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1Institut d’Astrophysique de Paris, CNRS UMR 7095, Université Pierre & Marie Curie - Paris VI,
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This article describes the dynamics of a charged particle in an electromagnetic field in presence of a
scalar fifth force. Focusing to the fifth force that would be induced by a chameleon field, the profile of
which can be designed properly in the laboratory, it draws its physical effects on the cyclotron motion of a
particle in a static and uniform magnetic field. The fifth force induces a drift of the trajectory that is
estimated analytically and compared to numerical computations for profiles motivated by the ones of a
chameleon field within two nested cylinders. The magnitude of the effect and the detectability of this drift
are discussed to argue that this may offer a new experimental design to test small fifth force in the
laboratory. More important, at the macroscopic level it induces a current that can in principle also be
measured, and would even allow one to access the transverse profile of the scalar field within the cavity. In
both cases, aligning the magnetic field with the local gravity field suppresses the effects of Newtonian
gravity that would be several orders larger than the ones of the fifth force otherwise and the Newtonian
gravity of the cavity on the particle is also argued to be negligible. Given this insight, this experimental
setup, with its two effects—on a single particle and at the macroscopic level—may require attention to
demonstrate its actual feasibility in the laboratory.

DOI: 10.1103/PhysRevD.102.044059

I. INTRODUCTION

The search for a fifth force of nature has a long history
[1–3] related to the developments of the theories of
gravitation beyond Newton and Einstein gravity. The
existence of a scalar interaction [4] has been revived by
the development of theories of gravitation beyond general
relativity since the existence of any new field may lead to a
new long range force, depending on the nature of this new
degree of freedom.
Within the framework of scalar-tensor theories of gravi-

tation [5], the extra scalar degree of freedom, ϕ, is
characterized by its potential VðϕÞ and its coupling to
matter AðϕÞ, so that the action of the theory, in the Einstein
frame, is

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�

−
Z

d4xLmðg̃μν;matterÞ
ffiffiffiffiffiffi−g̃p

; ð1Þ

with MPl the reduced Planck mass, R the Ricci scalar, gμν
the Einstein frame metric, g its determinant and Lm the
matter Lagrangian. The field couples nonminimally to
matter through the Jordan frame metric g̃μν ¼ A2ðϕÞgμν,
where AðϕÞ is a universal coupling function.
If this field is massless, or its Compton wavelength

is larger than the size of the Solar system, one can constrain
its effects thanks to the parametrized post-Newtonian
formalism [6,7]. If the field is heavier, its action can be
well described by a Yukawa deviation from Newtonian
gravity. Such Yukawa deviations, composition indepen-
dent or dependent, have been tested from the submilli-
meter scales to the Solar system scales and cosmology
[8–12], with recent stringent constraints obtained from the
MICROSCOPE experiment [13,14].
If the coupling is universal then the scalar-tensor theory

satisfies the weak equivalence principle. Besides, among
those theories of gravity, general relativity and Nordström
theory which describes it by a scalar field in flat spacetime,
share the unique property to embody the strong equivalence
principle; see, e.g., Ref. [15]. If the coupling is not
universal, then the weak equivalence principle is violated
and one expects a space-time variation of the fundamental
constants, that can be tested in their own way [16–18].
Light scalar field models can survive only if their coupling
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is extremely weak today, which can be ensured in a large
class of models by an attraction mechanism toward general
relativity during the cosmic history [19,20]. Another class
of models, including the symmetron [21] and the chame-
leon [22,23] mechanisms, enjoy a screening mechanism in
which the coupling or the mass of the field depends of the
local matter density of matter. It follows that the environ-
ment can suppress the scalar force.
Many experimental setups have been proposed to test the

chameleon mechanism in the laboratory, see Ref. [13,
24–27] for reviews. This includes atomic spectroscopy
[28]; atom interferometry [29–34], Casimir force measure-
ment between plates [35,36], that have extensively been
used to test the inverse square law on submillimeter scales
[37,38]; the spectrum of ultracold neutrons in the Earth
gravitational field [39,40]; torsion balance experiments
[41–43]; neutron interferometry [44].

A. Goal

The driving idea we want to investigate in this article, is
to use the environmental setup to design the profile of the
scalar field inside the experiment, and hence the one of
the fifth force. To that end, we rely on the results we
obtained recently [45,46] to determine the propagation of
the chameleon field inside the MICROSCOPE satellite
experiment. Hence, we have been able to compute the
chameleon profiles (1) for one-dimensional systems made
of parallel plates and (2) two-dimensional systems as inside
a set of nested cylinders. Indeed when the axes of the
cylinders are parallel but not coincident, hence shifted by δ,
the field distribution is no more cylindrically symmetric. It
follows that the fifth force will modify the trajectory of any
particle trapped between the cylinders. It is important to
stress that in the chameleon situation, we can screen the
experiment from the outside and design the profile of the
fifth force inside the cavity. It will depend on the geometry
of the cavity, the density inside the cavity and the para-
meters of the theory. This is a major difference with a light
dilaton. The idea is thus to consider a charged particle in an
electromagnetic field and determine the effect of the fifth
force. Then, the system we shall consider is the trajectory
of a particle orbiting inside two cylinders, or two parallel
walls. This can be easily achieved thanks to a magnetic
field. This latter case may offer an interesting setup to
design an experiment. The Appendix gives equations for
the acceleration of a particle by an electric field in a
capacitor with parallel walls, and adding a magnetic field,
in order to determine if the fifth force affects the Hall
tension. As we shall see, this does not offer an interesting
method.
To that goal, we first derive in Sec. II the general

expression of the fifth force acting on a relativistic particle
and its equation of motion in presence of an electromag-
netic field; note that some subtleties concerning the fifth
force have to be considered. We shall then focus in Sec. III

on the case of a static and uniform magnetic field and study
the effect of the fifth force on the trajectory of the particle.
As we shall explain, the fifth force induces a drift of the
cyclotron motion with an amplitude and direction that
depends on the characteristics of the fifth force. In Sec. IV
we describe the macroscopic consequences of this drift. We
will give estimates in order to discuss whether this can be
measured and we will also compare it, in Sec. V, to the
reaction force arising from the radiation emitted by any
charge particle. This will provide all the elements for
discussion on the possibility to use such a setup as a new
experiment to constrain the existence of a fifth force. This
analysis provides the first elements to discuss this pos-
sibility but also to estimate the possible effects of this scalar
field on the propagation of high energy charged particle in
the universe.

B. Setup

While most of our results will not depend on the specific
choice of the coupling and the potential, let us be more
specific on the choices that will be used for our numerics.
We consider that the coupling function and potential are of
the form

A ¼ eβϕ=MPl ; V ¼ Λ4

�
1þ Λn

ϕn

�
ð2Þ

whereΛ is a mass scale, n a natural number and β a positive
constant. It follows that the Klein-Gordon equation
involves an effective potential that depends on the local
the mass density ρ,

□ϕ ¼ dVeff

dϕ
; Veff ¼ VðϕÞ þ β

MPl
ρϕ: ð3Þ

In our previous works, we have determined the profile
of the scalar field for two parallel walls and two nested
coaxial cylinders [45,46] and when their axes is shifted
[46]. In the latter case, the profile is no more cylindrically
symmetric so that a force appears between the two cylin-
ders. In this work, we consider the trajectory of a particle of
charge q and mass m.
Let us emphasize that the electromagnetic field does

not modify the scalar field profile since external matter
enters the Klein-Gordon equation only by a coupling to the
trace of the stress-energy tensor through T lnAðϕÞ in the
effective potential (3). We consider the Cartesian basis
ðex; ey; ezÞ and cylindrical basis ðer; eθ; ezÞ aligned with the
magnetic field.

II. DYNAMICS OF A CHARGED PARTICLE

A. Fifth force

Since the matter fields couple to the metric A2ðϕÞgμν the
equation of a point particle of mass m and charge q derives
from the action
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Spp ¼ −c2
Z

mðϕÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνuμuν

p
dτ þ q

Z
Aμuμdτ ð4Þ

where τ is the proper time and uμ the tangent vector to the
worldline, i.e., uμ ¼ dXμ=dτ and satisfies uμuμ ¼ −c2 and
Aμ the potential vector. Since we are considering particle,
i.e., weakly self-gravitating bodies, the mass functionmðϕÞ
reduces to mAðϕÞ with m constant, the Jordan mass, such
that particles with q ¼ 0 follow geodesic of the metric g̃μν.
The equation of motion is

mc2γμ ¼ q
AðϕÞF

μ
νuν −mc2

∂ lnA
∂ϕ ⊥μν∇νϕ ð5Þ

with γμ ≡ uν∇νuμ ¼ duμ=dτ is the 4-acceleration and
satisfies γμuμ ¼ 0, Fμν ¼ ∂μAν − ∂νAμ the Faraday tensor,
⊥μν ≡ gμν þ uμuν=c2 the projector on the 3-space normal
to uμ, which indeed ensures that uμuμ ¼ −c2; see e.g.,
Ref. [17]. It follows that the fifth force,

Fμ ¼ −mc2
βðϕÞ
MP

⊥μν∇νϕ; ð6Þ

remains perpendicular to the 4-velocity, uμFμ ¼ 0. Indeed,
this equation is 4-dimensional and we shall see below that
in the 3-dimensional language, it is associated to a non-
vanishing work. β, defined by

βðϕÞ ¼ MP
d lnA
dϕ

; ð7Þ

characterizes the sensitivity of the mass to a variation of the
scalar field; it is dimensionless. Clearly, in the Galilean
limit the projector plays no role. Note also that the Lorentz
force is proportional to q=AðϕÞ, the factor A arising from
the fact that the Einstein mass is mAðϕÞ. From now on, we
work in units in which c ¼ 1.

B. Equations of motion

In the Newtonian limit gμν reduces to the Minkowski
metric ημν and the geodesic is given in 3-dimensional
notations Xμ ¼ ðT;XÞ. We define the 3-velocity and
3-acceleration as

V ¼ dX
dT

; a ¼ dV
dT

; ð8Þ

where we use the convention that V have coordinates Vi

with i ¼ 1…3. With these notations (see Ref. [47] for
details), the scalar product is indeed a:V ¼ δijaiVj and
we have

u0 ¼ dX0

dτ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p ; ui ¼ dXi

dτ
¼ Viffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p

with V2 ¼ δijViVj and

γ0 ¼ a:V
ð1 − V2Þ2 ; γi ¼ 1

1 − V2

�
ai þ a:V

1 − V2
Vi

�
:

The scalar force reduces to the Nordström force [4] (see
also Sec. 10.3 of Ref. [47]) and, once the Faraday tensor is
decomposed as F0i ¼ −Ei, Fjk ¼ eijkBi with eijk the Levi-
Civita symbol, the Lorentz force has components

F0
L ¼ q=AðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p E:V; FL ¼ q=AðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p ðEþ V ∧ BÞ ð9Þ

and the equation of motion (5) splits as

ma:V
ð1 − V2Þ2 ¼

q=AðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p E:V −
m
MP

β
V:∇ϕ

1 − V2
; ð10Þ

m
1−V2

�
aþ a:V

1−V2
V

�
¼ q=AðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1−V2
p ½EþV ∧B�

−
m
MP

β

�
∇ϕþðV:∇ϕÞ

1−V2
V

�
;

ð11Þ

respectively for the time and space components.
Equation (11) can be rewritten in a more compact
form as

d
dT

�
mVffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
�

¼ q
AðϕÞ ½Eþ V ∧ B�

−
m
MP

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p �
∇ϕþ ðV:∇ϕÞ

1 − V2
V

�
:

ð12Þ

This form makes explicit the 3-momentum P≡mV=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
so that the right-hand side (rhs) is just the sum

of the 3-dimensional form of the 2 forces, f em þ f 5. Note
also that once multiplied by V and using Eq. (10), it takes a
form closer to the standard Newton third law,

ma
1 − V2

¼ q=AðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ½Eþ V ∧ B − ðE:VÞV� − m
MP

β∇ϕ:
ð13Þ

This provides the general relativistic equations of propa-
gation of a charged particle in an electromagnetic field in
presence of a fifth force.

C. Conservation of energy

For a static field with Aμ ¼ ðΦE;AÞ, it is easily checked
that Eq. (10), with use of the definition (7), implies that

d
dT

�
mAðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p þ qΦE

�
¼ 0 ð14Þ
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for any static configuration of the fields, hence the con-
servation of the energy of the particle

E ≡ mAðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p þ qΦE: ð15Þ

The point particle action is easily rewritten as
R
LdT

defining the Lagrangian

L ¼ −mAðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
þ qA:V − qΦE ð16Þ

from which we deduce the conjugate momenta

π ¼ mAðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p V þ qA: ð17Þ

Indeed, the Hamiltonian H ¼ π:V − L reduces to the
expression (15) of the energy or equivalently to

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2A2ðϕÞ þ ðπ − qAÞ2

q
þ qΦE: ð18Þ

As we shall see, the Lagrange equations

dπ
dT

¼ ∇L

will provide additional conserved quantities once the
symmetries of the problem are specified.

III. PARTICLE IN A MAGNETIC FIELD

We now assume that the particle is subject to a static and
uniform magnetic field, parallel to the axis of the cylinders,
B ¼ Bez. It follows that

AðrÞ ¼ 1

2
B ∧ r ¼ 1

2
Breθ ð19Þ

and the cyclotron pulsation

ω0 ¼
qB
m

; ð20Þ

is of the order of

ω0 ¼ 9.5 × 107 Z

�
B
1 T

��
m
mp

�
−1

s−1; ð21Þ

mp being the proton mass and Z the charge number.

A. Cyclotron motion

When the fifth force vanishes, the equations of motion
are easily integrated to give

du0;3

dτ
¼ 0;

du1

dτ
¼ ω0u2;

du2

dτ
¼ −ω0u1; ð22Þ

the solution of which is

X ¼ R0 sinω0τ; Y ¼ R0 cosω0τ;

Z ¼ UZτ; T − T0 ¼
ω0

Ω
τ: ð23Þ

with UZ, T0 and R0 constants of integration and

Ω ¼ ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

0ω
2
0 þU2

Z

p : ð24Þ

The charge travels on an helix of radius R0 and pitch
2πUZ=ω0 about B with an angular velocity ω0 (the
cyclotron frequency) when measured with its proper
time and Ω (the synchrotron frequency) when measured
with the coordinate time T of the inertial frame. Note
that since V2 ¼ ðR2

0ω
2
0 þ U2

ZÞ=ð1þ R2
0ω

2
0 þ U2

ZÞ we have

Ω ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
. We deduce that the Larmor radius is

given by

R0 ¼
V

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p sinψ ; UZ ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p cosψ ; ð25Þ

ψ being the pitch angle.

B. Conserved quantities

In the configuration considered here, the electric field
vanishes and the magnetic field has been chosen as
B ¼ Bez and the field configuration as ϕðx; yÞ. It follows
from Eq. (13) that

a:ez ¼ 0 ð26Þ

so that Vz remains constant. In the following we shall
assume Vz ¼ 0 so that the motion is reduced to a plane
perpendicular to z.
Then, Eq. (17) implies that the motion satisfies the

constraint

dπθ
dT

¼ −mAðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
∂θ lnA ð27Þ

so that πθ, given by

πθ ¼ mr2
�

AðϕÞ_θffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p þ 1

2
ω0

�
; ð28Þ

can be identified with the angular momentum and con-
served if ϕ has an axial symmetry, i.e., if the fifth force is
radial. We also recall that the energy
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E ¼ mAðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ð29Þ

will be conserved.

C. Nonrelativistic cyclotron motion

1. Nonrelativist equations

In the nonrelativistic regime the equation of motion (13)
reduces to

a ¼ ω0

AðϕÞ v ∧ ez − β∇φ;

with φ ¼ ϕ=MP. Even if the gradient of ϕ can be important,
A remains close to unity because φ ≪ 1 (see Fig. 8 below
for a concrete numerical example). So we shall approxi-
mate the dynamics by

a ¼ ω0v ∧ ez − β∇φ; with ω0 ¼
qB
m

; ð30Þ

i.e., A ∼ A0 ¼ 1. We assume that the two cylinders have
axis parallel to ez so that the scalar field profile is inde-
pendent of z, i.e., ϕðx; yÞ or ϕðr; θÞ in either Cartesian
coordinates or cylindrical coordinates. Hence, we got the
system

�
ẍ ¼ ω0 _y − βc2∂xφ

ÿ ¼ −ω0 _x − βc2∂yφ
: ð31Þ

It can trivially be checked that the conserved quantities
reduce to

E ¼ 1

2
ð_x2 þ _y2Þ þ βc2φ ¼ 1

2
ð_r2 þ r2 _θ2Þ þ βc2φ ð32Þ

for the massic energy (29), that is indeed conserved and the
angular momentum per unit mass (28)

lz ¼ r2
�
_θ þ 1

2
ω0

�
ð33Þ

is conserved only for cylindrically symmetric field con-
figuration since

_lz ¼ βc2∂θφ: ð34Þ

2. Orders of magnitude

To put some numbers, the pulsation is given by Eq. (21)
so that the radius of the trajectory in absence of a fifth
force is

R0¼1.4×10−4
�

E0

1 eV

�
1=2

�
m
mp

�
1=2

Z−1
�

B
1T

�
−1

m: ð35Þ

3. Dynamics with no fifth force

We have already discussed the free motion in full
generality. We just need to add the connection to the initial
conditions and consider a new description of the motion.
Assume that at t ¼ 0 the trajectory starts at ðx0; y0Þ with

velocity ðV0 cos α; V0 sin αÞ, its equation is then

�
x ¼ xc þ R0 sin ðω0t − αÞ
y ¼ yc þ R0 cos ðω0t − αÞ ð36Þ

with

R0 ¼ V0=ω0;

�
xc ¼ x0 þ R0 sin α

yc ¼ y0 − R0 cos α
: ð37Þ

R0 can be negative with our convention. This is indeed
trivial but it emphasizes that the center of the motion is not
the center of the coordinates system because the magnetic
force is not a central force. It is easily checked that

lz ¼
1

2
ðr2c − R2

0Þω0; E ¼ 1

2
R2
0ω

2
0

so that E ¼ V2
0=2 gives the relation between the radius of

the orbit and the pulsation.
Since

( dθ
dt ¼ lz

r2 −
1
2
ω0

ðdrdtÞ2 ¼ 2E − r2
�
lz
r2 −

1
2
ω0

	
2 ; ð38Þ

the minimum and maximum radius of the trajectory are
given by

r� ¼
ffiffiffi
2

p

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E þ lzω0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE þ lzω0Þ

pq

that satisfy rþ − r− ¼ 2R0 as expected. Now, obviously θ
is not constant so that the period of the motion cannot be
extracted directly, however, since dt ¼ dr=_r, we have from
Eq. (38) that

t ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E − r2ðlzr2 − 1

2
ω0Þ2

q ;

so that the period of the motion is

T
2
¼

Z
rþ

r−

2rdr=ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2− − r2Þðr2 − r2þÞ

p ¼ π

ω0

: ð39Þ

Note also that Eq. (38) shows that the dynamics is the one
of a point particle with a potential ðω2

0r
2=4 − lzω0Þ=2, that

is nothing but the centrifugal potential. This may sound as a
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complicated way of describing a simple result but this can
be easily generalized to the case of a perturbing force.

4. Radial force

As can be trivially seen from Fig. 1, the magnetic force is
indeed not radial. It points toward the local center of
curvature. With our definition ϕ=MP ¼ φðrÞ the force per
unit mass is F ¼ βc2φ0ðrÞer. Since the field enjoys a
cylindrical symmetry, the angular momentum (33)–(34)
is conserved. We deduce that

( dθ
dt ¼ lz

r2 −
1
2
ω0

ðdrdtÞ2 ¼ 2E − r2
�
lz
r2 −

1
2
ω0

	
2
− 2βc2φðrÞ

; ð40Þ

which is a simple extension of Eq. (38). This shows that the
dynamics is similar to the one of a point particle of unit
mass in the effective potential

Ueff ¼ βφðrÞ þ r2

2

�
lz

r2
−
1

2
ω0

�
2

:

The integration of Eq. (40) by quadrature gives

t ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − βc2φðrÞÞ − r2ðlzr2 − 1

2
ω0Þ2

q ; ð41Þ

θ ¼
Z ðlz=r2 − ω0=2Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðE − βc2φðrÞÞ − r2ðlzr2 − 1
2
ω0Þ2

q ð42Þ

which gives the equation of the trajectory in the parametric
form ftðrÞ; θðrÞg. The turning points are solution of

_r ¼ 0: ð43Þ

They delimit the domain of the allowed motion. If this
domain is of the form ½r−; rþ� then the trajectory is
restricted to an annulus and, thanks to Bertrand theorem
(1873), we know that the trajectory will be periodic only if
φ ∝ r2 or 1=r.
Numerically, once we set the initial conditions ðx0; y0Þ

and V0ðcos α; sin αÞ it is obvious that r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
,

θ0 ¼ arctanðy0=x0Þ, _θ0 ¼ ðV0=r0Þ sinðα − θ0Þ so that the
energy and angular momentum are E ¼ V2

0=2þ βc2φðr0Þ
and lz ¼ r20ð_θ0 þ ω0=2Þ, which determines the annulus of
allowed trajectories. As an example, we consider the
potential φ ¼ a=r, with a a constant with units of length.
When a → 0 we recover the free trajectory which is then
drifting along the center defined by the central force, as
shown on Fig. 2 (the values of the parameters are not meant
to be realistic but chosen to illustrate the properties of the
trajectory). Note also that by tuning the initial conditions,
we can either get a small trajectory drifting in between the
cylinders or a large trajectory precessing around the inner
cylinder.
Since the fifth force is small compared to the magnetic

force, we can estimate the period of the drift from the fact
that in the guiding center approximation [48], the drift
velocity is

vdrift ¼
F ∧ B
qB2

; ð44Þ

which holds as long as the force can be considered constant
on the scale of the gyroradius, a condition that is satisfied
for our models. For a radial force −mβc2φ0er and a
magnetic field along ez this leads to an orthoradial velocity,

vdrift ¼
βc2φ0

ω0

eθ ð45Þ

that is to the pulsation of the drift of the trajectory of C
around O as

ωdrift ¼
βc2φ0

rω0






r¼rc

: ð46Þ

This is indeed an approximation which works well when
the force is small and when the gradient of the fifth force is

FIG. 1. The geometry of the problem. The magnetic force Fm is
perpendicular to the motion and thus points locally toward the
center of curvature C of the trajectory. The dashed circle
represents the pure magnetic trajectory. The perturbative force
F, even if it is central is not parallel to Fm unless C ¼ O. We call
“radial” a force for which there exists a coordinate system such
that ϕðrÞ, i.e., such that the force points toward O. The magnetic
force points toward the local curvature center and is thus not
radial but simply perpendicular to the trajectory.
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small on the scale of the gyroradius. Figure 3 shows that it
gives an excellent estimation of the drift pulsation.

5. Radial chameleon

The previous analysis shows that a tiny central force will
modify the cyclotron motion in two ways: (1) by extending
the zone of allowed trajectories and (2) by making the
trajectory drift. For a fifth force of small amplitude we are
mostly interested by the latter effect.
The advantage of the chameleon field is that we can

“engineer” the profile of the field inside the cavity. If the
two cylinders have the same axis, then the experiment enjoys
a cylindrical symmetry and φðrÞ so that the fifth force is
radial. The simulations we are using [45,46] assume that
Rin¼0.2m, Rout¼0.6m, ρmat¼8.125 g:cm−3 (typical of
invar) for the cylinders and ρin ¼ 10−3ρ for the intercylinder
region. The theory assumes Λ ¼ 1 eV, n ¼ 2, β ¼ 1.
The free parameters at hand are ω0 (fixed by the choice

of the particle and the magnetic field) and V0 (fixed by the
initial kinetic energy. This defines the radius of the free
trajectory. If we start from ðx0; y0Þ ¼ ð0.2; 0Þ [in meter]
with α ¼ π=2 we need R0 ¼ 0.2 m for the trajectory to
remain inside the two cylinders. Assume that

φ ¼ ða=rÞ ð47Þ

so that F ¼ −βac2=r2 that we normalize to have an
amplitude of F0 ¼ βac2=r2c ∼ 10−7 N=kg on rc ¼ 0.4 m
so that F ¼ −F0ðrc=rÞ2. It follows that we get

ωdrift ¼
F0

rω0

:

This shows that the time for the orbit to drift from a distance
R is τ ¼ R=rcω0. We have the constraints that V0 < c
while we want to optimize the drift. To get some insight let
us consider the time for the orbit to drift from a length R
and ask whether this could be smaller to a time scale of
some hours. This sets the constraints
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2

FIG. 2. Example of a central force φ ¼ a=r. The solid red circle
corresponds to the free motion (a ¼ 0) while the dashed red
circles define the annulus of allowed trajectory when there is no
fifth force. We have represented the initial conditions (initial point
and initial velocity) as well as the center of the magnetic
trajectory (black dot). When a ≠ 0 the two black circles represent
the turning radii defining the annulus of allowed trajectories.
When βac2 is small (top: βac2 ¼ 0.1 m3=s2) the free trajectory
precesses slowly inside this annulus. When a is larger (middle:
βac2 ¼ 1 m3=s2), the trajectory can explore regions forbidden in
absence of the fifth force. The last example considers the case in
which the center of the free magnetic motion is O so that it will
the static circular trajectory is deformed in a precessing ellipse
(βac2 ¼ −0.3 m3=s2). All plots assume ω0 ¼ 0.5 s−1, V0 ¼
0.7 m=s and x0 ¼ 1 m.
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FIG. 3. Comparison of the variation of θðtÞ with the drift ωdriftt
[left] and of the residue θ − ωdriftt to the θðtÞ for the free motion
with an arbitrary offset to compare the curves [right]. Parameters:
ω0 ¼ 2, a ¼ 0.1, V0 ¼ 0.7, x0 ¼ 1 m.
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R0ω0ðB;m; ZÞ < c; τðR;B;m; ZÞ ¼ Rω0

F0

< Texp;

ð48Þ

Texp being the duration of the experiment. The second
relation implies that if R ∼ R0, i.e., a drift comparable to the
gyroradius, then R0ω0 < 3.6 × 10−4 m=s for F0 ∼
10−7 N=kg so that the first constraint will always be
satisfied. Using Eq. (21), this implies

�
B
1 T

��
m
mp

�
−1

< 3.8 × 10−9
ðTexp=1 hÞ

Z

×

�
F0

10−7 N=kg

��
R

10−3 m

�
−1

ð49Þ

which gives the constraint on ðB;mÞ that would allow one
to observe a drift of R on a time scale of Texp. As can be
read from Fig. 4, a typical drift of 1 μm on a timescale
smaller than 1 hr could be observed for a magnetic field of
1 mT and a particle of 100 mp. These orders of magnitude
can be recovered from the distance drifted in a time τ as

Rdrift

1 cm
¼ 3.8 × 10−3

�
B

10−3 T

�
−1
�

m
100mp

�
Z−1

�
τ

1 hr

�
:

ð50Þ

6. Generic chameleon

In Ref. [46], we have shown that we can generate a field
profile that depends on θ by shifting the axis of the inner
cylinder by δ. The amplitude of the monopoles were shown
to be proportional to δ=Rin and to decrease with the
multipole.
The main effect of an angular dependence is that the

angular momentum will not be conserved since

_E ¼ 0; _lz ¼ βc2∂θφ: ð51Þ

Since the angular momentum will vary along the trajectory,
it implies that the inner and outer radius of the annulus of
allowed trajectories will change over time. Indeed, it is still
given as the root of Eq. (43) with _r given by Eq. (40) but lz
is no more constant.
Then, the drift of the trajectory will not be orthoradial

anymore as in Eq. (45). Assume for the sake of the
argument that the field configuration is the sum of multi-
poles of the form

φnðrÞ ¼ ΦnðrÞ cos nθ; ð52Þ
to which one shall add multipoles in sin nθ, that we omit
since it does not modify our general argument. Then the
fifth force will be the sum of the multipoles

Fn ¼ −β
�
Φ0

nðrÞ cos nθer − n
ΦnðrÞ
r

sin nθeθ

�
ð53Þ

so that the drift velocity is

vðnÞdrift ¼
β

ω0

�
n
ΦnðrÞ
r

sin nθer þΦ0
nðrÞ cos nθeθ

�
: ð54Þ
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FIG. 4. Constraints on the free experimental parameters ðB;mÞ
for a particle of charge Z ¼ 1 and a force of typical magnitude
F0 ∼ 10−7 N=kg for a drift of 10−6 m (left) or 10−3 m (right) over
a time scale smaller than 1 hr (white region) or 10 hr (blue region)
along the circle of radius rc. The dashed lines indicate the values
of V0=c, showing that a nonrelativistic description is sufficient.
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FIG. 5. Drift patterns for the 4 first multipoles (n ¼ 0…3)
assuming the form (52) for the field configuration with Φn ¼ a=r
for all n. All plots assume ω0 ¼ 1 s−1, V0 ¼ 0.7 m=s, and
βc2a ¼ 0.01 m3=s2 tangent to the circle with r ¼ 1 m initially
with initial angle θ0 ¼ 0 (black), π=4 (blue), π=2 (light blue),
5π=6 (gray), 5π=3 (light gray) so that the colors represent
trajectories with same initial conditions.
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If Φn ¼ an=r as assumed in our previous example, then
the fifth force induced drift will make an angle αn ¼
arctan½n tan nθ� with respect to the radial direction so that
the radial drift is boosted by a factor n compare to the
orthoradial drift. This is illustrated on Fig. 5. This opens
new ways of testing the fifth force since instead of
monitoring the drift, one can monitor the charge of the
inner or outer cylinder that will change due to the inward or
outward drifts of the particle that otherwise would have
remained inside the two cylinders.
To finish, let us also illustrate the effect of the fifth force

on trajectories that would be circles of center O in absence
of a fifth force. In that case, the guiding center approxi-
mation will not hold and the effect of the fifth force can
only be investigated numerically. Figure 6 gives some
examples of trajectories for a monopole, comparing an
attractive and repulsive force. Indeed it assumes a fifth
force with an unrealistically large magnitude for the sake of
the illustration. The effect of larger multipoles enlarge the
landscape of possible trajectories. The question of the best
experimental strategy and the design of the field distribu-
tion remain to be discussed.

IV. MACROSCOPIC CONSEQUENCES

So far we have described the microscopic effects of the
fifth force on the dynamics of charged particles. Let us now
show that it has a macroscopic side related to the drift
current associated with the fifth force.

A. One-dimensional current

Let us consider two parallel plates as depicted on Fig. 7
of size l × L along the xz-direction and separated by a
distance 2D along the y-axis and assume we impose a
magnetic field Bez. By symmetry the scalar field will have a

profile φðyÞ so that it generates a fifth force F ¼
−mβc2∂yφey.
It follows from Eq. (44) that the particles enjoy a

cyclotron motion of pulsation ω0 drifting along the x axis
at the velocity

vdrift ¼ −
βc2

ω0

ex: ð55Þ

Now, if the density of charge is ηq, this generates a current
density

j ¼ ηqqvdriftðyÞ ð56Þ

flowing in opposite directions in the upper (y > 0) and
lower (y < 0) parts, because ∂yϕ > 0 for y < 0 and ∂ϕ < 0

for y > 0. It follows that it will generate a total current

I ¼ l
Z

D

−D
jðyÞ:exdy: ð57Þ

In order to put numbers, let us assume that the profile of
φ is given by

φ ¼ φ0

�
1 −

y2

D2

�
ð58Þ

so that the force is

F ¼ 2m
βc2φ0

D
y
D
ey

and we set F0 ¼ 2βc2φ0=D ∼ 10−7 N=kg. Hence, the
current density is
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FIG. 6. Trajectories tuned such that the gyrocenter coincides
with the center of symmetry O initially. In absence of fifth force
the trajectory shall be a circle of center O. With a fifth force, the
trajectory will deviate from this “free” trajectory in a couple of
gyro-periods. All plots assume ω0 ¼ 2 s−1, V0 ¼ 0.7 m=s, and
βc2a ¼ 0.1 m3=s2 [left] and βc2a ¼ −0.1 m3=s2 [right] tangent
to the circle with r ¼ 1 m, 0.8 m, 0.6 m and 0.4 m initially with
initial angle θ0 ¼ π=4.

FIG. 7. Experimental design to generate macroscopic current
from a fifth force. All quantities are defined in the text and are
plotted assuming φ0 > 0 and q > 0. Top pictures show that
particles of opposite charges drift in opposite directions but
generate a current in the same direction.
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jðyÞ ¼ −2qηq
βc2φ0

ω0D
y
D
ex ð59Þ

so that the current profile is

dI
dy

¼ ljðyÞ ð60Þ

and the total current

I ¼ ∓qηqlD
βc2φ0

ω0D
ex

in the upper/outer region respectively (if q > 0 and
φ0 > 0).
In order to estimate its amplitude, we need assume a

typical value of the density. Assume we have a gas in
standard conditions, its density is 1 mol=20 l, i.e.,

ηq ¼ η0 ∼ 3 × 1025 m−3;

then

I
1 nA

¼ 5

�
ηq
η0

��
B
1 T

�
−1
�
m
mp

��
S⊥
1 m2

��
F0

10−7 m=s2

�

ð61Þ

with S⊥ ¼ lD. First we note that the current is independent
of the charge of the particle, simplify because qvdrift is, and
proportional to the mass. The current reaches 0.5 μA for
m ¼ mp and B ¼ 0.01 T.

B. Effect on the field profile

Still, we need to be careful. In the microscopic analysis
performed in Sec. III, we studied the effect of the fifth force
on a test particle and the density inside the cavity was fixed
externally. Now, we need to have a large number of
particles, with a number density η0 so that the mass density
inside the cavity ρ ∼ 5 × 10−2ðm=mpÞ kg:m−3. As a con-
sequence this will affect the profile inside the cavity since
the Klein-Gordon equation is

∂yϕðyÞ ¼ nΛnþ4½ϕ−ðnþ1Þ
� − ϕ−ðnþ1Þ� ð62Þ

in one-dimension, with

ϕnþ1� ¼ MPΛnþ4n
βρ

:

The field tends toward ϕ�ðρmatÞ in the wall on a length scale
of the order of the Compton length

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕnþ2�
nðnþ 1ÞΛnþ4

s

of the order of λwall ¼ 2 cm. This shows that one will need
to properly design the parameters of the experiment since
one would want to increasem and ηq to get a higher current,
but that would increase the density ρin so that ϕ� ∝ 1=ρnþ1

will decrease as well as λ ∝ 1=ρ1þn=2 so that the force will
scale as

F ∝ ∂yϕ ∝
ϕ�
λ

∝ ρ
− nþ2
2ðnþ1Þ

in :

Hence one can either adopt a model-independent approach
and constrain F0 for a chosen set ðB;m; ηqÞ or one can try
to constrain a given model, in which case the scaling above
and the dependence of the force on the density of matter
inside could be used to optimize the choice of ðηq; mÞ since
it sets the amplitudes of the current but also affects F0

through the mass density.
As an example, we provide the profile of the scalar field

from which one can deduce the profile of the force and of
the current density. These are depicted on Fig. 8.

C. Annular current inside the cylinders

Coming back to the case of the nested cylinders we
studied earlier, the same reasoning shows that there shall
exist an annular current along eθ given by

jðrÞ ¼ ηqq
βc2

ω0

φ0ðrÞeθ; ð63Þ

corresponding to a total current

I ¼ ηqqL
βc2

ω0

Z
Rext

Rin

φ0ðrÞdreθ: ð64Þ

if L is the length of the cylinders. And, as expected from the
Lenz law, it generates a magnetic field along the z-axis,
with typical magnitude on the axis

Bdrift ¼ μ0ηqq
βc2

ω0

Z
Rext

Rin

φ0ðrÞdr: ð65Þ

With the ansatz (47) we get the typical magnitudes

I ¼ −
ηqq

ω0

F0ðRext − RinÞLeθ ð66Þ

Bdrift ¼ μ0I=L ð67Þ

with the permeability of vacuum μ0 ¼ 4π × 10−7 T:m=A
and, again F0 ¼ βac2=RextRin. The typical order of
magnitude is identical to the one of Eq. (61) with
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S⊥ ¼ 2LðRext − RinÞ. It can then be checked that Bdrift ∼
10−18 T so that it can be completely neglected compared to
the experimental magnetic field.

D. Discussion

This shows that the effect of the fifth force on the
dynamics of a charged particle at the microscopic level has
several macroscopic consequences: (1) in 1 dimension, it
generates a drift current between the parallel walls, (2) in 2
dimensions with cylindrical symmetry, it generates an
annular current and (3) in 2 dimensions with no cylindrical
symmetry, the particles drift inward and/or outward and
may charge the walls of the cylinders, leading to the growth
of a radial electric field.
Our numerical estimations (61) favor high mass par-

ticles, with no dependencies on its charge, while at the
microscopic level, the drift effect favors large mass, low
charge particles. A key issue is the density that can be
reached in laboratory experiments. Plasma densities typi-
cally ranges from 103 to 1033 m−3 in nature. Pushing
to 1020 m−3 will allow one to get a current larger than 1 nA.
Note also that in the one-dimensional setup, one can in
principle access IðyÞ. Such a measurement would be

extremely valuable since it will enable to get some infor-
mation on the profile φðyÞ, i.e., it potentially gives access
to a way to constrain the parameters of the model—
see Eq. (60).
Note also that the temperature of the plasma is not a

key issue since the drift is insensitive to the velocity of
the particle. Nevertheless, we need it to be cold enough
so that the gyroradius is much smaller than the typical
size of the experiment, i.e., we shall demand thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
=ω2

0 ≪ 1 m, i.e., that T < 1011 K, which is
achieved easily for protons.
To finish let us remind that there is a force much larger

than the fifth force that causes the particle to drift: the
standard gravitation since its magnitude is of order g ¼
10 m=s2 and thus would cause a drift typically 9 orders of
magnitude larger, at least, than the one induced by the fifth
force. Luckily we can suppress this effect: since the drift
(44) behaves as F ∧ B, aligning the magnetic field with the
local gravitational field will ensure that it will not act on the
particle. This can be done in a table-top experiment for a
chameleon field since its profile is dictated by the geometry
of the experiment and screened from the local environment.
Actually, it offers a nice way to calibrate the experiment.
Since g ≫ F0 one can first set the walls vertical so that the
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FIG. 8. Profile of the scalar field φðyÞ for a chameleon model with n ¼ 2, Λ ¼ 1 eV and β ¼ 1 assuming that D ¼ 1, 0.5, 0.1 m
(black, blue, red) and that the density inside the cavity is ρ0 ¼ η0mp ¼ 0.05 kg=m3 (top); the changes in the profile for 10ρ0 and
10−3ρmat are not visible by eye. For the same models, we obtain the profile of the current density jðyÞ (solid lines) and the total intensity
per unit surface (dashed lines), both in nA=m2.
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magnetic field is horizontal and measure the current Imax
and then rotate the whole experiment until the magnetic
field is vertical. Hence the current shall change as

I ¼ Imax

�
sin θ þ F0

g

�
:

The measurement of Imax and of the local gravity field
allows one to evade the individual measurement of ηq and
B. Then, any upper limit on Ið0Þ provides a constraint
on F0=g. Concerning the Newton force induced by the
walls of the cavity, first let us remind that it will strictly
vanish if the walls are infinite. Then, for large parallel
walls, the residual gravity field has a component parallel
to the magnetic field; it induces no drift while only its
y-component has an effect that will modify the total
current while the x-component will modify the profile
of the current density. The amplitude of gy is smaller
than GρmateD=L ∼ 5 × 10−8ðe=10 cmÞðD=LÞ m=s2 hence
roughly 2 orders of magnitude smaller than the fifth force
we try to measure. Hence to maximize the current, we need
to maximize the surface, i.e., lD, while minimizingD=L in
order to make the gravity of the walls completely negli-
gible. As can be shown from Fig. 8 it also gives a higher
mean current density.
Let us also stress that in the discussions of Sec. III we

have not included the effect of the Newtonian gravitational
field induced by the cylinders. First, if the cylinders are
infinite the Newton force in the intercylinder space vanishes
exactly. Then for finite length cylinders, for the radial setup,
the gravitational force will be aligned with the axis of the
cylinders, and thus with the magnetic field so that it will
induce no drift. When the cylinders are not coaxial, there
will be a small residual Newton force that will be, similarly
to the case discuss in the previous paragraph, negligible.
To finish, let us mention a possible way to increase the

sensitivity. As seen from Eq. (51) the angular profile of the
force affects the evolution of the angular momentum which
is not conserved anymore when there is no cylindrical
symmetry. One can think of designing the shape of the
inner and outer “cylinders” so that the profile exhibits sharp
changes in ∂θφ, similar to electric point effect. That could
generate locally large gradients, the design of which could
be controlled and hence distinguished from other forces.
Such ideas need to be investigated later.
All these arguments convince us that this can provide a

new experimental concept to detect fifth force in the
laboratory. Indeed for now we just established orders of
magnitude for such an experimental setup, the technologi-
cal feasibility of which would need to be investigated in
details, a task much beyond the scope of this work.

V. RADIATION DAMPING

Besides the fifth force and the magnetic force, the
particle being accelerated shall undergo a reaction force,

the Abraham-Lorentz-Dirac force, the effect of which
needs to be compared to the fifth force. The equations
of motion have to be extended to

mγμ ¼ qðFμν
ext þ Fμν

selfÞuν; ð68Þ
in Gaussian units, where Fμν

ext is the Faraday tensor of the
electromagnetic field of the moving charge. The compu-
tation of the reaction forces requires to evaluate the self-
retarded potential. This is detailed in chapter II.19 of
Ref. [47]. It requires a regularization and many schemes
are used in electrodynamics, see e.g., Ref. [49]. Using a
regularization by averaging on the direction gives the
radiation reaction force

Fμν
selfuν ¼

2

3
qð_γμ − γ2uμÞ ð69Þ

as proposed by Abraham, Lorentz and Dirac. In the
nonrelativistic limit, the radiation reaction force takes the
form

Freac ¼
2

3

q2

4πε0c3
_a; ð70Þ

once we put the international units back.
It is easily evaluated on the free trajectory since

V ¼ V0ðcosωt − α; sinωtÞ. It is indeed a damping force

Freac ¼ −
2

3

q2

4πε0c3
ω2
0V:

This implies that it does not induce a drift but a shrinking of
the trajectory so that it cannot be confused with the effect of
the fifth force. Nevertheless, it needs to be evaluated since it
will limit the duration of the experiment.

VI. CONCLUSION

This article has investigated the effect of a small fifth
force of scalar origin on the dynamics of a charged particle.
It has derived the full relativistic equations of motion and
conserved quantities and gave their nonrelativist limit.
Then, it investigated the dynamics of a charge in a uniform
magnetic field to show that the standard cyclotron motion
enjoys a drift, similar to the one that can be observed if the
magnetic field is not uniform. This drift is fully dictated by
the profile of the scalar field. Focusing on profiles in
between two nested cylinders, as studied in our previous
works [45,46], we have shown that the drift is orthoradial if
the configuration is cylindrically symmetric and has a more
involved angular structure for a general profile.
One can control the cyclotron pulsation ω0 by choosing

the particle and tuning the magnetic field. Controlling the
initial velocity of the particle determines its gyroradius.
Then, the typical properties of the drift (timescale and
direction) depend on the fifth force, that is on the profile
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of the scalar field within the two cylinders. While the
profile of a light scalar field cannot be tuned for a light
dilaton, this is not the case for a chameleon field. Thanks to
the environmental dependence, the field inside the cavity is
screened from the outside and its profile will mostly depend
on the local density in the cavity, the nature of the walls
and the geometry of the cavity. This is a crucial property
of these models, allowing one to engineer these fields
(indeed if they exist). In particular, and as demonstrated in
Refs. [45,46], shifting the axis of the cylinders allows one
to design angular dependencies. The typical amplitude and
profile of the force will depend on the parameters of the
microscopic model ðΛ; n; βÞ and the design of the experi-
ment ðRin; Rext; δ; ρÞ and was shown to be typically of the
order of 10−7 m=s2. We already mentioned in Ref. [45] that
the force affects any experiment based on monitoring the
trajectory of atoms inside a cylindrical cavity of free falling
particles in space.
These effects on individual particles would require to

monitor a drift, or relative drift, of single particles on the
order of the gyroradius on a time scale of the hour for a
force of 10−7 m=s2. As explained, there is a macroscopic
side to these effects since the fifth force induces macro-
scopic currents that may be easier to measure. In that case
we need to have a plasma within the cavity, which would
affect the force and its profile since it modifies the local
mass density inside the cavity. In the particular case of the
one-dimensional experimental set-up proposed in this work
shows that a fifth force of 10−7 m=s2 can induce a drift
current drift larger than 5 nA. This would require to push
the density to the density of a gas in standard conditions
while the density of plasma in nature can range from 103 to
1033 m−3. Hence the density is one of the key parameters.
Otherwise one would need to operate with a magnetic field
of 1 μT and heavy particles. The temperature of the plasma
plays no major role since the drift velocity is independent
of the energy of the particle. Nevertheless we shall require
that the gyroradius is much smaller than the typical size
of the experiment. Setting R0 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
=ω0 ≪ 10−3 m

implies that the temperature be smaller than 5 × 106 K,
which is easily achieved—room temperature would corre-
spond to R0 ∼ 20 μm. It is also important to remind that the
effect of gravitation, that also induces a drift several orders
of magnitude larger, can be screened by aligning the
magnetic field with the local gravity field. As a conse-
quence, it is not necessary to go to space. Then, the gravity
of the walls of the cavity are roughly 2 orders of magnitude
smaller than the nominal fifth force we could measure.
Given these numbers, the feasibility or the existence of
loopholes in our arguments would require to be inves-
tigated with care. Note also that the experiment may also
enable to access the transverse profile of the chameleon
field, directly related to the properties of the potential and
coupling function, a possibility which has not been offered
by any other proposed experimental setup so far.

Indeed, it would be bold to argue that it offers so far a
new experimental design to test fifth force in laboratory.
We have just used toy field profile to illustrate the
physical effects and derive orders of magnitude. One would
need to implement, and most probably optimize, field
profiles, as shown in Ref. [46] and discuss the detectability
of the drifts and of the current and all sources of noise
that will unavoidably be present. The question of the
alignment of the magnetic field with the local gravity field
is crucial as well as a careful study of the gravity induced
by the surrounding of the experiment. To finish, we note
that we still have the freedom to let the magnetic field vary
in time.
Nevertheless we believe that it opens a way of reflection

to eventually reach such a new experimental setup. Let us
also mention, to finish, that the equations of motion derived
here are fully general and can also be applied to the
propagation of cosmic rays.
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APPENDIX A: INITIAL CONDITIONS

The initial conditions can be fixed by either choosing
ðx0; V0; αÞ or ðx0; E;lzÞ. The first are more natural since
one does not know the potential φ but the second allows
one to compare motion with the same constants of motions.
One can easily shift from one to the other since
(i) Starting from ðx0; V0; αÞ, we have r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
,

Vx0 ¼ V0 cos α, Vy0¼V0 sinα, E ¼ V2
0=2þ βφðr0Þ,

θ0 ¼ arctanðy0=w0Þ so that _θ0 ¼ V0 sinðα − θ0Þ=r0
and then lz ¼ r20ð_θ0 þ ω0=2Þ.

(ii) Starting from ðx0; E;lzÞ, we have r0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
so that V0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − βφðr0ÞÞ

p
. Then,

θ0 ¼ arctanðy0=w0Þ and _θ0 ¼ ðlz=r20 − ω0=2Þ,
Vθ0 ¼ r0 _θ0 so that α ¼ θ0 þ arcsinðVθ0=V0Þ and
then Vx0 ¼ V0 cos α, Vy0 ¼ V0 sin α.

It is also interesting to rewrite the dynamical system by
using the dimensionless time τ ¼ ω0t and rescaling the
lengths in units of the gyroradius R0 as
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x00 ¼ y0 − γ
x
r3

;

y00 ¼ −x0 − γ
y
r3

; ðA1Þ

with the dimensionless parameter γ ¼ βc2a=ω2
0R

3
0 if the

field configuration is given by φ ¼ a=r. The initial con-
ditions are then given by v0 ¼ 1 so that ðx00; y00Þ ¼
ðcos α; sin αÞ and ðx0; y0Þ. Under such a form, the dimen-
sional analysis implies that the drift pulsation can only be a
function of ðγ; rcÞ.
It is easily checked that for γ ¼ 0 we have a circular

orbit, that is drifting when γ ≪ 1 and tend to a precessing
ellipse for large γ and a standard static ellipse for γ ¼ þ∞.

APPENDIX B: PARTICLE IN AN
ELECTRIC FIELD

For the sake of completeness, let us consider the case of a
one-dimensional electric field between two plates, E ¼ Eex
so that the only non-zero component of the Faraday tensor
is F0x ¼ E.

1. Standard acceleration

When the fifth force vanishes, it is clear from the
equation of motion (5) that the 4-acceleration has a constant
modulus

γμγ
μ ¼

�
qE
m

�
2 ≡ g2: ðB1Þ

This is indeed easy to understand since in the inertial
frame tangent to the charge worldline, the electric field
remains unchanged in a Lorentz transformation. It follows
that dUx=dτ ¼ gU0, i.e., d2X=dτ2 ¼ gdT=dτ with the con-
straints UμUμ ¼ −ðdT=dτÞ2 þ ðdX=dτÞ2 ¼ −1. It can be
integrated as

gT ¼ sinh gτ; gX ¼ cosh gτ ðB2Þ
giving the trajectory

gX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2T2

q
: ðB3Þ

2. Effect of the fifth force

We now consider that two parallel infinite plates so that
the field configuration in between them is given by ϕðxÞ.
Indeed since the force is extremely weak, typically smaller
than 10−7 N=kg, see e.g., Ref. [45], it will always be
subdominant. Nevertheless, it has been argued that such a
small force may affect any experiment based on monitoring
the trajectory of atoms inside a cavity [50]. Indeed the force
has to be compared to gravity and it has been pointed out in
Ref. [45] that in space, it is responsible for a drift of the
particle inside a cylindrical cavity on timescales of the hour.

An idea could be constrain such a tiny force by con-
sidering a particle in an unstable inertial motion. An easy
realization is to consider a charged particle inside a capacitor
with its two parallel walls normal to ey with positions
y ¼ �D and assume that there is a static electromagnetic
field

E ¼ Eey; B ¼ Bex:

A particle launched with the velocity V0 ¼ Uex will have a
straight trajectory if

U ¼ E=B: ðB4Þ
This is the standard classical Hall effect.
Now, assume there is a fifth force. The profile of the

scalar field will be of the form ϕðyÞ with ∂yϕ0 ¼ 0 by
symmetry. Hence, it implies, working with the nonrelativ-
istic equations of motion for the sake of simplicity, as

Ẍ ¼ qB
mAðϕÞ

_Y; ðB5Þ

Ÿ ¼ qB
mAðϕÞ ðU − _XÞ − β

MP
∂yϕ: ðB6Þ

We rely of the computations of the profile of the scalar field
we presented in Ref. [45]. Since ϕ ≪ MP A will almost not
vary within the walls so that A ¼ A½ðϕðy ¼ 0Þ�≡ 1.
Then, consider a set of trajectories fXðt; hÞ; Yðt;hÞg

labeled by a parameter h, with initial conditions

ðX; YÞ0 ¼ ð0; hÞ; ð _X; _YÞ0 ¼ ðU; 0Þ:
The trajectory h ¼ 0will indeed be an inertial motion along
Y ¼ 0 but, contrary to the usual Hall effect, the trajectories
starting fromh ≠ 0will deviate from this standard trajectory.
Let us start by a toy profile mimicking the profile inside

two walls, which has no analytic form,

ϕðyÞ ¼ ϕwall þ ϕ0

�
1 −

y2

D2

�
ðB7Þ

so that the force is

F ¼ 2
ϕ0βc2

MPD2
yey ≡Dω2

0η
y
D
ey ðB8Þ

with η ¼ 2ðϕ0=MPÞβc2=Dω2
0 ≪ 1 the relative extra accel-

eration induced by the fifth force.
If the gradient is constant within the plates, which indeed

not the case but allows to illustrate the phenomena, the
trajectories are simply given by

8><
>:

Xðt; hÞ ¼
h
U þ η

1−η hω0

i
t − η

1−η h
sin

ffiffiffiffiffiffi
1−η

p
ω0tffiffiffiffiffiffi

1−η
p

Yðt; hÞ ¼ h
h
1þ η

1−η ð1 − cos
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
ω0tÞ

i ðB9Þ
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for η < 1. We have the free parameters U (determined by E
and B), ω0 (determined by B, the charge and mass of the
particle), h ¼ 1…D, D determined by the size of the
experiment so that then η ¼ F0=Dω2

0 is the quantity we
want to constraint. Since we expect F0 < 10−7, η is
expected to be small compared to unity.

The main problem is that one would need an
extremely long capacitor which makes such an experi-
ment completely unrealistic. One solution may be to
consider periodic orbits and then turn to 2-dimensional
configurations.
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