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Kerr analogue of Kinnersley’s field of an arbitrarily accelerating point mass
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We construct the field of an arbitrarily accelerating and rotating point mass which specializes to the Kerr

solution when the acceleration vanishes and specializes to Kinnersley’s arbitrarily accelerating point mass

when the rotation vanishes.
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I. INTRODUCTION

Although Kinnersley’s [1] field of an arbitrarily accel-
erating point mass has been known for some time, and
extensions of it to include charge have been given by
Bonnor and Vaidya [2], there does not appear to be an
extension that specializes to the Kerr solution [3] when the
acceleration vanishes. There exist “radiating Kerr metrics”
due to Vaidya and Patel [4] and, more generally, due to
Herlt [5] (see [6] for a full description of what is available)
but none appear to supply Kinnersley’s field with spin
included. The original solution by Kinnersley was also
extensively studied in subsequent works on particles which
accelerate by photon emission, so-called photon rockets, in
the context of general relativity, see for example [7-13].

The geometrical construction of Kinnersley’s field is
described in detail in [6]. We require a modification of this
construction to include spin. Since we are primarily
interested in introducing acceleration of the source we will
leave the mass and angular momentum per unit mass
constant throughout. The construction here of the Kerr
analogue of Kinnersley’s model is a spin-off from the study
of the equations of motion of a small, slowly rotating Kerr
particle moving in an external gravitational field [14]. In
particular the geometrical construction in the present work
is motivated by a construction of the Kerr solution with
three components of angular momentum in [15].

The structure of the paper is as follows: In Sec. Il we give
a description of the construction of Kinnersley’s field of an
arbitrarily accelerating mass point as important background
for our construction and to establish our notations and sign
conventions. In Sec. III we describe the geometrical
construction of the Kerr analogue of Kinnersley’s field,
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and properties of the new model are given in Sec. IV. Our
results are concisely summarized in Sec. V.

II. KINNERSELY’S FIELD

We start with the Minkowskian line element in rectan-
gular Cartesian coordinates and time X' = (X,Y, Z,T) for
i=1,2,3,4 (and we will use units for which the speed of
light in a vacuum ¢ =1 and the gravitational constant
G=1):

ds} = ~(dX)? = (dY)" = (dZ)" + (dT)? = ;dX'dX).
(1)

The Schwarzschild solution [16] of Einstein’s vacuum field
equations is given, in Kerr-Schild form [17], by the metric
tensor

2m
9ij = Nij — 7kikj’ (2)
with k;dX' = dT — dR, and R = (X*> + Y?> + Z*)"/2. Here
m (= constant) is the mass of the spherically symmetric
source. With k' = 5"k ; (and 1"/ defined by 1"/ = &;) we
have k'k; = 0. Also the inverse of the metric tensor (2)
(denoted ¢/ with g¥g; = &) is given by

o om
g7 =n" + %klk’, (3)

and thus k' = n'k; = ¢'/k; so that k' is a null vector field in
the flat space-time with metric tensor 7,; and in the curved
space-time with metric tensor g;;. We see that in the flat
space-time with line element (1) R=0&X=Y=7Z2=0
is a timelike geodesic (the T axis). Effectively Kinnersley’s
[1] construction replaces this geodesic with an arbitrary
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timelike world line. To achieve this let X’ = w'(u) be an
arbitrary timelike world line in Minkowskian space-time
with u arc length or proper time along it. Then v'(u) =
dw'/du is the unit timelike tangent to this world line
satisfying 17;;0'v/ = v;v/ = +1. Thus v’ is the 4-velocity of
the particle with world line X’ = w'(u). The corresponding
4-acceleration is a'(u) = dv'/du and satisfies a;v’ =0
since v;»' = 1. The position 4-vector of any point of
Minkowskian space-time relative to the world line X’ =
w'(u) may be written in the form

X =w(u) + rki, (4)
for 0 < r < 400 with k'k; = 0 and k'v; = +1. Thus k' is a
normalized future pointing null vector field defined along
the world line X’ = w'(u) and so k' is tangent to the future
null cones with vertices on X' = w'(u). The direction of k'

is parametrized by two real parameters &, 7 (say) so that we
can write

. 1 1
kt:Pal (—f,—?’],—l+Z(§2+’72)’1+Z(52+7]2))’ (5)

for —oo <&, n < +oo0 and with P, determined by the
normalization k'v; = 1 of k' to read

Po= W+ 2+ ) (1 - 1@ )
o1 3@ ). (©
We note that
hy = a;k! = Pal{al(u)f +a*(u)n
o (1-5@ +m)
+ a*(u) (1 +}1<§2 + nZ))}

= L (log ) )

and thus the propagation law for k' along X’ = w'(u) is

ok ;
— = —hok'. 8
o 0 (8)
From (4) we have
‘ . , : 4 k'
dX' = (v' — rhok')du + k'dr + r(i?)idé + i’aandﬂ- 9)

Hence, in particular,

kidXi =du s ki =Uu;, (10)

with the comma denoting partial differentiation with
respect to X'. Noting that

8_161.%*_ —2fa_ki% 6_]&%70 (11)
oc ot " Onon o on
we have

dsy = n;;dX'dX) = —r*P?(d& + di?) + 2dudr
+ (1 = 2hor)du?. (12)

If we now generalize the metric tensor (3) to provide the
line element, in coordinates x' = (&, 7, r, u),

ds? = gijdx'dx) = —r?Py*(d& + dn*) + 2dudr

2
n <1 —2h0r—m)du2, (13)
r

we arrive at Kinnersley’s line element which reduces to the
Eddington-Finkelstein form of the Schwarzschild line
element when a’ =0 [i.e., when the world line X' =
w(u) in Minkowskian space-time is a timelike geodesic].
For this special case we may take v' = & and so Py =
1+5(&+n*) =py (say). Then (13) becomes the
Schwarzschild line element

2

ds* =—r*py?(d&* +dn?) + 2dudr + < .

>du2. (14)

Here &, i are stereographic coordinates on the unit 2-sphere,
related to the polar angles 6, ¢ for0 <0<z, 0< ¢ <2z
via /& =tan¢ and cos@ = (4 — & —n?) /(4 + E + ).
We can write (13) in terms of basis 1-forms 9 witha = 1,
2,3,4 as

ds? = —(8N)2 — (92 £ 290)94) = 9(a)(b)19(“)19(b),

(15)
with
W = rP3lde = =9,
9@ = rP3ldn = =9y,
90 =du =19,
1 m
9 =dr + (5 — hor — 7) du =93, (16)

and 9, = g(a)(,,)&(b). The 1-forms define a half null tetrad
and the components R, of the Ricci tensor on this tetrad
vanish with the exception of
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6mh0

R =——7 (17)

Hence if R;; are the components of the Ricci tensor in
coordinates x' = (&,1, r, u) then we can write

6mh0

R.. = ———n;n

ij 5 with  ndx’ =du.  (18)
;

J
We note that g"n;n; = 0.

In preparation for consideration of the axially symmetric
Kerr case it is useful to specialize the Kinnersley model to
the case for which the world line X’ = w'(u) is the history
of a particle performing rectilinear motion. For this we
take the 4-velocity »' to be restricted by requiring
v'(u) =0 = v*(u). Then writing A =v*+ > and p =
v* — 3 we have Ay = 1 and, with a dot denoting differ-
entiation with respect to u, we see that if

2 .
1= A(u) then A? = —a;a’ = (a®)? — (a*)>.  (19)
Now P, and hg in (6) and (7) read

Py=A"! <12 +%(52 +n2)>, (20)

and

2—1 &+
ho = A(u) (ﬁ) (21)
24 5(E + )
We introduce polar coordinates 0, ¢ by writing
1 —cosO\!/2
= 2 B —
¢ /1<1 + COSQ) cos .
1 —cosO\!/2
=2 —— i 22
1 /1<1 —1—0050) sin . (22)
and thus
2ol 2
m_ tang and M =cosf. (23)
¢ X+ +n7)

This results in hy = A(u) cos0,
Pyldé = —sin@singdeg + (d0 + A(u)sinfdu) cosp,  (24)
Pyldn = sin0dg cos ¢ + (d6 + A(u) sin@du) sing, (25)

and thus the line element (13) takes the form

ds* = —r*{(d0 + A(u) sin 0du)? + sin® 0d¢*} + 2dudr

2
n <1 — 2A(u)rcos 6 — —m> du?,
r

2 .
= (gu —_ —mninj> d.xld.x],
o "

= g;jdx'dx’. (26)

Here the Minkowskian metric tensor components in the

curvilinear coordinates x' = (6, ¢, r,u) are denoted g;;.
(0)

The Minkowskian metric tensor components in the rec-

tangular Cartesian coordinates and time X' = (X, Y,Z,T)

are denoted 7;; and thus g;;dx'dx’ = n;;dX'dX/. We note

(0)
that g;; = g;; — (2m/r)n;n; has Kerr-Schild form. Also
(0)
n'=g'n; = g'n; = 8. The Kerr-Schild form of the
(0)
metric tensor has the important algebraic property of the
equality of determinants:

g =det(g;;) =det(g;;) = g = —r'sin?0.  (27)
(0) (0)

Hence, if covariant differentiation with respect to the
Riemannian connection calculated with the metric tensor
g;j is denoted by a stroke, we have

;, 1og 10 2
a0 2 I

and so, for future reference, we see that the metric tensor
above has the form

9ij = 9ij — m”k\k”i”j- (29)
(0)

We note that the optical scalar describing the expansion of
the congruence of null geodesic integral curves of the
vector field n' is (1/2)n";.

III. KERR ANALOGUE OF KINNERSLEY’S FIELD

To introduce rotation or spin into the Kinnersley field we
proceed by modifying (4) to read

X' =wi(u)+rk + U, (30)

with

(31)

. oki OF Ok OF
U’(&n,u)ZP%( )

O on Oy 0¢

Here k' and P, are given by (5) and (6) and
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F =si(u)k; with s'v; =0 and

(32)

The spacelike vector s’(u) is here defined along the world
line X' = w'(u) by Fermi transport. We note the useful
formulas:

U OF Ok

e =(v —k)a—”+a—nF, (33)
ouU' ;i OF Ok
OU' _ o (OhoOF _ OBy OFY
ou "\ oy oc 0O oy
Ohy Ok’ Ohgy Ok
2 (20T FROTR
+FP°<65 on ~on a&)‘ (33)

We now, for simplicity, specialize the world line X’ =
w'(u) by requiring v'(u) = 0 = v (u) as we did at the end
of the previous section. Then one can solve the propagation
law (32) for s’ along X' = w'(u) with

i 1 N
s(u)_<o,o,2(§)<z+z BT )), (36)

with A(u) = v* 4 * as before and (S) = constant. We then
0

find that

F=sk=35 ( (37)

2@+ nz))
) ’

P43 (& +n7)
and Py, hy are given by (20). Now introducing the polar

angles 0, ¢ via (22) we have hy = A(u) cos 6 as before and
F = (g‘) cos @ and we obtain from (31)

dX' = (du + (S)sinQ Odg)v'
0

+ (dr — rA cos Odu — (S)sin2 Odp)k'
0

+ (A cos ¢ — 1P sin ) P, oK
o
. ok

+ (1(1) sin ¢p + 12 cos ¢)P08— , (38)
n

with the 1-forms AV, 1) given by

A = r(df + A(u) sin Odu) — g) sinfcosOdp,  (39)

A2 = rsindg + (S) cos 0d0. (40)
0
We note that

k;dX' = du + (g)sinz 0dp = n;dx', (41)

defining n; in coordinates x' = (6, ¢, r,u) and, using the
Minkowskian scalar products (11),

ndXdx) = —(AV)? — (A)2 4 2(du + (g)sinz 0)

x & dr — rAcos Odu — (g')sinz Odg

| = —A—

+=(du+ (.(S)')sinz (9d¢)},

2
= g;jdx'dx/. (42)
(0)

When g) = 0 this line element coincides with (26) when

m=0. When A =0 in (42) the line element is the
Minkowskian background for the Kerr solution with
angular momentum per unit mass (g). The constant (g‘) is

thus playing the role of the constant a in the standard form
of the Kerr solution. We are using .g' to denote the angular

momentum per unit mass or spin rather than the more
familiar a to avoid any confusion with the acceleration. We
now form the Kerr-Schild metric tensor (29) in this case
with n; given by (41). Once again we have n’ = &, and
using (28) we find that

2r + A(S)Zsin2 6cos
0

(43)

" + S2cos20 + rA S2sin?@cos @’
(0) (0)

Substituting (42) and (43) into (29) we arrive at the Kerr
analogue of Kinnersley’s model which can be written

ds? = gjdxidx) = —(A1)? — (A@)2 422374
= Gl A VA, (44)

with A1), 1) given by (39) and (40) and

A3 = du + (g)sinZ 0dé, (45)

24 = dr — rA(u) cos Odu — (g)sinz 0d¢

1 /
N
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with
o=r+ (S>2cos2 0+ rA(S)zsinz OcosO,  (47)
0 0

and ¢’ = Op/O0r. We emphasize that A(u) is an arbitrary
function of its argument while m and (S) are constants.
0

Writing the basis 1-forms (¢ given by (39), (40), (45)
and (46) in the form

A = fdxl,

AB) = ndxt,

A2 = e.dxi,
AW = Ldx', (48)

with x' = (0, ¢, r, u), all scalar products among the basis

vectors f7, e, n!, I' vanish except f,f =e;el =
—n;lI' = —1. An exact calculation of the Ricci tensor
components R;; in coordinates x' results in

Rij = Ry fif j + Ry eie; + Rayo) (fie; + fiei)
+ Ry (finj + fini) + Ry (ein; + ejn;)
+ R(3)(4) (l’lilj + njli) + R(g)(_g)flﬂ’lj, (49)

with
Ry = mA2(§>4Sin4 Ocos’0p3 ¢’ + mA(g)2

x sin? @ cos O3 (r? — (S)chSZ 0), (50)
0

Royp) = —mA(.é‘fsin2 0 cos Op=3(r? — (g)zcosz 0), (51)

foe = _mA<§>3Si“2 Ocos Op~¢/, (52)
! 2 §4sin* 20,0-3,
R3)4) :imA (g) sin® Ocos” O~ ¢’, (53)

and ¢ is given by (47). The remaining tetrad components of
the Ricci tensor to be calculated are R(y)3), R(2)3) and
R(3)3)- These latter components are considerably more
complicated than (50)—(53) and are only required asymp-
totically (for large r) for our purposes and are given in
(73)—(75) below. We note that

9'Rij = =Rayn) = Roye) + 2R = 0. (54)
The generalized Kerr congruence (i.e., the Kerr con-
gruence generalized to include the influence of the accel-

eration) consists of the integral curves of the null vector
field n which is given, in coordinates x' = (@, ¢, r, u) by

. 0 .
n=n'—=— and ndx' = (S)sinz Od¢ + du.  (55)
r 0

This is a geodesic congruence since

S 1 ..
n'jnt = 59”(291'3,3 - g33,j) =0, (56)

and g3; = (0, (S)sinz 0,0, 1). Thus the integral curves of the
0

vector field n are null geodesics with r an affine parameter
along them. If we define the complex null vector m' and its
complex conjugate m' by

1 1
V2 V2

then the complex shear ¢ of this null geodesic congruence
is given by

m =—(fl +ie’) and m' =

(fi—iel). (57)

o 1 "
o =nym'm = |o = En(ﬂj)n"f -2, (58)
where the round brackets denote symmetrization and

1 .
@ :En"i, (59)

is the expansion scalar of the congruence. Also
p=nm'm = -0+ iw, (60)
with

T
o =y, (61)

the twist of the congruence. The square brackets here
denote antisymmetrization. For the particular case of the
generalized Kerr congruence the complex shear o is in fact
real and is given by

1 s
= ——¢~'A S?%sin’> G cos ¥, 62
c X4 S sin® 6 cos (62)

while the complex scalar (60) takes the form

1
p= _E(p_l(pl + i(p‘1(§> cos 0. (63)
We already know that the tetrad component R4y =

R;jn'n/ vanishes. This can now be verified using the
propagation equation for p along the congruence:

op 1

E = p2 + o’ + 5R(4)<4). (64)
We can write R(1)1), R(2)2), R(1)(2)> R(3)(4) in terms of the
geometrical variables o, @ as follows: Using
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1
c = _EA S2sin@cos@,  (65)

o= oc@! with
0 ¢ (0) (0)

and

w=wp ! with o= Scoso, 66
(0)(p 0) (0 (66)

we find from (50)—(53):

R ) 244 2 .0=3
(1)) mee + mesre

+4mo (w: =203, 67
(0)((0) (0) Jo (67)

Ry = 2m(g)(p‘2 + 4m<(g)2r(p_3 —dmo w’¢p=3, (68)

(0)(0)

R =4dmo wro> —4dmolwe3, 69
@ oo " @ ©" (69)

Ry =4mo’rg™ —4moip™. 70
() =4me’ry me (70)

Here the dependence of the tetrad components of the Ricci

tensor on the radial coordinate r is explicit, remembering

that ¢ is given by (47) and since (o-), (w) are independent
0) (0

of r. The Ricci tensor components R;;, in coordinates
x' = (0,¢,r,u), have the exact algebraic form given in
(49). We have noted following (49) that the Ricci scalar
R = g"R;; vanishes exactly and so the Ricci tensor R;; and
the Einstein tensor G;; = R;; —% gijR coincide. We now
also note that the basis vector fields f, e’, I’, n' are parallel
transported along the future-directed null geodesic integral
curves of the vector field n' and thus

fiyn! =0, €';n/=0, I';n’=0 and n';n’=0. (71)

For large positive values of the affine parameter r we see
from (67)—(70) that

1 |
R<1><2>=0<5>7 R<3><4>=0<5>- (72)

The remaining nonvanishing tetrad components of the
Ricci tensor, namely R(y)3), R(2)3), and R(3)(3), have the
following asymptotic forms for large r:

1
Rae =01a) (73)
6mA S sinfcos 6
0) 1
Roe = - 3 +0 <p> (74)

6mAcosf 1 . .
Rz = — —a t3 {—6mA((S)’)zsm2 0cos 0

- 6mA2<S)25in2 0+ 48mA2(S)zsin2 Ocos? 9}
0 0

1o (%) . (75)

Here, as always, A=dA /du. Substituting (72)—(75) into
(49) and given the energy-momentum-stress tensor of
matter T';; via Einstein’s equations R;; = —8xT;; we find
that we can write

1

T, = Tij+Tij+O<F>’ (76)
n @

with

6mA2(S)2sin2 Bcos? 6
0

6mA cos @
8”Tij = ( - )ninj, (77)

(1) re r
and
6mA S sin@cos @
87Z'Tl/ = r3 (e,nj + ejni)
()

1 .
+ — (6mA S ?sin? 6 cos 6 — 42mA? § *sin* fcos? 6
r (0) (0)

+6mA? S%sin®> )n;n ;. (78)
(©) !

We have chosen the definitions of 7';; and T';; here because
) )

now they each separately satisfy the approximate conser-

vation equations

. 1 ; 1
(1) d 2) d
The first of these is easily verified using n' % = % and

A S%sin? @ cos b
; 2 (0) 1
W= =+ 0(5).  (0)

7

The leading r~> term in the energy-momentum-stress
tensor here does not involve the spin parameter of the
Kerr solution and coincides with the Kinnersley energy-
momentum-stress tensor. It is algebraically identical to
Kinnersley’s energy-momentum-stress tensor if, instead of
using the affine parameter distance r, we use the parallax
distance rp defined by [18]
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2+ rA S%sin20cos 0 + S2cos? O
(0) (0)

=01= 81
e r+1AS2sin?@cos O (81)
20
Now for large values of r we have
A S2sin% 0 cos @
1.1 +o(L (82)
l’% o }"2 r3 r4 ’
and so
6mA cos @
8”Tij = 721’11'71/'. (83)
(n) p

With the shear ¢ given by (62) and the twist @ and
expansion ® of the integral curves of the vector field n’
given via (60) and (63) we have an exact formula relating
the affine parameter distance r and the parallax distance rp:

rp(l+orp)
r= T 5.
1+ (wrp)” = (orp)

(84)

This generalizes a formula derived by Sachs [Eq. (23) in
[18]] in the shear-free case.
We note that 7("‘)/ corresponds to the two leading terms in
1

the expansion for large r of

(85)

8ﬂ€i€ = 6mA@~"' cosOn'n/,
1

with ¢ given by (47), which satisfies the exact conservation
equation

(86)

on account of (43). Verifying the second of (79) requires

niljej = _(/’_IFA<S) sin @ cos On' + qflrei
0

+ ¢‘1(§) cos Of1, (87)
el =—¢! rA(S) sin@cos@ — ¢! (S) cotfcosf, (88)
0 0

with ¢ expanded in inverse powers of r.

IV. PROPERTIES OF THE KERR ANALOG OF
KINNERSLEY’S FIELD

To identify a curvature singularity in the Kerr analogue
of Kinnersley’s field, a convenient approach is to calculate
the Kretschmann scalar. This is given in our case by

g 2m?
R, RK = o {247% — 360r* S 2cos? O + 3607 S *cos* @ — 24 S cos® @ + 72r°A S %sin® O cos 6
! ¢° © (0) (0) ©)

+ 104r4A2(§)4sin4 Ocos? 0 — 7201’3A(§)4sin2 Ocos® O + 88}'3,4\3(L(S)’)6sin6 Ocos’ 6 + 50;’2A4(L(S)‘)8sin8 Ocos* @

- 6O8r2A2(S)6sin4 Ocos* @ + 360}'A(S>6sin2 Ocos’ 6 — 248rA3(S>8sin6 Ocos’ 6 + 181"A5(S)losin10 fcos’ 6
0 0 0 0

+ 3A6(S>12sin12 fcost @ — 4244 (S)losing Acos® @ + 104A2(S>8sin4 Ocos® 6},
0 0 0

with ¢ given by (47). Thus the Kretschmann scalar is
singular when ¢ = 0 and this occurs, in particular, at » = 0,
0 = n/2. When (31) is specialized to the axially symmetric
case we have

X =rk! — SK, (90)
(0)

Y = k2 + SK., (91)
(0)

Z=w(u) + rk3, (92)

T = w*(u) + rk*. (93)

Since (k')? + (k?)? = sin? @ we see that when r = 0 and
6 = /2 the singularity in the curvature occurs on the ring

(89)

X247 = (§)2, (94)

which is accelerating in the positive Z direction when
A(u) # 0. More generally, using (a) and (a)) given by (65)
0 0

and (66), we can write ¢ in (47) in the form

p=r"=2rc + o’

95
) (0 ©5)

It therefore follows from (89) that curvature singularities
occur when

p=0&r=0=+ |0>-w?
0) ©

(96)
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and this requires

62> 0’ (97)
©  (©

Always assuming that A(u) # 0 we see from this inequality
that provided 6 # 5 and (}% # 0 we must have

1 1
1 <-A2S2%in*0 < -A%2S2, 98
4 0 o 4 (0 (58)

But this condition by itself excludes Kinnersley’s model
as a special case. Consequently we can say that the Kerr
analogue of Kinnersely’s field of an arbitrarily accelerating
point mass has a curvature singularity on a ring of
radius |(§)| undergoing rectilinear motion with arbitrary

acceleration.

From the foregoing we see that asymptotically the matter
distribution created by the accelerating, spinning source is
qualitatively similar to that of Kinnersley’s accelerating
point mass except that the propagation direction of the
lightlike matter in the spinning case has shear on account of
the acceleration/spin interaction. A further manifestation of
the asymptotic similarity between the spinning case and
Kinnersley’s nonspinning case is displayed by comparing
the formulas (4) and (30) for large values of r. We begin by
writing (30) as

. . . . A
X' =w'(u)+rK' with K'=k'+-U". (99)
r

Written out explicitly

A ok' k! Ok’ Ok
U =P —————— s, 100
°<a: oy~ 0 877)S’ (100)
With k' and P, given by (5) and (6) we can write

Ok _ O 0K = €; VK
O On O Op ) UMT T

where ¢€;j;; is the four-dimensional Levi-Civita permutation
symbol (we take €534 = +1). If we define the spin tensor

i Ok
%<8k Ok (101)

1 )
_ kol _ k.1
Sij = €ijS" UV = —Sjj <8 = Eeijklsj v, (102)
then

Ul=s' ki = K = (5;. +slj)k-/, (103)
; r

demonstrating that asymptotically K’ only differs from &’
by an infinitesimal Lorentz transformation. For the axially
symmetric case

= Se€ia, 104
slj <0>€l]34 ( )
and using (22)
. o1
K.dX' = k;dX" + - (S)(kde — k'dY)
(0
o1
= k;dX' + —(S) sin@(cos ¢pdY —sin pdX),  (105)
(0

with k;dX' given by (41). Making use of (38) and (45) we
find that

: 1 .
K;dX' =28 — - (g) sin@A? = N;dx’,  (106)
r

defining N; in coordinates x' = (6, ¢, r, u). In terms of the
basis f7, €', I', n’ we therefore have

R

N'=n'—— S sinfe’, (107)
7 (0)

and thus it is immaterial whether we use n’ or N’ in

the leading term in the energy-momentum-stress tensor

components.

V. CONCLUSIONS

We have shown how to construct an exact solution for
the gravitational field of an arbitrarily accelerating and
rotating point mass in general relativity. This Kerr-like
analogue of Kinnersely’s field of an arbitrarily accelerating
point mass has a curvature singularity on a ring of radius
|(§)| undergoing rectilinear motion with arbitrary acceler-

ation. Asymptotically the matter distribution created by the
accelerating, spinning source is qualitatively similar to that
of Kinnersley’s accelerating point mass except that the
propagation direction of the lightlike matter in the spinning
case has shear on account of the acceleration/spin inter-
action. The uniqueness of the solution given here is a topic
for further study and is related to the uniqueness of the Kerr
solution.
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