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In this paper, we study the four-dimensional Einstein-Maxwell-dilaton theories in the Newman-Penrose
(NP) formalism. We adapt the equations of motion into the NP formalism, and obtain the solution space that
is asymptotic to the flat space-time. We then investigate the gravitational and electromagnetic memory
effects. We find that the dilaton does not contribute to the displacement nor the kick memory effects, but it

does contribute to the time-delayed memory effect.
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I. INTRODUCTION

In the 1960s, to understand the gravitational radiation in
full Einstein theory, Bondi and his collaborators established
an elegant framework for axisymmetric isolated systems
and demonstrated that gravitational waves exist in the full
Einstein theory rather than an artifact of linearization [1]. In
this framework, they chose a suitable coordinates system
and expanded the metric fields in inverse powers of the
radial coordinate r. Imposing the proper boundary con-
ditions, the equations of motion can be solved order by
order in 1/r expansions. In this framework, the gravita-
tional radiation is characterized by the news functions and
the mass of the system decreases whenever the news
function exists. Shortly, this framework was extended to
asymptotically flat space-times by Sachs [2]. Meanwhile,
Newman and Penrose [3] developed a new approach to
understand gravitational radiation by means of a tetrad or
spinor formalism. They derived a compact set of first order
differential equations involving linear combinations of the
equations for the Riemann tensor, expressed in the Ricci
rotation coefficients or the spinor affine connection. These
equations are equivalent to the empty space FEinstein
equations. From these equations, one can investigate the
asymptotic behavior of the fields systematically, under the
condition that the space-time should approach to flatness at
infinity. The asymptotic flatness condition is imposed on
the Riemann tensor rather than the metric.

This formalism is motivated by the strong belief that the
essential element of a space-time is its light-cone structure
and it is the most effective way for grasping the inherent
symmetries of the space-times such as the black-hole
solutions of general relativities. In this formalism, the
geometrical property of the space-times is more transparent
and it is the most satisfactory way to study the fermion-
coupled theories. The asymptotically flat solutions of the
empty Newman-Penrose equations were later derived by
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Newman and Unti [4], and the news functions and the mass-
loss formula were successfully recovered. When matter
fields are coupled, one expects that the matter equations of
motion are also adaptable into the Newman-Penrose (NP)
formalism. This was indeed done for Einstein-Maxwell
gravity [5,6]. However other theories are less studied in NP
formalism.

In this paper, we study the four-dimensional Einstein-
Maxwell-dilaton (EMD) theories in Newman-Penrose for-
malism. Including the Kaluza-Klein theory which arises
from five-dimensional Einstein gravity reduced on a circle,
the four-dimensional EMD theories are a class of theories
that can be embedded into various supergravities which
originate from string theories or M-theory. In these theories,
the matter sector includes the Maxwell field A and a dilatonic
scalar ¢, both of which are massless and minimally coupled
to gravity. The dilaton is nonminimally coupled to the
Maxwell kinetic term in the form of an exponential function
e where a is the dilaton coupling constant. In [7], the
authors used Newman-Penrose formalism to analyze the
perturbations of the Kerr-Newman dilatonic black hole
background. However, EMD theories have not been fully
studied in NP formalism elsewhere. In this paper, we adapt
the equations of motion of EMD theories into NP formalism
and obtain the solution space that approaches the flatness
asymptotically. We then examine the mass-loss formula and
the charge conservation. As a direct application, we also
study the memory effects.

Firstreported by Zel’dovich and Polnarev [8] in linearized
gravity and further studied by Christodoulou in full Einstein
gravity [9], gravitational memory effects are a large group of
observational effects for gravitational radiation which is
characterized by the change of the asymptotic shear Ac” [10]
(see also [11-17] for relevant developments). The memory
effects also exist in Maxwell theory named electromagnetic
memory effects [18,19]. We should notice that the memory
effects can be classified by the observational effects.
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In recent years, there have been renewed interests in
memory effects. Strominger and Zhiboedov [20] discovered
an intriguing triangular relation of three ingredients: the
Bondi-Metzner-Sachs supertranslation symmetry, the lead-
ing soft graviton theorem, and a displacement gravitational
memory effect. This memory effect is a displacement of
two parallel inertial detectors caused by the radiative energy
flux and it turns out to be mathematically equivalent to
Weinberg’s soft graviton theorem[21] by the Fourier or the
inverse Fourier transformations.

Pasterski, Strominger, and Zhiboedov [22] later discov-
ered a spin memory effect which was characterized by the
relative time delay between the different orbiting light rays
caused by the radiative angular momentum. This spin
memory effect was shown to be mathematically equivalent
to the subleading soft graviton theorem [23]. In [24], the
authors found another spin memory effect represented by
the proper time delay of a free-falling massive particle
constrained on a timelike r = ry hypersurface near the null
infinity. In [25], the authors considered the motion of a
charged observer and investigated both the gravitational
and electromagnetic memory effects in a unified manner in
the Einstein-Maxwell theory. It is thus of great interest to
study the memory effect in EMD theories to uncover the
possible observational effects due to the nonminimal
coupling between the scalar and the electromagnetic field.
The fully understood memory effects in EMD theories may
also help one to understand the memory effects in string
theories [26] and M-theory.

The paper is organized as follows. In Sec. II, we will give
a brief introduction of NP formalism and derive the NP
equations of the four-dimensional Einstein-Maxwell-
dilaton theories. The asymptotically-flat solution space
of these theories will be derived in Sec. III. We also
examine the charge conservation and the mass-loss for-
mula. In Sec. IV, we will obtain the memory effects based
on the investigation of [25] in EMD theories. We conclude
the paper in Sec. V.

II. EINSTEIN-MAXWELL-DILATON THEORY
IN THE NP FORMALISM

The Newman-Penrose formalism is a special tetrad
formalism with two real null basis vectors e; = [, e, = n,
and two complex null basis vectors e; = m, e, = im. These
basis vectors have the orthogonality relations

I m=I1l-m=n-m=n-m=0, (2.1)
and are normalized as
l-n=1, m-m=—1. (2.2)

The metric is obtained from the basis vectors as

G = ’7ab<ez)(e£) = nﬂll/ + l[tnb - mﬂrhl/ - mvmw (23)
where e,‘j represents the basis vector [, n, m, m; p is the
coordinate index, while a is the tetrad index, and 7, is the
metric component under the tetrad form. The connection
coefficients, called spin coefficients in the NP formalism
with special Greek symbols (we will follow the convention
of [27]), are presented as follows:

K = F311 = l”m”V,,l”, T = —F421 - lyﬁ’lﬂvyl’l”,

1 1 _
€ = E (an - F431) = E (l”nﬂv,/lﬂ - l”m"vbmﬂ). (24)

=13, = n*m"V,1,, v= Ty =-n"m"V,n,,

v = % (Mo = Tyzn) = %(”U””vulﬂ - ”"mﬂvymﬂ)‘ (2.5)
o=T33=m"m'V 1,  —p=-Typ3=-m"m"V,n,

p :%(Fm —Tu33) :%(’”Dnﬂvulﬂ - myﬁ,lﬂvl/mﬂ)' (2.6)
p=T3u=m"m'V, 1, —A=-Typs=-m"m'V,n,,

“= % (Ta1a—Ty34) = % (Vb —mm N ymy,). (2.7)

We use five complex scalars to represent ten independent
components of the Weyl tensors

lI‘O = _Cl3l3’
\P3 = _C1242’

¥ =-Cps,
¥, = —Coyn.

‘PZ = _Cl342?
(2.8)

Ricci tensors are defined by four real and three complex
scalars as follows:

1 1
Dyy = —Z Ry, ‘Dzzz—szz,
D, 1R b, = 1R
02 = —5 K33, 20 = ~5 Ras,
1 1
@y = ——(Rip + Ray), Dy = —-Ry3,
4 2
1 1
b, =—-=-R A=—R=— (R, —R
12 5 Kos, i 12( 12 34)s
1 1
Dy =—=Ry4, D,y = —=Ryy, 2.9
10 5 Kia 21 7 Ko (2.9)

where A is the cosmological constant. Considered as direc-
tional derivatives, the basis vectors are represented by
special symbols:

D =1'0,, A =n"d,, 6 =m"d,. (2.10)
The equations that describe NP formalism include three

classes:
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(ii)

(iif)

The commutation relations of the basis vectors and
the structure constants

[ea’ eb] = (Fcba - rcab)ec = Ccabew (211)

where e, is the basis vector, and C¢,, is the structure
constant. The general tensorial formalism does not
consider these relations since the coordinate basis is
commutative. An example is as follows:

[A,D] = [n,1] = [es,e;] = (Tcjp —Tepp)€°

= _F121A + Iﬂ212D - (F312 - Iﬂ321)5

— (T412 = Tap1)0. (2.12)

Giving the spin coefficients their symbols, we get

AD—-DA = (y+7)D+ (e +¢€)A

- T+ n)6— (z+7)0. (2.13)

The Ricci identities, similar to using the coordinate
basis to calculate the Riemann curvature tensor in
the general tensorial formalism, i.e.,
W =Ciiz=Ri33="T1331 —T313

+T133(F121 +Tazr = Tag3 + Tz +T34)

= T3 (T3 + T3 = T3 + gy +T3,).

(2.14)
Substituting for the directional derivatives and the
spin coefficients their designated symbols, we obtain
Do — 6k =c(3e—€+p+p)

tk@-t-3f-a)+¥. (2.15)

The Bianchi identities. It is similar to the Bianchi
identities in the tensorial form, i.e.,
Ri31314 + Ryzzap + Rizaz = 0, (2.16)

where represents the covariant derivative in
tetrad form. It can be rewritten in the following form:

“|”

- S‘PO + Dqll —+ (4a - 71')\110 - 2(2p + +€)T1

+ 3k¥, + [Ricci] = 0. (2.17)
Here
[RICCI] = _D(I)Ol + 5(D00 + 2(6 +ﬁ)®01
+ 20¢|0 - 2Kq)]] - E(Doz
+ (7 — 28 — 25)Dyp. (2.18)

As for Maxwell theory, in NP formalism the antisym-
metric Maxwell-tensor F',, is replaced by the three complex
scalars

¢0 = F13 = F;u/l”my’

1 1
b =§(F12 + Fy3) :EF”D(Z””” +m'm"),
Q’)z = F42 = F/wm”n”. (219)

Correspondingly, the Maxwell equations in tetrad form

F[ab\c] =0, ”n’nFan\m =0 (220)
can be replaced by those equations
$11 — Pos = 0, a1 — P1a =0,
$13 — o = 0, ¢z — P1jp = 0. (2.21)

Expanding these equations in the terms of the ordinary
derivatives and spinor coefficients, then expressing them in
the symbols above, we can get the Maxwell equations in
NP formalism. Similar disposition can be used to deal with
the Klein-Gordon equation for scalar field, where we define
Q, = Dg, Q, = Ap, Q = 5p, Q = ¢p.

The freedom of the rotation of the basis vectors, see e.g.,
in [3], will allow us to set

r=k=¢€=0, p =P, T=a+p. (2.22)

From those conditions, one can find that / is tangent to a
null geodesic with an affine parameter. Also, the congru-
ence of the null geodesic is hypersurface orthogonal, that is,
[ is proportional to the gradient of a scalar field. So it is
convenient to choose the scalar field as coordinate u = x',
and the affine parameter as r = x2. Thus, the basis vectors

and the co-tetrad must have the form

0 0 0 0
HO = —_ A_—_ 5 J——
n*0, 8u+U8r+X e *9, R
ad 0
O =0 T g

n,dxt = [-U — X*(@L, + wL,)|du + dr
+ (C()I:A + ELA)dXA,

L dx" = du, mydxt = —X*Lydu + Lpydx*.  (2.23)

where L,LA =0, L,L* = —1. We will use the standard
stereographic coordinates 7 = e'® cotg andz = e” cotg in
this work.
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The Lagrangians of four-dimensional Einstein-Maxwell-
dilaton theories are'

1 1
L=—g R_Zew/’F2+§(a¢)2 , F=dA. (2.24)

This class of theories is generalized from the Einstein-
Maxwell theory to include a real dilatonic scalar. When
the dilaton coupling constant a takes the following

specific values a = 0,%, 1,4/3, the EMD theories can
be embedded into the A/ =2 STU supergravity [29].
Einstein-Maxwell theory, which is the bosonic sector of
N = 2 supergravity, can be reduced from the a = 0 case,
while the a = \/§ case can be Kaluza-Klein theory. Now
we suppose that a is an arbitrary real constant.

The dilaton, Maxwell, and Einstein equations can be
derived from the Lagrangian (2.24)

0 (/=99 0,p) + % V=ge’F? =0.  (2.25)
0,(\/=ge™ Fm) = 0. (2.26)

1 1 1
R =5 FyF,/ = ggﬂye“’”Fz — 3040009, (227)
According to these equations of motion in the tensorial
form, we can easily recast them into the NP formalism. We
divide these equations into three groups [4]:

(I) Radial equations.—This group of equations can be
integrated to find the radial dependence of all the
variables, up to a proper order of magnitude. Each
integration gives an arbitrary function of three
nonradial coordinates (integration constant).

(II) Nonradial equations.—This group of equations give
the relations among these integration constants so
that most of the functions can be expressed in terms
of two basic functions ¢°(u, z,Z) and P(u,z,%).

() The u-derivative equations.—This group of equa-
tions characterizes the propagation of the compo-
nents of Weyl tensor, the dilatonic scalar field and

|

the Maxwell fields off the hypersurface in the u
direction (time direction), from null surface to null
surface.

A. Radial equations

2 — 1 a "3 1 2
Dp = p + 00 + 5 e“ocbo + Z(Ql) . (2.28)
Do = 2po + ¥y, (2.29)

_ 1 - 1

Dt =1p+70+ ¥ —I—Ee“‘/’q’)od)l —i—ZQlQ, (2.30)

1 — 1 -
Da:pa—i—ﬁa—i—ie“’/’(ﬁl(ﬁo—i—ZQlQ, (2.31)
Df =ac+pp+ ¥, (2.32)

1 - 1
D]/ = Ta+7ﬂ+\P2 +§€a(ﬂ¢]¢1 +69192

1
Q0. (2.33)

T

1 - 1,
DA = pA+ou+ > e“Crpo + 1 Q)2 (2.34)
1 _

1 — |
Dl/ = f/l + 7/1 + lP3 + 5 €a¢¢2¢1 + ZQzQ, (236)

DU =7wo+t0—(y +7), (2.37)
DXA =7LA + tLA, (2.38)
Do = pw + cw — 7, (2.39)
DLA = pLA + 6L, (2.40)

- 1 — _
DY, — 8%, = 4p¥,| — 4a¥, + Ee‘"” Kaqbl - ge“’/’qﬁ] - Czle“”’qh)qbogl

- <a$0 - g ey — g ea(p(ﬁo) P02 + ¢ Dby — oSy — 20910 + 2Bdobo

1 1 1 1 - 1
—5Q0Q + 70D, +7Q,DQ -2 pQQ —50Q,Q + 5 (@+ p) (), (2.41)
'Note that we use the signature (+, —, —, —). Hence the third term in the Lagrangian is 1(Op)? rather than most used convention

—1(0p)?, see e.g., [28].
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Dlpz - S‘“P] = 3plP2 - 20{‘1’1 - ﬂqjo

1 — 1 _ 1 - _ 1 _
+ Ee“‘/’ |:<a¢l - Eae“‘/’qﬁl + Eae“"’(ﬁl)qﬁoﬂ - <a¢o - Eae“"’q,’)o) e

1 _ _ _ _ _ _
- Eae""’d)ngle + @160 — PoAdo — 2aodi + 2pP1 Py + 2y oo — 274’1450]

1 _ 1 - 1 1
—Q6Q —-Q.60Q ——Q,AQ, — - 7)Q,Q
+4 0 1+4 10 5 Sl 2(0‘+7) 1

1 - 1 1 1 -
+ ZP(QIQZ +QQ) + 15(9)2 ~7 (7 =27 = 27)()* - ST
1 _ _
+ 25 (@:DQ, +Q,DQ, - ADQ - QDAY), (2.42)

_ 1 - 1 — 1 —
DlP:; - 5‘1‘2 = 2,0‘}‘3 - 2&?1 + Eeago |:<(1¢1 - Eae“‘”d)l - Eae“¢([)1>¢291

— 1 1 _ — — _ _
- <a¢o - Eae'm(ﬁo - 2ae“"’¢0> D2 Q2+ P Dpy — Podps + 2up1py — 2P

1 - ola - 1 1
(QDQ; + QD) ~ 7 Q50 — 5 P00 + 7 4 Q

_ 1 _ _ - _ _
(@=F)(Q) - (@280 + 252, - 250 - Q5Q), (2.43)

+

+

= A

= 1 1 _ _
DY, — 0¥5 = p¥, + 2a¥; — 34Y, + 3 e’ [(5 ae* g — ad)()) $22,
1 a 1 ap f 1 a 5 ®
_Eae PPy — 5616’ 7, _Eae ¢y — agy | h.Q

— oAy + P16, + 2 by + 2wp by — 2y oy — 2/1¢1¢1}

AU N [ (O
1 | 1 _ 1 _
- EVQ1Q - 15(92)2 + 1/1(9192 +QQ) + 2 (7 +2r = 27)(Q)%, (2.44)
_ 1 _ 1 I | —
Doy — ¢y = 2py — 2a¢py — zae“‘/’((pl + 1) + Eae“‘ﬂgbOQ + Eae“(/’g{)OQ, (2.45)
S 1 agp f 1 a 1 a T \O
Do, — oy = phr — Ay + 5ae €2 — 5ae P, + Sae ?(p1 — 1) (2.46)
B. Nonradial equations
AL =6v—(u+m)A— By =7)A+2av —Y,, (2.47)
= _ _ 1 1 _
Ap:51—,0/4—071—20(1-?-(}/—i—}/)p—‘Pz—i—EQIQZ—EQQ, (2.48)
Aa =y +pv— (e +p)A+ (7 —r—ma—"¥s, (2.49)
2 o = 1 agq 0 1 2
Ap = bv—p —M—(y+y),u+2ﬁz/—§e ”¢2¢2—1(92) ; (2.50)
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-1 — 1
Ap =8y —put+ov+py—7—u) —0‘1—56”‘”451452 —1929,

_ 1 — 1
Ao = 5t = o — pl = 27+ (37 =)o = S e“hodpr = (Q)%

Aw=8U+v—-Ao+(y—7—uo,

ALA = 6XA = ALA + (y —7 — ) LA,
_ — 1 - 1
op — o0 = pr—o(3a—pf) - ¥, +§€w¢0¢1 +ZQIQ’

= — 1 — 1 |
60 =50 = pup = 20+ @ + P = 2af — W + 5 e“hihy + 15 2 + Q0

= 1 — 1 -
64— ou = pz + A(a —3p) —¥3 +§€a(”¢2¢1 +4—1Q29’
b0 — b0 =p—pi—(a=Plo+ (@-p)o,

SLA —S6LA = (@ — )L — (a— B)LA.
C. The u-derivative equations

AW — 0¥y = (4y —pu)¥ — (47 +28)¥, + 30,
1 — 1 - 1
) e [(a(ﬁz 3 aea(p¢2> Do + 5 aePopofd,

1 — 1 _ _ _ _ _
+ (5 ae'’gp, — Eae“(/’qbl - a¢1>¢09 + ¢ Dy — 6o + 2ppopy — 261,

1 1 1 1 1-
——QDQ + —-Q6Q —Q6Q — =B Q ——A(Q,)?
5 +4 0 1+4 16 2ﬁ 1 41( 1)

1 - 1

A\Pl - (Sle = I/lPO + (2}’ - 2/1)‘}‘1 - 3‘[\Pz + 2()-\1!3
1 - 1 | 1 1 _
+ 5 e’ |:<Cl¢l - Eae“‘/’qbl - 2ae“‘/’gb1>¢092 + <2 ae”‘”gbz + 2aea(p¢2> ¢OQ

— apodrQ + P Adoy — 2000 — 2rpod1 — 2pP1 2 + 2agods + 2T¢1¢1]

1 1 1 1, 1 1
+ZQAQ] +ZQ]AQ—§QSQ+§(/J—}/)Q]Q—Epgzg—zl/(gl)

1 - 1 — 1
_ Q50— 05Q).
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AlPZ - 5‘1’3 = 21/1111 - 3/,{‘{’2 + (Zﬁ - 2’[)\}]3 + 6‘}‘4
1 — 1 — 1
3 e“? [<a¢2 ~3 ae“‘/’¢2> D2 + 3 aepohr 2

1 —_ 1 _ _ _ _ _
+ (E ae“ ¢, — 3 ae’p; — a¢1> D2 Q2+ DDy — 16y — 2P 1y + 2u

1 1 - R
~ 5 DY + 7050 + 7. 0,30 + 5 0

4 4
1 R T
— QAQ - QAQ). (2.62)

ALP?, - 5‘1’4 = 31/‘1”2 - (27/ + 4/1)‘{13 + (4ﬂ - T)lIJ4
+ % e’ Ka% - %aem”% - %aeaq’fﬁl) $2Q — <a¢2 - %ae“‘/’(pz)%ﬁ
1 _ _ _ _ _ _
+ §a¢2¢29w9 + Q1ADy — 20 + 2y p1py — 2vp by + 2441y — 20‘4’2452]

1 - 1 - 1 1
+ 798 + QA0 = 20080 + 5 (7 + )00

4
1 I R | 1 _
- U, +0Q0) - 15(9)2 + 5420 - 2 (a+ B)(2,)2. (2.63)

1 1 — 1 1 —
Apo — 61 = (2r — u)po — 219, + 0¢p; — Eae‘”f’(j)oﬂz + 5““‘”4’291 + Eae“‘/’(plﬂ - Eae“‘/’g{)IQ. (2.64)

_ 1 1 _ 1 __ 1
Agy — 6y = vpg — 2uep; — (a - ﬂ)¢2 - Eaewff’lgz - 50‘3“(”4)192 + Eae"‘/’qﬁzQ + Eae“‘/’qﬁzg. (2-65)

AQ| +DQ, =8Q +6Q+ (y +7 — u—1)Q + 2pQ, — 22 Q —20Q + ae (7 + $ — podr — o). (2.66)

III. THE SOLUTION SPACE

0
The main condition of approaching flatness at infinity is W0 = % + O(r~®). Newman and Unti[4] listed the falloff
conditions of the rest quantities by solving the empty space Newman-Penrose equations,

p=—-r1+0(3), c=0(r7?), a=0("), p=00"),
T r3), A= 0, u=0r"), y=0(1),

(
v=0(1), U=0(r), X =0(r3), w=0(r ),
L*=0O(r?), L= 0™,
¥, =0 ), ¥, = O(r ), ¥, = O(r ), Y, =0 ). (3.1)

The falloff of the matter fields cannot violate the asymptotic conditions above, so we choose

b _ o 3.2

0 =2+ 00, (32)

o=2141221 0073, (3.3)
r r

and
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TABLE I. Spin weights.
0 D 7° L0 0 o’ 20 ¥ ¥ ¥ ¥ v S #! #)
S 1 0 0 -1 0 -2 -2 -1 0 1 2 -1 0 1
0 : : 2
_ 3 ¢2 5 the boundary topology is an arbitrary 2 surface but not S-.
¢ = r2 +0(r), ¢y ="+007). (3.4) Here the “0” operator is defined as

Using the conditions above, we work out the asymptoti-
cally flat solution space of Newman-Penrose equations in
Einstein-Maxwell-dilaton theories. The solutions of the
radial equations are as follows. One should notice that here

o' = PP=50:(P*n’) =
8,75 — PPsaz(P—sns) —

PO:n* + 252y,

PO — 25, (3.5)

where s is the spin weight of the field . The spin weights of
relevant fields are listed in Table I.

lPO = 1111 =
g, = Pole22)  Holw2.2) 4 oy
r r
O(u, 7,7 Wu,z,z
¢0 _ ¢0( - )+¢0( - ) —l—@(l’ 5)’
r r
fﬂl P2 _
—t O(r3),
1 -1 =463 o1
P = _; + 4,3 24 +48 5( 8¢0¢0 (pél1 - 16(p% - 24(,01§03
+ 86°W) + 86"W)) — 1666 ¢? — 48(55)%) + O(r™°),
®(u,z,2) =290 +6%? +406%%° 1 ~
= 2 e 35 (=¥} + %p10,) + O(r°),
°P(u,z,z) 1 - _ _ 1. _ _
L= — 2 + Y (4P‘P8 —5Pc’¢? — 24P5°(6°)?) + o5 (P‘I‘(l) — 3P p:6°) + O(r ™),
. Plu,z,z) 1 1 1 —
Li=——""+c3 (Pgi + 8Pc"5°) + Ga o+ 3os (16PYh,
+ 5Pg} + 32P@3 + 48P 3 — 64P6° W] — 32Pc"¥) + 112P5"6" p?
+ 384P(5°)%(6°)?) + O(r-ﬁ),
Lo=—5+ P00 LG 3002 4 A8pips + 329%) + O(r),
: 8Pr  6Pr*  384Pr3 " 70 : 0
o0 1 1 -
Ly = =4 5o (¥ 4 00) & s () + i) + O(4),
o 3% [ 0=0 -0 =<
a=— 7 —|—83(aq)1+8aaa + ¢,0¢;)
1 _ _
+— S (242°6°(5°)% — 43"} + 45°WY — 4\ — 2a° ¢} + 4o >
+ 5a°5°(¢p1)? — 26%9, 001 + 49,09, + 2¢,0¢,) + O(r7>),
0 aOGO 1
/3:—7— T tgs(- -t — 499 - 86"5"a°)
1 - _
+ —— (83%Y + 4] — 240°(c°)%5" — 12¢3¢) + 20°¢% — 43, 0,
r

— 50°6°p} + 402001 = 20139, + 6°913¢))

+O(

),
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| 1
7= o5 (4 + 0100) + 5 (8% + 4679 — 164367 — 6°9,8¢, + 8¢:20¢;) + O(r~>),

o 1 1 — —
O=—+cs (—4%) = 80°0" + 1091) + 5 (40¥] + 24050 + 80"%) — 8!

+ 30 ¢} — 20"(/’15(/71 + 49,00,) + O(r™),

‘I‘O(u z, Z)

¥, = (64704)1 45?8 - “’O‘/’% = 20,00, + ¢,0¢, — 004015901) + O(”_ﬁ),

1
Xt = (4PlP P(ﬂ]é(pl)

By (—2P 3 W) — 4P6"W) + 4P + Po®p 09 — 2Py0¢;) + O(r~).

24r*

1
r =1+ 152 (0] +7°07 = 09 + 010ugn) + 5 (839} + 4

— 42" — 12994 — 243 + 2U°¢7 + 49,0, — 290, 0,0, — 200,00,

— 2,000, — &’ 09, +a@°¢,0¢p,) + O(r ),

6% 1

7_ 2 2
1 1 _ _
U=— + m( 1299 = 126°2° + U¢? — ¢,0,91) + &7 (869610 + 439 — 499!

- 4(7 +70)@102 4+ 2U°p% — 809100 — 9,009, — 290,0,¢02) + O(r™),

(246°6°2° + 126°%) — 6¢945 + 32097 + (° +7°)8°%9% — 3(3¢,)? + 3°9,0,¢1) + O(

_ 1 —
U==r(y’ +7°) + U + = (07 + 1’0} = 3% = 395 + 010,901)

1 _ _ _
+ —— (= 12007 + 4099 + 409 — 24092 + 23 U° + 4,0, 9, — 20010,

2452
— 20,09 — 91009, — 100¢;) + O(r™3),
Y9 (y, 7,7 1 _ =
¥, = 1 ; ), + 55 (120990 + 3u0? + 8(7° +7°) 1902 — 12099 — 507 U°

= 2020,01 + 501001 + 200,09, + 3,03¢p,) + O(r~),

¥ o1 - o = _ _
v=2~- —3 + —— (=12¢9¢) + 120%9 + 67°¢1 + 079t — 4°0, 09,

2472
— 4" rmécol — 500,001 + 9100,¢,) + O(r73),
o _ _ o _ _ _
¥; = 3 + 7 (64547 — 12099 — (87° + 37°) 97 + (¥° +7°)100p1 + 200,001 — 9100, 91) + O(r™*),
¢° u,z,7 1 = 1
b= PED L al - 200) + 5 (41044 + 830 + 40"

+45%9¢) + 48°¢3 — 2a(Y° + 7°)poo1 + P30t — A2t — 4adle,
+ 2adl e, + 4ad¢p, + 4addp, — 2agy0,p1) + O(r™).

0

o = PUED L (2508 — aly — i) + O,
¥ oWy

LP4:T4—73+O(1’_3).
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The solutions of nonradial equations are as follows:
Y0 = a0 — 9,10 — 4020,
1 - -
U° =40, Y0 = —EaulnP, @® = 06Y,

L =30+ 7%, a = %Paz InP,
2 =08,6"+3°(3y" 7).
P9 = 3u° - 34°,
WO = — %Pﬁaﬁz In PP,

P — ) = 3%6" — %6 +3°2° — 620, (3.7)

And we obtain the solutions of the u-derivative equations
which determine the propagation of the fields off the null
hypersurface

3l -
0.9 = S ¢085 — 12001 = (r° + 57°)¥) + 0%

1
——(1° +7°)6°p} + 3699

4
1, [
—1° 10,9, —19015 @1 +§(5¢1> . (3.8)
_ 1_ N
0.9 = W~ 20 + 28 + 20008
1 1_
+ 13 07" + 37wt = 370190
1 1
+ 5704016(#1 + 0%) — Z¢13u6(/’1
1 1
+§6(P1aufﬂ1 +E§0168u(p]' (3.9)
1 _
0.3 = 50503 = 3(r° +7°)¥5 + o"¥] + 0%
1 . 1
— 150w’ + 070t + 15 (7 + 7)1 0u1
1 , 1 2
+g(aufﬂl) —5401314(/71- (3.10)
0,99 = oW) —2(2/° +7°) 9. (3.11)

1 _—
0uthy = =(r" +37°)5 + 93 + 34} = Sadbpr. (3.12)
D, = ¢ —2(y° +7°)¢". (3.13)

Dupr = =2(° +7°) 2 — 00¢,. (3.14)

From the solutions above, we find that there is no
constraint at the order O(1) of ¢, and ¢, and at the order

O(%) of 6. So ¢°, ¢9, and ¢, are related to the news
functions in the system which indicate gravitational,
electromagnetic, and scalar radiations. ¢° has a special
geometric meaning that it represents the asymptotic shear
of [ (see [3,24]), the change of which at early time u; and
late time u; is equivalent to the time integration of the
asymptotic shear of n, i.e., A when we set the boundary
topology to be S*> xR, ie, P=P =P, = 1*—\/31 (see
[10,24]). The memory effects [10,24], which will be
discussed in the following section, are controlled by the
time integration of the asymptotic shear of n, i.e., A°, thus
the change of the asymptotic shear at early time and late
time Ac” is a very important quantity that characterizes
gravitational memory effects.

According to Eq. (3.12), we can find that this time
evolution equation involves the coupling constant @ which
represents the nonminimal coupling of the electromagnetic
field and the scalar field. q’)g is related to the electric dipole
[30]. Our result is consistent with the result in [28]. The
phenomenon that the coupling constant a does not appear
in the time evolution functions of four tetrad components of
Weyl tensor reflects that the scalar field is minimally
coupled to gravity.

From Egs. (3.10) and (3.13) we can consider the
conservation laws and the loss of mass in EMD theory.
Here we work in the unit 2-sphere case. From Eq. (3.10),
we can find

1
0,9 = 3 4393 — 025" — 3%0,5° + O}

1 21 2
- -— . 3.15
e (Oug1) lz(plau(pl (3.15)
Define the mass density
Lo g0y 109 20, =09 0
MZE(‘PzJFTz) +§(0 9,6" +3°9,06")
1 1
+= (026" + 8%6°) + — 0,9, (3.16)
2 12
We can obtain
1 o070 059 =0, | 2
auM = §¢2¢2 + 8140- auo- + Z(augol) . (317)

Considering the signature convention in NP formalism, we
get the mass loss theorem in EMD theories: The mass
density at any angle of the system can never increase. It is a
constant if and only if there is no news. Our mass-loss
formula generalizes the one in [28] by removing the
constraint of axisymmetry.

As for the Maxwell part, we work in retarded radial
gauge A, = 0. The Maxwell tensor is constructed as
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F/w = (¢1 + 51)(",4% - lynv) + (¢1 - El)(m/ﬂ’hv - ﬁ/lymv)
+ ¢2(lymy - mﬂlb) + $2<lﬂﬁ1v - ”hulv)
+ ¢O(ﬁ1ﬂnl/ - nﬂml/) + ao(mﬂ”y - nymb)' (318)

We represent the Newman-Penrose variables of Maxwell
parts in terms of the gauge fields A,

M=), am=-2
Al = —%q, (0.A? — 0.A?) = d)(l)P;Ifl)’ (3.19)
Ay
a, (PP) = 0,(0.A? + 0:A?), (3.20)
where
A, =223 o,
A, =A%u,z,7) —I—M%—O(r‘z). (3.21)
From Eq. (3.13), we find
0] = 8¢5 = P03 — 0:P;3 = PI0-(43/Py). (3.22)
Taking the real part of Eq. (3.22), we get
o, (T ) - Zoayry +o@ye. G2
Substituting Eq. (3.19) into Eq. (3.23), we find
0,AY = 0,(P20:A% + P20.A?). (3.24)
Defining the flux,
@ = AY - P2(9.A? + 0.A?), (3.25)
we find
0,0 =0. (3.26)

This means that the flux does not change with time.
According to Gauss’s law, we can conclude that the charge
is conserved, which again generalizes the result in [28] to
an asymptotically flat case.

IV. THE MEMORY EFFECTS

According to the solution space in the previous section, we
can derive the memory effects. We will examine the motion
of a charged timelike particle to specify the observational
effects in aunified expression [25]. Thatis to say, we consider
the contributions of the gravitational radiation, electromag-
netic radiation, and scalar radiation at the same time by
considering the effects of the motion of a charged particle
caused by the radiations in EMD theories. Gravitational
memory effects, characterized by the nonlinear contribution
to the overall change in the shear of outgoing null surfaces at
the future null infinity [10], have a large group of observa-
tional effects of the gravitational radiation. Displacement
memory effects are observational effects about a location
displacement of the observers, i.e., [20] describes a distance
shift of two parallel inertial detectors near the null infinity
caused by the radiative energy flux. Spin memory effects
[22,24] are memory effects characterized by the observa-
tional phenomena that the radiation causes the observers to
rotate, i.e., [22] is about a relative time delay of two beams of
light on clockwise and counterclockwise orbits induced by
the radiative angular momentum flux. The authors of
Ref. [24] discovered a kind of spin memory effect charac-
terized by the time delay of a free-falling massive particle
constrained on a timelike, r = r, hypersurface. The memory
effects also exist in Maxwell theory called electromagnetic
memory effects, i.e., [18,19,31,32]. Reference [19] is a
change of the velocity (a“kick”) of a charged particle.
Here we will consider all of these three kinds of memory
effects. The charged particle will be constrained on a time-
like, r = r( hypersurface. r = ry is a fixed radial distance
which is very large, which means that the particle is very far
from the gravitational and electromagnetic source. The
induced metric of this hypersurface can be derived by
inserting the solution space in the previous section into
Egs. (2.3) and (2.23), which in series expansions is given by

1 1 1 N o
ds* = {1 +— (‘Pg + 9 ——golaugol) + —— (12¢9¢) — 409? — 40F) + 239,09,

o 3 12r3

+ 20,009, — 420,01 + 2¢0,0,92) + 0(753)] du* +2 {—

05"
+

P 6P 1o (490 — ,0¢,) + (’)(r(jQ)] dudz

Rl 1 0 5 _ a’ry I o, =0 2 -2 2
+2 ~p +6P r0(4lP1_(/’16€01)+0(’"0 )| dudz + | -2 P2 +3P2r0(\yo+0(ﬂ1)+o(’”o )|dz
o’rg 1 N 5, —01 +46°" -1 _ }
+ |:—2P—%+T§r0(qlg+00§0%) +O(r02):| de _2|:P_%+ 4P% 3P§r0 —|—(9(r02)} dZdZ. (41)
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One should notice that here we fix the topology of the 2-

surface, i.e., P=P =P, = 1422 The induced Maxwell

field on the r = r hypersurfagg is
F,.= _h + (addp) — 2699 + 28¢7) + O(rg?).
“ Py 2Py ! 0
Fo— # =0 040 1 240) 4+ O(r=2
=-5t (adrpr — 20°¢3 + 2¢7) + O(r5?),

i@ P,  2P.r
R . et

F.= P2 Porg O(ry?). (4.2)
The dilaton field on the hypersurface is
o ¢i(u,z2,2) | a(u,2,7) 4
P(u,ry,2,7) = +=5—+0(r5°), (4.3)
ro ro
where
Dy + 0 = 0. (4.4)

The equation of motion of a free-falling charged particle on
this hypersurface is
VY(V, V¥ 4+ gF *) = 0. (4.5)

where V is the tangent vector of the particle worldline, V is
the covariant derivative on this three-dimensional hyper-
surface, and ¢ is the charge of the particle.

According to [24], we impose that V has the following
asymptotic expansion:

S u

u V‘l Z . V‘ZI
a=2

a=1

(4.6)

Then we solve (4.5) order by order. The solution up to
relevant order is

1 — 1
5 (B +T) + 20101,

V3 = —P,00" + qP?A?,

Vi =

1 - 3 _
V4 = g*P?AYA? + A (399 + 09Y) + g (P9 + ¥9)?
_ 1 _ 1 _

= 06°30" =S = 7 (V5 + V)01 0ugy

1 1 1
—— 010,02+~ 920,01 + — (010,91)*

12 6 24
1 _ _
1 (091091 + 1009 ),

2 1. -
vi—p, [265000 PR 4 00 + B
1 _
- P, / dv (39 + 0P + 2¢dAY),

1 —
—2qP3c"A? 4 qP3AL — 6 Pc°p,0,1, (4.7)

where we have set all integration constants of u to zero
since we require that the charged particle is static initially.
At ry? order, we can see that V has angular components. In
other words, gravitational and electromagnetic radiations
characterized by ¢° and A? cause a free-falling charged
particle to rotate over some tiny angle about the “center” of
the spacetime r = 0. The leading memory effect is the
velocity kick of the charged particle

1 _
AV? = —= (P0Ac” — qPIAAY) + O(rg?).  (4.8)

)

The leading memory effect consists of two parts, namely
the gravitational part —P,dAc” and electromagnetic part
gP2AA?. They are mathematically equivalent to leading
soft graviton theorem [20] and leading soft photon theorem
[32], respectively, by a Fourier transformation. That is why
we call this a unified expression of leading gravitational
memory effect and leading electromagnetic memory effect.
It is the same as the result in Einstein-Maxwell theory [25],
which means that the scalar field has no contribution
to the leading memory effect. Besides this, we can not
see the coupling effect in the leading memory effect. We
should notice that the change of the velocity of the charged
particle (the velocity kick) is considered a distinct effect
from the displacement memory effect. The gravitational
memory is a property of a gravitational wave characterized
by the change of the asymptotic shear Ac” [10]. The
velocity kick we discuss in this paper and the relative
displacement of nearby observers (e.g., in [20]) are differ-
ent observational effects of the gravitational wave with
memory.

According to the treatment in electromagnetism [31], the
subleading memory effect is a position displacement of the
charged particle,2

1 —
Az = / Vidu = —— [ du(Pdc° — gP3A?) + O(ry?).

ro

(4.9)

The gravitational contribution — [(P;06°)du has a rel-
evance to the subleading soft graviton theorem (see [22] for
specific discussion), and the electromagnetic contribution
[(gP2A?)du has a relevance to the subleading soft photon
theorem (see [31] for further discussion). So we call this a
unified expression of the subleading gravitational memory
effect and subleading electromagnetic memory effect. The
result is the same as that in [25]; we do not see the coupling
effect in this subleading memory effect either.

*We have used the fact that du = dy + O(r;"), where y is the
proper time.
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Another subleading observational memory effect is a time delay of the observer [24,33]. It is a kind of spin memory
effect. The time delay of a charged particle will also have contributions from the electromagnetic radiation and the scalar
radiation. Since V is timelike, the infinitesimal change of the proper time can be derived from the covector’

1 — 1
dy = {1 +f(3‘Pg+3‘I’g—(p18u(p]) +
61 g

1 _
- e wp

1 - — _
—Z (Y9 + 0F)) + 35°35°

1 - 1 — — 1 1
+ 545?45(1] — ¢*P3A%AY + i) (091091 + 01009,) — — 920,01 + — 10,0,

1 _ 1
-W¢W+wmﬁm——wﬁmeW+ow%

72

The electromagnetic contribution (1¢%¢) — ¢>P?A%A?)
comes one order higher than the gravitational contribution
1P+ 7)) in the % expansion, but the scalar contribution
—%qolaugol appears as the same order as the gravitational
contribution, which means that the scalar effect is stronger
than the electromagnetic effect and it is of the same order as
the gravitational effect. The coupling constant @ does not
show in Eq. (4.10) which means that we cannot find the
effect of the nonminimal coupling of the scalar field and the
electromagnetic field at this order. We can find a scalar-
gravitational coupled term 75 (W9 + ¥9)p,0,, which is
the same order as the electromagnetic contribution. Except
this, we cannot find any other term about the coupling of
the gravitation and matter fields at this order in this spin
memory effect.

V. CONCLUSION

In this work, we studied the EMD theory in NP
formalism. We derived the NP equations of the EMD

*We have used the fact that dz = ‘:—zédu + O(r5?).
0

6 12
(4.10)

I
theory and obtained the asymptotically flat solution space.
The solution space is an extension of [28] in NP formalism.
It allows us to investigate the memory effects in EMD
theories. We found that the dilaton did not contribute
to the kick memory effect, nor to the displacement memory
effect. However, the dilaton contributes to the time-delay
memory effect, and the dilaton contribution arises in the
same order in the large r expansion as the gravitational
contribution, and it is one order lower than the electro-
magnetic contribution. Furthermore. we also discovered a
scalar-gravitational coupled term in the same order as the
electromagnetic contribution in the time-delay memory
effect. However, we found that there was no observable
effect associated with the nonminimal coupling between
the Maxwell and the dilaton field in all of these three
memory effects.
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