
 

General relativity as a special case of Poincaré gauge gravity

Yuri N. Obukhov*

Theoretical Physics Laboratory, Nuclear Safety Institute, Russian Academy of Sciences,
B.Tulskaya 52, 115191 Moscow, Russia

Friedrich W. Hehl †

Institute for Theoretical Physics, University of Cologne, 50923 Cologne, Germany

(Received 30 June 2020; accepted 4 August 2020; published 31 August 2020)

We demonstrate that Einstein’s general relativity theory arises as a special case in the framework of the
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I. INTRODUCTION

The Poincaré gauge (theory of) gravity (PG) arises
as a natural extension of Einstein’s general relativity
theory (GR) by following gauge-theoretic principles;
see [1–7].
The Standard Model of fundamental particle physics is

based on gauge theories for internal symmetries [described
by the unitary groups Uð1Þ, SUð2Þ, SUð3Þ]. It clearly
demonstrates that, apart from GR, the gauge idea underlies
all physical theories of fundamental interactions. The
geometrization of gravitational physics, by using the
covariance and the equivalence principles, is similar to
the geometrization of the three “physical interactions”
(electromagnetic, weak, and strong) by using the Yang-
Mills type of approach. There is a difference, though, in
that the Standard Model deals with fundamental symmetry
groups acting in internal spaces, whereas gravity has to do
with the symmetry of the external spacetime.
Fairly early there were attempts to understand gravity as

a gauge theory. Utiyama [8] paved the way in this direction
by using the Lorentz group SOð1; 3Þ as a gauge group for
gravity. It turned out to be unsuccessful, though, since the
current which couples to the Lorentz group is the angular
momentum current. However, as we know from Newton’s
theory of gravity, it is the mass density or—according to
special relativity—the energy-momentum current that grav-
ity has as its source. The group of local spacetime trans-
lations (related to diffeomorphisms) plays the central role in
GR. This manifests itself in the well-known fact [7] that the
gravitational field couples to the corresponding transla-
tional Noether current, namely the energy-momentum
current (a.k.a. energy-momentum tensor).

Accordingly, when constructing the gauge theory of
gravity, it is necessary to investigate the conservation of
the material energy-momentum current [9] and the related
invariance under rigid and, subsequently, under local
translations. The localization of the translational invariance
then creates the gravitational field. As a result, since the
1970s, a translational gauge theory (TG) was set up in the
form of a teleparallelism theory [10–13]. The paper of Cho
[14] (see also [15]) may be taken as a concise description of a
translational gauge theory of gravity. Its structure is revisited
from a modern geometrical point of view in the more recent
papers [16,17] (see also [18,19]). For the technical details of
the formalism of TG, one may refer to [20].
As is well known, fundamental particle physics is based

on the Poincaré group, which is a semidirect product of the
translation group with the Lorentz group. The fundamental
particles are classified by mass and spin which arise in the
representation theory of the Poincaré group. In accordance
with the semidirect product structure of the Poincaré group,
the Noether theorem gives rise to the two currents: the
energy-momentum tensor (translational current) and the
spin angular-momentum tensor (intrinsic rotational cur-
rent); for a comprehensive review, see [1–6].
The resulting Poincaré gauge theory provides, in this

gauge-theoretic framework, a natural extension of GR,
with the energy-momentum and spin currents as the sources
of the gravitational field [21–24]. The spacetime is then
characterized by a Riemann-Cartan geometry with non-
vanishing torsion and nonvanishing curvature.
In this paper we demonstrate that GR can be consistently

interpreted as a special case of PG under two crucial
assumptions: (i) The PG Lagrangian has a certain special
form, and (ii) the matter couples nonminimally to the
gravitational field of PG. This result is nontrivial for the
following reason: TG, which is equivalent to GR, is, as
such, applicable to spinless matter only. Here we clarify
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how to avoid this difficulty, and we include matter with spin
angular momentum in a consistent way.

II. POINCARÉ GAUGE GRAVITY: FORMAL
STRUCTURE

Following the general Yang-Mills-Utiyama-Sciama-
Kibble gauge-theoretic scheme, the 10-parameter Poincaré
group T4 ⋊ SOð1; 3Þ gives rise to the 10-plet of the
gauge potentials which are consistently identified with the
components eiα of the orthonormal coframe ϑα ¼ eiαdxi

(4 potentials corresponding to the translation subgroup T4)
and the components Γi

αβ ¼ −Γi
βα of the Lorentz connection

Γαβ ¼ Γi
αβdxi [6 potentials for the Lorentz subgroup

SOð1; 3Þ]. The corresponding covariant curls, the field
strengths of translations and Lorentz rotations, (A1) and
(A2), are the two-forms of the torsion and the curvature,
respectively. See the Appendix A for the mathematical
definitions.
Let us consider a generalization of the Einstein-Cartan

model [22] with a Lagrangian that contains all possible
linear curvature invariants and all possible quadratic
invariants of the torsion, as constructed from its irreducible
parts (B1)–(B3):

V ¼ 1

2κc

�
ðηαβ þ ā0ϑα ∧ ϑβÞ ∧ Rαβ − 2λ0η

− Tα ∧ X3
I¼1

½aI �ððIÞTαÞ þ āIðIÞTα�
�
: ð1Þ

For completeness, we included a term carrying the cos-
mological constant λ0. As compared to the Einstein-Cartan
model, the new Lagrangian contains 6 additional (dimen-
sionless) coupling constants: ā0; a1; a2; a3 and ā1; ā2 ¼ ā3.
The two latter constants are equal because the two last
terms in (1) are the same,

Tα ∧ ð2ÞTα ¼ Tα ∧ ð3ÞTα ¼ ð2ÞTα ∧ ð3ÞTα; ð2Þ

whereas Tα ∧ ð1ÞTα ¼ ð1ÞTα ∧ ð1ÞTα. One can prove these
relations directly from the definitions (B1)–(B3).
For the Lagrangian (1) we find the variational derivatives

Eα ≔
δV
δϑα

¼ −DHα þ Eα; ð3Þ

Cαβ ≔
δV
δΓαβ ¼ −DHαβ þ Eαβ: ð4Þ

Here we denoted, as usual,

Hα ¼ −
∂V
∂Tα ¼

1

κc

X3
I¼1

h
aI �ððIÞTαÞ þ āIðIÞTα

i
; ð5Þ

Hαβ ¼ −
∂V
∂Rαβ ¼ −

1

2κc
ðηαβ þ ā0ϑα ∧ ϑβÞ; ð6Þ

Eα ¼
∂V
∂ϑα ¼

1

2κc
ðηαβγ ∧ Rβγ þ 2ā0Rαβ ∧ ϑβ − 2λ0ηαÞ

þ 1

2
½ðeαcTβÞ ∧ Hβ − Tβ ∧ eαcHβ�; ð7Þ

Eαβ ¼
∂V
∂Γαβ ¼

1

2
ðHα ∧ ϑβ −Hβ ∧ ϑαÞ: ð8Þ

The corresponding field equations of PG are derived from
the variation of the total Lagrangian V þ L with respect
to the Poincaré gauge potentials ϑα and Γαβ:

1

2
ηαβγ ∧ Rβγ þ ā0Rαβ ∧ ϑβ − λ0ηα −Dhα þ qðTÞα ¼ κTα;

ð9Þ

ηαβγ ∧ Tγ þ ā0ðTα ∧ ϑβ − Tβ ∧ ϑαÞ
þ hα ∧ ϑβ − hβ ∧ ϑα ¼ κcSαβ: ð10Þ

Here we denoted the linear and the quadratic functions of
the torsion as

hα ≔ κcHα ¼
X3
I¼1

½aI �ððIÞTαÞ þ āIðIÞTα�; ð11Þ

qðTÞα ≔
1

2
½ðeαcTβÞ ∧ hβ − Tβ ∧ eαchβ�: ð12Þ

It is straightforward to prove the simple properties of these
objects which follow directly from their definitions:

ϑα ∧ qðTÞα ¼ 0; ð13Þ

ϑα ∧ hα ¼ −a2 �T þ ā3 �T̄; ð14Þ

eαchα ¼ a3T̄ þ ā2T: ð15Þ

An important technical remark is in order: The two-form
(11) and the three-form (12) satisfy the geometrical identity

hα ∧ Tβ − hβ ∧ Tα þ qðTÞα ∧ ϑβ − qðTÞβ ∧ ϑα ≡ 0: ð16Þ

To verify this, we notice that hα is a linear combination
of the irreducible parts of the torsion and its dual, and we
use the identities (C14)–(C16). The relation (16) is always
valid irrespectively of whether the field equations are
fulfilled or not.
The matter sources on the right-hand sides of the

gravitational field equations (9) and (10) are the three-
forms of the canonical energy-momentum current and the
spin current of matter, respectively:
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Tα ≔
δL
δϑα

; ð17Þ

Sαβ ≔
δL
δΓαβ : ð18Þ

Up to this point, we have presented a general formalism,
and now we will specify the structure of the PG field
Lagrangian (1).

III. MODEL LAGRANGIAN AND FIELD
EQUATIONS

The geometric identities (C6) and (C13) between the
contortion one-form Kμν and the torsion two-form Tα

underlie the subsequent discussion.
Let us consider the Poincaré gauge model belonging to

the class (1) and characterized by the following coupling
constants:

a1 ¼ −1; a2 ¼ 2; a3 ¼ 1
2
;

ā1 ¼ −ā0; ā2 ¼ −ā0; ā3 ¼ −ā0:

�
ð19Þ

Here we will show that the Poincaré gauge model (19)
is actually Einstein’s GR theory, provided the matter
Lagrangian L ¼ LðψA; dψA; ϑα;Γαβ; TαÞ is nonminimally
coupled to the matter fields ψA by means of the Poincaré
gauge potentials ϑα, Γαβ and the torsion Tα.
Before we continue with our calculations, let us have a

look at the explicit form of our Lagrangian. Substituting
(19) into (1), we find

V ¼ 1

κc

�
ηαβ ∧ Rαβ − 2λ0η

− Tα ∧ �
�
−ð1ÞTα þ 2ð2ÞTα þ

1

2
ð3ÞTα

�

þ ā0ðϑα ∧ ϑβ ∧ Rαβ þ Tα ∧ TαÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼dðϑα∧TαÞ

�
: ð20Þ

In the first line, we have the Einstein-Cartan Lagrangian
including the cosmological term, in the second line we find
the so-called viable set of torsion-square pieces of tele-
parallel gravity, and in the third line, which is parity odd,
we have an exact form, that is, we have a boundary term.
Here ϑα ∧ Tα is proportional to the translational Chern-
Simons three-form of PG (see [2]); its derivative yields the
Nieh-Yan identity [25,26] [see the underbraced expression
in (20)].
Let us now return to (20) and calculate the field

equations explicitly. We begin by evaluating the torsion
functions (11) and (12). Specifically for the model (20),
we find

hα ¼ hð0Þα − ā0Tα; qα ¼ qð0Þα ; ð21Þ

hð0Þα ¼ −
1

2
Kμν ∧ ηαμν; ð22Þ

qð0Þα ¼ Kα
β ∧ hð0Þβ þ 1

2
Kγ

μ ∧ Kνγ ∧ ηαμν: ð23Þ

With the superscript ð0Þ, we denote all objects which refer
to the parity-even sector of the model (20)—the first two
lines in (20).
The proof of (22) is straightforward: One should

combine the definition (11) with the identity (C6). To

verify (23), we start with the definition of qð0Þα [see (11)],

qð0Þα ¼ 1

2

h
ðeαcTβÞ ∧ hð0Þβ − Tβ ∧ eαchð0Þβ

i
; ð24Þ

and evaluate the two terms on the right-hand side. Using
(22), we have

Tβ ∧ eαchð0Þβ ¼ −
1

2
Tβ ∧ fðeαcKμνÞηβμν þ Kμνηαβμνg:

ð25Þ

For the first term we use another identity (C13), and we find

Tβ ∧ ηβμνðeαcKμνÞ ¼ −ϑμ ∧ Kρσ ∧ ηνρσðeαcKμνÞ
¼ ðeαcTν − Kα

νÞ ∧ Kρσ ∧ ηνρσ; ð26Þ

since ðeαcKμνÞϑμ ¼ −eαcTν þ Kα
ν. Consequently,

−
1

2
Tβ ∧ ηβμνðeαcKμνÞ ¼ ðeαcTβÞ ∧ hð0Þβ − Kα

β ∧ hð0Þβ ;

ð27Þ

and substituting this into (25) and comparing it with (24),
we derive

qð0Þα ¼ 1

2
Kα

β ∧ hð0Þβ þ 1

4
Kμν ∧ ηαβμνTβ: ð28Þ

We note that ηαβμνTβ¼Dηαμν¼Kα
β∧ηβμνþKμ

β∧ηαβνþ
Kν

β∧ηαμβ. Hence

1

4
Kμν ∧ ηαβμνTβ ¼ 1

2
Kα

β ∧ hð0Þβ þ 1

2
Kγ

μ ∧ Kνγ ∧ ηαμν:

ð29Þ

After substituting this into (28), the proof of (23) is

completed. Incidentally, hð0Þα and qð0Þα satisfy the identity
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ϑα ∧ qð0Þβ − ϑβ ∧ qð0Þα ≡ Tα ∧ hð0Þβ − Tβ ∧ hð0Þα ; ð30Þ

which is the special case of the general identity (16).
We are now in a position to analyze the left-hand sides of

the field equations of PG. At first, we observe that

ā0Rαβ ∧ ϑβ −Dhα ¼ −Dhð0Þα ; ð31Þ

making use of (21) and the Bianchi identity Rαβ ∧ ϑβþ
DTα ¼ 0. Next, we have Dhð0Þα ¼ D̃hð0Þα þ Kα

β ∧ hð0Þβ .
Thus, with the help of (22) and (23), we obtain

−Dhð0Þα þ qð0Þα ¼ 1

2
ðD̃Kμν þ Kγ

μ ∧ KνγÞ ∧ ηαμν: ð32Þ

As a result, the two field equations (9) and (10) of PG are
recast into

1

2
ηαβγ ∧ R̃βγ − λ0ηα ¼ κTα; ð33Þ

0 ¼ κcSαβ: ð34Þ

The left-hand side of (33) reduces to the Riemannian
Einstein two-form by combining the decomposition (A6)
with (32). The left-hand side of (34) vanishes in view
of (22) and the identity (C13).
After clarifying the left-hand sides of the PG field

equations, in the next section we turn to the analyses of
the right-hand sides.

IV. COUPLING OF GRAVITY TO MATTER

To finalize thediscussionofmodel (20),weneed to analyze
the couplingofmatter togravity.At first sight, the second field
equationofPG (34) looks contradictory, because it apparently
tells us that the spin current of matter is zero. However, this is
only true if we assume that matter couples to gravity in
accordance with the minimal coupling principle. In the latter
case, thematerial Lagrangian is a function of matter fields ψA

and their covariant derivatives DψA.
This apparent inconsistency can be avoided if we

make the crucial assumption that the coupling of matter
to gravity is nonminimal and the matter Lagrangian L ¼
LðψA;DψA; ϑα; TαÞ depends on the translational gauge field
strength, the torsion, too. Moreover, such a nonminimal
coupling is very special in the sense that the torsion enters
the matter Lagrangian only in the combination

ΦA ≔ DψA −
1

2
Kαβ ∧ ðραβÞABψB: ð35Þ

Here ðραβÞAB are the generators of the Lorentz algebra which
determine the transformation of the matter field under the
local Lorentz rotation of the coframe,

δϑμ ¼ εðxÞνμϑν; δψA ¼ −
1

2
εαβðραβÞABψB; ð36Þ

with the infinitesimal parameters εαβ ¼ −εβα. The Lagrange-
Noether machinery for the nonminimal coupling case is well
developed [2,23,24]. It yields for the material sources of the
Poincaré gauge field—the canonical energy-momentum and
spin currents—a well-known result:

Tα ¼ ðeαcDψAÞ ∧ ∂L
∂DψA þ ðeαcψAÞ ∧ ∂L

∂ψA − eαcL

−D
∂L
∂Tα þ ðeαcTβÞ ∧ ∂L

∂Tβ ; ð37Þ

cSαβ ¼ ðραβÞABψB ∧ ∂L
∂ðDψAÞ

− ϑα ∧ ∂L
∂Tβ þ ϑβ ∧ ∂L

∂Tα
: ð38Þ

The second lines in these two expressions account for the
nonminimal coupling.
We identify the first line of (38) with the canonical spin

current three-form defined under the assumption of the
minimal coupling

cS
m

αβ ≔ ðραβÞABψB ∧ ∂L
∂DψA ¼ −cS

m

βα: ð39Þ

This three-form can be equivalently represented by the

“spin energy potential” two-form μ
m
α according to

S
m

αβ ¼ ϑα ∧ μ
m
β − ϑβ ∧ μ

m
α: ð40Þ

Resolved with respect to μ
m
α, we find

μ
m
α ¼ −eβcS

m

αβ þ
1

4
ϑα ∧ eβceγcS

m

βγ: ð41Þ

Now we insert (38) into the second field equation (34)
and resolve the latter to find

∂L
∂Tα

¼ cμ
m
α: ð42Þ

Equation (35) yields

∂L
∂DψA ¼ ∂L

∂ΦA ;
∂ΦA

∂ψB ¼ −
1

2
KαβðραβÞAB: ð43Þ

Making use of these relations, together with (42), allows us
to recast the energy-momentum current of matter (37) into

Tα ¼ T
m

α − cD̃μ
m
α; ð44Þ

where
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T
m

α ¼ ðeαcΦAÞ ∧ ∂L
∂ΦA − eαcL

þ ðeαcψAÞ ∧
� ∂L
∂ψA þ ∂ΦB

∂ψA

∂L
∂ΦB

�
: ð45Þ

The final piece, which completes the puzzle, comes up
when one recognizes, with the help of (A3), that ΦA ¼
D̃ψA is, in fact, the Riemannian covariant derivative.
Then we identify (45) with the usual canonical energy-
momentum current [27] computed under the assumption
of minimal coupling. In components, Tα ¼ Tα

μημ and
Sαβ ¼ Sαβ

μημ. Thus, we have

Tα
μ ¼ T

m

α
μ þ c

2
D̃ν

�
S
m

μν
α þS

m
μ
α
ν þS

m

α
νμ

�
: ð46Þ

We immediately recognize in this expression the so-called
metric energy-momentum current symmetrized by means
of the Belinfante-Rosenfeld procedure.
Thus, we have verified, indeed, that the Poincaré gauge

field equations (33) and (34) reproduce Einstein’s GR for
the Lagrangian (20).

V. OUR MODEL’S PARTICLE CONTENT

The conclusions above can be strengthened by the study
of the dynamical particle content of the PG model (20).
As a background, we assume a torsionless spacetime of
constant curvature λ, that is,

D̂ϑ̂α ¼ dϑ̂α þ Γ̂β
α ∧ ϑ̂β ¼ 0; ð47Þ

R̂αβ ¼ dΓ̂αβ þ Γ̂γ
β ∧ Γ̂αγ ¼ λϑ̂α ∧ ϑ̂β: ð48Þ

Let us split the PG gauge potentials into background and
perturbations:

ϑα ¼ ϑ̂α þ χα; ð49Þ

Γαβ ¼ Γ̂αβ þ γαβ: ð50Þ

The particle spectrum of a general quadratic PG model
on the Minkowski background was considered in [28].
Inserting (49) and (50) into the definitions of the torsion
and the curvature, we find the expansions

Tα ¼ D̂χα þ γβ
α ∧ ϑ̂β þ γβ

α ∧ χβ; ð51Þ

Rαβ ¼ λϑ̂α ∧ ϑ̂β þ D̂γαβ þ γγ
β ∧ γαγ: ð52Þ

The expansions of the η-basis can be straightforwardly
obtained by making use of (49). Up to the second order in
perturbations, we find

η ¼ η̂þ χα ∧ η̂α þ
1

2
χα ∧ χβ ∧ η̂αβ; ð53Þ

ηα ¼ η̂α þ χβ ∧ η̂αβ þ
1

2
χβ ∧ χγ ∧ η̂αβγ; ð54Þ

ηαβ ¼ η̂αβ þ χγ ∧ η̂αβγ þ
1

2
χμ ∧ χνη̂αβμν; ð55Þ

ηαβγ ¼ η̂αβγ þ χδη̂αβγδ: ð56Þ

Substituting (51)–(56) into (1) and taking into account (20),
we obtain the quadratic Lagrangian which determines the
dynamics of the gravitational perturbations,

V ¼ 3λ

κc
η̂þ 1

2κc

�
d½ðη̂αβ − η̂αβγ ∧ χγÞ ∧ γαβ

þ ā0ðϑ̂α ∧ ϑ̂β − ϑ̂α ∧ χβÞ ∧ γαβ�

þ 1

2
Nμν ∧ η̂αμν ∧ D̂χα − 2λχα ∧ χβ ∧ η̂αβ

�
: ð57Þ

The cosmological constant fixes the value of the constant
curvature of the background:

λ ¼ λ0
3
: ð58Þ

The one-form Nμν ¼ −Nνμ is constructed in terms of the
covariant derivatives of the translational perturbations.
Namely, by definition,

Nα
β ∧ ϑ̂β ¼ D̂χα; ð59Þ

so that explicitly

Nαβ ¼
1

2
ðêαcD̂χβ − êβcD̂χα − ϑ̂γ êαcêβcD̂χγÞ: ð60Þ

As we see, the rotational (Lorentz) perturbation γμν is
nondynamical: It contributes only to the total derivative
in (57), and hence the corresponding field equation is
trivial. This is perfectly consistent with our previous
analysis which demonstrated the vanishing of the left-hand
side of the second field equation (34).
The last line of the linearized Lagrangian (57) deter-

mines the dynamics of the translational perturbation one-
form χα. The latter has a nontrivial skew-symmetric part
which is conveniently described in terms of the two-form

χ̄ ≔
1

2
χα ∧ ϑ̂α: ð61Þ

Indeed, decomposing χα¼ χβ
αϑ̂β, we find χ̄¼ 1

2
χ½αβ�ϑ̂

α∧ ϑ̂β.
The symmetric part of the translational perturbation is

then defined as
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φα ≔ χα þ êαcχ̄; ð62Þ

so that φα ∧ ϑ̂α ¼ 0, and in components φα ¼ χðαβÞϑ̂β.
As a result, the one-form (60) is recast into

Nαβ ¼ êαcD̂φβ − êβcD̂φα þ D̂ðêαcêβcχ̄Þ; ð63Þ

and we find

1

2
Nμν ∧ η̂αμν ¼ ðêμcD̂φνÞ ∧ η̂αμν − D̂ �ðϑ̂α ∧ χ̄Þ: ð64Þ

This yields

1

2
Nμν ∧ η̂αμν ∧ D̂χα ¼ ðêμcD̂φνÞ ∧ η̂αμν ∧ D̂χα

− D̂ �ðϑ̂α ∧ χ̄Þ ∧ D̂χα: ð65Þ

The last term can be transformed into a total derivative

− D̂ �ðϑ̂α ∧ χ̄Þ ∧ D̂χαχ̄Þ ∧ χα

¼ −dfχα ∧ D̂ �ðϑ̂α ∧ χ̄Þg þ 4λχ̄ ∧ �χ̄; ð66Þ

by noticing that D̂D̂ �ðϑ̂α∧ χ̄Þ∧ χα¼−R̂α
β∧ �ðϑ̂β∧ χ̄Þ∧

χα¼2λðϑ̂β∧ χ̄Þ∧ �ðϑ̂β∧ χ̄Þ¼4λχ̄∧ �χ̄. Here we used (48)
and the definition (61).
With the help of (61), we recast the last term in the

Lagrangian (57) into

−2λχα ∧ χβ ∧ η̂αβ ¼ −2λφα ∧ φβ ∧ η̂αβ − 4λχ̄ ∧ �χ̄;

ð67Þ

and observe that the last terms in (66) and (67) cancel
each other.
Next, we analyze the first term on the right-hand side

of (65). Substituting the decomposition of the translational
perturbation χα ¼ φα − eαcχ̄ into the latter, we find

−ðêμcD̂φνÞ ∧ η̂αμν ∧ D̂ðêαcχ̄Þ ¼ −dfφα ∧ D̂ �ðϑ̂α ∧ χ̄Þg:
ð68Þ

Collecting all the intermediate derivations, we use
(65)–(68) to bring the Lagrangian (57) into the final form

V ¼ Vnon þ Vdyn; ð69Þ

Vdyn ¼ 1

2κc
fðêμcD̂φνÞ ∧ η̂αμν ∧ D̂φα − 2λφα ∧ φβ ∧ η̂αβg:

ð70Þ

The first term on the right-hand side of (69) is a non-
dynamical one,

Vnon ¼ 1

2κc
f6λη̂þ dUnong; ð71Þ

Unon ¼ ðη̂αβ − η̂αβγ ∧ χγÞ ∧ γαβ

þ ā0ðϑ̂α ∧ ϑ̂β − ϑ̂α ∧ χβÞ ∧ γαβ

− ðχα þ φαÞ ∧ D̂ �ðϑ̂α ∧ χ̄Þ: ð72Þ

Consequently, the rotational (Lorentz) perturbation γαβ and
the skew-symmetric part χ̄ of the translational perturbation
both contribute merely to the total divergence term (71) in
the Lagrangian, and hence they are both nondynamical.
The symmetric translational perturbation φα represents the
only dynamical degree of freedom. According to (70), it
satisfies the linearized version of Einstein’s field equation:

D̂ðêμcD̂φνÞ ∧ η̂αμν − 2λη̂αβ ∧ φβ ¼ 0: ð73Þ

It is convenient to introduce a two-form

F α ≔ D̂φα þ ðêβcD̂φβÞ ∧ ϑ̂α: ð74Þ

This object can be called a Fierz field (see [29,30]). One
can straightforwardly verify that

ðêμcD̂φνÞ ∧ η̂αμν ¼ �F α; ð75Þ

so that the field equation (73) is recast into

D̂ �F α − 2λη̂αβ ∧ φβ ¼ 0; ð76Þ

whereas the linearized Lagrangian (70) can be compactly
rewritten as

Vdyn ¼ 1

2κc
f �F α ∧ D̂φα − 2λφα ∧ φβ ∧ η̂αβg: ð77Þ

Note that the covariant derivatives of (73) and (76) vanish
identically. Indeed, from (76) we have

ϑ̂α ∧ �F α ¼ −2ðêμcD̂φνÞ ∧ η̂μν; ð78Þ

and hence

D̂ D̂ �F α ¼ −R̂α
β ∧ �F β ¼ −λϑ̂α ∧ ϑ̂β ∧ �F β

¼ 2λϑ̂α ∧ ðêμcD̂φνÞ ∧ η̂μν

¼ 2λD̂φν ∧ η̂αν; ð79Þ

which exactly cancels the derivative of the second term
in (73) and (76), namely D̂ð−2λη̂αβ ∧ φβÞ.
On the other hand, by multiplying (73) and (76) with the

coframe ϑ̂α ∧, one obtains a nontrivial equation for the
trace φ ¼ êαcφα of the translational perturbation:
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D̂ðêμcD̂φνÞ ∧ η̂μν þ 3λη̂μ ∧ φμ ¼ 0: ð80Þ

Here we used (78) and ϑ̂α ∧ η̂αβ ¼ 3η̂β.
It is instructive to rewrite everything in components.

Starting with φα ¼ φβ
αϑ̂β (recall that φαβ ¼ φβα), we have

D̂φα ¼ 1
2
ðD̂μφν

α − D̂νφμ
αÞϑ̂μ ∧ ϑ̂ν. Then we find for the

Fierz field F α ¼ 1
2
F μν

αϑ̂μ ∧ ϑ̂ν the components

F μν
α ¼ D̂μφν

α − D̂νφμ
α þ δανðD̂λφμλ − D̂μφÞ

− δαμðD̂λφνλ − D̂νφÞ: ð81Þ

Here the trace scalar φ ¼ êαcφα ¼ φα
α.

Accordingly, the four-form Lagrangian (70) and (77)
reads

Vdyn ¼ η̂

2κc
fF μν

αD̂μφν
α þ 2λðφαβφ

αβ − φ2Þg ð82Þ

¼ η̂

2κc
fD̂μφνλD̂

μφνλ − D̂μφνλD̂
νφμλ

− ðD̂ρφμρ − D̂μφÞðD̂σφ
μσ − D̂μφÞ

þ 2λðφαβφ
αβ − φ2Þg; ð83Þ

and the field equation (73) and (76) is recast into

D̂νF μν
α þ 2λðφμ

α − φδαμÞ ¼ 0: ð84Þ

Similarly, the trace equation (80) reads explicitly as

D̂μðD̂μφ − D̂νφ
μνÞ − 3λφ ¼ 0: ð85Þ

Finally, a useful observation is in order. After
introducing

uμν ≔ φμν −
1

2
gμνφ; ð86Þ

we recast the Fierz tensor (81) into

F μν
α ¼ D̂μuνα − D̂νuμα þ δανD̂

λuμλ − δαμD̂
λuνλ: ð87Þ

Summarizing, we conclude that the particle spectrum
of the model (20) contains only the spin-2 graviton mode
propagating on the de Sitter background.

VI. DISCUSSION AND CONCLUSION

In this paper we demonstrated that GR can be consis-
tently interpreted as a specific model of Poincaré gauge
gravity under two crucial assumptions: (i) The PG
Lagrangian has a certain special form, namely that given
in Eq. (20). (ii) The matter couples nonminimally to the
gravitational field of PG in accordance with the substitution
specified in Eq. (35).

Similar studies of relations between PG, teleparallel
gravity and GR and the analysis of the relevant physical
sources were done earlier in [31,32]. It should be noted
that one can formally recover GR by using the Lagrange
multipliers method in PG [2,33]. However, this is
achieved by extending the space of PG variables with
auxiliary fields which are alien to the gauge-theoretic
approach. The fundamental novelty of our result is the
demonstration that GR arises as a special model in the
framework of the genuine Poincaré gauge gravity theory
where the only dynamical variables are the coframe ϑα

and the local Lorentz connection Γαβ (i.e., the translational
and rotational gauge potentials) with no extra degrees of
freedom added.
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APPENDIX A: RIEMANN-CARTAN GEOMETRY:
TORSION, CURVATURE, AND η-FORMS

Our basic notation and conventions are as follows:
Greek indices α; β;… ¼ 0;…; 3 denote the anholonomic
components (for example, of a coframe ϑα), while the
Latin indices i; j;… ¼ 0;…; 3 label the holonomic com-
ponents (dxi, e.g.). The Minkowski metric is
gαβ ¼ diagðþ1;−1;−1;−1Þ.
The gravitational field is described by the coframe ϑα ¼

eiαdxa and the Lorentz connection Γαβ ¼ Γi
αβdxi one-

forms. The translational and rotational field strengths read

Tα ¼ Dϑα ¼ dϑα þ Γβ
α ∧ ϑβ; ðA1Þ

Rαβ ¼ dΓαβ þ Γγ
β ∧ Γαγ: ðA2Þ

The Riemannian connection one-form Γ̃β
α is uniquely

defined by means of the vanishing torsion condition
dϑα þ Γ̃β

α ∧ ϑβ ¼ 0. One can decompose the Lorentz
(a.k.a. Riemann-Cartan) connection

Γαβ ¼ Γ̃αβ − Kαβ ðA3Þ

into the Riemannian and the post-Riemannian parts. The
contortion one-form Kαβ ¼ −Kβα is algebraically related to
the torsion:

Tα ¼ Kα
β ∧ ϑβ: ðA4Þ

Explicitly, we have, for the contortion one-form,

Kαβ ¼
1

2
ðeαcTβ − eβcTα − ϑγeαceβcTγÞ: ðA5Þ
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By substituting (A3) into (A2), we can decompose the
curvature two-form into Riemannian and post-Riemannian
parts:

Rαβ ¼ R̃αβ − D̃Kαβ þ Kγ
β ∧ Kαγ: ðA6Þ

Hereafter the Riemannian objects and operators (con-
structed with the help of the Riemannian connection) are
denoted by the tilde.
Denoting the volume four-form by η, we construct the

η-basis in the space of exterior forms the help of the interior
products as ηα1…αp ≔ eαpc…eα1cη, p ¼ 1;…; 4. They
are related to the coframe θ-basis via the Hodge dual
operator ⋆, for example, ηαβ ¼ ⋆ðϑα ∧ ϑβÞ.
Useful relations for the products of the coframes are

ϑμ ∧ ηα ¼ δμαη; ðA7Þ

ϑμ ∧ ϑν ∧ ηαβ ¼ðδμαδνβ − δναδ
μ
βÞη; ðA8Þ

ϑβ ∧ ηαμν ¼ δβαημν þ δβμηνα þ δβνηαμ; ðA9Þ

ϑμ ∧ ϑν ∧ ηαβγ ¼ 2
	
δ½μα δ

ν�
β ηγ þ δ½μβ δ

ν�
γ ηα þ δ½μγ δ

ν�
α ηβ



:

ðA10Þ

APPENDIX B: IRREDUCIBLE DECOMPOSITION
OF THE TORSION

The torsion two-form can be decomposed into the three
irreducible pieces, Tα ¼ ð1ÞTα þ ð2ÞTα þ ð3ÞTα, where

ð2ÞTα ¼ 1

3
ϑα ∧ T; ðB1Þ

ð3ÞTα ¼ −
1

3
�ðϑα ∧ T̄Þ; ðB2Þ

ð1ÞTα ¼ Tα − ð2ÞTα − ð3ÞTα: ðB3Þ

Here the one-forms of the trace T and the axial trace T̄ of
the torsion Tα ¼ 1

2
Tρσ

αϑρ ∧ ϑσ are defined in terms of the
torsion components as follows:

T ≔ eνcTν ¼ Tμν
μϑν; ðB4Þ

T̄ ≔ �ðTν ∧ ϑνÞ ¼
1

2
Tρσμη

ρσμνϑν: ðB5Þ

APPENDIX C: KEY IDENTITIES

There are several useful relations for the irreducible
torsion parts. In particular, consider Tμ ¼ 1

2
Tρσ

μϑρ ∧ ϑσ

and multiply it by ηαβμ. With the help of (A10) we find

Tμ ∧ ηαβμ ¼
1

2
Tρσ

μϑρ ∧ ϑσ ∧ ηαβμ

¼ ðTαβ
μ − 3ð2ÞTαβ

μÞ ∧ ημ: ðC1Þ

On the other hand, for the dual �Tα ¼ 1
2
Tρσ

αηρσ we
immediately verify

�Tα ∧ ϑβ − �Tβ ∧ ϑα ¼ ðTαβ
μ − 3ð3ÞTαβ

μÞ ∧ ημ: ðC2Þ

Applying (C1) and (C2) to the irreducible torsion parts, we
obtain the identities

ð1ÞTμ ∧ ηαβμ ¼ 2 �ðð1ÞT ½αÞ ∧ ϑβ�; ðC3Þ

ð2ÞTμ ∧ ηαβμ ¼ −4 �ðð2ÞT ½αÞ ∧ ϑβ�; ðC4Þ

ð3ÞTμ ∧ ηαβμ ¼ − �ðð3ÞT ½αÞ ∧ ϑβ�: ðC5Þ

Another identity expresses the contortion in terms of the
duals of the irreducible parts of the torsion:

1

2
Kμν ∧ ηαμν ≡ �

�
ð1ÞTα − 2ð2ÞTα −

1

2
ð3ÞTα

�
: ðC6Þ

To prove this, we substitute Kμν ¼ 1
2
ðeμcTν − eνcTμ −

ϑλeμceνcTλÞ into the left-hand side of (C6) and find

Kμν ∧ ηαμν ¼ ðeμcTνÞ ∧ ηαμν −
1

2
ðeμceνcTβÞϑβ ∧ ηαμν:

ðC7Þ

In order to evaluate the first term, we start with

ðeμcTνÞ ∧ ημν ¼ eμcðTν ∧ ημνÞ ¼ eμcðημ ∧ TÞ
¼ −ημeμcT ¼ − �ðϑμeμcTÞ ¼ − �T; ðC8Þ

where we used the identity 0≡ eνcðTν ∧ ημÞ ¼
T ∧ ημ þ Tν ∧ ημν. Applying the interior product eαc,
we find

ðeαceμcTνÞημν − ðeμcTνÞ ∧ ηαμν ¼ −eαc �T: ðC9Þ

Thus the first term on the right-hand side of (C7) reads

ðeμcTνÞ ∧ ηαμν ≡ eαc �T þ ðeαceμcTνÞημν
¼ �ðT ∧ ϑαÞ þ �ðϑμ ∧ ϑνeαceμcTνÞ
¼ �ð−ϑα ∧ T þ Tα − eαcðϑν ∧ TνÞÞ:

ðC10Þ

The second term on the right-hand side of (C7) is easily
computed with the help of (A9):
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−
1

2
ðeμceνcTβÞϑβ ∧ ηαμν

≡ �
�
−
1

2
ϑμ ∧ ϑνeμceνcTα þ ϑ½ν ∧ ϑα�eνcT

�

¼ �ðTα − ϑα ∧ TÞ: ðC11Þ

Collecting (C10) and (C11), we find

Kμν ∧ ηαμν ≡ �ð2Tα − 2ϑα ∧ T − eαcðϑν ∧ TνÞÞ: ðC12Þ

Substituting the definitions (B1)–(B3), one proves the
identity (C6).
Taking the sum of (C3)–(C5) and making use of (C6), we

obtain another identity:

Tγ ∧ ηαβγ þ ϑ½α ∧ Kμν ∧ ηβ�μν ≡ 0: ðC13Þ

The relations (C3)–(C6) and (C13) are linear in the torsion
components.
In addition, there exist other identities which are quad-

ratic in the torsion components. They read as follows:

�ððIÞT ½αÞ ∧ Tβ� þ �ððIÞTγÞ ∧ ϑ½α ∧ eβ�cTγ ¼ 0: ðC14Þ

These identities hold for all irreducible parts, I ¼ 1, 2, 3.
Besides that, there are similar (sort of “dual”) relations

ð1ÞT ½α ∧ Tβ� þ ð1ÞTγ ∧ ϑ½α ∧ eβ�cTγ ¼ 0; ðC15Þ

ðð2ÞT ½α þ ð3ÞT ½αÞ ∧ Tβ�

þ ðð2ÞTγ þ ð3ÞTγÞ ∧ ϑ½α ∧ eβ�cTγ ¼ 0: ðC16Þ

To prove the relations (C14)–(C16), one should directly use
the definitions (B1)–(B3).
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