 13

16 14

16

19 18 34 17

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

: ð24Þ

Notice that the greater the entry the exponentially smaller
the element in (22) in absolute value. The entries corre-
sponding to −log100 have been omitted. We can visualize
the structure of seven “alignments” of the nonvanishing
elements, each one with a different slope. Along each of
them the ratio of the frequencies is 3, 2, 3=2, 1 (the
diagonal), 2=3, 1=2, and 1=3, which are the possible ratios
between the values of zn (or an) along the different
trajectories. These are the elements for which condition
(16) is fulfilled for at least one pair of trajectories (in this
case just one pair, except for the diagonal elements).
Different choices of trajectories or energy levels would
of course yield different structures of the nonvanishing
elements, the only fact in common being the presence of the
diagonal elements. We can also check that the diagonal
elements are always greater than any other in the
same row or column. This is due to two facts: First, in
the diagonal elements all the trajectories contribute; and
second, the contributions are not lowered by the scalar
product Λij

nm.

V. FURTHER DISCUSSION

We have studied the excitation of a particle detector
following a quantum superposition of semiclassical trajec-
tories with well-defined acceleration due to the Unruh
effect. When the trajectories under superposition all belong
to the same Rindler wedge, we have found that the state of
the internal degrees of freedom of the detector after the
interaction with the field, upon measurement of the external
degree of freedom in some complementary basis, can
present coherent superpositions of different energy levels.

Although we did not consider the superposition of trajec-
tories which do not share the same Rindler wedge, out of
the discussion on the origin of the coherences found in this
article, we can argue that these coherences will not be
present when the Rindler wedges differ significantly (this
significance being arguably determined by the parameter
ε). The reason is that a static trajectory in some Rindler
wedge is not static in any other Rindler wedge, and
therefore its distance (in Rindler coordinates) with respect
to a static trajectory in the second wedge will change in
time. Being the time of interaction needed to properly give
account for the Unruh effect significantly large (in the
perturbative regime), any two static trajectories in two
different Rindler wedges will be most of the time very
separated from one another, as measured from any of the
two wedges. But the origin of the coherences found is the
overlap of the perturbations on the field for trajectories
which remain at some distance for which the scalar product
Λij
nm is non-negligible. Therefore this overlap, and hence

the coherences, will not be significant when the trajectories
are most of the time very separated.
We can argue that observers following trajectories with

different acceleration in the same Rindler wedge describe
the spacetime surrounding their trajectory with a different
metric. Therefore, in the spirit of the notion of QRFs, an
observer following a quantum superposition of these
trajectories would perceive a sort of “quantum super-
position of metrics” of the spacetime. Considering the
equivalence principle, we can relate this situation with that
of an observer in a quantum superposition of different
distances from a black hole, and its perception of the
corresponding Hawking radiation, or even with the
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situation of an observer which feels the gravitational
field of a source which is in a quantum superposition of
different masses (and therefore producing a quantum
superposition of metrics; see for example [44]).
Approaching these situations with the construction devel-
oped in this article will be the aim of future works by the
authors.
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APPENDIX A: COMPUTATION OF THE SCALAR
PRODUCTS OF THE STATES OF THE FIELD

In this Appendix we go in detail through the computation
of the scalar products hωi; anjωj; amiF. We do it in two
steps: Computation of the states of the field jωi; niF in the
Fock quantization associated with Minkowski modes, and
computation of the scalar products themselves in the large
time regime given by (6).
Let us compute the states of the field jωi; niF defined in

(12) in the first place. The field operator present in
interaction (4) evolves according to its free Hamiltonian.
Since all the trajectories that we consider are constrained to
the right Rindler wedge Z > jTj, we can expand the field in
that region using Rindler modes. This expansion is

ϕ̂ðt; x; y; zÞ ¼
Z

∞

0

dω
Z

d2k⃗⊥½âRωk⃗⊥vωk⃗⊥ðt; x; y; zÞ

þ ðâR
ωk⃗⊥

Þ†vωk⃗⊥ðt; x; y; zÞ��; ðA1Þ

where vωk⃗⊥ðt; x; y; zÞ are the Rindler modes defined in that
wedge, given by [5]

vωk⃗⊥ðt; x; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=aÞ

4π4a

r
Kiω=aðk⊥zÞeiðk⃗⊥·x⃗⊥−ωtÞ;

ðA2Þ

with k⃗⊥ ≔ ðkx; kyÞ, k⊥ ≔ jk⃗⊥j, x⃗⊥ ≔ ðx; yÞ, and KνðxÞ the
modified Bessel function of the second kind; and âR

ωk⃗⊥
,

ðâR
ωk⃗⊥

Þ† are the associated annihilation and creation

operators.
Plugging the expansion of the field (A1), the trajectory

(3), and the evolution of the monopole (8) in (12), while for
convenience not replacing yet the explicit expression for
the switching function χðτÞ, we obtain

jωi; niF ¼
Z

∞

−∞
dτ eiωiτχðτÞ

Z
∞

0

dω
Z

d2k⃗⊥

× ½âR
ωk⃗⊥

vωk⃗⊥ðτ=ðaznÞ; xn; yn; znÞ
þ ðâR

ωk⃗⊥
Þ†vωk⃗⊥ðτ=ðaznÞ; xn; yn; znÞ��j0iF: ðA3Þ

Considering the expression of the modes in (A2), we can
already compute the integral in τ, obtaining

jωi; niF ¼
Z

∞

0

dω
Z

d2k⃗⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=aÞ

2π3a

r
Kiω=aðk⊥znÞ

× ½eik⃗⊥·x⃗⊥n χ̄ðωi − ω=ðaznÞÞâRωk⃗⊥
þ e−ik⃗⊥·x⃗

⊥
n χ̄ðωi þ ω=ðaznÞÞðâRωk⃗⊥Þ

†�j0iF; ðA4Þ

where

χ̄ðΩÞ ≔ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dτχðτÞeiΩτ ¼

�
2

π

�1
4

Te−Ω
2T2 ðA5Þ

is the Fourier transform of the switching function.
In order to compute now the action of the Rindler

annihilation and creation operators âR
ωk⃗⊥

and ðâR
ωk⃗⊥

Þ† on

the Minkowski vacuum state, it is convenient to write them
in terms of annihilation and creation operators associated
with Minkowski modes with well-defined momentum,
âM
kzk⃗⊥

and ðâM
kzk⃗⊥

Þ†, through a Bogoliubov transformation,

âR
ωk⃗⊥

¼
Z

∞

−∞
dkz½ðαωkzk⊥Þ�âMkzk⃗⊥ − ðβωkzk⊥Þ�ðâMkzð−k⃗⊥ÞÞ

†�; ðA6Þ

where αωkzk⊥ and βωkzk⊥ are the Bogoliubov coefficients
between the Minkowski modes and the Rindler modes,
given by [5]

BARBADO, CASTRO-RUIZ, APADULA, and BRUKNER PHYS. REV. D 102, 045002 (2020)

045002-10



αωkzk⊥ ¼ e
ω
a½π2−iϑðkz;k⊥Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

p
a sinhðπω=aÞ

q ; ðA7Þ

βωkzk⊥ ¼ −
e
ω
a½−π

2
−iϑðkz;k⊥Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

p
a sinhðπω=aÞ

q ; ðA8Þ

with

ϑðkz; k⊥Þ ≔
1

2
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

p
þ kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þ k2⊥
p

− kz

�
: ðA9Þ

Replacing (A6), (A7), and (A8) in (A4), we finally get that the state of the field reads

jωi; niF ¼
Z

∞

0

dω
Z

∞

−∞
dkz

Z
d2k⃗⊥

Kiω=aðk⊥znÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π4a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

pq e−ik⃗⊥·x⃗
⊥
n

× feωa½−π
2
þiϑðkz;k⊥Þ�χ̄ðωi − ω=ðaznÞÞ þ e

ω
a½π2−iϑðkz;k⊥Þ�χ̄ðωi þ ω=ðaznÞÞgjk⃗⊥; kziF; ðA10Þ

where jk⃗⊥; kziF is a state with one Minkowski particle with
momentum ðk⃗⊥; kzÞ, with the normalization [45]

jk⃗⊥; kziF ≔ ðâM
kzk⃗⊥

Þ†j0iF;
hk⃗⊥; kzjk⃗0⊥; k0ziF ¼ ½âkzk⃗⊥ ; â

†
k0zk⃗

0⊥
�

¼ δðkz − k0zÞδ2ðk⃗⊥ − k⃗0⊥Þ: ðA11Þ

We can see that the state of the field, expanded in the
Fock basis associated with Minkowski modes, corresponds
to a one-particle state with a certain characteristic

dispersion in momentum. This means that, as described
by inertial observers, the excitation of the detector is
accompanied by the emission of a particle. We can
reproduce the state of the field given in [28] by taking
the limit T → ∞ in (A10), but the state obtained is not
normalizable, as one can easily check [47], and therefore
not useful for the purposes of computing the distinguish-
ability between different states.
Having already computed the states of the field, it is time

now to compute their scalar product. Using (A10) we
can write

hωi; njωj; miF ¼
Z

∞

0

dω
Z

∞

0

dω0
Z

∞

−∞
dkz

Z
∞

0

dk⊥k⊥
J0ðk⊥Δx⊥mnÞKiω=aðk⊥zmÞKiω0=aðk⊥znÞ

4π3a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

p
× ½e− π

2aðωþω0Þe
i
aðω−ω0Þϑðkz;k⊥Þχ̄ðωj − ω=ðazmÞÞχ̄ðωi − ω0=ðaznÞÞ

þ e−
π
2aðω−ω0Þei

aðωþω0Þϑðkz;k⊥Þχ̄ðωj − ω=ðazmÞÞχ̄ðωi þ ω0=ðaznÞÞ
þ e

π
2aðω−ω0Þe−

i
aðωþω0Þϑðkz;k⊥Þχ̄ðωj þ ω=ðazmÞÞχ̄ðωi − ω0=ðaznÞÞ

þ e
π
2aðωþω0Þe− i

aðω−ω0Þϑðkz;k⊥Þχ̄ðωj þ ω=ðazmÞÞχ̄ðωi þ ω0=ðaznÞÞ�; ðA12Þ

where JνðxÞ is the Bessel function of the first kind. We have used (A11) to trivially evaluate three of the integrals in the
momentum, while the angular integral in k⃗⊥ yielded 2πJ0ðk⊥Δx⊥mnÞ. The integral in kz can also be evaluated to

Z
∞

−∞

dkzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

p e
i
aΩϑðkz;k⊥Þ ¼ 2πaδðΩÞ: ðA13Þ

The result obtained then allows one to evaluate the integral in ω0, for which only two terms in (A12) give a nonzero
contribution, resulting in

UNRUH EFFECT FOR DETECTORS IN SUPERPOSITION OF … PHYS. REV. D 102, 045002 (2020)

045002-11



hωi; njωj; miF ¼
Z

∞

0

dω
Z

∞

0

dk⊥k⊥
J0ðk⊥Δx⊥mnÞKiω=aðk⊥zmÞKiω=aðk⊥znÞ

2π2a

× ½e−πω
a χ̄ðωj − ω=ðazmÞÞχ̄ðωi − ω=ðaznÞÞ þ e

πω
a χ̄ðωj þ ω=ðazmÞÞχ̄ðωi þ ω=ðaznÞÞ�: ðA14Þ

At this point, we need to compute an approximation for the integral in ω, which we take by considering the large time
regime given by (6). In order to do so, we first replace the explicit form of χ̄ðΩÞ in (A5), obtaining after some manipulation

hωi; njωj; miF ¼ T2e−Cffiffiffiffiffiffiffi
2π5

p
a

Z
∞

0

dk⊥k⊥J0ðk⊥Δx⊥mnÞ
Z

∞

0

dωKiω=aðk⊥zmÞKiω=aðk⊥znÞ

× ½e−πω
a e−ðω=ω̄−1Þ2M þ e

πω
a e−ðω=ω̄þ1Þ2M�; ðA15Þ

where

C ≔
ðωjzm − ωiznÞ2

z2m þ z2n
T2; ω̄ ≔ a

ωj=zm þ ωi=zn
1=z2m þ 1=z2n

; M ≔
ðωizm þ ωjznÞ2

z2m þ z2n
T2: ðA16Þ

The two terms obtained are Gaussian functions of width
ω̄=

ffiffiffiffiffiffiffi
2M

p
. The second term is peaked at the negative value

−ω̄. Noticing that, because of (6),
ffiffiffiffiffiffiffi
2M

p ≳ 2=ε ≫ 1, we
have that j − ω̄j ≫ ω̄=

ffiffiffiffiffiffiffi
2M

p
, and therefore the contribution

of the second term to the integral in positive ω is negligible.
Also because M ≫ 1, we can use Laplace’s method to
approximate the integral of the first term with high
accuracy [with a relative error of Oð1=MÞ ∼Oðε2Þ].
Before doing so, let us, however, center our attention on
the factor e−C. This factor will be very close to zero unless

jωjzm − ωiznjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2m þ z2n

p T ≲ 1ffiffiffi
2

p : ðA17Þ

Notice that, when considering the characteristic range of
frequencies [48] ωi ∼ 1=zn and ωj ∼ 1=zm, this condition
can be written as

jωjzm − ωiznj≲ ε: ðA18Þ

Although for high frequencies in the spectrum this con-
dition might be more restrictive than (A17), it is in any case
a sufficient condition, and also necessary within the
characteristic range of frequencies. Therefore, for simplic-
ity we will assume it as the condition for the factor e−C not
to become negligible. We conclude then that the scalar
product that we are computing is significant only if the
relation between quotients

ωizn ≈ ωjzm ðA19Þ

holds, with the limit for the validity of the approximation
given by (A18). This is precisely the condition in (16).

Since we assume the approximation (A19) to be accurate
to first order in ε, when it holds it is legitimate to use
relation (A19) in the calculations. In such a case, we have
that C ≈ 0, ω̄ ≈ aωjzm, and M ≈ ð1þ z2m=z2nÞðωjTÞ2 ≫ 1.
With this, we proceed to approximate the integral in ω of
the first term in (A15) using Laplace’s method, obtaining

hωi;anjωj;amiF≈
Te−πωjzmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π4ð1=z2mþ1=z2nÞ
p

Z
∞

0

dk⊥k⊥

×J0ðk⊥Δx⊥mnÞKiωjzmðk⊥zmÞKiωjzmðk⊥znÞ:
ðA20Þ

In the following, abusing notation we will consider the
approximate expressions obtained using (6) as exact, so
that the value of the scalar product hωi; njωj; miF is directly
given by (A20) when (A19) is fulfilled and vanishes in
another case.
The remaining integral in k⊥ in (A20) has to be

computed separately for the case in which the trajectories
are the same, n ¼ m (and thus ωi ¼ ωj within the approxi-
mation), and for the case in which they are different. In the
first case, we obtain

hωj; mjωj; miF ¼ T
2π

ωj

e2πωjzm − 1
: ðA21Þ

With this result we have already obtained the diagonal
terms in (14). In order to compute the off-diagonal terms, it
is more convenient to compute directly the scalar product
between the normalized states of the field Λij

nm in (17).
Using (A20) and (A21), and implementing the variable
transformation k⊥ ¼ k̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=z2m þ 1=z2n

p
in the integral in

(A20), we obtain
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Λij
nm ¼ 2 sinhðπqjmÞ

πqjm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshΔξmn

p Z
∞

0

dk̄ k̄J0ðk̄Δx̄mnÞKiqjm

�
k̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Δξmn þ 1

2

r �
Kiqjm

�
k̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2Δξmn þ 1

2

r �
; ðA22Þ

with the definition of the quantities qjm, Δξmn, and Δx̄mn

given in (15) and (18). If we solve the integral in k̄
[see Eq. (6.578.10) in [49] for the analytic solution], we
get the expression for Λij

nm in (19). Trivially solving for
hωi; njωj; miF in (17) and using again (A21) gives the
coefficients of the off-diagonal terms in (14), completing
the proof.
We highlight again the way we have proceeded to

compute the normalized scalar product in (A22). If we
follow the computations, we realize that this quantity is
obtained by first computing the scalar product between
different states for fixed T, and then taking the large-time
limit of this scalar product in (A20). The result of the limit
computed is the correct description of any physically
realistic scenario, in which the interaction time can be in
principle arbitrarily large but finite. Trying to take first the
large time limit directly in the expression for the state (A10)
leads, as we already mentioned, to non-normalizable states,
where the degree of distinguishability is not defined.
We can at this point justify the need for the limitation (7).

Indeed, we need the perturbative contributions in (14) to
remain OðεÞ or smaller. Since being a scalar product we
have that jΛij

nmj ≤ 1, the off-diagonal contributions are
always smaller than the diagonal ones, and we just need
to check the order of magnitude of these. They reach their
maximum for the lowest frequency ω1 and the highest
acceleration a1 ¼ 1=z1, in which case using (6) we have
that

hω1; 1jω1; 1iF ∼
1

2πεðe2πω1=a1 − 1Þ≲
1

ε
⇔

ω1

a1
≳ μ; ðA23Þ

which is condition (7).
Finally, we also notice that, if we rescale all ωi → γωi,

all zn → zn=γ, and T → T=γ, with γ > 0, all results still
hold and remain identical. This is consistent with the fact
that a massless field does not introduce any privileged
scale.

APPENDIX B: SCALAR PRODUCT Λij
nm:

FURTHER EXPRESSIONS

The scalar product Λij
nm in (19) has very simple analytic

expressions for the cases Δx̄mn ¼ 0 and Δξmn ¼ 0. These
expressions are

Λij
nmðΔx̄mn ¼ 0Þ ¼ sinðqjmΔξmnÞ

qjm

cschΔξmnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh Δξmn

p ; ðB1Þ

Λij
nmðΔξmn ¼ 0Þ ¼ sinðqjmgðΔx̄mnÞÞ

qjm
csch gðΔx̄mnÞ; ðB2Þ

with

gðΔx̄mnÞ ≔ 2 arc sinh

�
Δx̄mn

2

�
: ðB3Þ

In Figs. 3 and 4 we plot these functions for different values
of qjm.

FIG. 4. Scalar product Λij
nmðΔξmn ¼ 0Þ as a function of Δx̄mn

for qjm ¼ 0 (solid line), qjm ¼ 1 (dashed line), qjm ¼ 2 (dotted
line), and qjm ¼ 10 (dash-dotted line).

FIG. 3. Scalar product Λij
nmðΔx̄mn ¼ 0Þ as a function of Δξmn

for qjm ¼ 0 (solid line), qjm ¼ 1 (dashed line), qjm ¼ 2 (dotted
line), and qjm ¼ 10 (dash-dotted line).
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APPENDIX C: CONTINUOUS DEGREES
OF FREEDOM

We briefly consider the case in which the detector has a
continuous spectrum and is spread in position continuously
in Rindler coordinates [50].
While taking the position to the continuum is relatively

trivial and does not introduce much novelty, considering a
continuous spectrum allows one to strictly take the limit of
the duration of the interaction going to infinity T → ∞
without obtaining diverging probabilities (since what we
are interested in now is probability densities), and also to
simplify the formal result, avoiding the necessity of
“conditional sums” as in (14). Wewill use the computations
done for the discrete case when they also hold for the
continuous case, pointing out just the expressions that have
to be changed. We also assume that the meaning of the new
notation for the continuous case can be inferred without
explicit clarifications.

First, we replace the monopole moment of the detector in
(8) by

m̂ðτÞ ¼
Z

∞

0

dω
Z

∞

0

dω0ζðω;ω0Þeiðω−ω0Þτjωihω0jD; ðC1Þ

where ζðω0;ωÞ ¼ ζðω;ω0Þ� and the internal levels are
normalized to hω0jωi ¼ δðω0 − ωÞ. In the following cal-
culations we will use the simplification ζðωÞ≡ ζðω; 0Þ,
since only this quantity will appear. The initial state of the
system in (9) changes to

jΨðτ → −∞Þi ¼ j0iDj0iF
Z

d3x⃗Aðx⃗Þjx⃗iT; ðC2Þ

with hx⃗0jx⃗i ¼ δ3ðx⃗0 − x⃗Þ.
The final state in (11) now reads

jΨðτ → ∞Þi ≈ j0iDj0iF
Z

d3x⃗Aðx⃗Þjx⃗iT þ iε
Z

∞

0

dω
Z

d3x⃗ζðωÞAðx⃗ÞjωiDjω; x⃗iFjx⃗iT; ðC3Þ

and the result of tracing out the field in (13) changes to

ρDT ≈ j0ih0jD
�Z

d3x⃗
Z

d3x⃗0Aðx⃗0Þ�Aðx⃗Þjx⃗ihx⃗0jT
�
þ ε2

Z
d3x⃗

Z
d3x⃗0

Z
∞

0

dω
Z

∞

0

dω0ζðω0Þ�Aðx⃗0Þ�ζðωÞAðx⃗Þ

× hω0; x⃗0jω; x⃗iFjωihω0jDjx⃗ihx⃗0jT: ðC4Þ

The computation of the scalar products hω0; x⃗0jω; x⃗iF in Appendix A follows in an identical way until taking the large time
limit. The expression right before taking this limit (A15), obtained after replacing the switching functions, is

hω0; x⃗0jω; x⃗iF ¼
T2e−Cffiffiffiffiffiffiffi
2π5

p
a

Z
∞

0

dk⊥k⊥J0ðk⊥Δx⊥Þ ×
Z

∞

0

dω00Kiω00=aðk⊥zÞKiω00=aðk⊥z0Þ

× ½e−πω00
a e−ðω00=ω̄−1Þ2M þ e

πω00
a e−ðω00=ω̄þ1Þ2M�; ðC5Þ

with the quantities C, ω̄, and M given by (A16) with the
corresponding notation replacements.
It is easy to notice that, due to the factor e−C, when taking

the limit T → ∞ the scalar product (C5) vanishes unless
ω0z0 ¼ ωz, in which case it diverges. Notice that, since we
are taking the strict limit, unlike in (A19) now the relation

has to hold exactly. Since we have a function that vanishes
everywhere except on a point where it diverges, checking
that its integral remains finite when taking the limit T → ∞
suffices to prove that in this limit we have a Dirac delta. We
take then the following integral:

Z
dω0hω0; x⃗0jω; x⃗iF ¼ Tffiffiffiffiffiffiffi

2π4
p

a

Z
∞

0

dk⊥k⊥J0ðk⊥Δx⊥Þ ×
Z

∞

0

dω00Kiω00=aðk⊥zÞKiω00=aðk⊥z0Þ

× fe−πω00
a e−½ω00=ðaωzÞ−1�2ω2T2þe

πω
a e−½ω00=ðaωzÞþ1�2ω2T2g: ðC6Þ

In the limit T → ∞, the second term does not contribute to the integral in ω00, while the first term is given exactly by
Laplace’s method. We obtain
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Z
dω0hω0; x⃗0jω; x⃗iF ¼ ze−πqffiffiffiffiffiffiffi

2π3
p

Z
∞

0

dk⊥k⊥J0ðk⊥Δx⊥ÞKiqðk⊥zÞKiqðk⊥z0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshΔξ

p

z0
ffiffiffiffiffiffi
2π

p Λðq;Δξ;Δx̄Þ q
e2πq − 1

; ðC7Þ

where the different quantities are defined in (15), (18), and (19), with the obvious change of notation. Summarizing, we can
write that

hω0; x⃗0jω; x⃗iF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshΔξ

p

z0
ffiffiffiffiffiffi
2π

p Λðq;Δξ;Δx̄Þ q
e2πq − 1

δðω0 − ωz=z0Þ: ðC8Þ

The Dirac delta obtained allows us to compute the integral in ω0 in (C4), and we finally obtain, after a trivial change of
variable ω ¼ q=z,

ρDT ¼ j0ih0jD
�Z

d3x⃗
Z

d3x⃗0Aðx⃗0Þ�Aðx⃗Þjx⃗ihx⃗0jT
�
þ ε2ffiffiffiffiffiffi

2π
p

Z
d3x⃗

Z
d3x⃗0Aðx⃗0Þ�Aðx⃗Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=z2 þ 1=z02

2

r

×
Z

∞

0

dqζðq=z0Þ�ζðq=zÞΛðq;Δξ;Δx̄Þ × q=
ffiffiffiffiffiffi
zz0

p

e2πq − 1
jq=zihq=z0jDjx⃗ihx⃗0jT: ðC9Þ

We observe again the Planckian spectrum in the diagonal
terms, and this same spectrum weighted by the function Λ
in the off-diagonal terms. The different factors appearing as
compared to (14) respond to the slightly different con-
struction required in the continuous case. Notice that

recovering the results for the discrete case out of (C9) is
not trivial, since unlike in (14) the strict limit T → ∞ has
been taken. In particular, trying to simply use some Dirac
comblike distribution for ζðωÞ clearly yields diverging
results.
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