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If two particles collide near the rotating extremal black hole and one of them is fine-tuned, the energy in
the center of mass frame Ec:m: can grow unbounded. This is the so-called Bañados-Silk-West (BSW) effect.
Recently, another type of high energy collisions was considered in which all processes happen in the
Schwarzschild background with free falling particles. If the Killing energy E of one of particle is
sufficiently small, Ec:m: grows unbounded. We show that, however, such a particle cannot be created in any
precedent collision with finite energies, angular momenta and masses. Therefore, in contrast to the standard
BSW effect, this one cannot be realized if initial particles fall from infinity. If the black hole is electrically
charged, such a type of collisions is indeed possible, when a particle with very small E collides with one
more particle coming from infinity. Thus the BSWeffect is achieved due to collisions of neutral particles in
the background of a charged black hole. This requires, however, at least a two-step process.
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I. INTRODUCTION

If two particles collide near a rotating black hole, under
certain conditions this leads to the unbounded growth of
the energy in the center of mass frame Ec:m: This is the
essence of the so-called Bañados-Silk-West (BSW) effect
[1] (see also more early works [2–4]). The aforemen-
tioned condition requires that one of colliding particles has
fine-tuned parameters, so that X ≡ E − ωL vanishes or is
sufficiently small near the horizon. Here, E is the Killing
energy, L being the angular momentum, ω a certain metric
coefficient responsible for rotation. There is also a static
charged counterpart of the BSW effect [5], when the
aforementioned condition reads E − qφ ≈ 0 near the hori-
zon. Here, q is the particle’s charge, φ being the Coulomb
potential of a black hole. When there is neither rotation
nor electric charge, the effect, in general, disappears.
In particular, if two particles of equal masses with
E1 ¼ E2 ¼ m, collide in the Schwarzschild background,
Ec:m:≤2

ffiffiffi
5

p
m [6]. Hereafter, we use subscript “i” to indicate

quantities related to particle i.
Meanwhile, there is a rather special case when the

criticality condition can be formally satisfied even without
rotation or the electric charge. This happens if E ≈ 0 itself is
small that can be satisfied even for the Schwarzschild black
hole. This observation was made in [7] (see discussion
on p. 3864 before Eq. (35) there). Quite recently, it was
rediscovered in [8]. It is worth noting that the criticality

condition E ¼ 0 was also considered in Sec. II of [9] for
2þ 1 black holes with the cosmological constant [10]. It
appeared as a limit of the angular momentum L → 0 in a
more general condition (2.15) there. The corresponding
space-time is not asymptotically flat but near the horizon
the same features manifest themselves, so Ec:m: grows
unbounded when E → 0 for one of two particles.
Meanwhile, there is a problem with physical realization

of such a scenario. The corresponding particle cannot come
from infinity, where E ≥ m, m being the particle mass.
So small energy can be obtained if a particle is maintained
near the horizon. Indeed, the energy of a particle that
remains in the rest in the static field E ¼ m

ffiffiffiffiffiffiffiffiffiffi−g00
p

, where
g00 is the corresponding component of the metric tensor.
If, in the Schwarzschild metric, g00 → 0, the energy E → 0

as well. However, if such a particle is kept fixed, the
experienced acceleration a ∼ 1=l, where l is the proper
distance to the horizon. Letting such a particle move freely,
one indeed obtains unbounded Ec:m: after its collision with
some other particle. But this result is gained by the expense
of unbounded forces that were exerted on a particle before
it has been released. To a large extent, this deprives the
scenario under discussion of physical significance.
If, nonetheless, we want some scenario with small E

to be more physical, we must elucidate, whether or not it
can be realized by means of particles that move along
geodesics or under the action of a finite force. This problem
is considered in the present work. It was conjectured in
the end of Ref. [8] that particle in question can be
obtained in some foregoing collision. We show that for*zaslav@ukr.net
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the Schwarzschild black hole this is impossible. Instead,
this is indeed possible in the background of the extremal
Reissner-Nordström (RN) black hole.
The paper is organized as follows. In Sec. II we give the

form of themetric and equations ofmotion in the RNmetric.
In Sec. III we consider collisions of particles 1 and 2 that turn
into particles 3 and 4 and list basic formulas for the energy in
the center of mass frame. In Sec. IV we discuss the collision
in the special case when particles are neutral. In Sec. V we
list basic formulas that enable us to find dynamic character-
istics of new particles, given the data of initial ones. These
formulas are exact. In Sec. VI we elucidate, whether we can
obtain the energy E3 of particle 3 as small as we like. The
answer is negative. Further, we discuss the second collision
of neutral particles when particle 5 comes form infinity. In
Sec. VII we consider processes in the extremal RN back-
ground. The combined fine-tuned (critical) particle 0
(equivalent to 1þ 2) decays to particles 3 and 4. We show
that we can obtain a neutral particle 3 with very smallE3 that
leads to the analogue of the BSWeffect in next collisionwith
particle 5. In Sec. VIII we summarize the results.
In what follows, we use the geometric system of units in

which fundamental constants G ¼ c ¼ 1.

II. EQUATIONS OF MOTION

Let us consider the black hole metric

ds2 ¼ −dt2f þ dr2

f
þ r2dω2; ð1Þ

where dω2 ¼ dθ2 þ sin2 θdϕ2, f ¼ fðrÞ. The largest root
r ¼ rþ of equation f ¼ 0 corresponds to the event horizon.
If a particle moves along the electrogeodesic (i.e., under the
action of gravitation and electrostatic force only), for
motion within the equatorial plane we have

m_t ¼ X
f
; ð2Þ

m _ϕ ¼ L
r2
; ð3Þ

X ¼ E − qφ; ð4Þ

m_r¼ σP; P¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − fm̃2

q
; m̃2 ¼m2 þL2

r2
; ð5Þ

dot denotes derivative with respect to the proper time,
σ ¼ �1. The forward-in-time condition _t > 0 entails

X ≥ 0: ð6Þ

In the case of the Schwarzschild black hole, φ ¼ 0,
f ¼ 1 − rþ

r . For the extremal RN black hole, φ ¼ rþ
r ,

f ¼ ð1 − rþ
r Þ2, so

X ¼ E − qþ q
ffiffiffi
f

p
: ð7Þ

In what follows, we use the standard terminology. If
XH ¼ 0, a particle is called critical. This is realized
if E ¼ q. If XH is separated from zero, it is called usual.
If XH ¼ Oð ffiffiffi

f
p

cÞ, it is called near-critical. Here, subscript
“H” refers to the quantity calculated on the horizon and “c”
to that taken in the point of collision.

III. PARTICLE COLLISIONS AND ENERGY
IN THE CENTER OF MASS FRAME

If particles 1 and 2 collide, for the energy in the center of
mass frame we have

E2
c:m: ¼ −ðm1u1μ þm2u2μÞðm1u

μ
1 þm2u

μ
2Þ

¼ m2
1 þm2

2 þ 2m1m2γ; ð8Þ

where γ ¼ −u1μu
μ
2 is the relative Lorentz factor of particle

motion, uμ1;2 are the four-velocities of particles. Then, for
motion within the equatorial plane one obtains from (2)–(5)
that for motion of both particles in the same direction

m1m2γ ¼
X1X2 − P1P2

f
−
L1L2

r2
: ð9Þ

If collision happens near the horizon, particle 1 is critical
and particle 2 is usual, we have unbounded growth of γ [5]

E2
c:m: ≈ 2

ðX2ÞHðE1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 − m̃2

1

p
Þffiffiffi

f
p : ð10Þ

IV. SPECIAL SCENARIO

Let us consider collision of neutral particles, so all
qi ¼ 0, Xi ¼ Ei. Then, in (9), Pi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
i − fm̃2

i

p
. We also

assume that E1 is very small,

E1 ¼ α
ffiffiffiffiffi
fc

p
; ð11Þ

where α is some constant, fc ≪ 1 for collision near the
horizon. Then,

m1m2γ ≈
E2ðα −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − m̃2

1

p
Þffiffiffiffiffi

fc
p ð12Þ

formally grows unbounded. This just corresponds to the
situation described in [7,8,9]. However, we want particle 1
to be created in some precedent collision, preferably due to
the process that involves particles coming from infinity. As,
in the case under consideration, they both are usual, the first
collision must occur with finite Ec:m:.
As is already established [11], the BSW effect has a

simple explanation. The quantity X (4) obeys the relation
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X ¼ m

ffiffiffi
f

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; ð13Þ

where V is the three-velocity measured by a static observer
(see Eq. (29) in the aforementioned work). Then, for a usual
particle, the horizon limit f → 0 shows that V → 1.
Meanwhile, for the critical or near-critical particle, the
left-hand side of (13) has the order

ffiffiffi
f

p
, so this equation is

satisfied with V < 1. Then, collision of a rapid and slow
particles results in the large relative velocity close to the
speed of light, and γ grows unbounded.
The case under consideration has its specific feature.

Now, q ¼ 0, X ¼ E. Therefore, the left hand side can be
made as small as one likes not due to fine tuning between
parameters E and q but due to small value of E ¼ Oð ffiffiffi

f
p Þ

itself.

V. THE FIRST COLLISION AND THE
OVERALL SCHEME

We assume that after collision, new particles 3 and 4
appear. Alternatively, we can consider decay of particle 0
that formally combines particle 1 and 2. The conservation
laws in the point of collision tell us

E0 ¼ E1 þ E2 ¼ E3 þ E4; ð14Þ

L0 ¼ L1 þ L2; ð15Þ

q0 ¼ q1 þ q2 ¼ q3 þ q4; ð16Þ

−P0 ¼ −P1 − P2 ¼ σ3P3 þ σ4P4: ð17Þ

It follows from these equations that

X0 ¼ X1 þ X2 ¼ X3 þ X4: ð18Þ

Now, it is convenient to take advantages of the results
already obtained in the previous work [12] and listed there
in Eqs. (19)–(25). The only obvious difference is that now
instead of ωL, the quantity X contains qφ (4). If particle 0 is
thought of as a combined one, m0 coincides with the Ec:m:
in the particle collision. Otherwise, m0 is simply the mass
of particle 0. Then, straightforward algebraic manipulation
give us

ðX3Þc ¼
1

2m̃2
0

ðX0Δþ þ P0

ffiffiffiffi
D

p
δÞc; ð19Þ

ðX4Þc ¼
1

2m̃2
0

ðX0Δ− − P0

ffiffiffiffi
D

p
δÞc; ð20Þ

where δ ¼ 1 or δ ¼ −1.

Δ� ¼ m̃2
0 � ðm̃2

3 − m̃2
4Þ: ð21Þ

The positivity of X3.4 entails

Δ� > 0: ð22Þ

D ¼ Δ2þ − 4m̃2
0m̃

2
3 ¼ Δ2

− − 4m̃2
0m̃

2
4: ð23Þ

It is necessary that

D ≥ 0; ð24Þ

m̃0 ≥ m̃3 þ m̃4: ð25Þ

For charged particles, we have 4 conservation laws
for 6 unknowns E3;4, L3;4, q3;4. In the above formulas,
all quantities related to particles 1 and 2 (hence, those of
effective particle 0 as well) are fixed. We also assume that
masses m3;4 are fixed for any given process. Meanwhile,
one of two angular momentum (say, L3) and one of the
charges (say, q3) remain free parameters.
Below, we are interested in the two-step scenario that,

overall, can be described as follows.
(1) The first step. Two particles come from infinity,

collide and produce two new ones. The energy Ec:m:
is finite in the point of collision.

(2) One of new particles (say, particle 3) has a very small
energy E3.

(3) In point 2 that is more close to the horizon (f2 < f1)
it collides with one more particle 5 coming from
infinity. Ec:m: in the second event (collision between
particles 3 and 5) is unbounded.

In this scheme, the first step can be replaced with the
decay of one particle 0 instead of collisions of two ones.

VI. COLLISIONS OF NEUTRAL PARTICLES

A. Generic subcase

Let all particles be electrically neutral, so all qi ¼ 0,
Xi ¼ Ei. If particle 0 comes from infinity, it is usual, since
E0 ≥ m0. If it is a combined particle, this is true as well,
since E0 ≥ m1 þm2. Now we ask, is it possible to achieve
indefinitely small X3;4 ¼ E3;4, assuming that m0 is finite
and nonzero? If yes, this would mean that decay of particle
0 to 3 and 4 leads to particle (say, 3) with indefinitely small
E3. Then, the second collision between particle 3 and some
additional particle 5 coming from infinity would give us
indefinitely large Ec:m: as is explained above and was
considered in [7,8,9].
For the candidate particle 3, we take δ ¼ −1 in (19),

since we want to make E3 (almost) zero. Using (25), it is
convenient to rewrite (19)

E3 ¼
2m̃2

3P
2
0 þ f

2
Δ2þ

ðE0Δþ þ P0

ffiffiffiffi
D

p Þ ; ð26Þ

where we put X0 ¼ E0.
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As particle 0 is usual, it is seen from (5) that in the
horizon limit f → 0, the quantity P0 → X0. Thus the
numerator tends to 2ðm̃2

3ÞcE2
0 and does not vanish for

any m̃3 ≠ 0. Then, we cannot achieve indefinitely small E3,
so the scenario under discussion does not work.

B. Special subcases

Is it possible to achieve E3 → 0 by taking a very small
m̃3? Let, at first, m̃3 ¼ 0 exactly. From the definition of m̃
(5), it follows that m3 ¼ 0 and L3 ¼ 0. Then, P3 ¼ E3. If
particle 3 collides one more time in point 2 with some usual
particle 5 coming from infinity, we have from (8), (9)

ðE2
c:m:Þ2 ¼ 2E3

�
E5 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
5 − m̃2

5f2
q �

f2
þm2

5; ð27Þ

where according to (26) E3 ∼ f1 is small.
In the horizon limit, we obtain that E2

c:m: is finite,

ðE2
c:m:Þ2 ≈

E3ðm̃2
5ÞH

E5

þm2
5; ð28Þ

so again there is no BSW effect.
Instead, we may try to choose m̃3 to be small but

nonzero. In turn, two different subcases should be consid-
ered separately. In doing so, m̃2

3 ≈m2
3 þ L3

r2þ
¼ const.

1. Subcase a

m̃2
3f1 ≪ E2

3 ð29Þ

Then, we obtain from the general expressions (8), (9)
that

ðE2
c:m:Þ2 ≈

m̃2
3

E3

E5 þm2
5: ð30Þ

Meanwhile, it follows from (26) that

m̃2
3

E3

≤
2m̃2

3E0Δþ
2m̃2

3E
2
0 þ f

2
Δ2þ

≤
Δþ
E0

; ð31Þ

where we put in the horizon limit P0 ≈ E0 and took into
account that D ≈ Δ2þ because of small m̃2

3. Then, it follows
that (30) is finite, there is no BSW effect.

2. Subcase b

m̃2
3f1 ¼ β2E2

3: ð32aÞ

Here, β is some coefficient Oð1Þ. Then, it follows from
Eqs. (8) and (9) that,

ðE2
c:m:Þ2 ≈

2E5

f2

�
E3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3 − m̃2

3f2

q �
þm2

5: ð33Þ

This can be rewritten as

ðE2
c:m:Þ2 ≈

E5E3Fðy; β2Þ
f1

þm2
5 ð34Þ

Fðy; β2Þ≡ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2y

p
Þ

y
¼ β2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2y

p ; ð35Þ

where y ¼ f2
f1
, 0 ≤ y ≤ 1.

Obviously, the function F is finite. It is monotonically
increasing with y and changes from

Fð0; β2Þ ¼ β2

2
ð36Þ

on the horizon to

Fð1; β2Þ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
; ð37Þ

if the 2nd collision occurs practically in the same point
immediately after the 1st one.
It is seen from (26) that for our limit f1 → 0, condition

(32a) is compatible with (26) for

m̃2
3 ≈ A2f1 ð38Þ

only, where A is a constant. Then, E3 ≈ A
β f1, where we infer

from (26) that

A ¼ β
2E2

0A
2 þ ðΔ2

þÞH
2

2E0ðΔþÞH
: ð39Þ

This quadratic equation can be solved easily,

A ¼ ðΔþÞH
2E0β

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q �
: ð40Þ

In (34), the numerator and denominator have the same
order f1, so we obtain

ðE2
c:m:Þ2 ≈

A
β
E5F þm2

5: ð41Þ

Again, it is finite, there is no BSW effect.
Thus having enumerated all possible subcases, we come

to the conclusion that, starting from particles with finite
parameters, one cannot create a suitable particle 3 to
arrange the second collision with unbounded ðE2

c:m:Þ2.
In [8] (see the paragraph before Eq. (10) there), it was

assumed by hand that E3 ∼
ffiffiffiffiffi
f1

p
. However, the requirement
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of the finiteness of Ec:m: ¼ m0 in the precedent collision in
which particle E3 was created, imposes severe restrictions.
As we saw, they give rise to another dependence E3 ∼ f1
that makes Ec:m: finite in the second collision.

VII. PROCESS WITH CHARGED
CRITICAL PARTICLES

Now, we consider particle motion in the extremal RN
background. Then, for critical particle 0 we have according
to (7),

X0 ¼ E0

ffiffiffi
f

p
; P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

0 − m̃2
0Þf

q
: ð42Þ

We assume that particle 0 (that effectively can model the
combination of particles 1þ 2) turns into particles 3 and 4.
As the initial particle 0 is critical, it follows from (6) that
near the horizon X3 and X4 are both small. More precisely,
if they are created in the collision with finite Ec:m: ¼ m0,
they have the same order

ffiffiffiffiffi
f1

p
. We want to elucidate,

whether or not the BSW effect is possible in the second
collision, if particle 3 is uncharged, q3 ¼ 0.
It follows from (26), that contains now X0 in the

denominator instead of E0 and (42) that

E3 ¼ C1

ffiffiffiffiffi
f1

p
; ð43Þ

where C1 ¼ Cðr1Þ,

C ¼ 2m̃2
3ðE2

0 − m̃2
0Þ þ Δ2

þ
2

E0Δþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − m̃2

0

p ffiffiffiffi
D

p ; ð44Þ

P3 ¼
ffiffiffiffiffi
f1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − m̃2

3

f
f1

s
: ð45Þ

For the process near the horizon, C1 ≈ CH. If particle 3
collides with some usual particle 5,

ðE2
c:m:Þ2 ≈

2ðX5ÞHCHFðy; δÞffiffiffiffiffi
f1

p ; ð46Þ

where again y ¼ f2
f1

but now δ ¼ m̃2
3

C2
H
. The function F is

defined above in (35), so (36) and (37) are still valid, the
function F is bounded. However, because of small f1 in the
denominator, ðE2

c:m:Þ2 can be made unbounded.
The dependence ðE2

c:m:Þ ∼ f−1=2 is exactly the same as in
the case of the standard BSWeffect for charged black holes
[5]. However, there is a qualitative difference now. In the

standard case, one of two colliding particles should
be electrically charged. This is necessary to satisfy the
criticality condition XH ¼ 0. Meanwhile, now a particle
that plays in the second collision the same role as the (near)
critical particle does in the standard BSWeffect, is neutral.
We see that the role of the electric charge in the problem is
twofold. On one hand, the charge is required for a black
hole. More precisely, the presence of the charge enables
one to produce in the first event a particle with q3 ¼ 0 and
small E3, as a result of collision between two critical
particles. In accordance with general rules, such a collision
leads to finite Ec:m: (see kinematic explanation in Sec. III B
of [11]). From the other hand, the charge is irrelevant on the
second stage of the process, when a neutral particle collides
with a usual one coming from infinity. Then, the BSW
effect can be achieved even due to collision of two neutral
particles.

VIII. CONCLUSIONS

Thus we considered two complementary cases.
(1) Particle motion occurs in the neutral background. In
particular, this is valid for the Schwarzschild metric.
This holds also for the RN one, provided all particles
are electrically neutral. Then, an initial particle 0 (true or
effective combined one) is usual. It is shown that, arranging
the collision between two initial particles coming from
infinity, it is impossible to obtain particle 3 with almost
vanishing E3 to realize the BSW effect in the second
collision. This means that the scenario in which particle 3
with E3 ≈ 0 is created in the foregoing collision (as outlined
in the end of [8]) does not work for the Schwarzschild
black hole. (2) Particle 0 is critical. It decays to two
fragments, one of which is neutral. Then, the BSWeffect is
indeed possible in the next collision. This gives a new type
of the BSW effect for electrically charged black holes,
realized with the help of electrogeodesics and geodesics.
The counterpart of the phenomenon discussed in our paper
should exist also for rotating neutral black holes, then the
role of particle 3 with aforementioned properties will be
played by a particle with L3 ¼ 0. For 2þ 1 dimensional
black holes with the cosmological constant it was realized
in [9]. Meanwhile, one can expect a similar phenomenon
for 3þ 1 asymptotically flat black holes as well, including
the Kerr metric.
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