
 

Ringing of rotating black holes in higher-derivative gravity
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We compute scalar quasinormal mode (QNM) frequencies in rotating black hole solutions of the most
general class of higher-derivative gravity theories to quartic order in the curvature that reduce to general
relativity for weak fields and are compatible with its symmetries. The wave operator governing the
QNMs is not separable, but we show one can extract the QNM frequencies by a projection onto the set of
spheroidal harmonics. We have obtained accurate results for the quasinormal frequency corrections
relative to Kerr for rotating black holes with dimensionless spins up to ∼0.7. We also discuss to
what extent our results carry over to the phenomenologically more relevant case of gravitational
QNMs. Finally, we provide an ancillary computational package that allows one to generalize our
calculations to any effective energy-momentum tensor arising from higher-derivative terms in the
effective action.
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I. INTRODUCTION

Gravitational waves (GW) from the inspirals and
mergers of black hole binaries [1] encode a wealth of
precious information about the gravitational physics of
highly warped, dynamical regions of spacetime. Decoding
these GW patterns, combined with further advances in
GW detection technology, therefore, offers a promising
route to use GWs as precision probes of general relativity
(GR) [2–8] and, in due course, its high-energy completion
[9–14]. The significant theoretical uncertainties on the
form of the latter, and thus on the scales at which deviations
from GR become important, call for a sufficiently general
approach.
In this spirit we study the final phase of genericmergers of

rotating black holes in the most general class of higher-
derivative extensions of GR that reduce to GR in the
weak field limit and are compatible with its symmetries.
Specifically, we consider the theories introduced in
Refs. [15,16]. In this final “ringdown” phase GWs carry
away the multipolar structure of the newly formed remnant,
which then relaxes to its final stationary state. The informa-
tion in GWs generated in this stage is encoded in the
complex frequencies of the quasinormal mode (QNM)
perturbations of the final state, which describe its response
to generic perturbations—see [17] and references therein.
The final state as well as the QNM frequencies are sensitive
to the underlying theory of gravity, and both are known to be
highly constrained inGR.Hence, this ringdown phase offers

great potential to probe GR and to constrain corrections to
it [5,6,18].
To realize the scientific potential of GWs in this regime,

precise and systematic predictions of QNM frequencies
will be essential. Calculations of QNM frequencies are
rather involved, however, and have often been performed
using various approximations. Recently, much progress has
been reported on the calculation of QNM frequencies for
spherical black holes in a broad range of modifications of
GR [19–25]—see also [26,27] for a parametrized forma-
lism. Coalescences of observational interest, however,
typically involve black holes with significant angular
momentum [1]. Although some approximations are some-
times implemented to capture the effect of rotation [11,20],
the computation of quasinormal frequencies of beyond-
Kerr black holes remains an outstanding issue. To this end,
and in the spirit of the general approach motivated above,
we compute QNM frequencies associated with scalar fields
in rotating black hole backgrounds in the general class of
higher-derivative theories of gravity specified above.
One remarkable property of Kerr’s solution [28] is the

fact that the master equation for perturbations is sepa-
rable [29,30]. This allows to reduce the problem to a one-
dimensional “Schrödinger-like” equation with an effective
potential, for which many methods are known to compute
the QNM frequencies, e.g., [17,31–35]. The key technical
hurdle that we resolve in this paper is that the wave operator
governing the scalar QNM perturbations in rotating black
hole backgrounds in higher-derivative gravities is, generi-
cally, nonseparable. We show that the projection of the
wave operator onto the set of spheroidal harmonics yields a
consistent second-order ordinary differential equation
(ODE) for a single variable, enabling us to extract the
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QNM frequencies in the usual manner.1 The computation of
scalar QNM frequencies can be considered a first step
towards the calculation of the phenomenologically more
interesting gravitational QNMs. In fact, as we discuss in
Sec. VIII below, certain facets of the phenomenology of
scalar QNMs carry over to the gravitational QNMs.
Many of our calculations are analytic yet lengthy, so we

provide a number of ancillary files with this submission that
allow one to reproduce (and even to extend) most of these
computations using Mathematica. The main resource we
provide is a package “CorrectionsKerr.mx” [38], which
includes several functions that enable one to carry out the
following computations:
(1) To solve the modified Einstein’s equations for

rotating black holes in the above class of theories
(cf. Section III).

(2) To find the effective potentials for scalar perturba-
tions (cf. Section V B).

(3) To find the fundamental complex QNM frequencies
through a numerical integration of thewaveEq. (5.28).

The corresponding functions are documented in the example
notebook “QNMKerrCorrections. nb” [38]. The only input
needed in this is the effective energy-momentum tensor that
appears on the right-hand side of Einstein’s equations—as in
Eq. (3.1)—evaluated on the Kerr metric. This is required for
Step 1 above. We provide these effective energy-momentum
tensors for all theories considered in this paper—see (2.2)
and (2.3)—in the package “Tmunu.mx” [38]. However, our
methods should also work for any other energy-momentum
tensor that arises fromhigher-derivative terms in the effective
action. The outline of this paper is as follows:

(i) In Secs. II and III we briefly review the higher-
derivative effective actions derived in [15,16] and
the rotating black hole solutions in these theories.

(ii) Section IV is devoted to the study of scalar QNMs of
spherically symmetric black holes and serves as a
warm-up for the rotating case.

(iii) In Section V we address the problem of scalar
perturbations in the background of a corrected Kerr
black hole. We show that the projection of the wave
operator onto the spheroidal harmonics yields a
second-order ODE for a single variable. From this
equation we then derive the effective potential for
perturbations.

(iv) Section VI is the core of our paper. We provide a
detailed discussion of the corrections to the QNM
frequencies of rotating black holes in the theories
(2.2) and (2.3).

(v) Assuming a similarity between scalar and gravita-
tional QNMs, in Section VII we derive some
observational consequences of the deviations of
the quasinormal frequencies with respect to the Kerr

values, and we estimate the bounds on the higher-
derivative corrections that can be set with future GW
measurements.

(vi) We conclude in Section VIII, where we also com-
ment on the possible analogy between scalar and
gravitational QNMs.

Finally,we also include several appendixes that contain some
technical results.

II. HIGHER-DERIVATIVE EFFECTIVE ACTION

We adopt an effective field theory approach and consider
the most general higher-derivative corrections to the
Einstein–Hilbert action of GR that are compatible with
the symmetries of the theory. These follow from an action
of the following form:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ

X∞
n¼2

l2n−2LðnÞ

�
; ð2:1Þ

where LðnÞ represents the most general diffeomorphism-
invariant Lagrangian containing 2n derivatives of the
metric, while l is a parameter with units of length that
controls the overall scale of the corrections. The
Lagrangians LðnÞ are, in general, sums over independent
curvature invariants weighted by arbitrary couplings αiðnÞ.
Inspired by string theory, we take the latter to be dynamical
scalar fields. This family of theories was analyzed in [16],
where it was shown that the leading corrections to vacuum
GR solutions appear at order l4 in the metric. They can be
studied by means of the following effective action:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ α1ϕ1l2X4

þ α2ðϕ2 cos θm þ ϕ1 sin θmÞl2RμνρσR̃μνρσ

þ λevl4Rμν
ρσRρσ

δγRδγ
μν þ λoddl4Rμν

ρσRρσ
δγR̃δγ

μν

−
1

2
ð∂ϕ1Þ2 −

1

2
ð∂ϕ2Þ2

�
; ð2:2Þ

where X4 ¼ RμνρσRμνρσ − 4RμνRμν þ R2 is the Gauss–
Bonnet density, while R̃μνρσ ¼ 1

2
ϵμναβRαβ

ρσ is the dual
Riemann tensor. Here, we have assumed that the scalar
fields ϕ1, ϕ2 are massless. The inclusion of a mass term for
the scalars greatly complicates the analysis of the solutions
of this theory. In addition, one might consider more general
coupling functions fiðϕ1;ϕ2Þ instead of the shift-symmetric
casewe are assuming.However, atweak coupling the scalars
will be of order l2 with respect to their vacuum values, and
hence it is enough to take the linear expansion of fiðϕ1;ϕ2Þ
in order to study the leading corrections to GR solutions.
Ignoring the constant terms (which are topological) and
performing a rotation of the scalars, it is always possible to
express the action as in (2.2)—see [16]. A priori, one might

1See [36,37] for a different proposal to resolve nonseparability
issues.
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wish to add other terms to the effective theory (2.2), such as
RRμνρσRμνρσ. However, it turns out that all of these can be
removed by means of field redefinitions. The physical
properties of black holes, such as the quasinormal freque-
ncies of interest here, are invariant under changes of frame.
Thus (2.2) preserves generality.
Conversely, one might wish to further constrain the

theory (2.2). To preserve parity, for example, one should set
λodd ¼ θm ¼ 0. To eliminate nonminimally coupled scalars
one can set α1 ¼ α2 ¼ 0, which in practice is equivalent to
truncating the scalars. One might also want to set the cubic
terms to zero, since it has been argued that these give rise to
causality violations unless the action is supplemented with
an infinite tower of higher-spin modes [39].
Finally, if all corrections in (2.2) are discarded or ruled

out on physical grounds, one would need to consider the
Oðl6Þ corrections. In Ref. [15] it was shown that these
corrections can be written as the following combination of
quartic invariants2:

Sð4Þ ¼
l6

16πG

Z
d4x

ffiffiffiffiffi
jgj

p
fϵ1C2 þ ϵ2C̃

2 þ ϵ3CC̃g; ð2:3Þ

where

C ¼ RμνρσRμνρσ; C̃ ¼ RμνρσR̃μνρσ: ð2:4Þ

This theory was proposed in [15] as an effective field theory
extension of GR that is particularly suitable to be tested
using gravitational waves since it involves no new degrees
of freedom. Black hole solutions of the theory (2.3) were
studied in [24]. The dynamics of inspiraling black hole
binaries and the LIGO/Virgo observational constraints on
corrections of the form (2.3) were studied in [10].
For both theoretical and phenomenological reasons, it is

clearly of interest to carry out the analysis of the quasi-
normal modes of static and rotating black holes for both
sets of corrections (Oðl4Þ andOðl6Þ). Due to limitations of
space and time, in this paper we focus primarily on the
corrections included in (2.2), since they dominate if
present. However, for the sake of completeness and in
light of further developments along these lines, we also
provide a (less detailed) analysis of the corrections to the
quasinormal modes induced by the quartic terms in (2.3).
Furthermore, the ancillary files that we include with this
paper allow one to perform the analysis of the corrections to
the Kerr metric and to the quasinormal frequencies for
general higher-derivative theories.

III. ROTATING BLACK HOLES IN
HIGHER-DERIVATIVE GRAVITY

In this section we review the equations of motion
of the theories (2.2) and (2.3) and how to find rotating
black hole solutions as perturbative corrections to the Kerr
metric. These solutions were studied in Refs. [16,24],
respectively, although spinning black holes in particular
theories captured by (2.2), e.g., Einstein-scalar-Gauss-
Bonnet gravity [40–42] or dynamical Chern–Simons gra-
vity [43], have been largely studied in the literature using
different approaches [44–54].
The equations of motion arising from (2.2) can be

written as

Gμν ¼ Tscalars
μν þ Tcubic

μν ; ð3:1Þ

∇2ϕ1 ¼−α1l2RμνρσRμνρσ −α2l2 sinθmRμνρσR̃μνρσ; ð3:2Þ

∇2ϕ2 ¼ −α2l2 cos θmRμνρσR̃μνρσ; ð3:3Þ

where the effective energy-momentum tensors appearing in
the left-hand side of Einstein’s equation are given by

Tscalars
μν ¼ −α1l2gνλδ

λσαβ
μργδR

γδ
αβ∇ρ∇σϕ1

þ 4α2l2∇ρ∇σ½R̃ρðμνÞσðcos θmϕ2 þ sin θmϕ1Þ�

þ 1

2

�
∂μϕ1∂νϕ1 −

1

2
gμνð∂ϕ1Þ2

�

þ 1

2

�
∂μϕ2∂νϕ2 −

1

2
gμνð∂ϕ2Þ2

�
; ð3:4Þ

and

Tcubic
μν ¼ λevl4

�
3Rμ

σαβRαβ
ρλRρλσν þ

1

2
gμνRαβ

ρσRρσ
δγRδγ

αβ

− 6∇α∇βðRμαρλRνβ
ρλÞ

�

þ λoddl4

�
−
3

2
Rμ

ραβRαβσλR̃νρ
σλ −

3

2
Rμ

ραβRνρσλR̃αβ
σλ

þ 1

2
gμνRμν

ρσRρσ
δγR̃δγ

μν

þ 3∇α∇βðRμασλR̃νβ
σλ þRνβσλR̃μα

σλÞ
�
: ð3:5Þ

Wenote that the scalars acquire a nontrivial value of orderl2

on account of their nonminimal coupling to the curvature.
On the other hand, bothTscalars

μν andTcubic
μν are of orderl4, and

hence the metric can be expanded as gμν ¼ gð0Þμν þ l4gð4Þμν ,

where gð0Þμν is a solution of the zeroth-order Einstein’s

equations and gð4Þμν is a perturbative correction. Regarding
the quartic terms (2.3), their contribution to the Einstein’s

2Note that one could consider as well dynamical couplings in
this case, nevertheless, their effect is subleading in this case.
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equations can be recast as an effective energy-momentum
tensor that reads

Tquartic
μν ¼−l6Rναβσ½Rμ

αβσð2ϵ1Cþϵ3C̃Þ− R̃μ
αβσð2ϵ2C̃þϵ3CÞ�

þl6

2
gμνðϵ1C2þϵ2C̃

2þϵ3CC̃Þ
−2l6∇α∇β½Rμανβð2ϵ1Cþϵ3C̃Þ
− R̃μανβð2ϵ2C̃þϵ3CÞ�: ð3:6Þ

In this case, the correction to the metric is of order l6, so that

gμν ¼ gð0Þμν þ l6gð6Þμν . Now we are going to assume that gð0Þμν is
the Kerr metric, and our goal is to compute the correspond-
ing corrections to this solution.
First, it is necessary to write down an appropriate metric

ansatz in order to describe the deviations to the Kerr
geometry. Following [16], we write

ds2¼−
�
1−

2Mρ

Σ
−H1

�
dt2− ð1þH2Þ

4Maρð1−x2Þ
Σ

dtdϕ

þð1þH3ÞΣ
�
dρ2

Δ
þ dx2

1−x2

�

þð1þH4Þ
�
ρ2þa2þ2Mρa2ð1−x2Þ

Σ

�
ð1−x2Þdϕ2;

ð3:7Þ

where Σ and Δ are given by

Σ ¼ ρ2 þ a2x2; Δ ¼ ρ2 − 2Mρþ a2; ð3:8Þ

and where Hi ¼ Hiðρ; xÞ are four functions characterizing
the corrections. For Hi ¼ 0, the metric above reduces to
Kerr, and since we are only interested in perturbative
corrections, the functions Hi are determined from the
linearized Einstein equations,

GL
μνjHi

¼ Teff
μν jgð0Þμν

; ð3:9Þ

where GL
μν is the linearized Einstein tensor on the Kerr

background, and the right-hand side is one of the effective
energy-momentum tensors shown above, evaluated on the
zeroth-order metric.
The equations of motion do not allow for a fully analytic

solution for arbitrary angular momentum. It is, never-
theless, possible to expand the functions ϕ1;2, Hi in a
series in the spin parameter χ ¼ a=M. This yields

ϕ1;2¼
X∞
n¼0

χn
Xn
p¼0

Xkmax

k¼0

ϕðn;p;kÞ
1;2 xpρ−k;

Hi¼
X∞
n¼0

χn
Xn
p¼0

Xkmax

k¼0

Hðn;p;kÞ
i xpρ−k; i¼ 1;2;3;4: ð3:10Þ

That is, every term in the χ-expansion is a polynomial in x

and in 1=ρ, where ϕðn;p;kÞ
1;2 , Hðn;p;kÞ

i are constant coefficients
and the value of kmax depends on n and p. These
coefficients are determined by the equations of motion,
except for a few ones that have to be fixed by the boundary
conditions. For the scalars, we can set

ϕðn;0;0Þ
1 ¼ ϕðn;0;0Þ

2 ¼ 0; n ¼ 0; 1; 2;…; ð3:11Þ

so that ϕ1 and ϕ2 vanish asymptotically (any other value is
equivalent because the theory (2.2) is shift-symmetric). For
the functions Hi we must impose

Hðn;0;0Þ
1 ¼ 0; Hðn;0;0Þ

3 ¼ Hðn;0;0Þ
4 ¼ −

Hðn;0;1Þ
3

M
;

Hðn;0;0Þ
2 ¼ −

Hðn;0;0Þ
3

2
: ð3:12Þ

These conditions guarantee that the solution is asymptoti-
cally flat and that the total mass and angular momentum are
not “renormalized” by the corrections, i.e., M and J ¼ aM
are still the physical mass and angular momentum.
For the theories withOðl4Þ corrections, the solution up to

orderOð χ3Þ is given in the Appendix of [16], and a higher-
order χ-expansion is available in the ancillary files asso-
ciated to that paper. For the theories with quartic corrections
in (2.3), the few first terms in the χ-expansion were found in
[24] (possibly with a different ansatz though). With this
paper,we provide an automatizedMathematicapackage that
computes the functions Hi up to the desired order in χ for
both sets of corrections, and that can easily be extended to
other types of higher-derivative terms.
Reference [16] has studied several properties of the

rotating black hole geometries (3.7). Here, we limit
ourselves to two observations that are relevant for our
analysis. First, the form of the ansatz means that the
position of the horizon in terms of the radial coordinate
is not modified,3

ρþ ¼ M
	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q 

: ð3:13Þ

Moreover, the horizon is regular, which serves, of course,
as important input in the study of the behavior of fields on

3This is correct as long as jχj < 1. The extremal case should be
considered separately.
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this geometry. Second, the light ring frequencies and radii
of this black hole were also computed. This will allow us to
compare our results for the QNMs in the eikonal limit with
the prediction coming from the geometric optics estimate.

IV. SCALAR PERTURBATIONS OF
SPHERICALLY SYMMETRIC BLACK HOLES

Our goal is to find the QNM frequencies of a free scalar
field perturbation in the black hole backgrounds we have
just reviewed. Before considering these scalar perturbations
on fully rotating black hole geometries, it is convenient to
study first the case of spherically symmetric black holes,
whose treatment is much simpler. Besides, the results that
we obtain here will serve as a useful test for the rotating

case, since we must recover the same quasinormal frequen-
cies in the nonspinning limit.4

When we set χ ¼ 0, the black hole metric (3.7) becomes

ds2 ¼ −fðρÞdt2 þ gðρÞdρ2 þ rðρÞ2dΩ2
ð2Þ; ð4:1Þ

where

fðρÞ ¼ 1 −
2M
ρ

−H1; gðρÞ ¼ 1þH3

ð1 − 2M
ρ Þ

;

rðρÞ2 ¼ ρ2ð1þH3Þ: ð4:2Þ
Since the purpose of this section is mainly illustrative, we
consider the Oðl4Þ corrections only—those in Eq. (2.2)—
in which case the functions H1 and H3 read

H1 ¼
α21l

4

M4

�
1 −

2M
ρ

��
−
208M6

11ρ6
−
1616M5

165ρ5
−
1174M4

231ρ4
þ 1868M3

1155ρ3
þ 1117M2

1155ρ2
þ 1117M

1155ρ

�

þ λevl4

M4

�
1 −

2M
ρ

��
24M6

11ρ6
þ 40M5

33ρ5
þ 160M4

231ρ4
þ 32M3

77ρ3
þ 64M2

231ρ2
þ 64M
231ρ

�
ð4:3Þ

H3 ¼
α21l

4

M4

�
−
368M6

33ρ6
−
1168M5

165ρ5
−
1102M4

231ρ4
−
404M3

1155ρ3
−

19M2

1155ρ2
þ 1117M

1155ρ
−
1117

1155

�

þ λevl4

M4

�
−
392M6

11ρ6
þ 8M5

33ρ5
þ 40M4

231ρ4
þ 32M3

231ρ3
þ 32M2

231ρ2
þ 64M
231ρ

−
64

231

�
: ð4:4Þ

We note that the horizon is exactly placed at ρ ¼ 2M,
but the price to pay is that ρ is not the standard radial
coordinate measuring the area of spheres, which instead is
rðρÞ. Observe that these coordinates do not coincide even
asymptotically. Indeed, we have

rðρÞ ¼ ρ

�
1 −

1117α21l
4

1155M4
−
64λevl4

231M4

�
þ 1117α21l

4

1155M4

þ 64λevl4

231M4
þOðρ−1Þ: ð4:5Þ

Thus, it is important to bear in mind the distinction between
ρ and r.

A. Effective potential

Now, let us consider a test scalar field satisfying the wave
equation in this background,5

∇2ψ ¼ 0: ð4:6Þ

Writing

ψ ¼
Z

∞

−∞
dωe−iωt

X∞
l¼0

Xl

m¼−l
Ym
l ðθ;φÞψ l;mðr;ωÞ; ð4:7Þ

where Ym
l are the spherical harmonics, we obtain a radial

equation for each component ψ l;m,

1

r2
ffiffiffiffiffi
fg

p d
dρ

� ffiffiffi
f
g

s
r2
dψ l;m

dρ

�
þ
�
ω2

f
−
lðlþ 1Þ

r2

�
ψ l;m ¼ 0:

ð4:8Þ

We can now massage this expression in order to bring it
into a more standard form. First, since the amplitude of ψ l;m

decays as ∼1=r at infinity, it is convenient to work with the
variable

ψ̂ l;m ¼ rψ l;m; ð4:9Þ

Next, switching the tortoise coordinate ρ�, defined as

4Useful since our method in the rotating case differs from the
one we employ in the static case.

5In principle this could be one of the scalar fields already
appearing in the action (2.2). However, since those fields have a
nonvanishing background value, one cannot neglect the coupling
between the scalar and gravitational perturbations, and hence one
would need to solve a coupled system of equations. Thus, one
should imagine that (4.6) corresponds to the approximation in
which the geometry is kept fixed, or either, that ψ is a different
field from those appearing in (2.2).
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dρ�
dρ

¼
ffiffiffi
g
f

r
; ð4:10Þ

Eq. (4.8) takes the canonical form

d2ψ̂ l;m

dρ2�
þ ðω2 − Vl;mÞψ̂ l;m ¼ 0; ð4:11Þ

where the effective potential Vl;m is given by

Vl;m ¼ flðlþ 1Þ
r2

þ 1

r

ffiffiffi
f
g

s � ffiffiffi
f
g

s
r0
�0
; ð4:12Þ

and where each “prime” denotes a derivative with respect to
ρ. Evaluating this expression and expanding up to first
order in l4, we get

Vl;m ¼
�
1 −

2M
ρ

��
lð1þ lÞ

ρ2
þ 2M

ρ3

�
þ α21l

4

M6

�
1 −

2M
ρ

��
lð1þ lÞ

�
992M8

33ρ8
þ 928M7

55ρ7

þ 2276M6

231ρ6
−
488M5

385ρ5
−
366M4

385ρ4
−
2234M3

1155ρ3
þ 1117M2

1155ρ2

�
þ 21184M9

33ρ9
þ 6208M8

165ρ8

þ 472M7

21ρ7
−
59504M6

1155ρ6
−
476M5

165ρ5
−
1348M4

231ρ4
þ 1117M3

385ρ3

�
þ λevl4

M6

�
1 −

2M
ρ

�

×

�
lð1þ lÞ

�
368M8

11ρ8
−
16M7

11ρ7
−
200M6

231ρ6
−
128M5

231ρ5
−
32M4

77ρ4
−
128M3

231ρ3
þ 64M2

231ρ2

�

þ 17056M9

11ρ9
−
21488M8

33ρ8
−
40M7

21ρ7
−
96M6

77ρ6
−
32M5

33ρ5
−
320M4

231ρ4
þ 64M3

77ρ3

�
; ð4:13Þ

while integrating (4.10) we get the tortoise coordinate

ρ� ¼ ρþ 2M log

�
ρ

2M
− 1

�

−
α21l

4

M3

�
1117ρ

2310M
þ 73

60
log

�
1 −

2M
ρ

�
þ 6719M

2310ρ
þ 7451M2

2310ρ2
þ 1316M3

495ρ3
þ 62M4

33ρ4

�

−
λevl4

M3

�
32ρ

231M
þ 1

4
log

�
1 −

2M
ρ

�
þ 109M

154ρ
þ 391M2

462ρ2
þ 14M3

11ρ3
þ 23M4

11ρ4

�
: ð4:14Þ

It is interesting to plot some of these potentials to see the
effect of the corrections. In Fig. 1 we show the potential
corresponding to l ¼ 0 for several values of α1 and λev, and
we compare these to the predictions of GR. Thus, we can
see that the effect of α1 is to increase the peak of the pote-
ntial, while for λev the effect depends on the sign: λev < 0
makes the peak higher and sharper and λev > 0 has the
exact opposite effect.

B. Quasinormal frequencies

To compute the quasinormal frequencies we must solve
Eq. (4.11) with the boundary conditions

ψ̂ l;m ∝
�
eiωρ� when ρ� → ∞
e−iωρ� when ρ� → −∞;

ð4:15Þ

which represent the absence of modes coming from infinity
and from the horizon. Since we are only interested in the

linear perturbative corrections to the quasinormal frequen-
cies, in general, we can write

Mωl;n ¼ Mωð0Þ
l;n þ l4

M4
ðα21Δωð1Þ

l;n þ λevΔω
ðevÞ
l;n Þ; ð4:16Þ

where ωð0Þ
l;n is the uncorrected value of the frequency, and

Δωð1Þ
l;n and ΔωðevÞ

l;n are dimensionless constants. The index n
labels the overtone (starting with n ¼ 0), and we are
already taking into account that the frequencies do not

depend onm. To find the coefficients Δωð1Þ
l;n and ΔωðevÞ

l;n , we
first obtain the QNM frequencies of the full potential (4.13)
for several (small) values of α1 and λev and then perform a

linear fit, which yields these coefficients along with ωð0Þ
l;n .

We have used several methods to compute the QNM
frequencies. For all values of l, the fundamental mode can
be obtained with excellent precision by performing a
numerical integration of the wave equation—a sketch of
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this method is explained in Appendix A. The frequencies
for l ¼ 0;…; 5 computed in this way are shown in Table I.
However, the numeric integration fails to produce the

overtones and we must resort to approximate methods for
those, such as the WKB method or the Pöschl–Teller
approximation. Unfortunately, we have checked that these
methods are unreliable for low values of l; they do not even

produce the correct values of the coefficients Δωð1Þ
l;0 and

ΔωðevÞ
l;0 shown in Table I. For l ≥ 3 the WKB method starts

yielding a more consistent result for these coefficients,
however, the precision for the overtones is probably
smaller. Thus, these approximate methods will only work
for sufficiently large l. In the eikonal limit the WKB
method or the Pöschl–Teller approximation should actually
give the exact result for the quasinormal frequencies, and
they allow us to obtain an analytic result. For instance, the
Pöschl–Teller method gives the following approximation to
the quasinormal frequencies [17]:

ωPT
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 − α2=4

q
− iα

�
nþ 1

2

�
; n¼ 0;1;…; ð4:17Þ

where V0 corresponds to the maximum of the potential,
V0 ≡ Vðρmax� Þ, while

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V 00ðρmax� Þ

2V0

s
: ð4:18Þ

Evaluating these quantities for the potential (4.13) and
taking l → ∞, we get

ωl;n ¼
ð2lþ 1Þ
6

ffiffiffi
3

p
M

�
1þ 4397α21l

4

21870M4
þ 20λevl4

729M4

�

− i
ð2nþ 1Þ
6

ffiffiffi
3

p
M

�
1 −

1843α21l
4

21870M4
−
52λevl4

729M4

�
: ð4:19Þ

One can see, for instance, that for l ¼ 5, n ¼ 0 this formula
yields

ω5;0 ¼ 1.0585 − 0.0962iþ α21l
4

M4
ð0.2128þ 0.0081iÞ

þ λevl4

M4
ð0.0290þ 0.0069iÞ; ð4:20Þ

FIG. 1. Effective potentials for scalar perturbations with l ¼ 0 in spherically symmetric black holes. Left: we take various values of α1
while keeping λev ¼ 0. Right: we vary λev while keeping α1 ¼ 0. In both cases the red dashed line corresponds to the Schwarzschild
potential.

TABLE I. Fundamental quasinormal frequencies (n ¼ 0) for several values of l.

l Mωð0Þ
l;0 Δωð1Þ

l;0 ΔωðevÞ
l;0

0 0.110453 − 0.104897i 0.0512þ 0.00131i 0.0260þ 0.0152i
1 0.292936 − 0.0976602i 0.0708þ 0.00682i 0.0106þ 0.0133i
2 0.483644 − 0.0967584i 0.1045þ 0.00763i 0.0128þ 0.00996i
3 0.675366 − 0.0964993i 0.1411þ 0.00781i 0.0177þ 0.00850i
4 0.867415 − 0.0963914i 0.1786þ 0.00787i 0.0231þ 0.00783i
5 1.05961 − 0.0963365i 0.2166þ 0.00790i 0.0284þ 0.00749i
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rather close to the value shown in Table I. Besides being
analytical, this result is interesting because the behavior of
the quasinormal frequencies in the eikonal limit is supposed
to be universal, regardless of the spin of the perturbations.
Thus, we expect that the formula above also predicts the
corrections to the gravitational quasinormal frequencies in
the eikonal limit.

V. SCALAR PERTURBATIONS OF ROTATING
BLACK HOLES

We now move on to test fields ψ in the rotating black
hole backgrounds (3.7), satisfying

∇2ψ ¼ 0: ð5:1Þ

Since we have the Killing vectors ∂t and ∂ϕ, we can
separate those variables right away by writing

ψ ¼
Z

∞

−∞
dω

X∞
m¼−∞

eiðmϕ−ωtÞψm;ωðρ; xÞ; ð5:2Þ

so that we have

∇2ψ ¼
Z

∞

−∞
dω

X∞
m¼−∞

eiðmϕ−ωtÞD2
m;ωψm;ω; ð5:3Þ

and every component satisfies an equation of the form

D2
m;ωψm;ω ¼ 0: ð5:4Þ

The explicit form of the operator D2
m;ω in terms of the Hi

functions appearing in the metric (3.7) is shown in
Appendix C. When we insert the values of these functions
given by the solution described in Sec. III, we realize that
the operatorD2

m;ω is not separable, i.e., it does not allow for
solutions of the form ψm;ωðρ; xÞ ¼ RðρÞXðxÞ.

A. How to separate a nonseparable equation

Needless to say, the difficulty of solving a nonseparable
equation is several orders of magnitude higher than the
separable spherical case above. In this section we present a
resolution of this problem. We start by expanding the
perturbation ψm;ωðρ; xÞ in a basis of angular functions. A
natural possibility is to expand ψm;ω using the associated
Legendre polynomials Pm

l ðxÞ,

ψm;ω ¼
X∞
l¼jmj

Pm
l ðxÞRl;mðρÞ: ð5:5Þ

Note that when the sum in m in (5.2) is taken into
account, we are summing over the spherical harmonics,
Ym
l ðθ;ϕÞ ¼ eimϕPm

l ðcos θÞ, which are a basis of functions
on the sphere, and hence this is a valid expansion of the

solution. Now, if we were to project D2
m;ωψm;ω with Pm

l0 ðxÞ
then we would obtain an infinite-dimensional system of
ODEs for the variables Rl;mðρÞ. Due to the smoothness, a
numerical solution of a truncated set of these equations
would have an exponential convergence. A more efficient
decomposition of the scalar perturbation takes into account
that D2

m;ωψm;ω is almost separable, in the sense that its
zeroth-order part is separable, and the nonseparability
comes only from the perturbative corrections. Thus, let
us write

D2
m;ω ¼ D2

ð0Þm;ω þ λD2
ð1Þm;ω; ð5:6Þ

where D2
ð0Þm;ω is the operator corresponding to Kerr and

where λ is a parameter that controls the corrections (e.g.,
λ ¼ l4). Now, it is a well-known fact that the operator
D2

ð0Þm;ω is separable, and its angular eigenfunctions are the

spheroidal harmonics, Sl;mðx; cÞ, where c ¼ aω. Thus, we
might use, instead of the Pm

l ðxÞ, the Sl;mðx; cÞ in order to
expand the perturbation:

ψm;ω ¼
X∞
l¼jmj

Sl;mðx; cÞRl;mðρÞ: ð5:7Þ

An important remark here is that for a fixed m the
spheroidal functions Sl;m are spanned by the associated
Legendre polynomials Pm

l . In fact, as we review in
Appendix B, the Sl;m can be expanded in a series of the
form [55]

Sl;mðx; cÞ ¼
X∞
n¼jmj

c2ðn−jmjÞan;mPm
n ðxÞ; ð5:8Þ

which converges exponentially fast. Therefore, Eq. (5.7) is
perturbatively equivalent to a rewriting of (5.5), and hence a
valid expansion since we are spanning the whole set of
functions on the sphere.
The zeroth-order operator D2

ð0Þm;ω is given by

D2
ð0Þm;ωψ ¼ 1

Σ
∂ρðΔ∂ρψÞ þ

1

Σ
∂xðð1 − x2Þ∂xψÞ ð5:9Þ

−
ψ

ΔΣ

�ðΣ−2MρÞm2

ð1−x2Þ þ4Maρmω

−
�
2Mρa2þΣðρ2þa2Þ

ð1−x2Þ
�
ω2

�
: ð5:10Þ

Acting on the function (5.7) yields

D2
ð0Þm;ωψm;ω ¼ 1

Σ

X
l

Sl;mðx;cÞðD2
ð0Þm;ω;ρ −Al;mðcÞÞRl;mðρÞ;

ð5:11Þ
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where we have taken into account the equation satisfied by
the spheroidal harmonics,

ð1−x2ÞS00l;m−2xS0l;mþ
�
Al;mðcÞþc2x2−

m2

1−x2

�
Sl;m ¼ 0;

ð5:12Þ

where c≡ aω and Al;mðcÞ are the angular separation
constants, corresponding to the eigenvalues of the previous
equation. On the other hand, D2

ð0Þm;ω;ρ is the radial operator

given by

D2
ð0Þm;ω;ρR ¼ d

dρ

�
Δ
dR
dρ

�
þ R
Δ
ða2m2 − 4amMρω

þ ω2ðρ4 þ a2ρ2 þ 2a2ρMÞÞ: ð5:13Þ

Then, let us make the following observation: at zeroth-
order, the quasinormal modes of Eq. (5.4) are given by the
functions with a definite value of m and l, i.e., each
quasinormal mode contains a single term in the expansion
(5.7) above. Once the corrections are included, we expect
that the quasinormal modes will contain all the possible
terms in the series due to the nonseparability of the
equation. However, since they will be given by the
zeroth-order ones plus a perturbative correction, the
possible “off diagonal” terms will all be of order λ.
Thus, we can single out one term in the l expansion and
write

ψm;ω¼ Sl0;mðx;cÞRl0;mðρÞþλ
X
l≠l0

Sl;mðx;cÞRl;mðρÞ; ð5:14Þ

where we are making explicit that the terms with l ≠ l0 are
of order λ. Therefore, inserting this into Eq. (5.4), using
(5.11), and neglecting quadratic terms in λ, we have

ðρ2 þ a2x2ÞD2
m;ωψm;ω

¼ Sl0;mðx; cÞðD2
ð0Þm;ω;ρ − Al0;mðcÞÞRl0;mðρÞ ð5:15Þ

þλðρ2 þ a2x2ÞD2
ð1Þm;ωðSl0;mðx; cÞRl0;mðρÞÞ ð5:16Þ

þλ
X
l≠l0

Sl;mðx;cÞðD2
ð0Þm;ω;ρ−Al;mðcÞÞRl;mðρÞþOðλ2Þ:

ð5:17Þ

Finally, taking in account that the spheroidal harmonics
with the same m are orthogonal,6 hSl;mjSl0;mi ¼ δll0 , pro-
jecting onto Sl0;mðx; cÞ yields one radial equation that only
involves Rl0;mðρÞ:

ðD2
ð0Þm;ω;ρ − Al0;mðcÞÞRl0;mðρÞ ð5:18Þ

þ λ

Z
1

−1
dxSl;mðx; cÞðρ2 þ a2x2Þ

×D2
ð1Þm;ωðSl0;mðx; cÞRl0;mðρÞÞ ¼ 0: ð5:19Þ

This can also be written, without the need to split the
operator D2

m;ω, asZ
1

−1
dxSl;mðx; cÞðρ2 þ a2x2ÞD2

m;ωðSl;mðx; cÞRl;mðrÞÞ ¼ 0:

ð5:20Þ

Expressed in an even more compact way, we have
essentially proven that the radial operator obtained from
the projection D2

l;m;ω¼hSl;mjðρ2þa2x2ÞD2
m;ωjSl;mi actually

gives a consistent equation. Thus, the solutions of this
equation will provide us with the quasinormal frequencies
at first order in λ.
Before passing to the next subsection, let us clarify that

in this analysis we are not making any assumption yet on
Rl;m. That is, we are not assuming that it can be decom-

posed as Rð0Þ
l;m þ λRð1Þ

l;m—such decomposition is assumed
only on the coefficients of the angular expansion. However,
another way to derive the corrections to the quasinormal
modes consists precisely in decomposing the scalar
field as ψ ¼ ψ ð0Þ þ λψ ð1Þ, and similarly with the frequency
ω ¼ ωð0Þ þ λωð1Þ, and to perform a perturbative treatment
in λ. In that case, one can derive an explicit formula for ωð1Þ,
analogous to the one obtained in the perturbation theory of
quantum mechanics:

ωð1Þ ∼ −
hψ ð0ÞjD2

ð1Þjψ ð0Þi
hψ ð0Þj∂ωD2

ð0Þjψ ð0Þi : ð5:21Þ

This result was derived in [36] and later used in [37] in
order to obtain the quasinormal frequencies of weakly
charged Kerr–Newman black holes. However, one diffi-
culty with this method is that the quasinormal modes ψ ð0Þ
are not normalizable, and in order to define the inner
products one has to extend the integral to the complex
plane. It would be interesting to explore this method
elsewhere in order to compute higher-derivative corrections
to the Kerr quasinormal frequencies (QNFs). Here, we will
base our analysis on the method that we have explained
before, from where we can extract effective potentials for
the perturbations, as we now show.

B. Effective potentials

To proceed, we must perform the integral in (5.20) in
order to get an effective radial equation for the QNMs.
To do so, we expand the spheroidal functions Sl;mðx; cÞ in a

6There are other possible conventions for the spheroidal
harmonics, but we will use this normalization.
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power series in c—see Appendix B—and then expand the
integrand simultaneously in c and in χ. This is doubly
convenient since our solution for the Hi functions in the
metric (3.7) is also expressed as a series in χ. Let us also
note that, although c ¼ χMω, it is convenient to keep an
independent expansion for both variables since, in princi-
ple, c could be large even if χ is small (for instance, this
happens in the eikonal limit). When the integrand is
expanded in this way, we are able to perform the integral
analytically order by order. The result in all cases is a
second-order equation of the form

A
d2R
dρ2

þ B
dR
dρ

þ CR ¼ 0; ð5:22Þ

where A, B, and C are functions of ρ, and we are omitting
the l, m subindices in order to reduce the clutter. Now, our
task is to bring this equation to the more familiar form of
the stationary, one-dimensional Schrödinger equation, for
which we need to remove the friction term in the equation
above. There are two transformations that we can consider:
a change of variable for the radial coordinate y ¼ yðρÞ and
a rescaling of R, so that

dy
dρ

¼ fðρÞ; R ¼ KðρÞφ; ð5:23Þ

for certain functions K and f, and where φ is the new radial
function. When we perform these transformations,
Eq. (5.22) becomes

Af2K
d2φ
dy2

þ dφ
dy

½Aðf0K þ 2fK0Þ þ BfK�

þ φðCK þ BK0 þ AK00Þ ¼ 0; ð5:24Þ

where the primes denote derivatives with respect to ρ, f0 ¼
df=dρ and so on. Then, in order to remove the term dφ

dy, we
see that K and f must satisfy

fK2 ¼ e−
R

dρB=A: ð5:25Þ

Thus, we have the freedom to fix one of these functions, the
other one will then be determined by the relation above. We
find that it is convenient to choose the function fðρÞ so that
the coordinate y has an appropriate definition. We make the
following choice:

fðρÞ¼ 1þkþ 2M
ρ−ρþ

; ρþ ¼M
	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2

q 

; ð5:26Þ

where k is a constant of the order of the corrections (Oðl4Þ
or Oðl6Þ) that we will fix later. Thus, we get the following
relation between y and ρ,

y ¼ ρð1þ kÞ þ 2M log

�
ρ

ρþ
− 1

�
; ð5:27Þ

so that ρ → ρþ corresponds to y → −∞. Finally, dividing
Eq. (5.28) by Af2K, we can write it in the standard form

d2φ
dy2

þ ðω2 − Vðy;ωÞÞφ ¼ 0; ð5:28Þ

where the potential is given by

Vðy;ωÞ ¼ ω2 −
ðCK þ BK0 þ AK00Þ

Af2K
: ð5:29Þ

By expanding everything in a power series of χ and c and
linearly in l4 (or l6), it is possible to calculate the integral
(5.25) analytically and to obtain the potential explicitly.
The constant k is then chosen in a way such that Vðy;ωÞ ∼
Oð1=y2Þ when y → ∞.7 We note, however, that the
potential generically tends to a nonzero constant in the
opposite limit, y → −∞. This could be removed by
considering a more complicated choice of coordinate y,
but at the end of the day, we think our choice is more
convenient because it allows us to invert easily the relation
ρðyÞ. In fact, this relationship can be written in terms of the
Lambert function W as

ρ ¼ ρþ þ 2M
1þ k

W

�
ρþð1þ kÞ

2M
e
y−ρþð1þkÞ

2M

�
: ð5:30Þ

As functions of ρ, the potentials have lengthy but
otherwise simple expressions that can be verified in the
ancillary files of this paper. For illustrative purposes, let us
just show the general structure of these potentials. First, for
each value of l and m they can be decomposed as the sum
of a zeroth-order part plus linear corrections,

V ¼ Vð0Þ þ l4

M4
ðα21Vðα1Þ þ α22V

ðα2Þ þ λevVðevÞÞ: ð5:31Þ

Then, each of these parts VðiÞ is decomposed in a series in χ
and c ¼ Mωχ:

VðiÞ ¼
X
q;p

χqcpVðiÞ
qp: ð5:32Þ

Finally, each of the terms VðiÞ
qp is a finite polynomial in 1=ρ

where the coefficients are quadratic polynomials in ω,
hence they have the form

VðiÞ
qp¼ 1

M2

Xjmax

j¼0

Mj

ρj
ðvðiÞqpjþuðiÞqpjMωþwðiÞ

qpjðMωÞ2Þ; ð5:33Þ

7An arbitrary choice of k leads to Vð∞;ωÞ ≠ 0.
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where vðiÞqpj, uðiÞqpj, wðiÞ
qpj are constant dimensionless

coefficients.

VI. QUASINORMAL FREQUENCIES OF
ROTATING BLACK HOLES

Since the potentials V do not vanish in the limit y→−∞,
the quasinormal modes correspond to the solutions of
(5.28) satisfying the following boundary conditions

φ ∝
� eiωy when y → ∞

e−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−Vð−∞;ωÞ

p
y when y → −∞:

ð6:1Þ

We realize that if for some ω we had ω2 − Vð−∞;ωÞ ¼ 0,
we could have a problem. However, it turns out that
Vð−∞;ωÞ ¼ pω2 for a certain constant p. One can check
that p < 0 as long as the corrections are small, hence we
never run into a zero in the square root.

A. Oðl4Þ corrections
The first thing that we note when computing the effective

potentials for the theories in (2.2) is that they are inde-
pendent of the parameters θm and λodd, so parity-breaking
terms in the effective action do not contribute to the scalar
QNMs. Since we are only interested in the linear correc-
tions to the quasinormal frequencies, we can write

Mωl;m;n ¼ Mωð0Þ
l;m;n

þ l4

M4
ðα21Δωð1Þ

l;m;n þ α22Δω
ð2Þ
l;m;n þ λevΔω

ðevÞ
l;m;nÞ;

ð6:2Þ

where n labels the overtone. Themain differencewith respect
to the static case is that now the degeneracy in m is broken,

and that the coefficientsΔωðiÞ
l;m;n are not constant anymore but

functions of the spin χ. In order to obtain the values of these
coefficients along with the Kerr quasinormal frequencies

ωð0Þ
l;m;n, we compute the quasinormal frequencies of the

effective potentials derived in the previous section for various
values of the couplings α21, α

2
2 and λev, and then we perform a

linear fit of the formula (6.2) to the data. Given the
complicated form of these potentials, we are not able to
employ standard methods valid for the Kerr case, such as
Leaver’s continued fraction method [33–35], which seems to
be the most powerful one—see [17] and references therein.
We find that the most accurate way to obtain the quasinormal
frequencies—at least when l is not large—consists in
performing a numeric integration of the wave Eq. (5.28)—
see Appendix A. This method allows us to compute the
fundamental quasinormal frequencies (n ¼ 0) with high
precision—we have checked that our results for the Kerr

QNFs ωð0Þ
l;m;n agree at least up to 5 digits with the values

provided in [56]—but obtaining the overtones proves to be
much more difficult. Thus, we will focus only on the
fundamental modes, which, on the other hand, are the most
relevant ones during the ringdown.
Besides the intrinsic errors of the method used to

compute the quasinormal frequencies—which we can
always keep small if we are careful enough—we have to
account for the error committed due to the χ-expansion of
the potentials. If the spin is small, we expect that only a few
terms suffice to produce an accurate result. The higher we
want to go in the spin, the more terms we need to add. For
instance, when the corrections are set to zero, we have
checked that an expansion up to order χ14 yields an
approximation to the Kerr QNFs with an error below
0.1% for χ ¼ 0.8 (and an increasingly better approximation
for smaller χ). However, it turns out that in order to
correctly capture the corrections to the Kerr QNFs we
need more accuracy, and indeed, we observe that for an
expansion up to order χ14 the results for the coefficients

ΔωðiÞ
l;m;n are only good enough for χ ≤ 0.6–0.7, depending

on the case. We will restrict ourselves to those values of the
spin, but it would be desirable—with higher computational
power—to go to larger values of χ. The analysis will,
nevertheless, break near extremality, χ ∼ 1, in which case
one would need to use a different approach in order to
obtain the corrections to the Kerr metric.
Let us now present our results.

1. Low l

It is expected that the mode with l ¼ m ¼ n ¼ 0 is the
dominant one after the scalar field is perturbed in the
vicinity of the horizon, and hence it deserves special
attention. This mode is also the one less affected by
rotation. In Table II, we show the values of these quasi-
normal frequencies for various values of χ. Together with
those values we find, as usual, the symmetric frequencies
by changing the sign of the real parts. As a consistency

check, we see that the coefficients ΔωðiÞ
0;0;0 for χ ¼ 0 agree

(up to a 1% of discrepancy) with those shown in Table I
corresponding to the static case. This is indeed a good test
of our computations since the potentials used in each case
are actually different due to the different choice of “tortoise
coordinate.”
In order to understand the behavior of these frequencies

it is most useful to plot them. In Fig. 2, we show the
trajectory in the complex plane of the uncorrected quasi-

normal frequency ωð0Þ
0;0;0 and of the correction coefficients

ΔωðiÞ
0;0;0. As we can observe, the zeroth-order value does not

vary much as we increase the spin, while the effect can be
more important on the corrections. In particular, the
correction associated to α2 becomes nonvanishing when
χ ≠ 0, and both its real and imaginary parts are monoton-
ically increasing with χ. In the case of the α1 correction, we
see that its real part barely changes, while its imaginary part
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is increased by a factor of 9 when we go from χ ¼ 0 to

χ ¼ 0.6. As for ΔωðevÞ
0;0;0, its imaginary part remains practi-

cally constant, while the real part does have a significant
variation. Thus, depending on the spin, the effect of the
corrections can be more or less relevant. Let us also note
that, in the case of the corrections coming from the
quadratic curvature terms, the sign is fixed since the
corrections are proportional to α21;2. Therefore, we see that
they always tend to make the quasinormal modes longer
lived and of higher frequency. If we could extrapolate these
results to black holes of small enough masses, this would

imply that at some point the imaginary part of ω0;0;0 would
become positive, hence we would find an instability. Of
course, this would be well beyond the perturbative regime
we are considering, so we cannot conclude that such
instability will occur. On the other hand, the effect of
the cubic curvature terms can be the same as for scalars
(λev > 0) or the opposite one (λev < 0).
It is also interesting to fit the numeric results to

polynomial functions in χ, so that we can obtain a compact
expression for the quasinormal frequencies valid for
arbitrary values of the spin. We note the effect of the spin
is quadratic, this is, the different quantities behave as

TABLE II. Fundamental quasinormal frequencies (n ¼ 0) for l ¼ m ¼ 0 and several values of the spin χ. Changing the sign of the real
parts produces another quasinormal frequency.

χ Mωð0Þ
0;0;0 Δωð1Þ

0;0;0 Δωð1Þ
0;0;0 ΔωðevÞ

0;0;0

0 0.110454 − 0.104897i 0.0516þ 0.00135i 0þ 0i 0.0261þ 0.0153i
0.1 0.110532 − 0.104801i 0.0517þ 0.00161i 0.00031þ 0.00000i 0.0260þ 0.0153i
0.2 0.110767 − 0.104512i 0.0517þ 0.00239i 0.00126þ 0.00000i 0.0255þ 0.0154i
0.3 0.111157 − 0.104008i 0.0517þ 0.00374i 0.00296þ 0.00006i 0.0247þ 0.0155i
0.4 0.111699 − 0.103253i 0.0516þ 0.00570i 0.00564þ 0.00023i 0.0235þ 0.0155i
0.5 0.112381 − 0.102183i 0.0513þ 0.00837i 0.00967þ 0.00070i 0.0218þ 0.0154i
0.6 0.113172 − 0.100698i 0.0508þ 0.01183i 0.01574þ 0.00180i 0.0183þ 0.0152i

FIG. 2. Trajectories in the complex plane of the Kerr quasinormal frequency ωð0Þ
0;0;0 and of the correction coefficients ΔωðiÞ

0;0;0. The
dependence in the spin is labeled by the color code (note that the maximum spin represented in each case is different).
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ωðχÞ ¼ ω0 þ χ2ω2 þ � � �, when χ is small—linear terms
in χ will generically appear when m ≠ 0—so it seems
appropriate to fit the results to a polynomial in χ2. Taking
this into account, we obtain the following fits including
three terms:

Mωð0Þ
0;0;0 ¼ ð0.110452 − 0.104892iÞ

þ ð0.007977þ 0.009137iÞχ2
− ð0.001109 − 0.006895iÞχ4;

Δωð1Þ
0;0;0 ¼ ð0.05166þ 0.001347iÞ

þ ð0.001030þ 0.02572iÞχ2
− ð0.0101 − 0.00949iÞχ4;

Δωð2Þ
0;0;0 ¼ 0.03043χ2 þ ð0.02432þ 0.005049iÞχ4

þ ð0.0350þ 0.0243iÞχ6;
ΔωðevÞ

0;0;0 ¼ ð0.02605þ 0.01529iÞ
− ð0.01121 − 0.002620iÞχ2
− ð0.0257þ 0.00835iÞχ4: ð6:3Þ

In the case of Δωð2Þ
0;0;0 we have forced the constant term to

vanish, and we have also made explicit that the imaginary
part behaves as ∼χ4 for small χ. These functions approxi-
mate very well the numeric values of the quasinormal
frequencies in the interval 0 ≤ χ ≤ 0.6 (the maximum value
of the residuals is of the order of 1%), and they probably
yield a good estimate for slightly higher values.
The case of l ¼ 0 is relevant because, as we remarked, it

would correspond to the dominant mode of scalar pertur-
bations. Nevertheless, it is interesting to study also the
quasinormal modes for l > 0, since they develop a rich
structure which is not appreciated in the case of l ¼ 0. In
particular, the frequencies with different m split and, in
addition, the effect of rotation becomes increasingly rele-
vant for larger l and m. Besides, the results for l > 0 can
serve as an approximation to the quasinormal frequencies
of higher spin fields.
The corrected quasinormal frequencies ωl;m;n still satisfy

the symmetry

ωl;m;nðχÞ ¼ ωl;−m;nð−χÞ: ð6:4Þ

This symmetry is expected to be broken in parity-violating
theories, but we have seen that such effects never appear in
the case of scalar perturbations. On the other hand, as in the

Kerr case, there is a set of frequencies ωl;m;n with positive
real part and another set ω̂l;m;n with negative real part, but
both are related by the simple relation

ω̂l;m;n ¼ −ω�
l;−m;n: ð6:5Þ

Therefore, we can restrict ourselves to χ ≥ 0 and to QNFs
with positive real part. In Fig. 3, we plot the trajectories in
the complex plane of the zeroth-order quasinormal frequen-
cies and of the correction coefficients for l ¼ 1, while in
Fig. 4 we show the corresponding plots for l ¼ 2. Here, the
Oðχ14Þ expansion of the potentials gives us a good result up
to χ ∼ 0.7, except for ΔωðevÞ

1;m;0, which seems to be accurate
enough only for χ ≤ 0.625. On the other hand, polynomial
fits of the quasinormal frequencies are provided in
Appendix D—see Tables III–XII.
As we can see from the plots, we correctly reproduce

the behavior of the uncorrected Kerr frequencies with the
characteristic splitting of the different m modes. On the
other hand, the shift introduced in the quasinormal frequen-
cies due to the corrections has a great variability as a
function of m and χ. Thus, the effect of the corrections can
be several times larger or smaller depending on the value of
the spin and, in general, the mode withm ¼ lsignðχÞ seems
to be the most affected one. We can appreciate that the
curves followed in the complex plane by each type of
correction have an overall pattern that does not change
much as we vary l. By increasing the value of l, we have
observed that the trajectories have a similar behavior to
those in Figs. 3 and 4 but with an increasing number of
lines in between (corresponding naturally to the increasing
number of values of m).
In the case of l ¼ 2, the Kerr’s gravitational quasinormal

frequencies are not too different from the scalar ones, and
indeed, they have a similar trajectory in the complex plane.
Therefore, we might expect that the corrections to the
gravitational quasinormal frequencies will follow trajecto-
ries similar to those shown in Fig. 4, at least in qualitative
terms. In regard to this, it can be interesting to analyze the
ratios ωR

ωð0Þ
R

, ωI

ωð0Þ
I

, between the real and imaginary parts of the

quasinormal frequencies and their corresponding values for
Kerr. Assuming that these ratios do not change much with
the spin of the perturbations, this would be a way to obtain
a rough estimate for the gravitational quasinormal frequen-
cies. Focusing on the dominant mode l ¼ 2,m ¼ 2, we find
the following expressions for these ratios after fitting the
numerical data:

ωR

ωð0Þ
R

¼ 1þ 0.0264λ̂þ 0.2160α̂21 þ ð0.0745λ̂þ 0.2434α̂21 − 0.1101α̂22Þχ þ ð−0.0109λ̂þ 0.0893α̂21 þ 0.0357α̂22Þχ2

þ ð0.3387λ̂ − 0.2379α̂21 − 0.6590α̂22Þχ3 þ ð−1.0002λ̂þ 0.5816α̂21 þ 2.0828α̂22Þχ4
þ ð1.4728λ̂ − 0.6561α̂21 − 3.0440α̂22Þχ5 þ ð−0.7340λ̂ − 0.0579α̂21 þ 1.4510α̂22Þχ6; ð6:6Þ
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ωI

ωð0Þ
I

¼ 1 − 0.1034λ̂ − 0.0823α̂21 þ ð−0.2178λ̂ − 0.0586α̂21 þ 0.4619α̂22Þχ þ ð−0.1653λ̂þ 0.4022α̂21 þ 0.7111α̂22Þχ2

þ ð−0.2023λ̂ − 3.4773α̂21 − 1.8926α̂22Þχ3 þ ð0.1605λ̂þ 12.337α̂21 þ 8.9607α̂22Þχ4
þ ð−0.3331λ̂ − 19.8908α̂21 − 14.7249α̂22Þχ5 þ ð−0.0233λ̂þ 13.4036α̂21 þ 11.1683α̂22Þχ6; ð6:7Þ

where we have introduced the hatted quantities

λ̂ ¼ λev
l4

M4
; α̂21 ¼ α21

l4

M4
; α̂22 ¼ α22

l4

M4
: ð6:8Þ

These expressions reproduce very well the numeric results
obtained for 0 ≤ χ ≤ 0.7, and they probably yield a
reasonably good approximation for even larger values of
χ. A profile of these ratios for particular values of the
couplings is shown in Fig 5. Now, the question is whether
the quasinormal frequencies of gravitational perturbations,
compared to their respective Kerr counterparts, will
yield similar ratios. If this were the case, then we could
simply estimate the gravitational frequencies by using

ωgrav
R ∼ ωgrav;ð0Þ

R × ðωscalar
R =ωscalar;ð0Þ

R Þ and similarly for the

imaginary part. We cannot provide a definitive answer to
this question, but nevertheless, we can try to test this
formula for particular cases. Unfortunately, to the best
of our knowledge, gravitational quasinormal modes of
rotating black holes have not been studied yet in any
of the models that our theory (2.2) contains. On the
other hand, the quasinormal frequencies of static black
holes in Einstein-dilaton-Gauss-Bonnet gravity—which is
contained in (2.2)—are known. The perturbative and
nonperturbative regimes of these quasinormal modes
were studied in Ref. [20] for both axial and polar
perturbations. In the case of axial perturbations,8

FIG. 3. Trajectories in the complex plane of the Kerr quasinormal frequencies ωð0Þ
l;m;0 for l ¼ 1 and m ¼ −1, 0, 1, and of the correction

coefficients ΔωðiÞ
l;m;0. The dependence in the spin is labeled by the color code (note that the maximum spin represented in each case is

different).

8Polar ones behave differently because they couple to the
scalar field.
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FIG. 4. Trajectories in the complex plane of the Kerr quasinormal frequencies ωð0Þ
l;m;0 for l ¼ 2 and m ¼ −2;−1, 0, 1, 2, and of the

correction coefficients ΔωðiÞ
l;m;0. The dependence in the spin is labeled by the color code.

FIG. 5. Ratios between the corrected quasinormal frequencies ωl;m;0 and the corresponding Kerr values ωð0Þ
l;m;0 for l ¼ m ¼ 2. Left:

ratios of the real parts. Right: ratios of the imaginary parts. Each line represents the result when only the indicated coupling has a
nonvanishing value. In the general case, the corresponding curve is a linear combination of the ones we represent.
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the following result was found for the l ¼ 2, m ¼ 2
fundamental mode:9

,10

ωaxial
R

ωaxial;ð0Þ
R

¼ 1þ 0.1603α̂21;

ωaxial
I

ωaxial;ð0Þ
I

¼ 1 − 0.0828α̂21: ð6:9Þ

Comparing with our formulas (6.6) and (6.7), we see that
the result is indeed quite close—for the imaginary part it is
almost coincident. Therefore, it would seem that these
ratios can be used to get, at least, an order-of-magnitude
estimate for the corrections to the gravitational quasinormal
frequencies.

2. High l: analytic approximations

As discussed for a nonrotating black hole, approximate
analytic methods such as using an effective Pöschl–Teller
approximation or the WKB method become more effective

for large l. On the one hand, an analytic estimate may serve
as a check of our numerical computations. On the other,
these methods allow to compute higher overtones easily,
although here we will only focus on the fundamental
modes. The WKB and Pöschl–Teller (PT) methods provide
explicit expressions for the quasinormal frequencies in
terms of the parameters of the potential, but in the case of a
rotating black hole obtaining these frequencies becomes
more difficult as the potential has a further nontrivial ω
dependence. For instance, in (4.17) this means V0 and α are
still ω-dependent, and the remaining algebraic equation still
needs to be solved. Nevertheless, it is still possible to solve
that equation explicitly by performing a perturbative
expansion in χ. This is, in fact, a consistent strategy taking
into account that our effective potentials are expressed as a
series expansion in the spin.
As an example, replacing the l ¼ 5, m ¼ 5 potential

by a Pöschl–Teller one, we get the following approximation
for corresponding n ¼ 0 quasinormal frequency (up to
order χ3):

Mω5;5;0jPT ¼ ð1.061 − 0.097iÞ þ ð0.381 − 0.001iÞχ þ ð0.195þ 0.007iÞχ2 þ ð0.120þ 0.007iÞχ3

þ α21l
4

M4
ðð0.221þ 0.007iÞ þ ð0.367þ 0.005iÞχ þ ð0.213þ 0.002iÞχ2 þ ð0.076 − 0.007iÞχ3Þ

þ α22l
4

M4
χð−ð0.142þ 0.0472iÞ − ð0.104þ 0.059iÞχ − ð0.053þ 0.054iÞχ2Þ

þ λevl4

M4
ðð0.029þ 0.007iÞ þ ð0.0881þ 0.021iÞχ þ ð0.055þ 0.023iÞχ2 þ ð0.023þ 0.018iÞχ3Þ: ð6:10Þ

It is possible to obtain the analytic values of the coefficients
in the expression above, but for practical purposes we are
showing only the numeric values with a few digits.
We note that although this corresponds roughly to (4.20)

for χ ¼ 0, it is not exactly equal because of the different
choice of tortoise coordinate. This Pöschl–Teller approxi-
mation can be generalized, and instead the Rosen–Morse
potential, reviewed in Appendix A, accommodates better

the structure of the effective potentials. The Rosen–Morse
potential contains one additional parameter that allows to
set different asymptotic values of the potential. We recall
that our effective potentials (5.29) generically have a
nonvanishing value at y → −∞, and hence, in principle,
the Rosen–Morse (RM) method should provide a better
approximation of the quasinormal frequencies. Solving
(A11) perturbatively for l ¼ 5, m ¼ 5 one finds

Mω5;5;0jRM ¼ ð1.061 − 0.097iÞ þ 0.370χ þ ð0.190þ 0.007iÞχ2 þ ð0.117þ 0.007iÞχ3

þ α21l
4

M4
ðð0.215þ 0.008iÞ þ ð0.354þ 0.008iÞχ þ ð0.205þ 0.003iÞχ2 þ ð0.077 − 0.010iÞχ3Þ

þ α22l
4

M4
χð−ð0.126þ 0.049iÞ − ð0.089þ 0.062iÞχ − ð0.043þ 0.053iÞχ2Þ

þ λevl4

M4
ðð0.028þ 0.008iÞ þ ð0.082þ 0.022iÞχ þ ð0.049þ 0.024iÞχ2 þ ð0.021þ 0.017iÞχ3Þ: ð6:11Þ

9In our conventions we have ζ ¼ 4α̂1.
10We believe there is a typo in Table I of [20]: the entry corresponding to R2 and l ¼ 2 should be 1.002 × 10−2. Note that the values of

ωaxial
R and ωaxial

I that we write are the same ones as in [11].
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As a final approximation, we also calculate the leading order WKB approximation (effectively the “Bohr–Sommerfeld
quantization rule”) [17], which yields the following equation for the QNFs:

ω2 − V0ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

p ¼ i

�
nþ 1

2

�
; ð6:12Þ

where V 00
0 is the second derivative of the potential at the peak, and n ¼ 0; 1; 2;… is the overtone index. In the same example

l ¼ 5, m ¼ 5, this leads to

Mω5;5;0jWKB ¼ ð1.070 − 0.096iÞ þ 0.374χ þ ð0.194þ 0.008iÞχ2 þ ð0.119þ 0.007iÞχ3

þ α21l
4

M4
ðð0.217þ 0.008iÞ þ ð0.361þ 0.007iÞχ þ ð0.215þ 0.003iÞχ2 þ ð0.081 − 0.010iÞχ3Þ

þ α22l
4

M4
χð−ð0.132 − 0.048iÞ − ð0.010þ 0.062iÞχ − ð0.051þ 0.053iÞχ2Þ

þ λevl4

M4
ðð0.028þ 0.008iÞ þ ð0.084þ 0.021iÞχ þ ð0.054þ 0.024iÞχ2 þ ð0.023þ 0.017iÞχ3Þ; ð6:13Þ

for the fundamental mode, but higher overtones can be
easily computed as well.11

Although all these approximations are roughly in cor-
respondence with each other, they nevertheless have
differences in excess of 10% in some of the coefficients,
especially for higher orders of χ. In Fig. 13 (in the

Appendix), we illustrate the relative error of Mωð0Þ
5;5;0,

Δωð1Þ
5;5;0, Δω

ð2Þ
5;5;0, Δω

ðevÞ
5;5;0 based on the analytic estimates

in (6.10), (6.11), and (6.13) compared to the numerical
results. It can be seen that the Rosen–Morse approach

performs best overall, with the WKB giving comparably
good results for the corrections, while the Pöschl–Teller
approximation is significantly worse.
These approximate methods become more precise as we

increase l. For comparison with the approach of the next
section, let us also show the perturbative solution in the
case of l ¼ 10, m ¼ 10. Based on the conclusion that the
Rosen–Morse potential is most effective, we restrict our-
selves to this approximation, which yields

Mω10;10;0jRM ¼ ð2.022 − 0.096iÞ þ 0.741χ þ ð0.385þ 0.007iÞχ2 þ ð0.240þ 0.007iÞχ3

þ α21l
4

M4
ðð0.408þ 0.008iÞ þ ð0.700þ 0.009iÞχ þ ð0.410þ 0.002iÞχ2 þ ð0.138 − 0.012iÞχ3Þ

þ α22l
4

M4
χð−ð0.255þ 0.050iÞ − ð0.171þ 0.069iÞχ − ð0.078þ 0.062iÞχ2Þ

þ λevl4

M4
ðð0.055þ 0.007iÞ þ ð0.163þ 0.021iÞχ þ ð0.088þ 0.025iÞχ2 þ ð0.019þ 0.019iÞχ3Þ: ð6:14Þ

3. Eikonal limit and lightring geodesics

In the eikonal limit l → ∞, the quasinormal frequencies
are expected to be related to the unstable null geodesics
around the black hole. Thus, the orbital frequencies of these
geodesics control the real frequencies, while the damping
time is determined by the Lyapunov exponents. The
quasinormal ringing/null geodesics correspondence for
general m modes in Kerr black holes is quite compli-
cated—see Ref. [57]. However, them ¼ �l cases are much

simpler, as they only involve geodesics in the equatorial
plane. In particular, for them ¼ lmode, the frequencies are
given by [31,58,59]

ωl;l;n ¼
�
lþ 1

2

�
Ωþ − i

�
nþ 1

2

�
jλj; ð6:15Þ

where Ωþ is the orbital frequency of the equatorial null
geodesic rotating in the positive direction, while λ is the
corresponding Lyapunov exponent measuring the instabil-
ity timescale of the geodesic. The details on how to obtain
these quantities can be found, e.g., in [59]. The correspond-
ing value for the m ¼ −l mode can be found simply by

11Note that due to the nontrivial dependence of the potential on
ω, the solution depends on n in a complicated way.
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exchanging the signofχ in the expressionabove,ωl;−l;nðχÞ ¼ ωl;l;nð−χÞ. Theorbital frequencyand theLyapunovexponent for
the black holes in the theory in (2.2) can be found analytically performing an expansion in χ [16]. The result can bewritten as

Ωþ ¼ Ωð0Þ
þ þ l4

M5
ðα21Ωð1Þ

þ þ α22Ω
ð2Þ
þ þ λevΩ

ðevÞ
þ Þ; ð6:16Þ

λ ¼ λð0Þ þ l4

M5
ðα21λð1Þ þ α22λ

ð2Þ þ λevλ
ðevÞÞ; ð6:17Þ

where the different quantities have the following expansions in χ (up to order χ8),

MΩð0Þ
þ ¼ 1

3
ffiffiffi
3

p þ 2χ

27
þ 11χ2

162
ffiffiffi
3

p þ 2χ3

81
þ 523χ4

17496
ffiffiffi
3

p þ 254χ5

19683
þ 16543χ6

944784
ffiffiffi
3

p þ 4354χ7

531441
þ 2408051χ8

204073344
ffiffiffi
3

p ; ð6:18Þ

Ωð1Þ
þ ¼ 4397

65610
ffiffiffi
3

p þ 20596χ

295245
þ 1028803χ2

14467005
ffiffiffi
3

p þ 45262543χ3

3906091350
−

3685587061χ4

328111673400
ffiffiffi
3

p

−
110632797883χ5

5413842611100
−

910228742414947χ6

17151053391964800
ffiffiffi
3

p −
15449837941866829χ7

401334649371976320

−
11134828406941279099χ8

143477137150481534400
ffiffiffi
3

p ; ð6:19Þ

Ωð2Þ
þ ¼ −

131χ

5103
−

11047χ2

381024
ffiffiffi
3

p −
9491513χ3

1388832480
−

19022279χ4

925888320
ffiffiffi
3

p −
353193404087χ5

23099061807360

−
2452581602509χ6

63522419970240
ffiffiffi
3

p −
5958423964756267χ7

222963694095542400
−

37265277503432903χ8

668891082286627200
ffiffiffi
3

p ; ð6:20Þ

ΩðevÞ
þ ¼ 20

2187
ffiffiffi
3

p þ 320χ

19683
þ 26749χ2

1928934
ffiffiffi
3

p −
12967χ3

104162436
−

4415651χ4

1249949232
ffiffiffi
3

p −
3101153χ5

937461924

−
33998483χ6

6629195034
ffiffiffi
3

p −
18127693795χ7

6682228594272
−

601383641851χ8

173737943451072
ffiffiffi
3

p : ð6:21Þ

Mλð0Þ ¼ 1

3
ffiffiffi
3

p −
2χ2

81
ffiffiffi
3

p −
10χ3

729
−

44χ4

2187
ffiffiffi
3

p −
191χ5

19683
−

836χ6

59049
ffiffiffi
3

p −
61χ7

8748
−

16636χ8

1594323
ffiffiffi
3

p ; ð6:22Þ

λð1Þ ¼ −
1843

65610
ffiffiffi
3

p −
40χ

2187
−

58879χ2

19289340
ffiffiffi
3

p þ 34963739χ3

1302030450
þ 101574788537χ4

1312446693600
ffiffiffi
3

p

þ 23802643939χ5

433107408888
þ 900673269063947χ6

8575526695982400
ffiffiffi
3

p þ 1387887433593317χ7

22051354361097600

þ 4930958596510920137χ8

44146811430917395200
ffiffiffi
3

p ; ð6:23Þ

λð2Þ ¼ 230χ

2187
þ 678569χ2

2571912
ffiffiffi
3

p þ 196638109χ3

1388832480
þ 5614994047χ4

24998984640
ffiffiffi
3

p þ 7708776117503χ5

69297185422080

þ 3929424844884557χ6

22868071189286400
ffiffiffi
3

p þ 46142799714903611χ7

535112865829301760
þ 362024510543473937χ8

2675564329146508800
ffiffiffi
3

p ; ð6:24Þ

λðevÞ ¼ −
52

2187
ffiffiffi
3

p −
32χ

729
−

88097χ2

964467
ffiffiffi
3

p −
1548863χ3

34720812
−

40153453χ4

624974616
ffiffiffi
3

p −
18431767χ5

624974616

−
15457985849χ6

371234921904
ffiffiffi
3

p −
5846574233χ7

303737663376
−

52186447127χ8

1909208169792
ffiffiffi
3

p : ð6:25Þ
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It can be checked that these expansions are convergent for jχj < 1, and the truncation up to order 8 is a good approximation for
j χj ≤ 0.7. Now, we can compare these results with the expressions found for the quasinormal frequencies using approximate
methods. Taking the numeric values for the l ¼ m ¼ 10, n ¼ 0 mode, we see that the first terms in χ read

Mω10;10;0jLR ¼ ð2.021 − 0.096iÞ þ 0.778χ þ ð0.412þ 0.007iÞχ2 þ ð0.259þ 0.007iÞχ3

þ α21l
4

M4
ðð0.406þ 0.008iÞ þ ð0.732þ 0.009iÞχ þ ð0.431þ 0.001iÞχ2 þ ð0.122 − 0.013iÞχ3Þ

þ α22l
4

M4
χð−ð0.270þ 0.053iÞ − ð0.177þ 0.076iÞχ − ð0.072þ 0.071iÞχ2Þ

þ λevl4

M4
ðð0.055þ 0.007iÞ þ ð0.171þ 0.022iÞχ þ ð0.084þ 0.026iÞχ2 þ ð−0.001þ 0.022iÞχ3Þ: ð6:26Þ

We observe that the coefficients in this expansion are quite
close to the ones in (6.14), obtained from the Rosen–Morse
approximation of the effective potential. There are some
differences as we go to higher orders in the χ-expansion,
but these can be explained on account of the various
expansions and approximations involved in (6.14) and in
the fact that the convergence for l → ∞ is slow. This
example shows explicitly that the eikonal quasinormal
frequencies are in fact linked to the photon-sphere geo-
desics and that they can be computed using (6.15). Indeed,
comparing with the numerics one can see that the eikonal
formula already provides a reasonable approximation even
for the l ¼ 2 modes. On the other hand, the fact that we
obtain consistent results is a good test of the validity of the
procedure explained in Sec. V.
However, the correspondence between quasinormal ring-

ing and unstable lightring geodesics should be taken with
care because it might not hold in general. For instance, we
have seen that parity-odd interactions do not affect the
effective potentials for scalar perturbations, and hence they
do not modify the quasinormal frequencies. However, those
terms do affect geodesics and, in fact, there are no
equatorial geodesics whenever they are nonvanishing—in
order to compute the lightring geodesics, we have set the
parity-breaking parameters to zero. It would be interesting
to study what happens when such terms are nonvanishing.
Hopefully, they will modify the orbital frequency and
Lyapunov exponents only at a nonlinear level so that the
correspondence with quasinormal frequencies is still
valid.

B. Oðl6Þ corrections
Let us now present, in a less detailed way, the results for

the quasinormal frequencies associated with the quartic
corrections given in (2.3). These appear at orderOðl6Þ, and
hence they are subleading whenever the corrections studied
in the previous section are nonvanishing. In this case, the
higher-curvature term controlled by the parameter ϵ3 is
parity breaking and, therefore, it does not affect the scalar
quasinormal frequencies. Thus, we can write

Mω ¼ Mωð0Þ þ l6

M6
ðϵ1Δωðϵ1Þ þ ϵ2Δωðϵ2ÞÞ: ð6:27Þ

For the few first values of l, we obtain the fundamental
quasinormal frequencies by performing a numerical inte-
gration of the wave equation. We find that the convergence
of the χ-expansion of the effective potentials seems to be
slower than in the case of the Oðl4Þ corrections and, thus,
with an Oðχ14Þ-expansion we have been able to obtain a
reliable result only up to χ ∼ 0.6, depending on the case. In
Fig. 6, we show the trajectories in the complex plane of the
coefficients Δωðϵ1Þ and Δωðϵ2Þ for l ¼ 0, 1, 2 and all the
values of m. We can observe that the corrections associated
with ϵ2 are always vanishing for χ ¼ 0.
Polynomial fits of these coefficients are provided in

Appendix D—see Tables XIII–XXI, but for the sake of
completeness let us study here the value of the quotients

ωR=ω
ð0Þ
R , ωI=ω

ð0Þ
I for the l ¼ m ¼ 2 mode, analogously as

we did for theOðl4Þ corrections. After fitting the numerical
data, we find that these ratios are given by

ωR

ωð0Þ
R

¼ 1þ 0.0454ϵ̂1 þ ð0.1723ϵ̂1 þ 0.0289ϵ̂2Þχ þ ð−0.1009ϵ̂1 þ 0.0294ϵ̂2Þχ2 þ ð−0.1479ϵ̂1 þ 0.5443ϵ̂2Þχ3

þ ð−0.6853ϵ̂1 − 1.7375ϵ̂2Þχ4 þ ð1.4074ϵ̂1 þ 3.6973ϵ̂2Þχ5 þ ð−2.3075ϵ̂1 − 3.5189ϵ̂2Þχ6; ð6:28Þ

ωI

ωð0Þ
I

¼ 1 − 0.4547ϵ̂1 þ ð−0.6693ϵ̂1 þ 0.5821ϵ̂2Þχ þ ð0.8751ϵ̂1 þ 1.653ϵ̂2Þχ2 þ ð−8.1031ϵ̂1 − 6.0783ϵ̂2Þχ3

þ ð36.0175ϵ̂1 þ 28.78ϵ̂2Þχ4 þ ð−66.4961ϵ̂1 − 53.8109ϵ̂2Þχ5 þ ð54.9416ϵ̂1 þ 44.3289ϵ̂2Þχ6; ð6:29Þ
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where we have introduced

ϵ̂1 ¼ ϵ1
l6

M6
; ϵ̂2 ¼ ϵ2

l6

M6
: ð6:30Þ

These expressions fit accurately the numerical values
obtained in the interval 0 < χ < 0.6 and presumably
provide a good approximation for somewhat larger values.
Now, in the static case, we can compare these results with
the ones obtained for gravitational perturbations in [24].
The first thing we note is that the two different gravitational
modes receive different corrections, but we may expect that

at least one of them is corrected similarly as the scalar
modes. This is indeed what we observed before in the
case of the corrections to axial (parity-odd) quasinormal
frequencies in Einstein-scalar-Gauss-Bonnet gravity—see
the discussion around Eq. (6.9). For the quartic theories in
Eq. (2.3), we could expect axial perturbations associated to
ϵ1 and polar perturbations associated to ϵ2 to be relatively
similar to the scalar ones.12 We observe that, in fact, the

FIG. 6. Trajectories in the complex plane of the correction coefficientsΔωðϵ1Þ
l;m;0 andΔω

ðϵ2Þ
l;m;0 as defined in (6.27). From top to bottom we

show the cases l ¼ 0, 1, 2 for all the values of m. The dependence in the spin is labeled by the color code.

12The effect of the parameter ϵ3 in the perturbations is more
involved since it mixes parity-odd and parity-even modes, and its
effect on quasinormal frequencies has not been studied yet.
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parameter ϵ2 does not modify polar modes in analogy with
the situation for scalar modes. However, the corrections to
the axial quasinormal frequencies associated to ϵ1 do not
resemble the scalar ones we show above. The discrepancy,
nevertheless, seems to decrease as we increase l—see
below—so at least we will have some similarity for large
enough l.
Regarding eikonal modes, it is possible to perform

again an analysis of lightring geodesics and to find the
quasinormal frequencies using (6.15). In this case the

orbital frequencies and the Lyapunov exponents can be
written as

Ωþ ¼ Ωð0Þ
þ þ l6

M7
ðϵ1Ωðϵ1Þþ þ ϵ2Ω

ðϵ2Þþ Þ;

λ ¼ λð0Þ þ l6

M7
ðϵ1λðϵ1Þ þ ϵ2λ

ðϵ2ÞÞ; ð6:31Þ

where, up to order χ8, the coefficients Ωðϵ1;2Þ
þ and λðϵ1;2Þ are

given by

Ωðϵ1Þþ ¼ 832

59049
ffiffiffi
3

p þ 159872χ

5845851
−

5606779χ2

74401740
ffiffiffi
3

p −
5998600441χ3

52665271659
−

363654604519χ4

1354249842660
ffiffiffi
3

p

−
3392895395699χ5

18485510352309
−

5131021459454959χ6

13309567453662480
ffiffiffi
3

p −
19543868951454137χ7

78321685400398440

−
181533259063565863χ8

362020234739619456
ffiffiffi
3

p ; ð6:32Þ

Ωðϵ2Þþ ¼ 2048χ

19683
þ 9489197χ2

22733865
ffiffiffi
3

p þ 140916511χ3

464420385
þ 1050592475χ4

1350391581
ffiffiffi
3

p þ 183051051307χ5

326023110270

þ 299759777186281χ6

246473471364120
ffiffiffi
3

p þ 708676913356721χ7

897867645683580
þ 57722661833164033χ8

37710441118710360
ffiffiffi
3

p ; ð6:33Þ

λðϵ1Þ ¼ −
7232

59049
ffiffiffi
3

p −
3328χ

19683
−

77953591χ2

409209570
ffiffiffi
3

p þ 4635226837χ3

112854153555
þ 27299185267χ4

72921145374
ffiffiffi
3

p

þ 4547096768374χ5

13203935965935
þ 11075262022707251χ6

13309567453662480
ffiffiffi
3

p þ 13678829006217853χ7

24242426433456660

þ 769883777737335671χ8

678787940136786480
ffiffiffi
3

p ; ð6:34Þ

λðϵ2Þ ¼ 2048χ

19683
þ 9489197χ2

22733865
ffiffiffi
3

p þ 140916511χ3

464420385
þ 1050592475χ4

1350391581
ffiffiffi
3

p þ 183051051307χ5

326023110270

þ 299759777186281χ6

246473471364120
ffiffiffi
3

p þ 708676913356721χ7

897867645683580
þ 57722661833164033χ8

37710441118710360
ffiffiffi
3

p : ð6:35Þ

Again one can check that these expressions agree with
different estimates of the quasinormal frequencies for
sufficiently large l. Let us then return to the comparison
with gravitational perturbations in the static case. Using the
results for the master equations in Ref. [24], we have
checked that, in the case of axial perturbations, the
corrections associated to ϵ1 in the eikonal limit match
our formulas (6.32) and (6.34) with χ ¼ 0. Therefore, we
expect that for large l (and perhaps not necessarily very
large) the scalar quasinormal frequencies will resemble the
axial gravitational ones, and also for the spinning case. As
for the corrections to the polar (axial) modes associated to
ϵ1 (ϵ2), their dependence on l is quite unusual, as noted in
[24], and the eikonal limit does not seem to make sense in

those cases—we will come back to this in the discussion
section.

VII. OBSERVING DEVIATIONS FROM GR

In the last section we have presented an extensive
analysis of the quasinormal frequencies of rotating black
holes in the general set of higher-derivative extensions of
GR given by (2.2) and (2.3). We should now use these
results to quantify the observational implications of this. Of
course, we are working only with scalar perturbations,
which are different from gravitational ones. However, as we
have seen, the relative corrections to the gravitational and
scalar quasinormal frequencies may not be very different in
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some cases, even for l ¼ 2, and in other cases we can
expect that they become similar for higher l. Since the tests
that we will perform depend on the relative corrections to
the QNFs, we can at least get some degree of approxima-
tion to the real problem by using the scalar QNFs.
Otherwise, the analysis we carry out in this section can
be considered as a simulacrum of the type of study one
could perform if the corrections to the gravitational
frequencies were available.
We want to focus on two key aspects of the ringdown

signal. First, by measuring one (complex) quasinormal
frequency, one is able to infer the mass and the spin of the
black hole upon the assumption that this is given by the
Kerr metric. Thus, one relevant question is what is the error
in the mass and spin estimates if the black hole is actually
non-Kerr, i.e., a solution of one of the higher-derivative
theories we consider. Second, precisely because we can
always fit a given QNF to a Kerr value, one QNF is not
enough to test GR unless we have an independent estimate
of the mass and the spin. We need at least two different
QNFs in order to test GR using only ringdown measure-
ments and, in that case, it is important to determine to what
extent the QNM spectrum of the corrected black holes is
distinguishable from the Kerr spectrum. Next, we analyze
these two questions in more detail.

A. Inferring mass and spin from ringdown

One way of determining the final mass and spin of
the black hole resulting from the merger of a black hole
(BH) binary consists in measuring its dominant QNM. If
there are corrections to GR, then the estimates of the black
hole’s charges using the quasinormal frequencies—upon the
assumption of theKerr hypothesis—will be off and theywill
not agree, for instance, with the estimates coming from the
inspiral. Thus, these two independent estimates ofM and χ
can be used to test GR. Of course, one would need take into
account that the inspiral is also corrected, and so the mass
and spin inferred in this way will also have deviations
with respect to their actual values. We will not worry about
this, and we will simply assume that somehow we have
been able to determine the BH’s properties using different
measurements than the ringdown.13

Let us then consider that we have a black hole of massM
and spin χ with higher-derivative corrections, so that its
quasinormal frequencies can generically be written as

ωðM; χÞ ¼ ωð0ÞðM; χÞ þ ΔωðM; χÞ; ð7:1Þ

where ωð0Þ is the uncorrected Kerr value, and Δω is the
correction. But then, suppose that we ignore that these
deviations are there and we try to fit one of these
quasinormal frequencies to a Kerr one. The “equivalent”
Kerr black hole will have a certain mass M̃ and spin χ̃,
which will be different from the real ones. Thus, we would
be solving the problem

ωð0ÞðM̃; χ̃Þ ¼ ωðM; χÞ: ð7:2Þ

If the corrections are (perturbatively) small, then ðM̃; χ̃Þ
will be close to ðM; χÞ, and we can write

M̃ ¼ M þ δM; χ̃ ¼ χ þ δχ: ð7:3Þ

Then, expanding linearly in δM and δχ, Eq. (7.2) can be
written as

−
δM
M

ωð0Þ þ ∂χωð0Þδχ
���
ðM;χÞ

¼ ΔωðM; χÞ: ð7:4Þ

Taking the real and imaginary parts, we can then obtain δM
and δχ. A compact way of expressing the result is as
follows:

δM
M

¼
Imð∂χω

�
ð0ÞΔωÞ

Imðω�
ð0Þ∂χωð0ÞÞ

; δχ ¼
Imðω�

ð0ÞΔωÞ
Imðω�

ð0Þ∂χωð0ÞÞ
; ð7:5Þ

where ω�
ð0Þ is the complex conjugate. Before showing the

values of these shifts for the set of corrections considered, let
us illustrate in the general case how one can use experiments
to constrain these corrections. Let us imagine that we have
experimentally determined the mass of the black hole using
the ringdown (the case of the spin is analogous), so that we
get the estimate M1 ¼ Mring � ΔMring. On the other hand,
suppose that we have another independent estimate of the
mass M2 ¼ Mother � ΔMother. Then, we can compute the
relative difference between both estimates

δM¼M1−M2

M1

¼Mring−Mother

Mring
�MotherΔMringþMringΔMother

M2
ring

: ð7:6Þ

Now, assuming that the estimate Mother is faithful so that it
yields the real value of the mass, then the expected value of
δM is precisely hδMi ¼ δM=M. If, eventually, the data is
consistent with GR—because 0 belongs to the confidence
interval of δM—then it means that the error is larger than
δM=M. Thus, we get the following implication:

13In the case of Einstein-dilaton-Gauss-Bonnet theory, the
corrections to the final black hole mass and spin from inspiral
observables have been recently computed [12]. It would be
interesting to extend these results to the more general class of
theories (2.2), which would allow us to perform a more accurate
comparison between inspiral-based and ringdown-based estima-
tions of the remnant black hole’s mass and spin.
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Data consistent withGR

⇒

���� δMM
���� < MotherΔMring þMringΔMother

M2
ring

: ð7:7Þ

Repeating the same analysis for the spin, we get that
the constraint is jδχj < Δχring þ Δχother, where Δχring and
Δχother are the errors in the ringdown and alternative
estimates of χ. In the end, these are constraints on the
possible corrections to GR. On the other hand, reversing the
implications we get a lower bound on the precision we need
in order to be able to detect these corrections. Let us now
evaluate these formulas for the higher-derivative extensions
of GR in Eqs. (2.2) and (2.3).
Each coupling modifies the equivalent Kerr parameters

in a different way, so it is useful to write

δM
M

¼ l4

M4

�
α21

δα2
1
M

M
þ α22

δα2
2
M

M
þ λev

δλevM

M

�

þ l6

M6

�
ϵ1

δϵ1M

M
þ ϵ2

δϵ2M

M

�
; ð7:8Þ

δχ ¼ l4

M4
ðα21δα21χ þ α22δα22χ þ λevδλevχÞ

þ l6

M6
ðϵ1δϵ1χ þ ϵ2δϵ2χÞ; ð7:9Þ

where each of the δiM=M and δiχ are dimensionless
functions of the spin χ. Also, it must be noted that the
Oðl6Þ corrections are relevant only when the Oðl4Þ ones
vanish, because if the Oðl4Þ terms are present there would
be more Oðl6Þ terms in the effective action besides the
ones considered in (2.3).14 The coefficients δiM=M and δiχ
can be easily obtained from the formulas (7.5) using the fits
to the QNFs provided in Appendix D. We show the profile
of these quantities as functions of χ in Fig. 7.
It is interesting to see what happens if one tries to

determine the mass and spin from the measurement of a
higher l QNM, say one of the form m ¼ l. It turns out that
the shift in the mass and the spin does not change much
with l. In fact, if one derives δM=M and δχ for the eikonal
QNFs, the corresponding curves are still quite similar to

FIG. 7. Error in the mass and angular momentum estimates when inferred from measurement of the l ¼ m ¼ 2 quasinormal frequency,
due to higher-derivative corrections. We show the coefficients entering in Eqs. (7.8) and (7.9). Upper row: Oðl4Þ corrections. Lower
row: Oðl6Þ corrections.

14For instance, a term such as l2ϕ2
1X4 would modify the

metric at order l6 if α1 ≠ 0.
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those shown in Fig. 7. Hence, we may also expect that these
curves provide an approximation for the gravitational case.
Let us write down an example in order to show the

type of constraints we can obtain. For instance, let us
suppose that we have measured the l ¼ m ¼ 2 quasinormal

frequency of a black hole of spin χ ¼ 0.7—which is about
the estimated value for the LIGO/Virgo black holes [1,60].
This black hole has a mass M and, for the purposes of this
thought experiment, we can assume Mring ≈Mother ≈M.
Then, we have the following implication:

Data consistent withGR ⇒

�
l4j0.20α21 þ 0.52α22 − 0.19λevj < M3ðΔMring þ ΔMotherÞ;
l4j0.25α21 − 0.97α22 þ 0.46λevj < M4ðΔχring þ ΔχotherÞ;

ð7:10Þ

Thus, for smaller masses and higher precision, we can set
more accurate bounds on these couplings. For GW150914,
using the inspiral together with numerical relativity, one

finds roughly ΔMother
M ≈0.06, Δχother ≈ 0.07 and ΔMring

M ≈ 0.06,
Δχother ≈ 0.06 [2]. This cannot set a definitive bound on all
the couplings since we have three of them and only two
constraints. We would need to measure several black holes
of sufficiently different spins in order to set a bound on all
of them. Nevertheless, taking for example λev ¼ 0, (7.10)

would imply approximately l4α2
1

M4 < 0.2 and l4α2
2

M4 < 0.2. This
is hardly a constraint at all.
To get a better quantitative understanding for more

promising third generation gravitational wave detectors,
we consider detecting a number of N binary black hole
coalescences with the Einstein Telescope (ET) [61]. The
blackholes in thebinariesaredrawnuniformlyfromalog-flat
distribution between ½5; 95�M⊙ with a uniform spin distri-
bution in ½−1; 1�. We further limit ourselves to events for
which the l ¼ 2,m ¼ 2QNM is measured with SNR of 100
and assume this measurement error on the ringdown is
dominant as compared to an independent mass and spin
estimate from the inspiral. To determine the final black hole
mass and spin, we use semianalytic formulae based on
numerical relativity as determined in [62]. The main moti-
vation to make these choices is to easily compare against the
framework presented in [18]. However, we shall see that in
this mass range only the lightest few events contribute
significantly to the constraints, as is expected by the M4

suppression. As a result, we will limit ourselves further to
only the subset of these low mass black hole binaries.
The set of N binary black hole detections will be

analyzed using a Bayesian approach, sampling the pos-

terior on our model parameters θ⃗ ¼ fl4α21M4
ref
; l

4α2
2

M4
ref
; l

4λ
M4

ref
g

with uniform priors in the range ½−0.6; 0.6�.15 Here, we
have introduced the reference mass scale, which will
depend on the detector under consideration. The likelihood
of event i is given by a Gaussian centered around the
expected value of the QNM ωi, computed using (6.6) and
(6.7), given mass Mi, spin χi, and for model parameters θ⃗,

Liðωobs
i jθ⃗Þ ¼ N ðωobs

i ;ωi;ΣiÞ: ð7:11Þ

Hereωi includes the real as well as the imaginary part of the
QNM. Σi is the covariance matrix, including the correlation
between these real and imaginary parts as inferred from a
Fisher matrix analysis [63]. The full likelihood for all
events is then simply given by

Lðfωobsgjθ⃗Þ ¼
YN
i¼1

Liðωobs
i jθ⃗Þ: ð7:12Þ

In Fig. 8, the marginalized posteriors for N ¼ 160
following this approach are illustrated. In addition, it is
shown how one recovers essentially the same posterior
restricting to only the subset of lowest mass events
(corresponding to Neff ¼ 10 events). We will continue
considering only these events. As an example, we will
more specifically restrict ourselves to the range ½5; 6.5�M⊙,
but note that the results for the dimensionless ratios
would not significantly vary when taking instead, say,
½15; 19.5�M⊙, as long as one appropriately adjusts Mref .
Using the positive boundaries of the 90% confidence
intervals for the (N ¼ 160) posterior, we have made a
comparison with the bounds obtained in [18]. Although
there is no reason for them to match exactly, and indeed the
comparison is made difficult due to the mass dependence,
they are in qualitative agreement. In particular, our bound is
similar for the zeroth order in spin contribution but tighter
for higher orders.
The posterior is found using a Markov Chain

Monte Carlo method based on the Metropolis–Hastings
algorithm from the open source software PyMC3 [64]. The
results for marginal and joint posteriors are shown in Fig. 9
for N ¼ 10, 40, 160. Those plots should be understood as
the probability distribution for the corresponding para-
meters that we would obtain if GR is correct. Conversely,
this means that we can expect to observe deviations with
respect to GR only if the parameters lay outside the
confidence intervals of the distributions in Fig. 9.
Given the strong suppression for higher mass events, one

might conclude that there is no added value in performing
the same analysis for LISA, which would make such
observations for massive black holes about a million times15For convenience, we allow for the possibility that

l4α2
1;2

M4
ref

< 0.
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heavier than the ETevents. However, one should be open to
the possibility that there is qualitative difference between
these black hole populations, not only because of the huge
scale difference but also because many of the LISAmergers
will occur at high redshift [65]. We consider only binary
black hole coalescence between black holes of mass
M ¼ 106 M⊙, the lower bound on the range of masses
used in [18], again, with uniformly distributed spin. In
addition, we assume a signal to noise of 1000 in the
ringdown. The results for N ¼ 10, N ¼ 40 are given
in Fig. 10.

B. Testing the QNF spectrum

We can test GR using ringdown measurements only if we
are able to detect more than one quasinormal mode. In GR,
the complete quasinormal mode spectrum is fully charac-
terized by the mass and spin of the black hole. Hence, once
the fundamental quasinormal frequency is determined,
the frequencies of all modes can be predicted. However,
if the geometry is not Kerr due to modifications of GR, then
the predicted frequencies will be off and we could observe
this deviation. Let us first show explicitly that such a

deviation, in fact, occurs. To do so, let us assume that
the l ¼ m ¼ 2 mode has been measured, from which the
mass M̃2;2 and the spin χ̃2;2 predicted by GR have been
estimated. This yields a GR prediction for the rest of the
quasinormal frequencies, which would read

ωGR
l;m ¼ ωð0Þl;mðM̃2;2; χ̃2;2Þ: ð7:13Þ

In our scenario, these predictions will not correspond to the
real ones—the error given by (7.5). The difference with
respect to the actual quasinormal frequencies, taking into
account that the black hole has a mass M and spin χ, is

ωl;m − ωGR
l;m ¼ Δωl;m þ δM2;2

M2;2
ωð0Þl;m − δχ2;2∂χωð0Þl;mjðM;χÞ:

ð7:14Þ

It is useful to introduce the relative distance between the
GR and the real QNFs defined as
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δωl;m

ωl;m
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Reωl;m

ReωGR
l;m

− 1

�
2

þ
�
Imωl;m

ImωGR
l;m

− 1

�
2

s
: ð7:15Þ

The value of this quantity determines the degree of
distinguishability of the QNF spectrum with respect to
the GR one. In Fig. 11, we show this difference for the
l ¼ m ¼ 3 and the l ¼ 2, m ¼ 1 modes, which are sup-
posedly the most relevant ones besides the l ¼ m ¼ 2
one—indeed, evidence for the l ¼ 3 multipole in the
inspiral has been recently reported [66]. As we can see
in Fig. 11, the difference is greater for the l ¼ 2, m ¼ 1
QNF, so that detecting this mode will provide a stronger
constraint on the corrections than the l ¼ m ¼ 3 mode.
This suggests that measuring different m modes rather
than higher l ones would be more efficient in order to test
GR. On the other hand, those modes are probably less
excited.
Finally, we estimate the constraints on the parameters

that follow from combining several QNM observations.

FIG. 11. Relative difference [defined in (7.15)] between the
quasinormal frequencies of rotating black holes with higher-
derivative corrections and the ones predicted by GR from
measurement of the l ¼ m ¼ 2 mode. In blue: l ¼ 2, m ¼ 1
mode. In red: l ¼ m ¼ 3 mode. Each line represents the effect of
the indicated correction and the value should be multiplied by the
corresponding coupling times l4=M4.
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spin (star).
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We perform the same type of Bayesian inference for ET16

as before, but we now assume that in addition to the l ¼ 2,
m ¼ 2 mode, an l ¼ 3, m ¼ 3 mode is measured. We
further assume that this secondary mode has only 10% of
the energy of the l ¼ 2, m ¼ 2 mode [63], again as in [18].
The price to pay is that now also the final mass and spin
of the black hole needs to be inferred from the ringdown
itself, as we no longer assume these to be determined from
the inspiral. On the other hand, this renders the analysis
self-contained and, in particular, independent of any
assumptions on the inspiral-merger phase. Assuming we
have independent measurements of the two modes, the full
likelihood is

Lðfωobsgjθ⃗Þ ¼
YN
i¼1

Liðωobs
2;2 ijθ⃗;Mi; χiÞLiðωobs

3;3 ijθ⃗;Mi; χiÞ;

ð7:16Þ

analogous to (7.12). Based on the previous observations
about the strongM suppression, we again restrict ourselves
to the lowest final masses in the population of detected
black hole binary coalescences. In Fig. 12, we compare the
constraints coming from this ringdown-only approach with
those from the (idealized) combination of an independent
mass, spin determination, and a ringdown measurement.
With only a few available measurements, the ringdown-
only approach performs worse on account of the combined
uncertainty in both the theory and the masses and spins.
Once more measurements become available this is com-
pensated and it even performs better. However, it is not
expected that this steep improvement will last but rather
that it will asymptote to a ∼N−1=2 behavior, similar to the
combined method.

VIII. CONCLUSIONS

We have studied the scalar QNM frequencies in rotating
black hole backgrounds in general well-motivated higher-
derivative extensions of GR that reduce to GR in the weak
field limit. The wave operator governing the QNMs in
rotating black hole backgrounds deviating from Kerr is not
separable, rendering the problem much harder than the
calculation in Kerr geometries. However, we have shown
that the projection of the wave operator onto the set of
spheroidal harmonics yields a consistent second-order
ODE for a single variable, from which one can extract
the quasinormal frequencies applying standard methods.
This has enabled us to obtain accurate results for the
corrections to the scalar QNFs of rotating black holes with
relatively large spin χ ∼ 0.7. Higher values of the spin
can be straightforwardly probed with the software we
provide—it only requires more computational time. Our

results are shown in detail in Sec. VI, while some
observational implications—upon the assumption that the
relative corrections to the gravitational and scalar QNM
frequencies are similar—are discussed in Sec. VII.
It is clearly of prime interest to extend our results to

vectorial and, especially, gravitational quasinormal modes.
This requires first and foremost the master equation for
those perturbations, which on general grounds we expect to
be nonseparable. Deriving the master equation for gravi-
tational perturbations represents a remarkable challenge,
but with the master equation at hand one could then apply
the method given in Sec. V to reduce the problem to an
effective ODE for one variable.
Let us conclude by discussing to what extent we can

expect similarity between the corrections to scalar and
gravitational QNMs.

A. Scalar vs gravitational modes

Only gravitational QNMs are relevant for gravitational
wave astronomy, but these are much more complicated to
study than scalar ones. It is thus an interesting question
whether we can obtain an approximation to the gravita-
tional quasinormal frequencies from the scalar modes.
Comparing the l ¼ 2 modes for scalar and gravitational
perturbations of the Kerr geometry, one observes that they
are not too different, and they have a similar dependence on
the spin. However, there is no reason to expect that the
higher-derivative corrections to these QNFs will also be
similar. Unfortunately, we cannot check whether this is the
case because the corrections to the gravitational QNFs of
rotating BHs have not been computed yet. However, in
Sec. VI we provided two examples for static black holes.
On the one hand, we observed that the (relative) correction
to the axial l ¼ 2 gravitational mode is close to the
correction to the scalar l ¼ 2 mode in Einstein-dilaton-
Gauss-Bonnet (EdGB) gravity (and the same applies to the
l ¼ 3 mode). On the other hand, we do not find agreement
between the scalar and either axial or polar gravitational
modes in the case of the quartic theories (2.3). While all of
this could be coincidental, let us offer a possible explan-
ation. First, note that one of the main differences between
scalar and gravitational perturbations is that, while in the
former case we are keeping the operator fixed and we
change the background, in the second case the wave
operator also receives corrections.17 That is, Einstein’s
equations are modified, Gμν þ Eμν ¼ 0, and hence the
linearized equations around the background of a black
hole have corrections coming explicitly from Eμν:

GL
μν þ EL

μν ¼ 0; ð8:1Þ

16See [67] for an expectation of what can be expected from the
current generation of detectors.

17These are referred to as “background” and “dynamical”
modifications in [5], respectively.

CANO, FRANSEN, and HERTOG PHYS. REV. D 102, 044047 (2020)

044047-28



where L denotes the linearized part. Since EL
μν typically

contains more than two derivatives, one should treat this
object carefully. One possibility would be to directly
truncate EL

μν, and hence considering that only the
Einstein tensor is responsible for the dynamics of gravity.
Perhaps a more rigorous approach is to reduce the higher-
derivative terms in EL

μν by using the zeroth-order equations,
as in Ref. [24]. Even in this case one has to be careful with
this operator since, for instance, it can become larger than
GL

μν for large values of l, in which case, the perturbative
regime breaks down. Now, the equation GL

μν ¼ 0 is the
equivalent of ∇2ψ ¼ 0, so only when EL

μν is truncated or is
zero we can expect some resemblance between scalar and
gravitational QNMs.
To illustrate this let us consider the case of EdGB gravity.

It turns out that axial (parity-odd) gravitational perturba-
tions are decoupled from scalar perturbations in this theory,
and thus it is easy to see that EL

μν ¼ 0 in that case. This
explains why we get similar results for the scalar and axial
gravitational QNFs for static black holes in this theory. In
addition, since we expect EL

μν ¼ 0 for parity-odd perturba-
tions in the rotating case too, we expect that the analogy
with scalar QNFs also holds for rotating black holes. On the
other hand, EL

μν ≠ 0 for other higher-derivative terms—in
particular for the quartic ones—so we cannot a priori
expect agreement between the gravitational and scalar
QNFs if EL

μν is not truncated.
Another possible example for which EL

μν ¼ 0 is the
case of polar (parity-even) gravitational perturbations
in dynamical Chern–Simons theory (dCS). In fact, due
to parity, those perturbations decouple from scalar ones
[19], and due to the topological character of the Chern–
Simons term, it does not contribute to the linearized
equations in that case. Therefore, according to our argu-
ment above, one may expect that in dCS gravity the scalar
QNFs of rotating BHs are similar to the polar gravita-
tional ones.
Translating these results to our actions (2.2) and (2.3),

the overall conclusion is that the corrections to the scalar
QNFs associated to the parameters α1 and α2 may be
similar to those of the parity-odd and parity-even gravita-
tional modes, respectively. In the other cases, agreement is
not expected unless the non-Einsteinian term EL

μν is
truncated from the linearized equations.
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APPENDIX A: METHODS TO COMPUTE
QUASINORMAL FREQUENCIES

1. Approximate methods

For an overview of approximate methods to compute
quasinormal modes, we refer to [17]. This, in particular,
contains a discussion on the WKB and Pöschl–Teller
approximations. The latter approach approximates the
effective potential in (4.11),

d2φ
dy2

þ ðω2 − VÞφ ¼ 0; ðA1Þ

by the exactly solvable Pöschl–Teller potential,

V ¼ V0

cosh2 αy
: ðA2Þ

However, this potential goes to zero as y → �∞. We have
found it more convenient to work with variables for which
V goes to a nonzero constant as y → −∞. To account for
this difference, we extend the Pöschl–Teller approximation
using the exactly solvable Rosen–Morse potential [68],

V ¼ β

2d2

�
tanh

y
d
− 1

�
−

γ

d2 cosh2 y
d

: ðA3Þ

Introducing,

z ¼ 1

2

�
1þ tanh

y
d

�
; ðA4Þ

a ¼ i
2

	
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ω2 þ β

q
þ dω



; ðA5Þ

b ¼ −
i
2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ω2 þ β

q
þ dω



; ðA6Þ

φ ¼ fðzÞeay
d cosh−b

y
d
; ðA7Þ

the wave equation takes the hypergeometric form,

zð1 − zÞf00 þ ðaþ bþ 1 − 2ðbþ 1ÞzÞf0
þ ðγ − bðbþ 1ÞÞf ¼ 0; ðA8Þ

with z going from 0 to 1. When fðzÞ is regular at z ¼ 0, 1,

the solution of the original wave equation behaves as φ ∼

e−iðy
ffiffiffiffiffiffiffiffiffiffi
ω2þ β

d2

p
Þ at y → −∞, and φ ∼ eiωy at y → þ∞, which

are the correct QNM boundary conditions. This is the case
for Jacobi polynomials, i.e., when the solution is given by
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f ¼ 2F1

�
bþ 1

2
−
�
γ þ 1

4

�
1=2

; bþ 1

2
þ
�
γ þ 1

4

�
1=2

;

aþ bþ 1; z
�
; ðA9Þ

with

b ¼
ffiffiffiffiffiffiffiffiffiffiffi
γ þ 1

4

r
− n −

1

2
; ðA10Þ

and n an integer. In terms of ω2 one finds18

ω ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

γ

d2
−

1

4d2

r
þ β=d2

4
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− γ
d2 −

1
4d2

q
þ i

d ðnþ 1
2
Þ



−
i
d

�
nþ 1

2

�
: ðA11Þ

Now, given a potential Vl;m, we replace it by a RM potential
that has the same asymptotic behaviour and whose maxi-
mum value and second derivative at the maximum agree
with those of the original potential. This leads to the
following identifications of the constants,

β

d2
¼ −V−∞; ðA12Þ

γ

d2
¼ 1

4

�
−

β

d2
− 2V0 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
0 þ V0

β

d2

r �
; ðA13Þ

d2 ¼ 1

128V 00
0

�
d2

γ

�
3
�
β2

d4
− 16

γ2

d4

�
2

ðA14Þ

where V−∞ ¼ Vl;mð−∞Þ, V0 ¼ Vl;mðy0Þ, V 00
0 ¼ V 00

l;mðy0Þ,
and y0 is the position of the maximum, i.e., where
Vlm

0ðy0Þ ¼ 0. We note that on setting β ¼ 0, one has
γ ¼ −V0d2, d2 ¼ −2 V0

V 00
0

, and therefore

ωn ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 þ

V 00
0

8V0

s
− i

ffiffiffiffiffiffiffiffiffi
−V 00

0

2V0

s �
nþ 1

2

�
; ðA15Þ

which corresponds to (4.17). In section VI A 2, we have
compared the different approximation methods—solved
perturbatively for low spin—with the numerical result for
several particular effective potentials as described in that
section. Fig. 13 illustrates this comparison from which we
conclude that overall the Rosen-Morse approximation is
most effective. Note however that for large l, where these
methods should perform best, one should ideally make a

FIG. 13. Absolute relative error between the approximations (6.10), (6.11), (6.13), and the numerical result for the Kerr quasinormal
frequency Mωð0Þ

5;5;0, and of the correction coefficients ΔωðiÞ
5;5;0 as a function of the black hole spin.

18Using β ¼ −4ab or a ¼ − β
2ð ffiffiffiffiffiffiffiffi

4γþ1
p

−2n−1Þ.
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large l expansion to perturbatively solve the spheroidal
wave equation rather than solving it for small dimension-
less spin as we have done here.

2. Numeric integration

Let us explain here how we solve the wave equation
numerically in order to obtain the quasinormal frequencies.
The problem we consider is

d2φ
dy2

þ ðω2 − Vðy;ωÞÞφ ¼ 0; ðA16Þ

together with the boundary conditions

φ ∝
�
eiωy when y → ∞
e−iω̂y when y → −∞;

ðA17Þ

where ω̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − Vð−∞;ωÞ

p
since we are allowing for the

possibility of Vð−∞;ωÞ ≠ 0. The potential is required to
tend to its asymptotic values at y ¼ �∞ faster than 1=y
since, otherwise, the amplitude of φ would scale as yα.
Now, in order to find the quasinormal modes, a naive
strategy would consist in solving numerically the equation
above starting with the appropriate boundary condition at
some negative y ¼ y−, and then obtaining the solution for a
sufficiently large yþ, so that we can identify

φðy2Þ ¼ Aeiωyþ þ Be−iωyþ : ðA18Þ

Then, we would search for the value of ω such that B ¼ 0.
The problem is that quasinormal frequencies are complex
with a negative imaginary part. Hence, the outgoing mode
at infinity is exponentially larger than the ingoing mode so
that identifying the value of B numerically becomes very
hard as we increase y2.
In order to avoid this issue, it is more convenient to work

with the phase by defining

φ ¼ ei
R

dyαðyÞ: ðA19Þ

In terms of α, Eq. (A16) becomes

iα0 − α2 þ ω2 − Vðy;ωÞ ¼ 0: ðA20Þ

Then, our strategy will be to obtain two solutions of this
equation α�, such that both will satisfy a gluing condition
when ω is a quasinormal frequency. These solutions
correspond to those that have only outgoing modes at
þ∞ and at −∞, respectively:

αþ → ω when y → ∞; ðA21Þ

α− → −ω̂ when y → −∞: ðA22Þ

Then, if ω is a quasinormal frequency these solutions are
actually the same, and they must satisfy

αþðy0Þ ¼ α−ðy0Þ; ðA23Þ

at some (actually any) point y0. In practice, instead of
working with α�, it is useful to introduce the other two
functions,

αþ ¼ ωþ βþ; α− ¼ −ω̂þ β−: ðA24Þ

These satisfy

iβ0þ−β2þ−2βþω−Vðy;ωÞ¼0; βþðy→∞Þ→0; ðA25Þ

iβ0− − β2− þ 2β−ω̂þ Vð−∞;ωÞ − Vðy;ωÞ ¼ 0;

β−ðy → −∞Þ → 0; ðA26Þ

and in turn, the QNF condition reads

βþðy0Þ − β−ðy0Þ þ ωþ ω̂ ¼ 0: ðA27Þ

The last point that remains to be addressed is how to generate
boundary conditions for the functions β�. The boundary
conditions have to be determined accurately in order to
obtain the correct result for the quasinormal frequencies. For
instance, it is not valid to set βþðyþÞ ¼ 0 for some large yþ.
We can generate boundary conditions by assuming a 1=ω
expansion of β� in the following form (let us exemplify this
in the case of βþ). We rewrite the equation for βþ as follows:

βþ ¼ iβ0þ − β2þ − Vðy;ωÞ
2ω

: ðA28Þ

Then, we iterate this expression and we generate a sequence

βðnÞþ , where we start with βð0Þþ ¼ 0. In the nth iteration we
only need to keep terms up to order ω−n (also note that
here we do not expand Vðy;ωÞ in 1=ω). Thus, for instance
we get

βð1Þþ ¼−
Vðy;ωÞ
2ω

; βð2Þþ ¼−
Vðy;ωÞ
2ω

−
iV 0ðy;ωÞ
4ω2

;…: ðA29Þ

Then, if we evaluate these expressions for some large
enough y ¼ yþ we generate an initial condition for βþ.
In order to get good precision we may need to go to
high-enough n (in our calculations n ∼ 10). We note that

this method works well at least for the first iterations βðnÞþ ,
since ω ≫ Vðyþ;ωÞ for large enough yþ, however, the
convergence for n → ∞ is not guaranteed. We can improve
the convergence by constructing Padé approximants in 1=ω

starting from the βðnÞþ . This already provides enough
precision to determine the quasinormal modes accurately.
An analogous procedure can be done in the case of β−
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(in this case we expand in 1=ω̂). However, since in the case
of black holes the potential decays exponentially fast for
y → −∞, we find that it is usually enough to use the
approximation βð2Þ− for the initial condition.

APPENDIX B: SPHEROIDAL HARMONICS

We summarize the properties relevant for this work. For
moreonspheroidalharmonicssee[55,69]or [70] for thespin-
weighted harmonics relevant in the gravitational case. We
define spheroidal harmonics as the eigenfunctions of (5.12),

ð1− x2ÞS00l;m − 2xS0l;mþ
�
Al;mðcÞþ c2x2−

m2

1− x2

�
Sl;m ¼ 0;

ðB1Þ
such that Sl;mðx; cÞeimϕ is regular on the sphere with
x ¼ cos θ. Note that Al;mðcÞ is the corresponding eigen-
value.19 For c ¼ 0, (5.12) reduces to Legendre’s differential
equation, so that the solutions are given by

Sl;mðx; 0Þ ¼ Nl;mPm
l ðxÞ; Al;mð0Þ ¼ lðlþ 1Þ; ðB2Þ

with

Nl;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl −mÞ!

2ðlþmÞ!

s
; ðB3Þ

given our normalizationZ
1

−1
Sl;mðxÞSl0;mðxÞ ¼ δll0 : ðB4Þ

For c ≠ 0, we will compute Sl;m perturbatively around
this zeroth-order solution, as already indicated in the main
text (5.8),

Sl;mðx; cÞ ¼
X∞
n¼jmj

c2ðn−jmjÞan;mPm
n ðxÞ: ðB5Þ

In this expression, it has already beenmademanifest that the
perturbing term c2x2 preserves parity, so even and odd

Legendre polynomials do not couple.20 The method to
compute the coefficients an;m efficiently is to derive a
three-term recurrence relation

αkakþ1;m þ ðβk − Al;mÞak;m þ γkak−1;m ¼ 0; ðB6Þ
which is subsequently solved by the method of continued
fractions. The details have been described many times, for
instance, in [71]sowedonot repeat them.Westress,however,
that Mathematica 11 does not perform this expansion
correctly. We recommend instead using the implementation
in the BH perturbation toolkit [72], which moreover also
includes thespin-weightedspheroidalharmonics relevant for
the gravitational case.

APPENDIX C: SCALAR LAPLACIAN

We write ψ ¼ e−iωteimϕψm, and then we have ∇2ψ ¼
e−iωteimϕD2ψm. The operatorD2 can be decomposed as the
sum of its zeroth-order part plus the corrections:

D2 ¼ D2
ð0Þ þD2

ð1Þ: ðC1Þ

The operator D2
ð0Þ is given by

D2
ð0Þψ ¼ 1

Σ
∂ρðΔ∂ρψÞ þ

1

Σ
∂xðð1 − x2Þ∂xψÞ ðC2Þ

−
ψ

ΔΣ

�ðΣ − 2MρÞm2

ð1 − x2Þ þ 4Maρmω

−
�
2Mρa2 þ Σðρ2 þ a2Þ

ð1 − x2Þ
�
ω2

�
: ðC3Þ

On the other hand, we have

D2
ð1Þψ ¼ −

H2Δ
Σ

∂2
ρψ −

ð1 − x2ÞH2

Σ
∂2
xψ þ P

Σ
∂ρψ

þQ
Σ
∂xψ þ S

Σ
ψ ; ðC4Þ

where the quantities P, Q, and S read

P ¼ −
H3

ð1;0Þ

Σ2
4a2M2ρ2ðx2 − 1Þ þ 2H2ðM − ρÞ

þ ΔH4
ð1;0Þ − ΣH1

ð1;0Þ

2Σ2
ða4x2 þ a2ρð−2Mx2 þ 2M þ ρþ ρx2Þ þ ρ4Þ

þ 4a2ðH4 − 2H3Þ
ΔΣ3

M2ρðx2 − 1Þða4x2 − a2ρðMx2 þ ρÞ þ ρ3ð3M − 2ρÞÞ

þH1M
ΔΣ2

ð−a6x2 þ a4ρ2ð1 − 2x2Þ þ a2ρ3ð4Mðx2 − 1Þ − ρðx2 − 2ÞÞ þ ρ6Þ; ðC5Þ

20This would not be the case for spin-weighted spheroidal harmonics.

19We suppress the argument when there is no potential confusion.
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Q ¼ H3
ð0;1Þ

ΔΣ2
4a2M2ρ2ðx2 − 1Þ2 − 2a2H1

ΔΣ2
Mρxðx2 − 1Þða2 þ ρ2Þ þ 2H2x

−
ðx2 − 1ÞH4

ð0;1Þ

2ΔΣ2
½a6x4 þ a4ρx2ðρðx2 þ 2Þ − 2Mx2Þ þ a2ρ2ð4M2ðx2 − 1Þ − 4Mρx2 þ ρ2ð2x2 þ 1ÞÞ þ ρ5ðρ − 2MÞ�

þ 4a2ðH4 − 2H3Þ
ΔΣ3

M2ρ2xðx2 − 1Þða2ðx2 − 2Þ − ρ2Þ

þ ðx2 − 1ÞH1
ð0;1Þ

2ΔΣ
ða4x2 þ a2ρð−2Mx2 þ 2M þ ρþ ρx2Þ þ ρ4Þ; ðC6Þ

S ¼ 4aH3

Δ2Σ2
Mρð2am2Mρða2x2 þ ρðρ − 2MÞÞ − 8a2mM2ρ2ðx2 − 1Þω

−mωΔΣ2 þ 2aMρðx2 − 1Þω2ða4x2 þ a2ρð−2Mx2 þ 2M þ ρþ ρx2Þ þ ρ4ÞÞ

þ H1

Δ2Σ
ða4x2ωþ a2ρωð−2Mx2 þ 2M þ ρþ ρx2Þ − 2amMρþ ρ4ωÞ2

−
H4

ðx2 − 1ÞΔ2Σ2
ða4x2 þ a2ρð−2Mx2 þ 2M þ ρþ ρx2Þ þ ρ4Þða2mx2 − 2aMρðx2 − 1Þωþmρðρ − 2MÞÞ2: ðC7Þ

APPENDIX D: FITS TO THE
QUASINORMAL FREQUENCIES

In this appendix we provide polynomial fits in χ to the
quasinormal frequencies. For each value of l and m, we
write the quasinormal frequencies as in Eqs. (6.2) and
(6.27), i.e.,

Mω ¼ Mωð0Þ þ l4

M4
ðα21Δωð1Þ þ α22Δωð2Þ þ λevΔωðevÞÞ

þ l6

M6
ðϵ1Δωðϵ1Þ þ ϵ2Δωðϵ2ÞÞ: ðD1Þ

At the same time, we are going to fit the zeroth-order
frequencies ωð0Þ and the correction coefficients ΔωðiÞ to a
polynomial in χ21:

Mωð0Þ ¼
Xkmax

k¼0

ωð0Þ
k χk; ΔωðiÞ ¼

Xkmax

k¼0

ΔωðiÞ
k χk; ðD2Þ

where the order kmax can be made higher if we want to get
a more accurate fit. For the fits we present, we have taken
kmax ¼ 6. Let us note that these fits are not equivalent to a
Taylor expansion and, in general, they will be different—
though the first terms can be similar to those of the Taylor
expansion. In particular, a Taylor expansion will provide a
higher accuracy for small values of χ, but the convergence
is slow—according to our estimates we need up to 14
terms in order to get a good precision for χ ¼ 0.7. In any
case, we will make a few assumptions for these coef-
ficients based on the behavior that their Taylor expansions
would have. In the case of m ¼ 0, we will only include
even powers of χ in the fit in analogy with the Taylor
expansion, while in the case of the α2 corrections we will

set Δωð2Þ
0 ¼ 0, since these corrections must vanish in the

absence of rotation.
Taking this into account, in the following tables we

present the values of the best-fit coefficients for all the
fundamental quasinormal frequencies with l ≤ 2 and, in the
case of the Oðl4Þ corrections, also for the ones with
l ¼ m ¼ 3. In each case we indicate what is the interval of χ
for which the numerical data has been fitted. This is the
interval in which the fit is fully reliable, nevertheless, for
slightly higher values of χ the fit should still yield an
approximate result.

21Note that we define the ωð0Þ
k so that they are dimensionless

and independent of the mass.
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TABLE III. Best-fit coefficients for the fundamental quasinormal frequencies with ðl; mÞ ¼ ð0; 0Þ. Numerical data fitted in the interval
0 ≤ χ ≤ 0.6.

k Reωð0Þ
k Imωð0Þ

k ReΔωð1Þ
k ImΔωð1Þ

k ReΔωð2Þ
k ImΔωð2Þ

k ReΔωðevÞ
k ImΔωðevÞ

k

0 0.11045 −0.1049 0.05165 0.00135 0. 0. 0.02615 0.01529
2 0.00779 0.0094 0.00133 0.02564 0.03043 −0.00007 −0.01736 0.00258
4 0.00039 0.00477 −0.0125 0.01019 0.02432 0.00561 0.02418 −0.00799
6 −0.00295 0.00419 0.00481 −0.00137 0.03501 0.02325 −0.09844 −0.00071

TABLE IV. Best-fit coefficients for the fundamental quasinormal frequencies with ðl; mÞ ¼ ð1; 1Þ. Numerical data fitted in the interval
0 ≤ χ ≤ 0.65.

k Reωð0Þ
k Imωð0Þ

k ReΔωð1Þ
k ImΔωð1Þ

k ReΔωð2Þ
k ImΔωð2Þ

k ReΔωðevÞ
k ImΔωðevÞ

k

0 0.29294 −0.09766 0.07099 0.00712 0. 0. 0.01055 0.01335
1 0.07708 0.00029 0.08126 −0.0004 −0.02817 −0.04086 0.02772 0.01571
2 0.03857 0.00821 0.037 −0.00283 −0.0225 −0.02337 0.02021 0.00837
3 0.00813 −0.00184 0.00595 0.11589 0.00599 −0.01063 0.01006 0.00438
4 0.064 0.03475 0.02698 −0.45681 −0.03122 −0.10408 0.02379 0.0045
5 −0.08355 −0.05101 0.01048 0.78395 0.05706 0.17702 −0.02536 −0.00407
6 0.07838 0.046 −0.09413 −0.5883 −0.0749 −0.22699 0.04849 0.00642

TABLE V. Best-fit coefficients for the fundamental quasinormal frequencies with ðl; mÞ ¼ ð1; 0Þ. Numerical data fitted in the interval
0 ≤ χ ≤ 0.65.

k Reωð0Þ
k Imωð0Þ

k ReΔωð1Þ
k ImΔωð1Þ

k ReΔωð2Þ
k ImΔωð2Þ

k ReΔωðevÞ
k ImΔωðevÞ

k

0 0.29294 −0.09766 0.07099 0.00712 0. 0. 0.01058 0.01339
2 0.01905 0.00806 0.03156 0.01034 −0.00442 0.00974 0.00919 −0.02552
4 0.00359 0.0037 −0.00059 0.00487 0.00587 0.00412 0.02652 0.01386
6 0.00052 0.0032 −0.00894 0.01132 0.03407 0.0049 −0.04393 −0.05869

TABLE VI. Best-fit coefficients for the fundamental quasinormal frequencies with ðl; mÞ ¼ ð1;−1Þ. Numerical data fitted in the
interval 0 ≤ χ ≤ 0.65.

k Reωð0Þ
k Imωð0Þ

k ReΔωð1Þ
k ImΔωð1Þ

k ReΔωð2Þ
k ImΔωð2Þ

k ReΔωðevÞ
k ImΔωðevÞ

k

0 0.29294 −0.09766 0.07099 0.00713 0. 0. 0.01055 0.01335
1 −0.07716 −0.00033 −0.08129 0.00099 0.0282 0.04093 −0.02778 −0.01567
2 0.03699 0.00727 0.0314 0.01285 −0.02274 −0.02278 0.02133 0.00748
3 −0.0212 −0.00559 −0.00078 −0.00799 0.00242 0.0332 −0.02246 0.00175
4 0.01301 0.00418 −0.07871 0.02091 −0.02282 −0.05111 0.04581 −0.02033
5 −0.00751 −0.00199 0.12324 −0.04641 0.01833 0.06798 −0.06336 0.03523
6 0.00244 0.0003 −0.07752 0.01462 −0.00941 −0.05411 0.03725 −0.02113

TABLE VII. Best-fit coefficients for the fundamental quasinormal frequencies with ðl; mÞ ¼ ð2; 2Þ. Numerical data fitted in the
interval 0 ≤ χ ≤ 0.7.

k Reωð0Þ
k Imωð0Þ

k ReΔωð1Þ
k ImΔωð1Þ

k ReΔωð2Þ
k ImΔωð2Þ

k ReΔωðevÞ
k ImΔωðevÞ

k

0 0.48365 −0.09676 0.10448 0.00798 0. 0. 0.01277 0.01001
1 0.15013 0.00008 0.15036 0.00487 −0.05364 −0.04549 0.04024 0.02119
2 0.08157 0.00837 0.09239 −0.0239 0.00893 −0.05012 0.00319 0.01263
3 −0.01213 −0.00345 −0.04352 0.22076 −0.38405 0.03937 0.20292 0.03732
4 0.23056 0.04265 0.14706 −0.80785 1.12651 −0.33955 −0.54716 −0.09
5 −0.31813 −0.06224 0.00446 1.31401 −1.59675 0.57161 0.79409 0.14973
6 0.25178 0.05362 −0.27766 −0.92678 0.67854 −0.51428 −0.35505 −0.08484
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TABLE X. Best-fit coefficients for the fundamental quasinormal frequencies with ðl; mÞ ¼ ð2;−1Þ. Numerical data fitted in the
interval 0 ≤ χ ≤ 0.7.

k Reωð0Þ
k Imωð0Þ

k ReΔωð1Þ
k ImΔωð1Þ

k ReΔωð2Þ
k ImΔωð2Þ

k ReΔωðevÞ
k ImΔωðevÞ

k

0 0.48364 −0.09676 0.10447 0.00799 0. 0. 0.01278 0.01001
1 −0.07525 −0.00007 −0.07521 −0.00185 0.02552 0.02288 −0.01961 −0.01047
2 0.04219 0.00728 0.05057 0.01269 −0.02349 −0.00379 0.03451 −0.00235
3 −0.01926 −0.00337 0.02529 −0.01194 −0.01582 0.00749 −0.04148 0.00933
4 0.01269 0.00257 −0.19476 0.04779 0.08576 0.00193 0.1019 −0.01949
5 −0.00709 0.00033 0.31157 −0.07185 −0.14109 −0.00497 −0.14067 0.02909
6 0.00237 −0.00036 −0.2025 0.03429 0.09928 0.0054 0.07601 −0.01611

TABLE XI. Best-fit coefficients for the fundamental quasinormal frequencies with ðl; mÞ ¼ ð2;−2Þ. Numerical data fitted in the
interval 0 ≤ χ ≤ 0.7.

k Reωð0Þ
k Imωð0Þ

k ReΔωð1Þ
k ImΔωð1Þ

k ReΔωð2Þ
k ImΔωð2Þ

k ReΔωðevÞ
k ImΔωðevÞ

k

0 0.48364 −0.09676 0.10447 0.00799 0. 0. 0.01278 0.01001
1 −0.15049 −0.00014 −0.15038 −0.00367 0.05159 0.0458 −0.03896 −0.02099
2 0.07413 0.00709 0.06167 0.00901 −0.04846 −0.04272 0.03313 0.01627
3 −0.04423 −0.0061 0.08825 −0.02782 0.0652 0.03665 −0.04166 −0.00732
4 0.02805 0.00402 −0.39612 0.08147 −0.18006 −0.04624 0.09165 −0.00016
5 −0.01544 −0.00154 0.63235 −0.14455 0.25774 0.04068 −0.12671 0.006
6 0.00481 0.00012 −0.36687 0.08613 −0.13258 −0.02436 0.07158 −0.00408

TABLE XII. Best-fit coefficients for the fundamental quasinormal frequencies with ðl; mÞ ¼ ð3; 3Þ. Numerical data fitted in the
interval 0 ≤ χ ≤ 0.5.

k Reωð0Þ
k Imωð0Þ

k ReΔωð1Þ
k ImΔωð1Þ

k ReΔωð2Þ
k ImΔωð2Þ

k ReΔωðevÞ
k ImΔωðevÞ

k

0 0.67537 −0.0965 0.14087 0.00817 0. 0. 0.01767 0.00854
1 0.22402 0.00008 0.21982 0.00608 −0.07668 −0.04739 0.05231 0.02172
2 0.11294 0.00703 0.12123 0.00073 −0.04613 −0.05069 0.0316 0.0191
3 0.06363 0.00757 0.06436 0.02026 −0.15188 −0.05168 0.07222 0.02693
4 0.07388 0.00186 −0.09679 −0.14218 0.57269 0.00605 −0.23133 −0.06056
5 −0.03812 0.01125 0.23416 0.27696 −1.43677 −0.11812 0.5903 0.15652
6 0.11367 0.00252 −0.35831 −0.33504 1.14031 −0.00669 −0.4772 −0.12771

TABLE VIII. Best-fit coefficients for the fundamental quasinormal frequencies with ðl; mÞ ¼ ð2; 1Þ. Numerical data fitted in the
interval 0 ≤ χ ≤ 0.7.

k Reωð0Þ
k Imωð0Þ

k ReΔωð1Þ
k ImΔωð1Þ

k ReΔωð2Þ
k ImΔωð2Þ

k ReΔωðevÞ
k ImΔωðevÞ

k

0 0.48364 −0.09676 0.10449 0.00799 0. 0. 0.01275 0.01
1 0.07516 0.00002 0.07368 0.002 −0.0277 −0.02259 0.0223 0.01213
2 0.04378 0.00833 0.09571 0.00488 0.01994 −0.01112 −0.02474 −0.03284
3 0.0066 −0.0037 −0.22682 0.04119 −0.36303 0.04743 0.40041 0.2142
4 0.05725 0.03181 0.84182 −0.16931 1.19518 −0.21456 −1.22029 −0.70041
5 −0.06926 −0.0448 −1.2083 0.29016 −1.85175 0.3513 1.81083 1.02423
6 0.06078 0.03673 0.65095 −0.21579 1.0752 −0.25814 −0.98215 −0.57558

TABLE IX. Best-fit coefficients for the fundamental quasinormal frequencies with ðl; mÞ ¼ ð2; 0Þ. Numerical data fitted in the interval
0 ≤ χ ≤ 0.7.

k Reωð0Þ
k Imωð0Þ

k ReΔωð1Þ
k ImΔωð1Þ

k ReΔωð2Þ
k ImΔωð2Þ

k ReΔωðevÞ
k ImΔωðevÞ

k

0 0.48364 −0.09676 0.10448 0.00798 0. 0. 0.01278 0.01006
2 0.03151 0.00746 0.05188 0.01259 −0.01977 0.00869 0.0307 −0.01066
4 0.00642 0.0034 −0.00151 0.00638 −0.00649 0.00333 0.00676 0.02744
6 0.00258 0.00326 −0.03061 0.00368 0.06307 0.00719 −0.00278 −0.04022
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TABLE XVI. Best-fit coefficients for the fundamental quasi-
normal frequencies with ðl; mÞ ¼ ð1;−1Þ. Numerical data fitted
in the interval 0 ≤ χ ≤ 0.6.

k ReΔωðϵ1Þ
k ImΔωðϵ1Þ

k ReΔωðϵ2Þ
k ImΔωðϵ2Þ

k

0 0.02265 0.04959 0. 0.
1 −0.06894 −0.03486 −0.01715 0.06744
2 −0.01511 −0.00246 −0.00338 −0.04172
3 0.07621 0.03351 −0.07162 0.06305
4 −0.30424 −0.03019 0.0152 −0.24391
5 0.45248 −0.01903 −0.03135 0.40034
6 −0.29976 −0.04325 −0.00458 −0.33342

TABLE XIII. Best-fit coefficients for the fundamental quasi-
normal frequencies with ðl; mÞ ¼ ð0; 0Þ. Numerical data fitted in
the interval 0 ≤ χ ≤ 0.55.

k ReΔωðϵ1Þ
k ImΔωðϵ1Þ

k ReΔωðϵ2Þ
k ImΔωðϵ2Þ

k

0 0.05563 0.05074 0. 0.
2 −0.01986 0.00681 0.08529 0.06786
4 −0.01605 0.00357 0.06874 0.06671
6 0.21976 0.03214 −0.03405 0.11615

TABLE XIV. Best-fit coefficients for the fundamental quasi-
normal frequencies with ðl; mÞ ¼ ð1; 1Þ. Numerical data fitted in
the interval 0 ≤ χ ≤ 0.6.

k ReΔωðϵ1Þ
k ImΔωðϵ1Þ

k ReΔωðϵ2Þ
k ImΔωðϵ2Þ

k

0 0.02268 0.04957 0. 0.
1 0.06603 0.03729 0.01918 −0.06619
2 0.066 −0.06576 −0.0575 −0.06562
3 −0.59936 0.48246 0.54102 0.26582
4 2.09244 −2.27312 −1.83777 −1.24738
5 −3.55373 4.08949 3.34512 2.40635
6 2.01729 −3.37237 −2.3341 −2.05855

TABLE XV. Best-fit coefficients for the fundamental quasi-
normal frequencies with ðl; mÞ ¼ ð1; 0Þ. Numerical data fitted in
the interval 0 ≤ χ ≤ 0.6.

k ReΔωðϵ1Þ
k ImΔωðϵ1Þ

k ReΔωðϵ2Þ
k ImΔωðϵ2Þ

k

0 0.02254 0.04943 0. 0.
2 0.11835 −0.01758 −0.04988 0.06689
4 −0.06671 −0.12347 0.10883 0.11394
6 0.3679 0.44587 −0.03133 −0.21393

TABLE XVII. Best-fit coefficients for the fundamental quasi-
normal frequencies with ðl; mÞ ¼ ð2; 2Þ. Numerical data fitted in
the interval 0 ≤ χ ≤ 0.6.

k ReΔωðϵ1Þ
k ImΔωðϵ1Þ

k ReΔωðϵ2Þ
k ImΔωðϵ2Þ

k

0 0.02196 0.04401 0. 0.
1 0.09087 0.06379 0.0146 −0.05694
2 −0.03684 −0.0665 0.00196 −0.14295
3 0.09022 0.58874 0.43019 0.43705
4 −1.06044 −2.74112 −1.466 −2.13431
5 2.08651 5.02003 3.11198 3.99247
6 −2.39044 −4.27682 −2.73093 −3.34858

TABLE XVIII. Best-fit coefficients for the fundamental qua-
sinormal frequencies with ðl; mÞ ¼ ð2; 1Þ. Numerical data fitted
in the interval 0 ≤ χ ≤ 0.6.

k ReΔωðϵ1Þ
k ImΔωðϵ1Þ

k ReΔωðϵ2Þ
k ImΔωðϵ2Þ

k

0 0.02198 0.04403 0. 0.
1 0.04241 0.02976 0.00653 −0.02828
2 0.1701 0.01084 −0.0433 −0.01456
3 0.09022 0.58874 0.43019 0.43705
4 −0.45995 −0.15267 −0.07654 0.28357
5 −3.53665 −0.51708 −0.4018 1.93122
6 2.4638 0.11233 0.28765 −1.39317

TABLE XIX. Best-fit coefficients for the fundamental quasi-
normal frequencies with ðl; mÞ ¼ ð2; 0Þ. Numerical data fitted in
the interval 0 ≤ χ ≤ 0.6.

k ReΔωðϵ1Þ
k ImΔωðϵ1Þ

k ReΔωðϵ2Þ
k ImΔωðϵ2Þ

k

0 0.02195 0.04399 0. 0.
2 0.15007 −0.0028 −0.07404 0.04972
4 0.00256 −0.02278 0.05823 0.04803
6 0.05537 0.10027 0.19755 0.01568

TABLE XX. Best-fit coefficients for the fundamental quasi-
normal frequencies with ðl; mÞ ¼ ð2;−1Þ. Numerical data fitted
in the interval 0 ≤ χ ≤ 0.6.

k ReΔωðϵ1Þ
k ImΔωðϵ1Þ

k ReΔωðϵ2Þ
k ImΔωðϵ2Þ

k

0 0.02196 0.04403 0. 0.
1 −0.04479 −0.03058 −0.0067 0.02933
2 0.09883 0.00015 −0.0472 0.01785
3 0.00037 0.01481 0.02956 −0.03795
4 −0.21416 0.096 0.02624 0.11391
5 0.42318 −0.19835 −0.00313 −0.17872
6 −0.27925 0.17271 0.04023 0.17706
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