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We first study the escape probability of a spinning particle emitted from a Kerr black hole and find that
the escape probability increases with the spin of the particle around the extreme Kerr black hole; in contrast,
the escape probability decreases at the position near the horizon but increases at the position far from the
horizon with the increasing spin of the particle. We then probe the relation between the escape probabilities
and the energy extraction efficiencies of collisional Penrose processes for particles with varying spin. For
an extreme Kerr black hole, the efficiency increases with the escape probability; for a nonextreme Kerr
black hole, the near-horizon efficiency decreases with the escape probability, while the efficiency may
increase with the escape probability in the ergosphere. In the event horizon limit, we also find that the
average escape probability of the spinning particle produced in the collisional Penrose process decreases
with the rotation parameter of the Kerr black hole.
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I. INTRODUCTION

The well-known Penrose process (PP) [1] states that an
escaped particle can carry more energy than the one it is
disintegrated from in a background of Kerr spacetime.
A more realistic scenario for overcoming the seeming
implausibility of disintegration in PP is believed to be
the collisional Penrose process [2], where two particles
plunge into the ergoregion and collide. The energy extrac-
tion efficiency in the collisional Penrose process, however,
was verified to be qualitatively similar to the PP [3]. There
is another process, where one of the infalling particles with
sufficient angular momentum turns past the rotating black
hole and collides on its outgoing orbit with the other
infalling particle [4], that can work with relatively higher
efficiency. Furthermore, the super Penrose process [5–7],
where a head-on collision takes place between one out-
going particle and one ingoing particle, can reach an
infinite efficiency at the horizon limit.
The Bañados-Silk-West mechanism, which states that

the center-of-mass energy for two spinning particles (one
with a critical angular momentum) can be arbitrarily high
after a collision near the horizon of an extreme rotating
black hole [8–10], has reinvigorated the investigation of
energy extraction from the black hole, as the effect of spin
carried by the collisional particles has been discussed
qualitatively [11,12] and quantitatively [13]. In addition,

the effect of the charge carried by the collisional particles
has also been examined [14].
The observability of the collisional events around the

black hole depends on how often a particle can escape from
the black hole to spatial infinity [15]. The astrophysical
process in the strong gravity field of the black hole can be
further understood by using the notion of the escape
probability for the particle, by which we can know which
portion of the radiation emitted from the particle source is
trapped while the complementary portion escapes to spatial
infinity [16]. In this paper, we will first briefly review the
equations of motion for the spinning particle in the Kerr
spacetime in Sec. II for later use. Then we will calculate the
escape probability for the spinning particle which is
supposed to emit isotropically from a particle source in
Sec. III. In Sec. IV, we will investigate the relation between
the energy extraction efficiency of the collisional Penrose
process and the escape probability of the produced particle.
Section V will be devoted to our conclusions.

II. THE EQUATIONS OF MOTION
FOR A SPINNING PARTICLE
IN THE KERR SPACETIME

The motion of an astronomical test particle whose pole/
depole moment is considered in curved spacetime can be
described by the well-known Mathisson-Papapetrou-Dixon
equations [17]
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DSab

Dτ
¼ 2P½avb�; ð2Þ

where τ is the parameter along the world line of the particle.
Rabcd is the Riemannian curvature tensor of the space-
time geometry. The four-momentum Pa is related to the
particle’s mass M by [18,19]

PaPa ¼ −M2 ð3Þ

in the zero three-momentum frame, and it together with the
particle’s four-velocity va also defines the other mass m in
the zero three-velocity frame by [18,19]

Pava ¼ −m: ð4Þ

The normalized four-momentum of the particle is

ua ≡ Pa

M
: ð5Þ

The dynamical mass of the particle can be ensured to be
conserved by using the well-known Tulczyjew condition
[20–22]

SabPb ¼ 0: ð6Þ

Also, the magnitude of the spin S can be invariable in the
condition [23]

SabSab ¼ 2S2: ð7Þ

As M ¼ mþOðS2Þ [24], we can have vaua ¼ −1 by
reparametrizing τ [25–27]. Accordingly, the four-momen-
tum of the particle can be obtained as [17–19,28]

va ¼ ua þ 2SabucRbcdeSde

SbcRbcdeSde þ 4M2
: ð8Þ

We consider the Kerr spacetime in this paper. After
choosing the unit c ¼ G ¼ 1, the Kerr line element can be
written in Boyer-Lindquist coordinates as

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

−
4Mar
Σ

sin2 θdtdϕþ Ξ
Σ
sin2 θdϕ2; ð9Þ

where

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 − 2Mrþ a2;

Ξ ¼ ða2 þ r2Þ2 − a2Δsin2θ:

M is the mass of the black hole and a is the rotation
parameter defined by J=M, with J the angular momentum
of the black hole. The event horizon and the stationary limit
are located at

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð10Þ

re ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos θ2

p
: ð11Þ

The collisional Penrose processes that will be discussed in
Sec. IV take place in the ergosphere rþ < r� < re. The
Kerr spacetime admits conserved energy and angular
momentum for the particle as

e ¼ 1

2M
Stb∇bξt − ξtut; ð12Þ

j ¼ −
1

2M
Sϕb∇bξϕ þ uϕξϕ; ð13Þ

where

ξt ≡
� ∂
∂t
�

a
; ξϕ ≡

� ∂
∂ϕ

�
a
:

In an orthogonal normalized tetrad feðμÞa g, which reex-
presses the metric (9) as

ds2 ¼ ηðiÞðjÞe
ðiÞ
a eðjÞb ; ð14Þ

with ηðiÞðjÞ ¼ diagð−1; 1; 1; 1Þ, we can introduce the spin

vector sðaÞ of the particle as

SðcÞðdÞ ¼ MεðcÞðdÞðaÞðbÞuðaÞsðbÞ; ð15Þ

where we have the completely antisymmetric tensor ε as
εð0Þð1Þð2Þð3Þ ¼ 1. Considering that the motion of the spinning
particle is confined to the equatorial plane, we then only
have a nonvanishing component of the spin vector
sð2Þ ¼ −s, with s the magnitude of the spin and s > 0
corresponding to a spin direction parallel to that of the Kerr
black hole. As a result, we get nonvanishing components of
the spin tensor SðaÞðbÞ as

Sð0Þð1Þ ¼ −Msuð3Þ; ð16aÞ

Sð0Þð3Þ ¼ Msuð1Þ; ð16bÞ

Sð1Þð3Þ ¼ Msuð0Þ: ð16cÞ

We now choose the Carter frame to calculate the
equations of motion for the spinning particle in the Kerr
spacetime. In the Carter frame
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eð0Þa ¼
ffiffiffiffi
Δ
Σ

r
ðdt − a sin2 θdϕÞ; ð17aÞ

eð1Þa ¼
ffiffiffiffi
Σ
Δ

r
dr; ð17bÞ

eð2Þa ¼
ffiffiffi
Σ

p
dθ; ð17cÞ

eð3Þa ¼ sin θffiffiffi
Σ

p ½−adtþ ða2 þ r2Þdϕ�; ð17dÞ

the normalized four-momentum of the spinning particle is

uð0Þ ¼ ½er5 þ ðeaþ es − jÞar3 þ ðaeM − jMÞsr2�ffiffiffiffi
Δ

p
X

; ð18Þ

uð3Þ ¼ r3ðj − ea − esÞ
X

; ð19Þ

uð1Þ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ ðuð0ÞÞ2 − ðuð3ÞÞ2

q
¼ σ

ffiffiffiffi
O

p
; ð20Þ

where X ¼ r4 −Mrs2, σ ¼ 1 corresponds to a radially
outgoing particle and σ ¼ −1 for a radially ingoing one,
and where O is the radial effective potential of the particle.
By using Eq. (8), we can obtain the four-velocity of the
spinning particle as

vð0Þ ¼ r4 −Ms2r

−3Mrðuð3ÞÞ2 − s2Mrþ r4
uð0Þ; ð21Þ

vð1Þ ¼ r4 −Ms2r

−3Mrðuð3ÞÞ2 − s2Mrþ r4
uð1Þ; ð22Þ

vð3Þ ¼ r4 þ 2Mrs2

−3Mrðuð3ÞÞ2 − s2Mrþ r4
uð3Þ: ð23Þ

The equations of motion for the spinning particle are [26]

dt
dτ

¼ Xða2P2X þ aΔrP3 þ P2r2XÞffiffiffiffi
Δ

p ½−3MP1
2s2r5 þ X2r4 −MrX2s2� ; ð24Þ

dr
dτ

¼
ffiffiffiffi
Δ
Σ

r
vð1Þ; ð25Þ

dϕ
dτ

¼ 1

a sin θ2

�
dt
dτ

−
ffiffiffiffi
Σ
Δ

r
vð0Þ

�
; ð26Þ

where

P1 ¼ r½j − eðaþ sÞ�;
P2 ¼ a2er2 − a½esð−Mrþ r2Þ þ jr2� þ r4e − jsMr;

P3 ¼ 2Mrs2 þ r4:

When s ¼ 0, the equations reduce to the equations of
motion for a spinless massive particle.
To make the motion of the spinning particle physical, we

should constrain the ranges of the parameters. The par-
ticle’s motion should comply with the timelike condition
vðaÞvðaÞ < 0 and the forward-in-time condition dt=dτ > 0

[29]. Besides, we should keep s≲ r0 ≪ rþ ≤ 2M [23],
where r0 denotes the size of the particle. Based on the
necessity of the physical reasonability, we also restrict the
radial effective potential O ≥ 0. Starting from this con-
dition, it can be proved that only the particle with a
conserved angular momentum j ≤ 2e≡ jc can reach the
horizon in the extreme Kerr geometry. A particle is critical
if it holds an angular momentum j ¼ jc. Otherwise, the
cases j < jc and j > jc correspond to a subcritical particle
and a supercritical particle, respectively. We will exhaus-
tively discuss the nonextreme case in the following.

III. THE ESCAPE PROBABILITY OF THE
SPINNING PARTICLE

Without loss of generality, we now set the Kerr black
hole mass asM ¼ 1. As the radial and angular equations of
motion for the spinning particle cannot be separated, we
consider here the escape probability of the spinning particle
in the equatorial plane [30,31]. By solving O ¼ 0, we can
obtain the critical conserved angular momenta of the
particles as

jþ ¼ a2ðY1 − 2er2sÞ þ eðr − 3Þr4sþ ðr − 2ÞrY1 − Y2

rð−2arsþ ðr − 2Þr3 − s2Þ ;

ð27Þ

j− ¼ −a2ð2er2sþ Y1Þ þ eðr − 3Þr4s − ðr − 2ÞrY1 − Y2

rð−2arsþ ðr − 2Þr3 − s2Þ ;

ð28Þ

where

Y1 ¼ ðr3 − s2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2arsþ 2r3 þ s2

a2 þ ðr − 2Þr

s
; ð29Þ

Y2 ¼ aerð2r3 þ ðrþ 1Þs2Þ: ð30Þ
At the event horizon limit, the two branches join to one
point

jþðr ¼ rþÞ ¼ j−ðr ¼ rþÞ

¼ eða4sþ 2a3rþ − a2rþsþ arþs2 þ 4rþsÞ
a4 þ 2asþ s2

:

ð31Þ
As shown in Fig. 1, we denote the minimal value of the
critical angular momentum jþ for the spinning particle as
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jþðr1Þ, with r1 the corresponding radial position, we also
denote the maximal value of the critical angular momentum
j− as j−ðr2Þ, with r2 the corresponding radial position.
We set the particle source at the position r�. If the Kerr
black hole is extreme, we can have rþ < r�; if the Kerr
black hole is nonextreme, we have rþ < r1 < r� or rþ <
r� ≤ r1. In the background of the extreme Kerr black hole,
the spinning particle at the position r� can escape to spatial
infinity irrespective of its initial velocity if jþðrþÞ < j <
jþðr�Þ, and it can escape to spatial infinity only with
initially outgoing velocity in condition of j−ðr2Þ < j <
jþðrþÞ. In the background of the nonextreme Kerr black
hole, if the spinning particle with jþðr1Þ < j < jþðr�Þ is
located at r� > r1, it can escape to spatial infinity irre-
spective of the sign of its initial velocity, and the outgoing
particle with j−ðr2Þ < j < jþðr1Þ can emit to spatial
infinity. With the condition r� ≤ r1, no particle with initial
ingoing velocity can go to spatial infinity and only an
outgoing particle with j−ðr2Þ < j < jþðr1Þ can escape to
spatial infinity.
The emission angle α can be introduced for the

particle produced by a source at the Carter’s frame, which
can be defined by the spinning particle’s four-momentum
as [16,32]

sin α ¼ pðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpðrÞÞ2 þ ðpðϕÞÞ2

q ; ð32Þ

cos α ¼ pðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpðrÞÞ2 þ ðpðϕÞÞ2

q : ð33Þ

The critical angles at which the spinning particle can escape
to spatial infinity are

αI ≡ α½σ ¼ −1; j ¼ jþðrþÞ�; extreme case; ð34Þ

αI ≡ α½σ ¼ −1; j ¼ jþðr1Þ�; nonextreme case; ð35Þ

αII ≡ α½σ ¼ −1; j ¼ jþðr�Þ�; ð36Þ

αIII ≡ α½σ ¼ 1; j ¼ jþðr�Þ�; ð37Þ

αIV ≡ α½σ ¼ 1; j ¼ j−ðr2Þ�: ð38Þ

Note that in the case of r� < r1, we do not have αII and αIII.
It is obvious that [33]

sin αII ¼ sin αIII ¼ 1; ð39Þ

cos αII ¼ cos αIII ¼ 0: ð40Þ

So

αII ¼ αIII ¼
π

2
: ð41Þ

By specific calculation, we know that αIV < αIII ¼
αII < αI. The escape probability of the spinning particle
can thus be defined by

ρ≡ αI − αIV
2π

: ð42Þ

For the extreme Kerr black hole, jþðrþÞ ¼ 2e, we can
analytically calculate the escape probability in the linear
order of the particle’s spin as

ρ ¼ Z1 þ Z2sþOðs2Þ; ð43Þ

where

Z1 ¼
1

2
−

1

2π
arcsin

�
effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2ðrþ 1Þ2 − r2
p �

;

Z2 ¼
e3ðr3 þ 2r2 þ 2rþ 1Þ − er3

r½e2ðrþ 1Þ2 − r2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r½e2ðrþ 2Þ − r�

p > 0:

So we can know that the escape probability of the particle
increases with the spin of the particle. This can be further
confirmed by the left panel of Fig. 2, where we have taken
the timelike condition and the forward-in-time condition
into consideration. If e ¼ 1, we have

lim
r�→1

ρ →
1

2
−
arcsinð 1ffiffi

3
p Þ

2π
∼ 0.402

FIG. 1. The critical angular momentum which makesO ¼ 0. Left panel: the extreme Kerr black hole case. Middle and right panels: the
nonextreme Kerr black hole cases where r� > r1 and r� < r1, respectively.
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for the spinless particle, which is close to but not equal to
the one (ρ ∼ 0.412) obtained in Ref. [33]. For this reason,
we have chosen the Carter frame for the particle here even
though the locally nonrotating frame was used there. This
tells us that the escape probabilities of the particles vary
with the reference frame we choose. However, we reckon
that different selections of observer’s frames will not
qualitatively change the results we report on in this paper.
Detailed investigations on this are presented in [34]. At the
same time, we can see that the escape probability of the
particle is dependent upon its energy.
For the nonextreme Kerr black hole, we can numerically

calculate the escape probabilities of the spinning particles.
We individually show the variations of the escape proba-
bilities with respect to the spin of the particles for cases
r� < r1 and r� > r1 in the middle and right panels of Fig. 2.
We can see that the escape probability increases with the
spin for r� > r1 but decreases with the spin for r� < r1.

IV. THE ESCAPE PROBABILITY AND THE
COLLISIONAL PENROSE PROCESS

In this section, we will study the relation between the
escape probability and the maximum energy extraction
efficiency in the collisional Penrose process for the spin-
ning particles. We consider that an outgoing particle 1
collides with an ingoing particle 2 in the ergosphere of the
Kerr black hole and suppose that the mass, the angular
momentum jk, and the energy ek of the two particles are
equal when they collide.
The maximum energy extraction efficiency of this kind

of process around the extreme Kerr black hole has been
explored in Ref. [11] in the case in which the two produced
particles are both massive. We will generally calculate the
maximum energy extraction efficiency in both the non-
extreme and extreme Kerr black hole backgrounds.
Without loss of generality, we denote the spins of both

particle 1 and particle 2 as s0, and we suppose that both the
produced outgoing massive particle 3 and the ingoing
massive particle 4 are endowed with the same spin s0 based
on the conservation of the spin. The total radial momentum
is conserved, which gives

uð1Þ1 − uð1Þ2 ¼ uð1Þ3 − uð1Þ4 ¼ ϵ; ð44Þ

where ϵ denotes the total radial momentum of the particles.
Owing to the conservation of energy and the angular
momentum, we have

e1 þ e2 ¼ e3 þ e4 ¼ 2e1; ð45Þ

j1 þ j2 ¼ j3 þ j4 ¼ 2j1: ð46Þ

Substituting e4 ¼ 2e1 − e3 and j4 ¼ 2j1 − j3 into Eq. (44),
we can obtain

uð1Þ3 ða; e3; j3; s ¼ s0; rÞ
− uð1Þ4 ða; e1; j1; e3; j3; s ¼ s0; rÞ ¼ ϵ: ð47Þ

Then we obtain

j3 ¼ j3ða; e1; j1; e3; s0; r; ϵÞ: ð48Þ

Substituting it into the effective potential O for particle 3
and using the conditions

O3ða; e1; j1; e3; s0; r; ϵÞ ≥ 0; ð49Þ

vðaÞvðaÞja;s0;r;ϵ;e¼e3;j¼j3
< 0; ð50Þ

dt
dτ

����
a;s0;r;ϵ;e¼e3;j¼j3

> 0; ð51Þ

we have

O3 ¼ O3ða; e1; j1; e3; s0; r; ϵÞ ¼ Ae23 þ Be3 þ C ≥ 0;

ð52Þ

where A < 0. The physically reasonable maximum value
of the escaping massive particle 3 is

e3 ¼ emax
3 ða; e1; j1; s0; r; ϵÞ ¼

−B þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A
; ð53Þ

FIG. 2. Escape probabilities of spinning particles from the Kerr black hole for (left and middle panels) M ¼ 1, e ¼ 1,
r� ¼ 1.01rþ < r1, (right panel) r� ¼ 10rþ > r1. The left panel applies to the extreme Kerr black hole case and the others apply
to the nonextreme Kerr black hole case.
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and the maximum energy extraction efficiency η of the
collisional Penrose process is

η ¼ e3
e1 þ e2

: ð54Þ

For the produced escaping particle 3, we can also calculate
its escape probability, which is related to its energy e3. Then
it is intriguing to analyze the relation between the escape
probability of the particle and the efficiency of the energy
extraction process.
We show the relation between the escape probability of

the produced emitted particle and the maximum energy
extraction efficiency of the collisional Penrose process in
Fig. 3. From the diagrams, we can know that, for the
extreme Kerr black hole, the energy extraction efficiency
increases with an increasing escape probability. For the
nonextreme Kerr black hole, there are two different
variation trends. If the radius of the collision point is less

than the one which makes jþ minimal, the energy extrac-
tion efficiency decreases with the increasing escape prob-
ability; if the radius of the collision point is greater than the
one which makes jþ minimal but less than re, the energy
extraction efficiency increases with the increasing escape
probability.
However, we can see that the particle’s escape proba-

bility in the collisional Penrose process does not change
significantly with the particle’s spin. In this regard, differ-
ent energy extraction efficiencies of the collisional Penrose
process can almost correspond to an average escape
probability of the spinning particle. Following this, we
show the average escape probability ρavg of the particle
produced in the collisional events which take place near the
event horizon of the black hole in terms of the black hole
rotation parameter in Fig. 4. We see that the average escape
probability of the spinning particle produced in the colli-
sional Penrose process near the event horizon of the black
hole decreases with the rotation parameter of the Kerr black
hole, except for the extreme case (corresponding to the red
point). There are subtle properties one should notice here.
Because r� ¼ 1.01rþ, we can see a jump of ρavg from
ρavgða ¼ 0.99Þ to ρavgða ¼ 1Þ. In fact, there is a turning
point for the curve between a ¼ 0.99 and a ¼ 1, after
which ρavg increases with a, as we will have r� > r1 if a
increases to a certain value very close to 1. For instance, we
have ρavgða ¼ 0.9999Þ ¼ 0.344. In any case, if we choose
r� → rþ, we can obtain a monotonically decreasing curve
from a → 0þ to a ¼ 1, as we always have r� ≤ r1 and the
equal sign is for a ¼ 1.

V. CONCLUSIONS

In this paper, we revisited the collisional Penrose process
in term of the escape probability for the spinning particle.
To that end, we first studied the law of the escape
probability for the spinning particle around the Kerr black
hole. We found that the escape probability ρ of the spinning
particle increases with the particle’s spin s around the
extreme Kerr black hole. In the nonextreme Kerr black hole
background, ρ decreases with s if the particle source is

FIG. 3. Variations of the energy extraction efficiencies in the collisional Penrose process with respect to the escaping probability of the
produced particle for (left panel) M ¼ 1, ϵ ¼ 0, a ¼ 1, (middle panel) 0.65, (right panel) 0.9, (left panel) r� ¼ 1.01rþ, (middle panel)
1.1rþ, (right panel) 1.35rþ, j1 ¼ j2 ¼ 2, e1 ¼ e2 ¼ 1, −0.1 < s0 < 0.1. Different from the cases in Fig. 2, the energy of the escaping
particle here cannot be set to be 1 and it depends on the collisional process.

FIG. 4. Variation of the average escape probability ρavg of the
particle produced in the collisional Penrose process with respect
to the rotation parameter a of the black hole for M ¼ 1, ϵ ¼ 0,
j1 ¼ j2 ¼ 2, e1 ¼ e2 ¼ 1, −0.1 < s0 < 0.1. The escape proba-
bility is roughly calculated by ½ηðs0 ¼ −0.1Þ þ ηðs0 ¼ 0.1Þ�=2,
as we have chosen −0.1 < s0 < 0.1 and η almost linearly
changes with ρ and s. As we have chosen r� ¼ 1.01rþ, the
rotation parameter of the black hole should be a > 0.198 so that
the collisional point is inside the ergosphere. Note that the red
point corresponds to the extreme black hole case.
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located at r� < r1 and ρ increases with s if the particle
source is located at r� > r1, where r1 is the position which
makes the impact parameter of the particle minimal.
We then investigated the relation between the energy

extraction efficiency η of the collisional Penrose process
and the escape probability ρ of the produced particle with
varying spin. Note that the escape probability of the particle
is affected by the particle’s energy, so we cannot obtain the
law directly. By calculation, we discovered that η increases
with ρ for the extreme Kerr black hole. However, for the
nonextreme Kerr black hole, η decreases with ρ if the
collisional point is located at r� < r1, and η increases with
ρ if the collisional point is located at r� > r1.
Noticing that the change of the particle’s escape proba-

bility is relatively minuscule, we further studied the average
escape probability for the spinning particle produced in the
collisional Penrose process. As a result, we found that the
particle’s escape probability decreases with the rotation
parameter of the Kerr black hole in the horizon limit.
Our discussion is based on viewing the particle as an

extended object which has small varying spin. We can

know that r1 is a critical position where properties of the
escape probability and the energy extraction efficiency
change qualitatively for the nonextreme Kerr black hole. In
the extreme Kerr black hole case, r1 coincides with the
event horizon. Our results will be beneficial to astrophysi-
cal observation investigations. For astrophysically relevant
black holes, a≲ 0.998. Our results predict a near-horizon
physical scenario around the astrophysical rotating black
hole: (1) the escape probability of the spinning particle
decreases with the pole/depole spin angular momentum of
the particle, and (2) the energy extraction efficiency
decreases with the minusculely increasing escape proba-
bility of the spinning particle.
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