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A general relativistic solution, composed of a Zel’dovich-Letelier interior made of radial strings matched
through a spherical thin shell at radius r0 to an exterior Schwarzschild solution with mass m, is presented.
It is the Zel’dovich-Letelier-Schwarzschild star. When the radius r0 of the star is shrunk to its own
gravitational radius 2m, r0 ¼ 2m, the solutions that appear have very interesting properties. There are
solutions with m ¼ 0 and r0 ¼ 0 that further obey 2m

r0
¼ 1. These solutions have a horizon, but they are not

exactly black holes; they are quasiblack holes, though atypical ones. Moreover, the proper mass mp of the
interior is nonzero and made of one string. Hence, a Minkowski exterior space hides an interior with matter
in a pit. These are the pit solutions. These pits thus show a maximal mass defect. There are two classes of pit
solutions: the first encloses a finite string and the second a semi-infinite one. These pits are really string pits,
which can be seen as Wheeler bags of gold, albeit totally squashed bags. There is also another class, which
is a compact stringy star at the 2m

r0
¼ 1 limit with m, and thus r0, nonzero. It is a typical quasiblack hole and

it also shows maximal mass defect. A generic analysis is presented that shows that pit solutions with 2m
r0

¼ 1

and m ¼ 0 can exist displaying maximal mass defect. The Zel’dovich-Letelier-Schwarzschild star at the
r0 ¼ 2m limit is actually an instance of the generic case. Notably, these three classes of static solutions
yield the same spectrum of solutions that appear in critical gravitational collapse—namely, there are
solutions that yield naked null singularities, which here are the two string pit classes of solutions, and there
are solutions that yield black holes, which here are represented by the class of compact stringy stars at the
quasiblack hole limit, the solutions that disperse away in critical gravitational collapse here are the static
Zel’dovich-Letelier-Schwarzschild stars themselves. A thermodynamic treatment of the string pit and
stringy star quasiblack hole solutions is provided, and connections to other solutions are mentioned.
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I. INTRODUCTION

There is the question as to whether, in general relativity,
there are static configurations with some matter interior
solution coupled to an exterior vacuum solution, for which
three conditions are satisfied altogether. The configuration
has zero radius r0, r0 ¼ 0; it also has zero spacetime, or
ADM, massm,m ¼ 0, and, notwithstanding, r0 andm obey
2m
r0

finite. We will answer this question in the positive. To do
so, we analyze a generic case, a generic star composed, say,
of a generic interior spherical symmetric static configuration
with a Schwarzschild exterior. Then, as a nontrivial example,
we specifically develop and present the Zel’dovich-Letelier-

Schwarzschild star, which is a solution that matches the
Zel’dovich-Letelier interior made of spherically symmetric
dust strings up to some junction radius r0 to the exterior
Schwarzschild solution. We send r0 to the gravitational
radius of the star 2m, r0 → 2m, i.e., we take the highest
compact star limit, or the quasiblack hole limit, of the
configuration. Solutions with m ¼ 0, r0 ¼ 0, and 2m

r0
¼ 1,

and thus 2m
r0

finite, do indeed appear. They also have a
nonzero positive proper mass mp that is not zero. Thus,
clearly these solutions have maximal mass defects. Since
m ¼ 0, the exterior spacetime is Minkowski. But sincemp is
not zero, such solutions enclose some matter in one form or
another in a spacetime pit and are thus pit solutions. These
pits are atypical quasiblack holes. In the Zel’dovich-Letelier-
Schwarzschild limiting star there are two classes of pit
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solutions: the first encloses a finite string and the second a
semi-infinite one. Hence, in these two classes the pits can be
described as string pits. These string pits resemble Wheeler
bags of gold but are totally squashed. There is also another
class in the Zel’dovich-Letelier-Schwarzschild limiting star,
which is a compact stringy star at the 2m

r0
¼ 1 limit with m

finite, i.e., a usual quasiblack hole. These solutions can have
a thermodynamic treatment and have interesting connections
to other solutions.
Some comments are necessary. (i) The Zel’dovich-

Letelier solution was discussed as an interior general
relativistic solution by Zel’dovich [1] in connection with
compact stars, and by Letelier [2] as clouds of strings. It
then appeared in the context of global monopoles [3] and of
string hedgehogs and vacuum bubbles [4]. One of the
properties of the solutions is that the mass function mðrÞ
obeys 2mðrÞ

r ¼ b, for some fixed b with b ≤ 1. Zel’dovich
[1] discussed the example of stars that are about to collapse
and so the radial pressure is irrelevant, whereas Letelier [2]
uses energy density ρ and radial pressure pr, but zero
tangential pressure, with equation of state pr ¼ −ρ, which
is also the equation used in [3,4]. This means that one can
envisage the matter source as string units emerging from a
common center, and for this reason the source is called
string dust, with the Zel’dovich setup being a particular
situation of string dust, i.e., pure dust, since pr ¼ 0. In
brief, string dust has three features—namely, radial strings,
pr ¼ −ρ, and no tangential pressure. We are interested in
string dust solutions as interior solutions. We make use of
the junction formalism [5] to match a Zel’dovich-Letelier
interior to a Schwarzschild exterior and obtain the
Zel’dovich-Letelier-Schwarzschild star. (ii) Objects for
which the surface radius r0 of the matter, e.g., a star, is
at its own gravitational radius, r0 ¼ 2m, are the highest
compact stars called quasiblack holes [6]. Quasiblack holes
are on the verge of becoming black holes, have special
properties, and are relatives to both black holes and null
naked singularities [6–10]. (iii) The answer to the question
as to whether, in general relativity, zero mass m at a point
r ¼ 0 can nonetheless have a quotient 2mr finite is known to
be yes in a dynamical setting. Indeed, the inhomogeneous
dust spherical collapse of the Lemaître-Tolman-Bondi
models can produce an m ¼ 0, r ¼ 0 naked null singu-
larity. At the critical moment the density has a 1

r2 isothermal

profile, and 2mðrÞ
r is finite, indeed 2mðrÞ

r ¼ 1 at the center [11–
13]. Also, Choptuik collapse of a scalar field [14] allows for
a critical case, which divides expansion of the scalar field
back to infinity from collapse of the scalar field to a black
hole, where a zero mass and zero radius black hole, with
2m
r ¼ 1, and thus 2m

r finite, forms. This can also be
interpreted as the formation of a naked null zero mass
singularity. (iv) Mass defects with maximal values have
appeared in specific nonstationary models [15] where one
can have matter with an infinite amount of interior proper

mass, but the exterior spacetime has zero spacetime
mass [16]. This is the maximal possible gravitational mass
defect. (v) Bag of gold solutions appeared in [17]; see also
[18]. The Wheeler bags of gold are exemplified by a closed
FLRW universe glued to the other side of a Schwarzschild
black hole through an Einstein-Rosen bridge with a knot at
the junction closing the bag. (vi) Since the string pit and
stringy star compact solutions found are quasiblack holes, it
is of interest to discuss their thermodynamics as in [19,20].
(vii) There are several related interesting solutions to the
Zel’dovich-Letelier interior that have the mass function

mðrÞ obeying 2mðrÞ
r ¼ b but are not string dust, i.e., the

equation of state differs from pr ¼ −ρ; see, e.g., [21–28]. A
match to a vacuum exterior of these related solutions does
not yield Zel’dovich-Letelier-Schwarzschild stars.
The paper is organized as follows. In Sec. II we lay down

the spacetime’s basic features and arrive naturally at the
concept of spacetime pits, i.e., solutions with m ¼ 0 and 2m

r0
finite which yield maximal mass defects. In Sec. III we
display the Zel’dovich-Letelier solution and make a proper
matching to find the Zel’dovich-Letelier-Schwarzschild
star. In Sec. IV we take the quasiblack hole limit
r0 → 2m of the Zel’dovich-Letelier-Schwarzschild star
and find three classes of objects with the highest compac-
tification. The first two classes are pit solutions—more
precisely, string pit solutions—one enclosing a finite string
and the other a semi-infinite string, both with m ¼ 0,
2m
r0

¼ 1, and maximal mass defects. The third class is a
compact stringy star, more precisely, a string star with
maximal compactness, i.e., 2m

r0
¼ 1, finite m, and also a

maximal mass defect. In Sec. V we conclude, giving a
synopsis with the results in a table, glimpsing through the
thermodynamics of the string pit and stringy star solutions,
and connecting with related work by others.

II. BASIC FEATURES OF SPACETIMES WITH
A PIT AND MAXIMAL MASS DEFECT

A. Spacetime generics

A general static spherical symmetric spacetime with
spacetime coordinates ðt; r; θ;ϕÞ has a line element that can

be written in the form ds2 ¼ −ð1 − 2mðrÞ
r Þe2ψðrÞdt2 þ

dr2

1−2mðrÞ
r

þ r2dΩ2, where mðrÞ and ψðrÞ are functions of r,

and dΩ2 is the line element on the unit sphere,
dΩ2¼dθ2þsin2θdϕ2, and θ and ϕ are the angles on it.
Assume that for r ≤ r0, for some radius r0, there is a fluid
with energy-momentum tensor Tab given by Ta

b ¼
diagð−ρ; pr; pt; ptÞ, where ρ is the fluid’s energy density,
pr its radial pressure, and pt its tangential pressure, all
functions of r. Then the Einstein equation of general
relativity Gab ¼ 8πTab, where Gab is the Einstein tensor
and we put the constant of gravitation and the velocity
of light to unity, yields mðrÞ ¼ 4π

R
r
0 dr

0r02ρðr0Þ and
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ψðrÞ ¼ 4π
R
r
r0
dr0r0 ρðr

0Þþprðr0Þ
1−2mðr0Þ

r0
. There is yet another equation

involving the tangential pressure pt that we do not need
right now. In the model that we are going to use for the
interior, one has ρðrÞ þ prðrÞ ¼ 0 so that ψðrÞ ¼ 0
throughout. Thus, in this case the line element that we
start with in the ðt; r; θ;ϕÞ coordinates reduces to

ds2 ¼ −
�
1 −

2mðrÞ
r

�
dt2 þ dr2

1 − 2mðrÞ
r

þ r2dΩ2; ð1Þ

where

mðrÞ ¼ 4π

Z
r

0

dr0r02ρðr0Þ; ð2Þ

is now the only metric function, usually called the mass
function and defined for r ≤ r0.
Other functions of interest here are the proper

mass mpðrÞ, the proper distance lpðrÞ from the center
to any r ≤ r0, the area AðrÞ of a constant r sphere, and
the proper volume VpðrÞ. The proper mass mpðrÞ is
defined as

mpðrÞ ¼ 4π

Z
r

0

dr0
r02ρðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðr0Þ

r0

q ; ð3Þ

the proper distance lpðrÞ from the center to any r is
defined as

lpðrÞ ¼
Z

r

0

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðr0Þ

r0

q ; ð4Þ

the area AðrÞ of a constant r sphere is

AðrÞ ¼ 4πr2; ð5Þ

and the proper volume is defined by

VpðrÞ ¼ 4π

Z
r

0

dr0
r02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2mðr0Þ
r0

q : ð6Þ

These functions at the boundary r0 become specific
important quantities, and we put

m≡mðr0Þ; mp ≡mpðr0Þ;
lp ≡ lpðr0Þ; A≡ Aðr0Þ; Vp ≡ Vpðr0Þ: ð7Þ

At r0 there is a boundary that can be smooth or can have
a shell. If there is a shell, it can have zero or nonzero proper
mass and zero or nonzero pressure.
For r ≥ r0 we assume that the solution is vacuum and

thus that it is the Schwarzschild solution, mðrÞ ¼ M

constant, where M is the spacetime mass or energy. In
general M and m are different. Here we work with the
case M ¼ m as we will see it is the case in the matching of
the Zel’dovich-Letelier interior solution to the exterior
Schwarzschild solution. Thus, m is the mass of the
spacetime.
There are two characteristic masses in this setting, the

spacetime mass m and the proper mass of the object mp. It
is then appropriate to define generically the mass defectΔm
of an object as

Δm ¼ mp −m; ð8Þ

which indicates how much mass, or energy, was put into the
construction of the spacetime.

B. Features of pit spacetimes with m= 0, r0 = 0,
2m
r0

= 1 and maximal mass defect

We put M ¼ m, i.e., there is no contribution to the
exterior spacetime mass from the boundary at r0, and stick
to calling it m. Considering the mass function mðrÞ
appearing in Eq. (1), we assume that 1 − 2mðrÞ

r is uniformly

bounded and write 1 − 2mðrÞ
r ≥ 0, i.e.,

2mðrÞ
r

≤ 1: ð9Þ

With this assumption we can make some general, concrete
remarks. Define ε as any positive number, which can be as
small as we want, and χðrÞ a function of r always greater

than zero such that 1 − 2mðrÞ
r ¼ εχðrÞ. Take the maximal

value of χðrÞ as χmax and its minimum value as χmin. Then,
since Eq. (9) holds, the integral of Eq. (2) converges, and
taking the integrals up to the boundary r0 in Eqs. (2) and (3)
leads to

mffiffiffiffiffiffiffiffiffiffiffi
εχmax

p ≤ mp ≤
mffiffiffiffiffiffiffiffiffiffi
εχmin

p : ð10Þ

Take the quasiblack hole limit, i.e., r0 → 2m, or 2m
r0

→ 1

from below, so that one also has ε → 0. This is a
configuration made of some material with boundary radius
at its own gravitational radius 2m; it is a configuration on
the verge of becoming a black hole. Suppose that mp

remains finite on this limit. Then, since ε → 0, one has
mandatorily from Eq. (10) that m goes to zero, so, since
r0 ¼ 2m in this limit, one also has r0 → 0. Thus, one has an
object that hasm ¼ 0, i.e., zero mass energym, and r0 ¼ 0,
i.e., zero radius r0, with 2m

r0
¼ 1, and also has finite nonzero

proper mass mp. In addition, defining the mass defect
Δm ¼ mp −m as in Eq. (8), we see that this object has a
maximal mass defect given by Δm ¼ mp. In brief, such an
object has
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m ¼ 0; r0 ¼ 0;
2m
r0

¼ 1;

mp ¼ finite; Δm ¼ mp: ð11Þ

This is an amazing object. It has zero spacetime mass and
zero area radius and, although m ¼ 0, the ratio 2m

r0
is not

zero but actually 1. In addition, it has finite proper mass and
maximal mass defect. We call this structure a pit, as it stores
a nonzero proper mass in a zero spacetime mass spacetime
with zero area radius. As 2m

r0
¼ 1, the pit is indeed a

quasiblack hole, although an atypical one. A specific
realization of this general analysis is through the
Zel’dovich-Letelier-Schwarzschild star that we will display
next and where there are three possible classes, two of them
being string pits, each with distinct and rather interesting
features, and the other being a compact stringy star at the
quasiblack hole state.

III. THE ZEL’DOVICH-LETELIER-
SCHWARZSCHILD STAR AND ITS LIMITS

A. The interior, the shell junction, the exterior,
and the Zel’dovich-Letelier-Schwarzschild star

1. The Zel’dovich-Letelier interior

Let us be concrete. To simplify, let us choose an equation
of state of the form pr ¼ −ρ. Then, inside for r ≤ r0,
we have that indeed ψðrÞ ¼ 0 and the only function
that matters is the function mðrÞ that appears in Eqs. (1)
and (2). The conservation law Tab

;b ¼ 0 with a ¼ r gives
pt ¼ pr þ r

2
p0
r, and using the equation of state pr ¼ −ρ

one gets pt ¼ −ρ − r
2
ρ0. Following Zel’dovich [1] and

Letelier [2] (see also [3,4]), we put ρ ¼ b
8πr2, where b is

a positive constant. Thus, the full general relativistic
solution using the Einstein equation is

ρ ¼ b
8πr2

; ð12Þ

pr ¼ −
b

8πr2
; ð13Þ

pt ¼ 0: ð14Þ

Since pt ¼ 0, the source is string dust, strings in the radial
direction up to r0. Putting the energy-density expression

Eq. (12) into Eq. (2), one obtainsmðrÞ ¼ b
2
r, i.e., 2mðrÞ

r ¼ b,
and the line element, Eq. (1), becomes

ds2 ¼ −ð1 − bÞdt2 þ dr2

1 − b
þ r2dΩ2: ð15Þ

This metric yields a spacetime that has a spherical conic
deficit. Indeed, redefining t̄ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − b
p

t and r̄ ¼ rffiffiffiffiffiffi
1−b

p ,

one gets the conical form of the metric—namely,
ds2 ¼ −dt̄2 þ dr̄2 þ r̄2ð1 − bÞdΩ2. Clearly, the inside
metric is a deficit angle metric. Returning to the main
functions of a static spherical symmetric spacetime,
Eqs. (2)–(6), we can put them in the case of the
Zel’dovich-Letelier spacetime in the form

mðrÞ ¼ 1

2
br; ð16Þ

mpðrÞ ¼
br

2
ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p ; ð17Þ

lpðrÞ ¼
rffiffiffiffiffiffiffiffiffiffiffi
1 − b

p ; ð18Þ

AðrÞ ¼ 4πr2; ð19Þ

VpðrÞ ¼
4πr3

3
ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p : ð20Þ

Clearly, we can rewrite mpðrÞ as mpðrÞ ¼ mðrÞffiffiffiffiffiffi
1−b

p , lpðrÞ as

lpðrÞ ¼ 2mðrÞ
b
ffiffiffiffiffiffi
1−b

p ¼ 2mpðrÞ
b , and VpðrÞ as VpðrÞ ¼ 32mðrÞ3

3b3
ffiffiffiffiffiffi
1−b

p ¼
32mpðrÞ3ð1−bÞ

3b3 . It is assumed that b ≤ 1 so that the metric in
Eq. (15) is static, and in addition it is assumed that the
parameter b is positive, so that the mass function mðrÞ in
Eq. (16) is positive, i.e., we put

0 < b ≤ 1: ð21Þ

Equations (15)–(20) with the condition in Eq. (21) char-
acterize the interior spacetime defined for r ≤ r0.
Note that the interior solution is singular at r ¼ 0, the

density and radial pressure, given in Eqs. (12) and (13),
respectively, diverge there, and thus the Ricci and Riemann
tensors and corresponding scalars diverge. Zel’dovich [1]
deals with gravitational collapse issues, neglects pr, and
dismisses this singularity problem, showing that rounding
up the energy density ρ at the origin makes no difference
for his final results. Letelier [2] suggests that the solution
can be used as an intermediary solution between the
Schwarzschild interior solution and a Schwarzschild
exterior. Here we use the solution to match it to a
Schwarzschild exterior, and in taking the limit r0 → 2m
it is found that this singularity is not naked because it is
within a quasiblack hole.

2. The shell junction

The junction of the inside and the outside is at
some r0. At the junction r0 we consider the metric to be
of the form

ds2 ¼ −dτ2 þ r20dΩ2; ð22Þ

JOSÉ P. S. LEMOS and O. B. ZASLAVSKII PHYS. REV. D 102, 044060 (2020)

044060-4



where τ is the proper time at the junction. For the outside
we consider a vacuum spacetime and thus from Birkhoff’s
theorem it is the Schwarzschild spacetime. Since from the
inside the radial pressure at r0 is nonzero—namely,
pr ¼ − b

4πr2
0

, see Eq. (13)—and from the outside pr ¼ 0,

as we consider that the outside is vacuum, there is a clear
jump in the radial pressure that has to be smoothed out by a
thin spherical shell at the junction at r0. The energy-
momentum tensor of the thin shell can be found. We write
the contribution to the energy-momentum tensor Ta

b from
the shell in the form Ta

b ¼ Sabδðl − l0Þ, where Sab is the
intrinsic energy-momentum tensor associated with the
shell, δ is the Dirac delta function, l is the proper radial
length in the neighborhood of the shell, and l0 corresponds
to the boundary at the shell. Then, following the junction
formalism for general relativity [5], one finds Sττ ¼ 0 and
Sθθ ¼ Sϕϕ ¼ b

16πr0
ffiffiffiffiffiffi
1−b

p . Assuming that the shell is made of

a perfect fluid and writing Sττ ≡−σ and Sθθ ¼ Sϕϕ ≡ P,
where σ is the energy density of the shell and P is the
tangential pressure at the shell, we thus have

σ ¼ 0; P ¼ b

16πr0
ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p : ð23Þ

Note that there is no mass for the shell as mshell ¼
4πr20σ ¼ 0. Note that P closes the conical deficit set
in by the interior spacetime such that the exterior
Schwarzschild spacetime has no conical deficit. The shell’s
tangential pressure P is there to close ends, literally.

3. The exterior Schwarzschild

The outer spacetime is vacuum, and therefore the
exterior general relativistic metric, the metric for r ≥ r0,
is Schwarzschild, i.e., ds2 ¼ −ð1 − 2M

r Þdt2 þ dr2

1−2M
r
þ r2dΩ2

for some spacetime mass M. In general M and m have
different values. Here, since the shell has no mass
(mshell ¼ 0), we deal with the case M ¼ m and keep m
throughout. Thus, we put

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ dr2

1 − 2m
r

þ r2dΩ2; ð24Þ

as the exterior Schwarzschild metric.

4. The full solution:
The Zel’dovich-Letelier-Schwarzschild star

The full general relativistic solution is composed of three
parts. The inside with the metric given by Eq. (15), the shell
with the metric given by Eq. (22), and the outside with the
metric given in Eq. (24). The main global features can be
found at the junction r0. From Eqs. (16)–(20) they are

m ¼ 1

2
br0; ð25Þ

mp ¼ br0
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p ; ð26Þ

lp ¼ r0ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p ; ð27Þ

A ¼ 4πr20; ð28Þ

Vp ¼ 4πr30
3

ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p : ð29Þ

We can rewrite mp as mp ¼ mffiffiffiffiffiffi
1−b

p , lp as lp ¼ 2m
b
ffiffiffiffiffiffi
1−b

p ¼ 2mp

b ,

and VpðrÞ as Vp¼ 32m3

3b3
ffiffiffiffiffiffi
1−b

p ¼ 32m3
pð1−bÞ
3b3 , and we recall that

Eq. (21) should be taken into account, i.e., 0 < b ≤ 1. This
is the full Zel’dovich-Letelier-Schwarzschild spacetime
solution, i.e., the Zel’dovich-Letelier-Schwarzschild star.

B. The limit r0 → 2m of the Zel’dovich-Letelier-
Schwarzschild star: Distinguishing features

We are interested in the limit in which

r0 → 2m; ð30Þ

i.e., the quasiblack hole limit in which an object is at its
own gravitational radius [6–10]. It follows from Eq. (25)
that this means

b → 1: ð31Þ

Let us take mp in Eq. (26) as the quantity that identifies
the possible different classes. To see this, we put mp as
mpð1 − bÞγ ¼ μ for some exponent γ and some finite
renormalized proper mass μ, with μ ≥ 0. This choice for
the relation between the proper mass mp and the renor-
malized mass μ is taken because it takes care of all the
independent cases, actually three cases, when one takes the
limit given in Eq. (31). For now we leave b generic: only
afterward do we take that limit. Then Eqs. (25)–(29) with
r0 ¼ 2m of Eq. (30) give

m ¼ μð1 − bÞ12−γ; ð32Þ

mp ¼ μð1 − bÞ−γ; ð33Þ

lp ¼ 2μ
ð1 − bÞ−γ

b
; ð34Þ

A ¼ 16πμ2
ð1 − bÞ1−2γ

b2
; ð35Þ

Vp ¼ 32

3
μ3

ð1 − bÞ1−3γ
b3

; ð36Þ
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respectively. From Eqs. (32) and (33) we see that a negative
exponent γ gives zero mass m and zero proper mass mp in
the limit of Eq. (31). It is thus of no interest as it gives
nothing, and we impose γ ≥ 0. From Eq. (32) we see that an
exponent γ greater that 1

2
gives an infinite mass m in the

limit of Eq. (31) and the spacetime with the line element
given in Eq. (24) is not well defined, and we impose γ ≤ 1

2
.

Thus, γ is within the range

0 ≤ γ ≤
1

2
: ð37Þ

Then Eqs. (32) and (33) show that there are three distinct
main classes. (a) γ ¼ 0, which yields m ¼ 0 and mp equal
to μ, and thus mp is finite. It is a string pit solution.
(b) 0 < γ < 1

2
, which yieldsm ¼ 0 andmp infinite. It is also

a string pit solution with different properties. (c) γ ¼ 1
2
,

which yields m finite and mp infinite. It is a compact
stringy star with the highest compactification, it is not a pit.
Let us analyze these three classes in detail.

IV. THE THREE LIMITING SOLUTIONS: TWO
STRING PITS AND A COMPACT STRINGY STAR

A. A finite string in a pit, i.e., a string pit, almost
detached from spacetime hanging from a point

Here we find a finite string in a pit, a string pit, almost
detached from spacetime hanging from a point, indeed
with the spacetime mass m ¼ 0 and the proper mass
mp ¼ finite. This is the class γ ¼ 0.
We are interested in the limit in which r0 → 2m [see

Eq. (30)], i.e., the quasiblack hole state. It follows from
Eq. (25) that this implies b → 1; see Eq. (31). We put γ ¼ 0
in Eqs. (32)–(36) and analyze the spacetime’s main
features. From Eq. (32) we have m → 0, i.e., m ¼ 0 in
the limit. Equation (33) yieldsmp ¼ μ, somp is finite, with
the subcase mp ¼ 0 being a trivial case. From Eq. (34), the
total proper length lp remains finite. This is clear as
lp ¼ 2mp and mp is finite; see Eq. (27) with b ¼ 1.
From Eq. (35), the surface area is A ¼ 0, and the area
radius of the boundary is r0 ¼ 0. From Eq. (36), the proper
volume is zero, Vp ¼ 0.
Thus, the full spacetime can be understood as follows.

The inside solution is made of a one-dimensional open
string, with finite length and zero volume. That the inside
spacetime is a one-dimensional string can also be seen from
the conical form of the inside metric, where for b ¼ 1 and r̄
finite, as is the case, the angular part disappears, leaving a
one-dimensional space, i.e., a two-dimensional spacetime.
This single string in the inside spacetime pit is what is left
from the hedgehog continuous spherical distribution of
strings in the original Zel’dovich-Letelier interior solution.
It is a finite string almost detached from spacetime hanging
from a point. For the shell, which joins the inside and the

outside, one deduces it is now a point as r0 ¼ 0. Then, from
Eq. (23), since b ¼ 1 and r0 ¼ 0, the tangential stresses
tend to infinity, P → ∞, and thus the point r0 ¼ 0 is
singular, a type of singular horizon. For the outside, one has
that the spacetime is Minkowski as m ¼ 0. Thus, in a
nutshell, a Minkowski exterior spacetime hides a finite
string pit. For a t ¼ constant and, e.g., θ ¼ π

2
space

representation of the spacetime, see Fig. 1, where it is
clear that the packed region with matter is a pit with a string
hanging in the middle of flat space.
Note five important and interesting properties of this

class of string pit solution. First, the interior mass of the
Zel’dovich-Letelier-Schwarzschild star [1–5] in this limit
is hidden to the outside as it does not manifest itself
gravitationally to the outer space since m ¼ 0. Second, it is
also hidden because it is invisible since it is a quasiblack
hole [6–10]. It is thus invisible for two reasons. Third,
although m ¼ 0, its ratio to r0 is finite—indeed, 2m

r0
¼ 1.

These three features characterize an atypical quasiblack
hole. Thus, the dynamical gravitational collapse setting in
[11–14] for which a null naked singularity, i.e., a singular
horizon, forms when m ¼ 0 at r ¼ 0 and 2m

r ¼ 1 is also
established in the static case that we are analyzing.
Fourth, the mass defect, i.e., the proper mass minus the
energy of the assembled object given in Eq. (8), is
Δm ¼ mp −m ¼ mp, so we are in the presence of an
object with maximal mass defect; see also [15,16]. Fifth, it
is a Wheeler bag of gold [17,18] but is totally squashed.
For a study of the geodesics in this spacetime, see the

Appendix.

l p

r
0

flat space

= 2m = 0

finite

string pit

FIG. 1. A t ¼ constant and θ ¼ π
2
space representation of the

spacetime given by the Zel’dovich-Letelier-Schwarzschild star
with proper mass mp ¼ μ ¼ finite; actually mpð1 − bÞγ ¼ μ,
with γ ¼ 0 and b ¼ 1, and spacetime mass m ¼ 0. This class
has r0 ¼ 2m, so it is a quasiblack hole, an atypical one, as it
satisfies r0 ¼ 2m ¼ 0. The space inside is a region of matter
packed at the highest level, composed of a pit made of a one-
dimensional string with finite proper length, hung from a point
with r0 ¼ 0, which opens up to a massless m ¼ 0 Minkowski
spacetime, i.e., a flat space here. The point r0 ¼ 0 yields the
singular horizon of the quasiblack hole and joins the almost
detached string to the rest of the space. Note that although
m ¼ 0 and r0 ¼ 0 their ratio is finite, as 2m

r0
¼ 1. This object has

maximal mass defect. The representation of this class of string
pit solution shows clearly that the solution is a totally squashed
Wheeler bag of gold.
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B. A semi-infinite string in a pit, i.e., a string pit, almost
detached from spacetime hanging from a point

Here we find a semi-infinite string in a pit, a semi-infinite
string pit, almost detached from spacetime hanging from a
point, with indeed the spacetime mass m ¼ 0 and the
proper mass mp ¼ ∞. This is the class 0 < γ < 1

2
.

We are again interested in the limit in which r0 → 2m [see
Eq. (30)], i.e., the quasiblack hole state. It follows from
Eq. (25) that again this implies that b → 1; see Eq. (31). We
put 0 < γ < 1

2
in Eqs. (32)–(36) and analyze the main

spacetime features. From Eq. (32) we havem → 0, i.e.,m ¼
0 in the limit. Equation (33) yieldsmp ¼ ∞; the proper mass
is infinite. From Eq. (34), the total proper length lp is then
infinite. From Eq. (35) the surface area isA ¼ 0, and the area
radius of the boundary is r0 ¼ 0. From Eq. (36), the proper
volume for 0 < γ < 1

3
is zero (Vp ¼ 0), for γ ¼ 1

3
it is finite

nonzero (Vp ¼ 32μ3

3
), in which case it is a string or a rope

with zero cross section area and infinite length but finite
volume, and for 1

3
< γ < 1

2
it is infinite (Vp ¼ ∞).

Thus, the full spacetime can be understood as follows. The
inside solution is made of a one-dimensional string, with
infinite length, zero area, and zero, finite, or infinite volume
depending on the specific γ. That the inside spacetime is a
one-dimensional string can be also seen from the conical
form of the inside metric, where for b ¼ 1 one has that
r̄2ð1 − bÞ tends to zero as is the case for the range of γ under
study, and thus the angular part disappears, leaving a one-
dimensional space, i.e., a two-dimensional spacetime. This
packed region of matter inside, made of a lonely boundless
semi-infinite string in a pit almost detached from the outer
spacetime hanging from a point, is the remnant of the infinite
number of strings stemming radially from r ¼ 0 up to r0 in a
hedgehog distribution in the original Zel’dovich-Letelier
interior solution. For the shell that joins the inside and the
outside, one deduces it is now a point as r0 ¼ 0. Then, from
Eq. (23), since b ¼ 1 and r0 ¼ 0, the tangential stresses tend
to infinity, P → ∞, and thus the point r0 ¼ 0 is singular, a
type of singular horizon. For the outside, one has that the
spacetime is Minkowski as m ¼ 0. Thus, in a nutshell, a
Minkowski exterior space hides a semi-infinite string pit. For
a t ¼ constant and, e.g., θ ¼ π

2
space representation of the

spacetime, see Fig. 2, where it is clear that the region packed
with matter is a pit with a semi-infinite string hanging in the
middle of flat space.
Note also five additional important and interesting

properties of this class of string pit solutions. First, the
interior mass of the Zel’dovich-Letelier-Schwarzschild star
[1–5] in this limit is hidden to the outside, as it does not
manifest itself gravitationally to the outer space since
m ¼ 0. Second, it is also hidden because it is invisible
since it is a quasiblack hole [6–10]. Thus, it is invisible for
two reasons. Third, although m ¼ 0, its ratio to r0 is finite
—indeed, 2m

r0
¼ 1—these three features characterizing an

atypical quasiblack hole. Thus, the dynamical gravitational

collapse setting in [11–14] for which a null naked singu-
larity, i.e., a singular horizon, forms when m ¼ 0 at r ¼ 0

and 2m
r ¼ 1 is also established in the static case that we are

analyzing. Fourth, the mass defect, i.e., the proper mass
minus the energy of the assembled object given in Eq. (8) is
Δm ¼ mp −m ¼ mp ¼ ∞, so we are in the presence of an
object with infinite mass defect; see also [15,16]. Fifth, it is
a totally squeezed Wheeler bag of gold [17,18] if we allow
the bag to have infinite length.
The study of the geodesics in this spacetime can be done

along the lines sketched in the previous spacetime.

C. A compact stringy star at its gravitational radius

Here we find a compact stringy star at its gravitational
radius, with spacetime massm ¼ finite and the proper mass
mp ¼ ∞. This is the class γ ¼ 1

2
.

We are again interested in the limit in which r0 → 2m
[see Eq. (30)], i.e., the quasiblack hole state. It follows from
Eq. (25) that again this implies that b → 1; see Eq. (31).
We put γ ¼ 1

2
into Eqs. (32)–(36) and analyze the main

spacetime features. From Eq. (32) we havem ¼ μ, i.e.,m is
finite in the limit. Equation (33) yieldsmp ¼ ∞; the proper
mass is infinite. From Eq. (34), the total proper length lp is
then infinite. From Eq. (35) the surface area A ¼ 16πm2,
which is finite, and the area radius of the boundary r0 ¼ 2m

r
0

flat

lp = oo

= 2m = 0

space

string pit

FIG. 2. A t ¼ constant and θ ¼ π
2
space representation of the

spacetime given by the Zel’dovich-Letelier-Schwarzschild star
with proper mass mp ¼ infinite; actually mpð1 − bÞγ ¼ μ, with
0 < γ < 1

2
and b ¼ 1, and spacetime mass m ¼ 0. This class has

r0 ¼ 2m, so it is a quasiblack hole, an atypical one, as it satisfies
r0 ¼ 2m ¼ 0. The space inside is region of matter packed at the
highest level, composed of a pit made of a one-dimensional string
with infinite proper length, hung from a point with zero area
A ¼ 0 and r0 ¼ 0, and, depending on the parameter γ, with zero,
finite, or infinite volume, hung from a point with r0 ¼ 0, which
opens up to a massless m ¼ 0 Minkowski spacetime, i.e., a flat
space. The point r0 ¼ 0 yields the singular horizon of the
quasiblack hole and joins the almost detached semi-infinite
string to the rest of the space. Note that although m ¼ 0 and
r0 ¼ 0 their ratio is finite, as 2m

r0
¼ 1. This object has maximal

mass defect—indeed, infinite mass defect. The representation of
the semi-infinite string pit solution shows that the solution is
a totally squashed Wheeler bag of gold, although infinite in
this class.
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is also finite. From Eq. (36), the proper volume is
infinite, Vp ¼ ∞.
Thus, the full spacetime can be understood as follows.

The inside solution is made of a bulk and all the strings
from the original Zel’dovich-Letelier solution remain, but
they are now hidden in a spacetime inside a horizon at finite
nonzero area A and finite r0. Note that r̄0 is infinite in this
case and the inside space is therefore three dimensional, not
one dimensional as in the previous two classes. For the
shell that joins the inside and the outside, one deduces it is a
sphere with radius r0 ¼ 2m. Then, from Eq. (23), since
b ¼ 1, the tangential stresses tend to infinity (P → ∞), and
thus the horizon r0 is a null naked horizon. For the outside,
one has that the spacetime is Schwarzschild as m is finite
and not zero. In brief, the solution represents a compact
stringy star at the quasiblack hole state, made of strings
from r ¼ 0 to r0, the compact star’s boundary is a
quasihorizon, and the outside is Schwarzschild. This
solution is not a pit. For a t ¼ constant and, e.g., θ ¼ π

2

space representation of the spacetime, see Fig. 3, where it
clear that the region packed with matter has finite boundary
area radius r0 and unbound volume.
The five additional properties for this class of the

compact stringy star solution can be put in the form.
First, the interior mass of the Zel’dovich-Letelier-
Schwarzschild star [1–5] is not hidden in this class from
the outside, as it does manifest itself gravitationally to the
outer space since m is finite. Second, nonetheless it is still
invisible since it is a quasiblack hole [6–10]. Third, here
2m
r0

¼ 1 with m and r0 finite, so the solution is a quasiblack
hole, a typical one in this class. In the dynamical gravi-
tational collapse setting [11–14] there are also cases for
which 2m

r ¼ 1, withm finite, characterizing the formation of

a typical black hole, not a naked singularity. Fourth, the
mass defect, i.e., the proper mass minus the energy of the
assembled object given in Eq. (8), is Δm ¼ mp −m ¼
mp ¼ ∞, so we are in the presence of an object with infinite
mass defect; see also [15,16]. Fifth, this class does not
resemble a Wheeler bag of gold [17,18] at all.
The study of the geodesics in this spacetime can be done

along the lines sketched in the first spacetime.

V. CONCLUSIONS: SYNOPSIS,
THERMODYNAMICS, AND CONNECTION

TO OTHER WORKS

A. Synopsis of the three solutions

The main results of this work are the investigation of two
classes of string pit solutions with unusual interesting
structures and unusual interesting general relativistic gravi-
tational fields. There is also another class, a compact
stringy star solution that has standard properties. These
three classes, although obtained from an appropriate limit
of the Zel’dovich-Letelier-Schwarzschild star, stand on
their own as separate general relativistic solutions, if one
wishes to envisage them as such. In Table I, a summary of
the main features of the three classes parametrized by the
exponent γ is displayed.
Some properties of the solutions in the three

classes found here are as follows. (1) For the two first
classes, comprising the string pit solutions that arise as the
quasiblack hole limit of the Zel’dovich-Letelier-
Schwarzschild star, in spite of having in the core a nonzero
massmp, which in one class is arbitrarily large, this mass is
hidden, as it does not manifest itself gravitationally to the
outer spacetime since m ¼ 0. The third class, the compact
stringy star solution, does not possess this property: the
outer spacetime is Schwarzschild, and it has a finite

Schwarzschild

r
0

interior
space

FIG. 3. A t ¼ constant and θ ¼ π
2
space representation of the

spacetime given by the Zel’dovich-Letelier-Schwarzschild star
with proper mass mp ¼ ∞; actually mpð1 − bÞγ ¼ μ, with γ ¼ 1

2

and b ¼ 1, and spacetime mass m ¼ finite. This class has
r0 ¼ 2m, so it is a quasiblack hole, a typical one, as it satisfies
r0 ¼ 2m with m finite. The space inside is an infinite volume
region of matter, composed of the strings from the original
Zel’dovich-Letelier solution but now hidden in a spacetime inside
a horizon at finite nonzero r0 that is singular and joins the inside
to the curved Schwarzschild exterior space. Note that 2mr0 ¼ 1, as it
should be for a quasihorizon. This object has maximal—actually
infinite—mass defect. The representation of the compact stringy
star quasiblack hole solution shows that there is no Wheeler bag
of gold in this class.

TABLE I. The main physical features along with its values of
the three different classes of solutions, i.e., the first string pit
class, the second string pit class, and the compact stringy star
class, distinguished by the values of γ—namely, γ ¼ 0,
0 < γ < 1

2
, and γ ¼ 1

2
—are displayed. The physical features are

the spacetime mass m, the interior proper mass mp, the interior
proper length lp, the surface area at the junction A, and the
interior proper volume Vp. There is also the mass defect, i.e.,
the proper mass minus the spacetime mass or energy of the
assembled object, Δm ¼ mp −m, which can be taken directly
from the displayed values.

Class String pit1 String pit2 Compact stringy star

γ 0 ð0; 1
2
Þ 1

2

m 0 0 Finite
mp Finite Infinite Infinite
lp Finite Infinite Infinite
A 0 0 Finite
Vp 0 0, finite, infinite Infinite
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nonzerom. (2) The three classes of solutions are invisible to
the exterior since they are quasiblack holes, and as such no
particle or light emanates from them. (3) The three class of
solutions obey the quasiblack hole condition 2m

r0
¼ 1. The

two classes of string pit solutions are remarkable because
they not only obey this condition but have in addition
m ¼ 0 and r0 ¼ 0, and they are indeed atypical quasiblack
holes. These are the static solutions akin to the naked
singularities, i.e., singular horizons, that form in dynamical
gravitational collapse when m ¼ 0 at r ¼ 0, and 2m

r ¼ 1.
The class of the compact stringy star solution has finite m
and finite r0 and represents typical quasiblack holes, akin to
the black holes that form in dynamical gravitational
collapse with m finite and some finite horizon radius r.
Surprisingly, these classes of static solutions yield the same
spectrum that appear in critical gravitational collapse.
Indeed, in gravitational collapse there are solutions that
yield naked null singularities that correspond here to the
two string pit classes of solutions that also have naked null
singularities, there are solutions that yield black holes that
correspond to the class of compact stringy stars at the
quasiblack hole limit, and the solutions that disperse away
in gravitational collapse here are the static Zel’dovich-
Letelier-Schwarzschild stars that we considered initially.
(4) In the three classes, the mass defect, i.e., the proper
mass mp minus the spacetime mass m of the assembled
objects, is maximal. In the first class of string pit solutions
the mass defect is finite and maximal, and in the other two
classes, i.e., the second class of string pit solutions and the
compact stringy star solution, it is a superstrong mass
defect—it is infinite. Moreover, as far as the gravitational
mass defect is concerned, we have obtained general results
—indeed, we have shown that the maximal mass defect
result can be obtained without specifying any equation of
state. The Zel’dovich-Letelier-Schwarzschild star is a
realization of the general result. (5) For the two first
classes, i.e., the two string pit solutions, one finds
Wheeler bags of gold, albeit totally squashed ones. The
third class, the compact stringy star solution, has no bag.
The discovery of these three classes and the interpretation
of them has benefited from several works [1–18].

B. Thermodynamics of the three solutions

It is also of interest to study the thermodynamic behavior
of the string pits and stringy compact star quasiblack hole
solutions which have an equation of state pr ¼ −ρ for their
interior. The appropriate thermodynamic formalism has
been developed and is ready [19,20]. When studying the
thermodynamics of each system, we suppose that a local
temperature T has been assigned to it. We deal with the
main features of the temperature distribution and the
entropy of the solutions, one at a time.
In relation to the temperature, in a gravitational system

one has the Tolman temperature formula T ¼ T0ffiffiffiffiffiffiffiffiffiffi
1−2mðrÞ

r

p , for

some local temperature T of the system, which in general is
different for each sphere with radius r, i.e., T ¼ TðrÞ, and a
temperature at infinity T0, say, which has some constant
value. Now, throughout the interior, for the string pit and

the stringy star solutions one has that 2mðrÞ
r is a constant—

indeed, 2mðrÞ
r ¼ b—and since T0 is a constant, the whole

interior solution, for any r, has the same local temperature
TðrÞ ¼ T0ffiffiffiffiffiffi

1−b
p , a constant, so we can speak of an isothermal

interior. Moreover, considering T of the system finite, in the
limit b ¼ 1 we then have T0 ¼ T

ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p ¼ 0, so a remote
observer will measure a vanishing temperature T0, T0 ¼ 0,
for these solutions. Usually, zero T0 is a feature of an
extreme quasiblack hole or of an extreme black hole.
However, the systems we have analyzed are nonextremal.
Thus, it seems that the string pits and the stringy star
combine features of nonextremal and extremal quasiblack
holes and black holes [19,20].
In relation to the entropy, the entropy of a nonextremal

quasiblack hole is S ¼ 1
4
Aþ, where Aþ ¼ 4πr2þ is the

horizon area, with rþ being the horizon radius. Thus, it
is the Bekenstein-Hawking formula for the entropy. Taking
the limit b ¼ 1, r0 is the radius of the system at the
quasihorizon, r0 ¼ rþ. For the string pits when b ¼ 1,
r0 ¼ rþ ¼ 0, and thus S ¼ 0. Thus, entropically speaking,
it has an extremal quasiblack hole behavior [20]. For the
stringy star, r0 ¼ rþ is finite and thus S ¼ 1

4
Aþ, which is a

typical nonextremal quasiblack hole behavior.

C. Connections of the three solutions to other works

There are relevant and related solutions to the
Zel’dovich-Letelier interior that have the mass function

mðrÞ obeying 2mðrÞ
r ¼ b but not being string dust; i.e., the

equation of state is not pr ¼ −ρ. These interior related
solutions when matching to a Schwarzschild exterior do not
give the Zel’dovich-Letelier-Schwarzschild stars that we
have been treating.
One example of such solutions is notable. In general

relativity, using the Toman-Oppenheimer-Volkoff equation
abbreviated usually to TOV equation, for the hydrostatic
equilibrium of a spherically symmetric configuration with
matter having an equation of state of the form p ¼ −qρ,
with p a perfect fluid pressure and q some number, one
finds that the energy density ρ is proportional to 1

r2 andmðrÞ
indeed obeys 2mðrÞ

r ¼ b, as reported with distinction in [21–
23] and wrapped up and developed in [24,25]. This general
relativistic solution is called an isothermal perfect fluid
solution because it is a generalization, albeit a nonisother-
mal one, of the Emden equation for isothermal spheres
made of an ideal gas in Newtonian gravitation.
There are other instances where 2mðrÞ

r ¼ b appears. We
mention regular black holes [26] where the solutions
besides the pr ¼ −ρ equation also have tangential pressure
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pt support, and general relativistic solutions coupled to
nonlinear electrodynamics which have similar features
[27]. We also allude to a thermodynamic treatment of
the semiclassical degrees of freedom of a black hole which
yields the expression 2mðrÞ

r ¼ b as a plausible equation [28].
One can only express wonder at all these interconnec-

tions from so many different settings.
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APPENDIX: GEODESICS IN THE SPACETIME
OF CASE A. A FINITE STRING IN A PIT, I.E.,
A STRING PIT, ALMOST DETACHED FROM

SPACETIME HANGING FROM A POINT

1. Timelike geodesics

Here, we study radial timelike geodesics of the spacetime
of case A. above, i.e., a finite string in a pit almost detached
from spacetime hanging from a point, with m ¼ 0 and
mp ¼ finite. A radial geodesic has as one of its equations

the equation ð1 − 2mðrÞ
r Þ_t ¼ E, where the dot indicates the

derivative with respect to proper time τ and E is a constant
representing the energy per unit mass of the massive test
particle along the geodesic. The other equation is
ð1 − 2mðrÞ

r Þ_t2 − _r2

1−2mðrÞ
r

¼ 1. Combining the two, one gets

_r2 ¼ E2 − 1þ 2mðrÞ
r . Thus, dτ ¼ � drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2−1þ2mðrÞ
r

p . For the

inside 2mðrÞ
r ¼ b, so letting a massive test particle fall from

some r in the inside region to the center gives the proper
time τ ¼ R

r
0

dr0ffiffiffiffiffiffiffiffiffiffiffiffi
E2−1þb

p , which yields τ ¼ rffiffiffiffiffiffiffiffiffiffiffiffi
E2−1þb

p . If the

particle comes from r0 with E ≥ 1, then

τin ¼
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − 1þ b
p : ðA1Þ

In the limiting spacetime, b → 1 and r0 → 0 yields τin ¼ 0.

2. Null geodesics

Here, we study radial null geodesics of the spacetime of
case A. above, i.e., a finite string in a pit almost detached

from spacetime hanging from a point, with m ¼ 0 and
mp ¼ finite. For a null geodesic ds2 ¼ 0. Thus, the time
between the center and some r is t ¼ R

r
0

dr0

1−2mðr0Þ
r0
. For the

inside 2mðrÞ
r ¼ b, so the time between the center and the

boundary r0 is

tin ¼
r0

1 − b
: ðA2Þ

In the limiting spacetime, b → 1 and r0 → 0, and
taking into account Eqs. (16) and (17) with mp finite,
one has tin → ∞ with 1ffiffiffiffiffiffi

1−b
p . The time between r0 and

some r1 > r0 is tout ¼
R
r1
r0

dr
1−2mðr0Þ

r

¼ R
r1
r0

dr
1−br0

r

¼ R
r1
r0

drr
r−br0

¼
r1 − r0 þ br0 ln

r1−br0
r0ð1−bÞ, i.e.,

tout ¼ r1 − r0 þ br0 ln
r1 − br0
r0 − br0

: ðA3Þ

When b → 1, tout → ∞. The divergences of tin are stronger
than those of tout.

3. Redshift and blueshift of light

Now we analyze the redshift and blueshift of light of the
spacetime of case A. above, i.e., a finite string in a pit
almost detached from spacetime hanging from a point, with
m ¼ 0 and mp ¼ finite. According to the standard for-
mulas,

ω ¼ ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðrÞ

r

q ; ðA4Þ

where ω is the frequency measured by a local static
observer at a given point r and ω0 is a constant. Inside,

one has 1 − 2mðrÞ
r ¼ 1 − b, and outside 1 − 2mðrÞ

r ¼ 1 − 2m
r .

Thus, inside, for r ≤ r0, the frequency of light does not
change as it propagates. On the other outside, r ≥ r0, one
can put ω0 ≡ ω∞, the frequency at infinity. Therefore,
when light goes from r0 to an even larger r, it will arrive at
infinity with ω∞ ¼ ω

ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p
. In the limit b → 1, we have

an infinite redshift, as expected for a quasiblack hole. If
light with finite ω∞ comes from infinity and enters the inner
region, it has ω ¼ ω∞ffiffiffiffiffiffi

1−b
p there.
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