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We study horizon shells and soldering freedom for extreme black holes and how supertranslation-like
Bondi-Metzner-Sachs (BMS) symmetries appear as soldering transformations. Further, for a null shell
placed infinitesimally close to the horizon of an extreme Reissner–Nordström (RN) black hole, we show
superrotation-like symmetries also arise as soldering freedom. Next, considering the interaction of
impulsive gravitational waves supported at the horizon shell with test particles, we study how the
“memory” (or the imprints) of BMS-like symmetries gets encoded in the geodesics (test particles) crossing
the shell. Our study shows, timelike test particles get displaced from their initial plane when they cross the
horizon shell. For a null geodesic congruence crossing the horizon shell, the optical tensors corresponding
to the congruence suffer jumps. In both cases, the changes are induced by BMS parameters that constitute
the gravity wave and matter degrees of freedom of the shell.
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I. INTRODUCTION

Gravitational memory effect has been an active area of
research, and it has attracted researchers across the dis-
ciplines from classical gravity and gravitational wave
astronomy [1–6] to researchers in the area of quantum
gravity [7–12]. The feature that characterizes memory
effect is a permanent displacement of test particles after
the passage of a burst of gravitational waves. Memory
effect may prove to be a very promising field where many
predictions of classical general relativity (GR) can be
tested in the coming advanced detectors like the advanced
LIGO or LISA [13,14]. On the other hand, its connection
with soft theorems and asymptotic symmetries of space-
times has given an intriguing chance to dig into the
quantum structure of gravity in the low energy or infrared
limit [7–9,15].
Extreme black holes are important to the GR and String

theory community, primarily because of its relevance in the
calculation of black hole entropy [16]. Extreme black holes
allow conformal symmetry when we zoom in to its near
horizon geometry, and this played a crucial role, not only in
the study of quantum black holes, but also in finding new

kinds of hairs in extreme black holes [17]. As it has been
studied that almost 70% of astrophysical black holes are
near extremal and many super-massive black holes are also
near extremal [18–22], more attention needs to be paid in
exploring the properties of these black holes.
In earlier studies [23,24], in the context of stitching two

spacetimes across a null hypersurface, it has been shown
that BMS-like [25] asymptotic symmetries can be recov-
ered at the event horizon of black holes when one demands
the induced metric on the horizon remains invariant under
arbitrary coordinate transformations owing to satisfy the
junction conditions. As gluing two geometries across a null
hypersurface (like the event horizon of a black hole)
generally produces thin shells containing some matter,
these shells at the event horizon are termed as “horizon
shells” [26,27]. These horizon shells become a history
of an impulsive gravitational wave supported at the
horizon. Similar kinds of studies in the context of plane-
gravitational waves can be found in [11,12,28]. Impulsive
gravity waves are generated during violent astrophysical
phenomena such as supernovae explosions, the merger of
heavy black holes, etc. Therefore, it would be interesting to
study the measurable effects of such signals on test
detectors. In this paper, we explore the horizon shell in
extreme black holes and the “memory” encoded in the
geodesics crossing the shell. We find the BMS-like
asymptotic symmetries are recovered at the horizon of
the Extreme Reissner–Nordström (ERN) black hole. We
also find the shell-intrinsic quantities in different situations.
Although astrophysical black holes are extremal in their
rotation parameters, due to lack of spherical symmetry,
horizon shells in rotating spacetimes are difficult to
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analyze. For this, as a first step towards attempting an
analysis of “memory effect” in the context of horizon shells
in 4-dimensional rotating spacetime, we have considered an
extreme RN black hole. This study can provide us some
insights about more generic considerations.
The recent extended version of BMS symmetry also

contains superrotation symmetries, which are defined as
arbitrary conformal transformations on the celestial
sphere [29]. In a shell placed close to the horizon of
an ERN black hole, it is shown how superrotation-type
symmetries in the form of conformal transformations can
be recovered near the horizon of ERN. We also briefly
discuss the soldering symmetries of an extreme rotating
Bañados-Teitelboim-Zanelli (BTZ) black hole.
Next, we study the interaction of impulsive gravitational

waves (IGW) with test geodesics crossing the horizon shell
[30]. For a nonrotating and neutral black hole, it has been
shown in [31], how BMS-like symmetries are encoded in
the deviation vectors for timelike geodesics crossing the
horizon shells. Therefore, these geodesics, or test particles,
carry imprints of BMS-like symmetries upon crossing the
horizon shells and this is regarded as a memory effect.
Here, we repeat the analysis for the case of extreme black
holes and show the memory is parametrized by BMS
supertranslation parameters. For null geodesics, we see the
effect of crossing a horizon shell supporting IGW is to
trigger a discontinuity in the B-tensor, whose different
irreducible parts are the optical tensors (e.g., expansion,
shear, etc.) [31]. This jump in B-tensor components
induced by the interaction of test geodesics with the shell
is termed as “B-memory” [28]. For a horizon shell in an
ERN black hole, we find that the effect of the passing of
timelike geodesics across the horizon shell is to deflect the
test particles off the initial surface, where they were placed
before the interaction of IGW. The displacements are
determined by the shell’s intrinsic quantities that are
parametrized by BMS transformation parameters. For null
geodesics, we find jumps in the expansion and shear
corresponding to the geodesic vector crossing the horizon
shell transversely. Here again, the jumps are expressed in
terms of BMS-like parameters.
Let us briefly summarize how the draft has been

organized. In Sec. II, we briefly review the formulation
based on which we would calculate the shell-intrinsic
properties. In Sec. III, we study the horizon shell in
ERN spacetime and calculate the intrinsic properties of
the shell. The connection of the ERN shell with conformal
symmetries is elucidated via studying shells close to the
near horizon of an ERN metric. The horizon shells of
extreme BTZ black holes are also discussed, and the details
are displayed in Appendix A. Section IV contains the
description of memory effect for timelike detectors crossing
an ERN horizon shell. In Sec. V, we introduce a B-tensor at
the horizon and off the horizon shell, and B-memory effects
for null detectors are discussed. Finally, we conclude with a
discussion on the results of this study and indicate some
future extensions of this work.

II. HORIZON SHELLS, IGW, AND BMS-LIKE
SOLDERING FREEDOM

The standard formalism of IGW relies on the patching
of two spacetimes. When two spacetimes are being glued
across a null surface, the Riemann tensor expression
produces a singular term proportional to the Dirac delta
function. As a result, to satisfy the Einstein field equation,
the stress-energy tensor should also contain a singular
piece associated with the matter present on the hyper-
surface. This is referred to as a thin shell, or a surface
layer, on the hypersurface. When the null hypersurface
across which two spacetimes are glued becomes the event
horizon of a black hole, the thin shell is termed as a
horizon shell.
Let us briefly discuss how IGWs arise in the context of

gluing two manifolds Mþ and M− across a common null
hypersurface Σ. We shall use lower case latin letters to
denote hypersurface coordinates and greek letters for
spacetime indices. In other words, for 4-D case, a spacetime
index runs as μ ¼ 0, 1, 2, 3 and a hypersurface index runs
as a ¼ 1, 2, 3. Latin upper case letters are used to specify
the (codimension one surface) spatial coordinates on the
hypersurfaces. Let us setup the coordinates for M� as xμ�
with metrics g�μνðxμ�Þ and a common coordinate system xμ

across the null hypersurface Σ. We denote ya as coordinates
on the hypersurface with tangent vectors eμa ¼ ∂xμ

∂ya. If we
consider Kruskal type coordinates, ya can be written as
ya ¼ ðV; yAÞ, and we can write eμA ¼ ∂xμ

∂yA. The hypersurface
is defined as ΦðxÞ ¼ 0. Define the normal vector nμ to the
hypersurface as nμ ¼ gμν∂νΦðxÞ. We also define an aux-
iliary vector (nonunique) Nμ, which is transverse to the
hypersurface Σ, with normalization conditions N · N ¼ q,
n · N ¼ −1 and eA · N ¼ 0 to study the extrinsic properties
of the shell. For convenience, q is taken to be 0 and −1 for
Nμ null and timelike, respectively. In terms of a common
coordinate system, we have

½nμ� ¼ ½eμa� ¼ ½Nμ� ¼ 0:

Here, ‘½ �’ denotes the difference of quantities between
þ and − sides. We must also mention here that a
pseudoinverse (nonunique) of the degenerate metric gab
can be introduced [26] and be denoted by gab� . For studying
extrinsic properties of the null hypersurface, one can use a
basis by pairing the four vectors ðNμ; eμaÞ. In terms of these
basis vectors, one can write the inverse metric (or the
completeness relation) as follows:

gμν ¼ gab� eμaeνb − naeμaNν − naeνaNμ; ð2:1Þ

with the condition

gab� Nb − naðN · NÞ ¼ 0 ½27�: ð2:2Þ
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The metric1 takes the following form in this common
coordinate system [26,32]

gμν ¼ gþμνHðΦÞ þ g−μνHð−ΦÞ; ð2:3Þ

whereHðΦÞ is a Heaviside step function. And the junction
condition is

½gab� ¼ gþab − g−ab ¼ 0: ð2:4Þ

Using the junction condition, we have

Rμ
νρσ ¼ Rþμ

νρσHðΦÞ þ R−μ
νρσHð−ΦÞ þQμ

νρσδðΦÞ;
ð2:5Þ

where any nonzero component of the last term, given by
Qμ

νρσ ¼ −ð½Γμ
νσ�nρ − ½Γμ

νρ�nσÞ, implicates the existence
of an IGW on the null hypersurface. The full stress-energy
tensor is given by

Tμν ¼ Tþ
μνHðΦÞ þ T−

μνHð−ΦÞ þ SμνδðΦÞ; ð2:6Þ

where the stress-energy tensor Sμν can be written as,

Sμν ¼ μnμnν þ JAðnμeνA þ nνeμAÞ þ pσABeμAe
ν
B: ð2:7Þ

The Sμν projected on Σ is Sab ¼ eμaeνbSμν, where σAB is a
nondegenerate metric for the spatial slice of the surface of
the null shell; A and B denote the spatial indices. It is easy
to deduce the singular part of the Einstein equation from
(2.5) and (2.6) in terms of Q-tensor and Sμν. Consequently,
all measurable quantities on the shell are expressed in terms
of the components of the stress-energy tensor. The intrinsic
quantities of the shell are surface energy density, surface
current, and pressure denoted as μ, JA, and p, respectively,
and have the following form [26,27,32,33]:

μ¼−
1

8π
σAB½KAB�; JA¼ 1

8π
σAB½KVB�; p¼−

1

8π
½KVV �:
ð2:8Þ

The properties of the shell are stored in ½∂αgμν� ¼ γμνnα,
which says that the jump in the partial derivative of the
metric is proportional to γμν. Furthermore, extrinsic curva-
ture is related to the first derivative of γab on the shell in the
following way:

γab ¼ Nμ½∂μgab� ¼ 2½Kab�; ð2:9Þ

together with

Kab ¼ eμaeνb∇μNν: ð2:10Þ

Note that γab is related to transverse traceless components
of γ̂ab by the following relation:

γ̂ab¼ γab−
1

2
gcd� γcdgabþ2γðaNbÞ þ

�
NaNb−

1

2
N:Ngab

�
γ†;

ð2:11Þ

where γ† ¼ γabnanb, γa ¼ γabnb, and we also define
γ� ¼ σABγAB.
Now let us touch upon how BMS-like transformations

occur when we glue two spacetimes across Σ. The details of
the same can be seen in [23,24,31]. BMS symmetries arise
as the freedom of allowing general coordinate transforma-
tions (diffeomorphisms) that preserve the induced metric
on the event horizon, when we patch two spacetimes across
it. These possible transformations thus can be calculated
by solving the Killing equation on the hypersurface [23].
So we require

LZgab ¼ 0; ð2:12Þ

expanding this equation

Zc∂cgab þ ð∂aZcÞgcb þ ð∂bZcÞgca ¼ 0; ð2:13Þ

and working with gaV ¼ 0
2:

ZV∂VgAB þ ZC∂CgAB þ ∂AZCgBC þ ∂BZCgAC ¼ 0:

ð2:14Þ

Considering the metric gAB to be independent of V, then ZV

remains unconstrained and can be of the form
ZV ¼ FðV; θ;ϕÞ. Further, if we set LZna ¼ 0, one gets a
restriction on ZV :

∂VZV ¼ 0 ⇒ ZV ¼ TðxAÞ: ð2:15Þ

It generates a supertranslation-like transformation, which
can be written as

V → V þ TðxAÞ: ð2:16Þ

A. Superrotation

Recently, an extended version of BMS symmetries has
been obtained that contains a new kind of symmetry called
“superrotation” at the asymptotic null infinities as well as
near the horizon of black hole spacetimes [23,24,29,34].
These are local conformal transformations of the celestial
sphere at null infinities [8,35]. In [24], it was also shown,
if one relaxes the condition that gAB is independent of V,
one can recover superrotation-like symmetries. This can be

1Note that Nμe
μ
a ¼ Na.

2We have adopted a Kruskal type coordinate system here.
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seen from Eq. (2.14). If one allows conformal transforma-
tions to the spatial metric gAB and compensates that by a
corresponding shift in V direction, we can still satisfy
Eq. (2.14) or the junction condition. If a null hypersurface
has a topology R × S2, then one can allow conformal
transformations on the (unit) sphere. This reduces the part
that contains purely spatial derivatives of Eq. (2.14) to
ΩðxAÞgAB.3 This means one needs to find a solution of the
following equation:

ZV∂VgAB þΩðxAÞgAB ¼ 0: ð2:17Þ

In [24], it has been shown that a solution can always be
found if gAB can be expressed as a product of smooth
functions of V and xA. Examples of such cases are null
cones of constant curvature spaces and a null surface close
to the horizon of a black hole [24]. The local conformal
transformations, which are being employed on gAB, are thus
equivalent to superrotations. We shall discuss superrota-
tions for extreme black holes in Sec. III B.

III. INTRINSIC PROPERTIES OF AN EXTREME
RN BLACK HOLE

In this section, we follow the recipe indicated in [24,31].
We have a seed ERNmetric, which is identified as manifold
M−, and consider a metric for Mþ manifold on which we
do a supertranslation type coordinate transformation. The
ERN metric in Eddington–Finkelstein (EF) coordinates for
M− manifold is given by

ds2 ¼ −
�
1 −

M
r

�
2

dv2 þ 2dvdrþ r2ðdθ2 þ sin2θÞdϕ2;

ð3:1Þ

with v ¼ tþ r� ¼ tþ R
dr

ð1−M=rÞ2.
We perform the supertranslation type transformation on

the vþ coordinate and keep other coordinates unaltered:

vþ ¼ vþ Tðθ;ϕÞ; rþ ¼ r; θþ ¼ θ; ϕþ ¼ ϕ: ð3:2Þ

Under these transformations, the metric takes the follow-
ing form:

ds2þ ¼ −
�
1 −

M
r

�
2

ðdvþ Tθðθ;ϕÞdθ þ Tϕðθ;ϕÞdϕÞ2

þ 2ðdvþ Tθðθ;ϕÞdθ þ Tϕðθ;ϕÞdϕÞdrþ r2dΩ2
2;

ð3:3Þ

where the horizon is situated at r ¼ M and
Tθðθ;ϕÞ ¼ ∂θTðθ:ϕÞ, Tϕðθ;ϕÞ ¼ ∂ϕTðθ:ϕÞ. We choose

the transversal (or the auxiliary null normal) vector
Nv ¼ −1. We use (2.10) to compute the extrinsic curvature
Kθθ, Kϕϕ and Kθϕ on the horizon. Finally, using (2.9), we
get expressions for γab,

(i) γθθ ¼ 2∇θTθðθ;ϕÞ
(ii) γϕϕ ¼ 2∇ϕTϕðθ;ϕÞ
(iii) γθϕ ¼ γϕθ ¼ 2∇θTϕðθ;ϕÞ.

Collectively, one can write γAB ¼ 2∇ATB. Note that γAB is
symmetric in A, B. Notation ‘∇’ denotes the covariant
derivative of TðxAÞ with respect to the unit 2-sphere metric.
Now using (2.11), one can also compute the transverse
traceless part of γab:

(i) γ̂θθ ¼ ∇θTθðθ;ϕÞ − 1
sin2 θ∇ϕTϕðθ;ϕÞ

(ii) γ̂ϕϕ ¼ ∇ϕTϕðθ;ϕÞ − sin2 θ∇θTθðθ;ϕÞ
(iii) γ̂θϕ ¼ γ̂ϕθ ¼ 2∇θTϕðθ;ϕÞ.

A. Shell-intrinsic properties

With the help of extrinsic curvature expressions, we
directly compute the surface energy density of the shell as

μ ¼ −
1

8M2π
△ð2ÞTðθ;ϕÞ: ð3:4Þ

The surface current JA and pressure of the shell is given by

JA ¼ 0; p ¼ 0: ð3:5Þ

Interestingly, the current turns out to be zero in EF
coordinates unlike the Schwarzschild or nonextreme case
[23]. It is easy to see from (3.4) that the energy density is
conserved along the null direction of the shell, i.e.,
∂vμ ¼ 0. However, there is no nonzero charge correspond-
ing to this supertranslation-like BMS translation as it
vanishes when evaluated on the spherical surface.
Now, let us try to see if we can get a shell without matter

supporting only gravitational waves. For this, one needs to
see if there is any regular solution of the equation obtained
by setting μ equal to zero:

△ð2ÞTðθ;ϕÞ ¼ 0: ð3:6Þ

This is a Laplace’s equation on a sphere. We know this
Laplacian has spherical harmonics Ym

l ðθ;ϕÞ as eigenfunc-
tions with −lðlþ 1Þ as eigenvalues. However, here we have
only l ¼ 0 as a feasible solution, which corresponds to a
constant only. Therefore, the allowed shift in the v direction
is of the form

v → vþ c; ð3:7Þ

where c is a constant. Direct substitution of this into the
components of γ̂ab yields zero. So, there can’t be a shell
supporting pure gravitational waves. A similar situation
was also obtained for the Schwarzschild case [23]. Next,
we would like to see if conformal symmetries can be

3Using the relation LZgAB ¼ ΩðxAÞgAB for spatial components
of Z.
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recovered as soldering freedom in ERN spacetime. To see
this, one must remember that shells in constant curvature
spacetimes can produce conformal isometries as soldering
freedom when Penrose’s cut-and-paste approach is
employed [27,30]. The basic technique is to glue two
metrics across a null surface after performing a conformal
transformation to the spatial part of the metric and a
subsequent shift in the null direction on one side before
attaching the other side [30,36]. In the following subsec-
tion, we wish to find conformal symmetries in the ERN
horizon shell from a similar kind of construction.

B. Superrotation near the horizon
of ERN spacetime

As outlined in Sec. II A, superrotation-like soldering
freedom can be obtained if one finds a metric that contains
a V dependent spatial part (gAB) [24] at someU. Let us now
examine this for a horizon shell in ERN spacetime. We
introduce a null coordinate U with the help of retarded null
coordinate u ¼ t − r� and write (3.1) as [37]

ds2 ¼ −
2fðrÞ

fðM −UÞ dUdvþ r2ðU; vÞdΩ2
2; ð3:8Þ

where,

fðrÞ ¼
�
1 −

M
r

�
2

;

r� ¼ r −M þ 2M

�
ln

���� rM − 1

���� − M
2ðr −MÞ

�
;

u ¼ −2r�ðM −UÞ; ð3:9Þ

and

2dU ¼ du
fðM −UÞ : ð3:10Þ

Using r� ¼ ðv − uÞ=2 for small U, one finds rðU; vÞ as

rðU; vÞ ¼ M − U þ v
2M2

U2 þOðU3Þ: ð3:11Þ

The metric (3.8) is analytic at the event horizon where
U ¼ 0. Now, let us consider a null surface just outside the
horizon. For small U ≠ 0, the spatial section of the metric
should now become a function of v. Therefore, as discussed
in Sec. II A, we can recover superrotation-like symmetries
on the shell situated close to the horizon. To understand this
clearly, we reparametrize the metric of the unit sphere in
terms of complex coordinates z, z̄ and write dΩ2

2 ¼ 2dzdz̄
ð1þzz̄Þ2.

Now, we perform the following transformations in the
(say) þ side of the shell placed at U ¼ ϵ (with ϵ small)

z → zþ fðzÞ; z̄ → z̄þ f̄ðz̄Þ;

v → vð1 − Ω̃ðz; z̄ÞÞ −M2

ϵ2
Ω̃ðz; z̄ÞÞ þ 2M2

ϵ
Ω̃ðz; z̄ÞÞ þOðϵÞ;

ð3:12Þ
where fðzÞ and f̄ðz̄Þ are holomorphic and antiholomorphic
functions. These transformations will induce an infinitesi-
mal conformal transformation on the unit 2-sphere satisfy-
ing the Eq. (2.17). The conformal factor Ω̃ðz; z̄Þ is
expressed in terms of z, z̄, fðzÞ, and f̄ðz̄Þ. As long as
ϵ ≠ 0, the transformation is valid and if one sets ϵ ¼ 0, then
one must also set Ω̃ðz; z̄Þ equal to zero indicating at the
horizon these transformations do not exist. Therefore, the
shell placed near the horizon of an ERN black hole gives
rise to superrotation-like soldering transformations [24].
The intrinsic properties of this shell can be obtained by a
similar manner as described earlier.

IV. MEMORY EFFECT:
EXTREME RN BLACK HOLES

In this section, we shall study the memory effect for ERN
black holes on timelike geodesics. To study memory effect,
one needs to calculate geometric quantities and their
derivatives at the horizon. We also need to extend compo-
nents of geodesic tangents and deviation vectors in a near
vicinity of the horizon shell orthogonally. A natural choice
for this should be a Kruskal-like coordinate system that is
regular at the event horizon. In [38], a maximal analytic
extension of an ERN black hole was constructed by over-
lapping two sets of double null coordinates. The construction
is useful for examining global features of the spacetime, but
due to the presence of trigonometric functions, it provides
less analytical control at the event horizon (for example, the
metric is not C1 at the event horizon). In Kruskal type
coordinates, one uses an exponential mapping from usual
advanced or retarded null coordinates, which provides a
better analytical control. However, for extreme cases, since
the horizon is degenerate (surface gravity κ ¼ 0) the Kruskal
coordinates [e.g., u ¼ − 1

κ lnð−UÞ� are constant for any value
of advanced or retarded coordinates. This can be remedied
using a slightly modified version of Kruskal coordinates as
presented in [39].
Therefore, we shall adopt a Kruskal extension that

unambiguously places the shell at U ¼ 0 and is also better
suited for memory effect analysis.
Recall u ¼ t − r�; v ¼ tþ r� and the tortoise coordinate

is given by

r� ¼ rþ 2M

�
lnðr −MÞ −M

2

1

ðr −MÞ
�
þ constant:

ð4:1Þ
Although r� can be made continuous at the event horizon
(r ¼ M) by taking the Q2 → M2 limit from the r� of
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nonextreme case (here Q is the charge parameter of the RN
black hole) [39], but the Kruskal transformations become
divergent exactly at r ¼ M as they are related by

u ¼ −
1

κ
lnð−UÞ; v ¼ 1

κ
lnðVÞ;

and κ ¼ 0 at the horizon. Therefore, the following trans-
formations for the metric (3.1) are to be made [39]

u ¼ −ψð−UÞ; v ¼ ψðVÞ; ð4:2Þ

where we consider ψðVÞ to be of the form4

ψðVÞ ¼ 4M

�
lnV −

M
2V

�
: ð4:3Þ

Near the horizon

r� ∼
1

2
ψðr −MÞ: ð4:4Þ

Under this assumption, the metric is given by,

ds2 ¼ −
ðr −MÞ2

r2
ψð−UÞ0ψðVÞ0dUdV þ r2dΩ2

2; ð4:5Þ

where prime denotes the derivative of function ψð−UÞ with
respect to U and the derivative of function ψðVÞ with
respect to V. The transformations are not well defined if the
metric is degenerate on the horizon. However, we construct
the asymptotic form of the metric as one can have, in the
asymptotic limit, t ∼ r� and u ∼ −2r� ∼ −ψðr −MÞ.
Therefore, the inverse transformation is

U ¼ −ψ−1ð−uÞ ∼ −ψ−ðψðr −MÞÞ ¼ −ðr −MÞ; ð4:6Þ

together with

ψð−UÞ0 ∼ 4M
r −M

þ 2M2

ðr −MÞ2 : ð4:7Þ

Note that ψðVÞ0 is regular as it is finite and nonzero
everywhere. Thus, we have a set of Kruskal coordinates
that are well defined on the horizon. The metric is written
as [39]

ds2 ¼ −
2M2

r2
ψðVÞ0dUdV þ r2ðUÞdΩ2

2: ð4:8Þ

We would consider this metric and study the off-shell
extension of the transformations and memory effect.

The construction follows the one considered in [31]. We
must mention here, for an extreme-Kerr metric, similar
kinds of ðU;VÞ coordinates can be obtained as the structure
of r� is almost identical to (4.1). However, for obtaining the
shell’s intrinsic properties and to study memory effect, one
needs to find the extension of the soldering freedom off the
shell. For a full 4-dimensional rotating metric, this is not an
easy task.

A. Off-horizon shell extension of soldering
transformations

To determine the stress tensor supported on the horizon
shell, we extend the soldering transformations off the
horizon shell by making an expansion to linear order in U
to one side of the shell [23]. We shall call this an “off-
shell” extension of soldering transformations. Of course,
the soldering procedure should be consistent with the
junction conditions so that the metric remains continuous
across the horizon shell. We also find the generators for
off-shell soldering transformations and determine the
exact off-shell coordinate transformations to the linear
order of U. More detailed description can be found
in [23].
We extend the soldering transformations off the horizon

shell in the Mþ side for the extreme RN black hole. As
U ¼ −ðr −MÞ and r ¼ M on the horizon, U ¼ 0 on the
horizon shell. The off-shell soldering transformations to the
linear order in U are given by

Uþ ¼ UCðV; xAÞ; Vþ ¼ FðV; xAÞ þUAðV; xAÞ;
xAþ ¼ xA þUBAðV; xAÞ; ð4:9Þ

where xA denote ðθ;ϕÞ. We first need to determine the
functions AðV; xAÞ, CðV; xAÞ, and BðV; xAÞ. For this, we
take the transformed metric and compare gUα components
with the nontransformed metric. We determine

C ¼ ∂VψðVÞ
∂VψðFÞ

ð4:10Þ

A ¼ M2

2

FV

∂VψðVÞ
σABBABB ð4:11Þ

BA ¼ ∂VψðVÞ
1

M2FV
σABFB; ð4:12Þ

where σAB is a unit 2-sphere metric. Now, we specialize our
calculations for the BMS case, i.e., for V → V þ Tðθ;ϕÞ.
We can explicitly write the metric components linear
in U:4In general for any ξ, ψðξÞ ¼ 4Mðln ξ − M

2ξÞ.
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Ugð1Þþab dxadxb

¼ 2M2U

��
−
ψðVÞ00
M2

þ ψðVÞ0
M2ψðTÞ0 ψðTÞ

00
�
dV2

þ ψðVÞ0
M2

�∂AψðTÞ0
ψðTÞ0 þ TA

ψðTÞ00
ψðTÞ0

�
dVdxA

þ ψðVÞ0
M2

�
TAB þ TB

∂AψðTÞ0
ψðTÞ0 −

MσAB
ψðTÞ0

�
dxAdxB

−
2ψðVÞ0
M2

Tϕ cot θdθdϕþ Bθ sin θ cos θdϕ2

�
;

ð4:13Þ

where ψðTÞ0 denotes the derivative of function ψðTÞ with
respect to T, and ψðVÞ0 is the derivative of function ψðVÞ
with respect to V. For M− manifold, the metric is

Ugð1Þ−ab dxadxb ¼ −2MUσABdxAdxB: ð4:14Þ

Recall the normalization conditions nμnμ ¼ 0 and
nμNμ ¼ −1. The auxiliary normal is chosen to be
Nμ ¼ ð1; 0; 0; 0Þ. Now, we can extract all components of
γab using (2.9). The components of γab are given by

γVV ¼ 2

�
−ψðVÞ00 þ ψðVÞ0

ψðTÞ0 ψðTÞ
00
�

ð4:15Þ

γVA ¼ 2
ψðVÞ0ψðTÞ00

ψðTÞ0 TA ð4:16Þ

γθθ ¼ 2ψðVÞ0
�
Tθθ þ

T2
θψðTÞ00
ψðTÞ0 −

M
ψðTÞ0 þ

M
ψðVÞ0

�
ð4:17Þ

γϕϕ ¼ 2ψðVÞ0
�
Tϕϕ þ T2

ϕ

ψðTÞ00
ψðTÞ0 −M

sin2 θ
ψðTÞ0

þ Tθ sin θ cos θ þM
sin2 θ
ψðVÞ0

�
ð4:18Þ

γθϕ ¼ γϕθ ¼ 2ψðVÞ0
�
TθTϕ

ψðTÞ0 ψðTÞ
00 þ Tθϕ − Tϕ cot θ

�
:

ð4:19Þ

Next, we directly compute the transverse traceless
components γ̂ab:

γ̂θϕ ¼ γ̂ϕθ ¼ γθϕ ð4:20Þ

γ̂θθ ¼
1

2

�
γθθ −

γϕϕ
sin2 θ

�
ð4:21Þ

γ̂ϕϕ ¼ 1

2
ðγϕϕ − γθθ sin2 θÞ: ð4:22Þ

Other components can also be calculated in the same way.
We can estimate surface energy density in the following
manner:

μ ¼ −
1

16πM2

�
γθθ þ

1

sin2 θ
γϕϕ

�
: ð4:23Þ

Therefore,

μ ¼ −
ψðVÞ0
8πM2

�
△ð2ÞTðθ;ϕÞ − 2M

�
1

ψðTÞ0 −
1

ψðVÞ0
�

þ
�
T2
θ þ

T2
ϕ

sin2 θ

�
ψðTÞ00
ψðTÞ0

�
: ð4:24Þ

The surface current and surface pressure have the following
forms:

JA ¼ 1

8πM2
σAB

�
TB

ψðTÞ00
ψðTÞ0

�
ð4:25Þ

p ¼ −
1

8π

1

ðψðVÞ0Þ2
�
−ψðVÞ00 þ ψðVÞ0

ψðTÞ0 ψðTÞ
00
�
; ð4:26Þ

where σAB is the inverse of the unit 2-sphere metric. Here,
unlike the EF shell, we get nonvanishing current and
pressure.

B. Memory effect for timelike geodesics

Let us now consider two timelike geodesics crossing the
horizon shell supporting the IGW. We determine the change
in the deviationvector between two nearby geodesics passing
the horizon shell. We work in a local coordinate system in
which the metric is continuous, but its first derivative is
discontinuous across the null surface. The effect of the IGW
ongeodesics has been also studied in different setups [40–43].
Here, we follow the setup depicted in [27,31,33].
Let us consider Tμ to be a unit timelike vector field with

gμνTμTν ¼ −1: ð4:27Þ

The integral curve of Tμ passes through the null shell
situated at Σ. Consider the deviation vector between two
nearby timelike geodesics is Xμ with gμνTμXν ¼ 0. The
geodesic equation for Xμ is

Ẍμ ¼ −Rμ
ρσδTρXσTδ: ð4:28Þ

We assume the jump in the derivatives of Tμ and Xμ are
proportional to the normal nμ,

½∂βTμ� ¼ Pμnβ; ½∂βXμ� ¼ Wμnβ; ð4:29Þ

for some Pμ andWμ defined on Σ. Integration of the second
condition in (4.29) expresses Xμ off the shell to linear order
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in U. Further, we set up a triad fEag by parallel trans-
porting feags (defined in Sec. II) on Σ, along the timelike
geodesics generated by Tμ. Next, Xμ can be decomposed as

Xμ ¼ X0T
μ
ð0Þ þ Xa

0e
μ
a; ð4:30Þ

where X0; Xa
0 are some functions (evaluated at Σ), and the

vector fields evaluated at Σ are denoted by a subscript (0).
With the help of (4.27), (4.29), (4.30) and introducing a set
of basis vectors fEμ

ag for three vector fields fEag, one can
express Xμ for small U > 0 as in [27,33]

Xa ¼
�
g̃ab þ

1

2
Uγab

�
Xb
ð0Þ þ UV−

ð0Þa; ð4:31Þ

where V−
ð0Þa ¼ dX−

a
dU jU¼0 and g̃ab given by

g̃ab ¼ gab þ ðTð0Þμe
μ
aÞðTð0ÞνeνbÞ: ð4:32Þ

Next, we decompose γab in (4.31) into transverse and
traceless parts in order to see the effects of impulsive wave
and stress energy of the shell, separately,

γab ¼ γ̂ab þ γ̄ab; ð4:33Þ

where

γ̄ab ¼ 16π

�
gacScdNdNb þ gbcScdNdNa

−
1

2
gcdScdNaNb −

1

2
gabScdNcNd

�
: ð4:34Þ

From here, choosing eμV ¼ nμ and Nμ ¼ Tμ
ð0Þ [33], we

obtain

γ̄VB ¼ 16πgBCSVC; γ̄AB ¼ −8πSVVgAB; ð4:35Þ

where γ̄VB is symmetric in lower indices. It is to be
noted, choosing the transverse vector Nμ ¼ Tμ

ð0Þ means

N · N ¼ −1, which is consistent with the conditions
depicted in Eqs. (2.1) and (2.2). Now, we impose a
condition on the test particles that initially reside on the
2-dimensional surface. Thus, we set Xð0ÞV ¼ V−

ð0ÞV ¼ 0,

where Xð0Þμ are components of the deviation vector
before the passage of the IGW at the horizon, and
V−
ð0Þa ¼ dX−

a
dU jU¼0. Finally, using (4.35), in this special frame

the deviation vectors become

XV ¼ 1

2
Uγ̄VBXB

ð0Þ ¼ 8πUgBCSVCXB
ð0Þ ð4:36Þ

XA ¼ XAð0Þ þ
U
2
γABXB

ð0Þ þ UV−
ð0ÞA: ð4:37Þ

The term involving γAB represents the distortion effect
of the wave on the test particle. Note that if the surface
current is nonzero, i.e., SVC ≠ 0 [see (2.7)], then XV ≠ 0.
This means the test particle will no longer reside on the
2-dimensional surface. It gets displaced off the surface. We
also observe that in the case under study, we have a nonzero
current or nonzero SVC. Hence, the effect of the passage of
the impulsive wave is to deflect the particles off the 2-d
surface. The spatial components can also be obtained from
(4.37). The expression for the Xθ component of the
deviation vector is

Xθ ¼ Xθð0Þ þ
U
2
ðγθθXθ

ð0Þ þ γθϕX
ϕ
ð0ÞÞ þ UV−

ð0Þθ: ð4:38Þ

The Xϕ component can also be recovered in the same way.
One can now replace the requisite components of γ̂AB from
(4.20)–(4.22) and γ̄AB from (4.35) into (4.38) to explicitly
see the effect of the IGW and matter part on the deviation
vector.
Suppose the surface current is zero, i.e., JA ¼ 0, then

(4.36) implies XV ¼ 0. Replacing the second expression of
(4.35) into (4.37) yields

XA ¼ ð1 − 4πUSVVÞ
�
δAB þ 1

2
Uγ̂AB

�
XB
ð0Þ: ð4:39Þ

From (4.25), it is apparent that the anisotropic stress or
surface current of the shell becomes zero for a constant T or
constant shifts of V. In this case, from (4.17), (4.18), (4.21),
and (4.22) it can be seen that the pure gravitational wave
components are identically zero. So for a shell without
surface current, we do not have any effect of gravity wave
on the test particles as opposed to the case studied for a
Schwarzschild black hole in [31]. Therefore, it is impos-
sible to have a relative displacement of the test particles
confined purely in the 2-d plane for the IGW supported at
an ERN horizon shell. The particles will always be
displaced from their initial plane. Clearly, the deviations
between two timelike geodesics are determined in terms of
the supertranslation parameter Tðθ;ϕÞ contained in γAB or
the stress tensor intrinsic to the shell. We can integrate the
expressions of the components of deviation vectors and
obtain the shift with respect to the parameter of the
geodesics. This gives us “displacement memory effect.”
For physical shells having SVV > 0, we can also see there is
a diminishing effect for the transverse components of the
deviation vectors carrying the BMS-like memories.

V. B-TENSOR AND NULL GEODESICS

In this section, we shall study the effect of the IGW on
null geodesics passing orthogonally through the horizon
shell. We would estimate a jump in optical parameters, such
as shear expansion. Throughout this study, we assume a
continuous coordinate system is installed covering both
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sides of the null hypersurface or horizon, and the compo-
nents of the geodesic tangent vector crossing the horizon
are continuous in this coordinate system. Let us consider a
null congruence whose tangent vector is denoted byN , and
it is orthogonally crossing the hypersurface Σ supporting
the IGW.5 The normalization condition with the normal to
the horizon will be, as usual, n ·N ¼ −1; n · n ¼ 0 and
N · e ¼ 0. The effect of the null geodesic crossing the
surface containing the IGW from (say) “−” side to the “þ”
side is to apply a coordinate transformation from past
coordinates to a continuous coordinate system ðxμÞ at Σ.
This coordinate transformation then serves as the initial
condition to develop it to the future or “þ” side of the shell.
This construction is similar as described in Sec. II, only for
assigning the past and future of the shell unambiguously,
the off-shell coordinate transformations are done in the
“−” side. This has practically no affect on the geometric
constructions outlined in previous sections.
The major object of interest in our study is the failure

tensor, or the B-tensor, with respect to the vector N 0

projected onto the hypersurface Σ:

BAB ¼ BαβeαAe
β
B ¼ eαAe

β
B∇αN 0β: ð5:1Þ

The expansion Θ and shear Σ are expressed in terms of the
B-tensor in the familiar way

Θ ¼ σABBAB; ΣAB ¼ BðABÞ −
Θ
2
σAB;

where σAB is the inverse of the metric induced at the
spatial section of the hypersurface or the shell. Next, we
determine the off-shell B-tensor by pulling back the
B-tensor at the shell to an infinitesimal distance away
from the shell using [28,31]

xμ ¼ xμ0 þ UN μ
0ðxμÞ: ð5:2Þ

Here, the coordinates on the hypersurface are designated as
xμ0 and related to the continuous coordinates xμ via the
above relation. The vectorN 0 provides the initial condition
for obtaining the coordinates xμ off the shell:

B̃ABðxμÞ ¼
∂xM0
∂xA

∂xN0
∂xB BMNðxμ0Þ: ð5:3Þ

We expect a nonvanishing change in optical parameters,
which depicts a kind of memory effect on the geodesics.
Since the B-tensor and quantities derived from it encode
the effect of the stress tensor and the IGW supported at
the shell, this covariant version of memory is regarded as
B-memory.

A. B-memory effect for null geodesics

We consider an extreme RN black hole in Kruskal
coordinates given by (4.8). The tangent vector in past side
to the null congruence is N − ¼ λ∂U. Components of
congruence N 0 on the hypersurface in continuous coor-
dinates are obtained using (5.2) and calculating the inverse
Jacobian of coordinate transformation (see Appendix B)

N α
0 ¼

�∂xβ−
∂xα

�
−1
N β

−jΣ: ð5:4Þ

We first find the tangent vector at the hypersurface

N 0 ¼ λ

�
FVψðFÞ0
ψðVÞ0 ∂U þ ψðFÞ0

2M2FV

�
F2
θ þ

F2
ϕ

sin2θ

�
∂V

−
FθψðFÞ0

M2
∂θ −

FϕψðFÞ0
M2sin2θ

∂ϕ

�����
Σ
: ð5:5Þ

From U-component of N 0, we determine

λ ¼ ψðVÞ0
ψðFÞ0FV

: ð5:6Þ

Using Eq. (5.2) and the N 0 expression, we get

BAB ¼ 2
ψðVÞ0
F2
V

FAFBV −
ψðVÞ0
F3
V

FAFBFVV −
ψðVÞ0
FV

FAB

þ FAFB

F2
V

ψðVÞ00 − Γδ
ABN 0δ: ð5:7Þ

We will consider now the expressions of Θ and ΣAB
evaluated with respect to N 0 and N − to find the jumps
in these optical tensors. If we specialize our case for BMS
supertranslation, the nonvanishing change in expansion and
shear on the shell (at U ¼ 0) are

½Θ� ¼ 1

M2
ð−ψðVÞ0△ð2ÞTðθ;ϕÞ þ ψðVÞ00σABTATBÞ ð5:8Þ

½Σθθ� ¼
ψðVÞ0
2

�
−Tθθ þ

Tϕϕ

sin2 θ
þ Tθ cot θ

�

þ ψðVÞ00
2

�
T2
θ −

T2
ϕ

sin2 θ

�
ð5:9Þ

½Σϕϕ� ¼
ψðVÞ0
2

�
−Tϕϕ þ Tθθ sin2 θ −

Tθ sin 2θ
2

�

þ ψðVÞ00
2

ðT2
ϕ − T2

θ sin
2 θÞ ð5:10Þ

½Σθϕ� ¼ −ψðVÞ0Tθϕ þ TθTϕψðVÞ00 þ ψðVÞ0Tϕ cot θ;

ð5:11Þ5The chosen congruence obeys hypersurface orthogonality [28].
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where σAB is inverse of the unit 2-sphere metric. Here, we
have nonvanishing jumps for expansion and shear com-
prising BMS parameter Tðθ;ϕÞ and its derivatives. The
jump in the expansion and shear are determined by the shell
stress-energy tensor and a combination of the IGW and
stress tensor, respectively. Here, the term B-memory is used
to recognize the fact that the interaction of the shell with
test detectors gives rise changes in optical tensors, and
these changes are expressed via BMS soldering parameters.
This is similar to the BMS memory effect that one obtains
in the far region of asymptotically flat spacetimes.

B. B-memory effect in off-shell extension of null
congruence

Now, we compute the off-shell extended B-tensor for
the soldering transformation of a supertranslation type.
To find the Jacobians of the transformation used in (5.3),
we write [28,31]

PM
A ¼ ∂xM0

∂xA ¼ ðW−1ÞMA ;

whereWM
A ¼ ðδMA − U ∂NM

∂xA Þ and compute the inverse of the
W matrix as

1

detðWÞ

0
B@

1þ UψðVÞ0
M2

Tϕϕ

sin2θ − UψðVÞ0
M2 Tθϕ

− UψðVÞ0
M2

�
Tθϕ

sin2θ −
2 cos θTϕ

sin3θ

�
1þ UψðVÞ0

M2 Tθθ

1
CA;

ð5:12Þ

where

detðWÞ ¼
�
1þUψðVÞ0

M2

Tϕϕ

sin2θ

��
1þUψðVÞ0

M2
Tθθ

�

−
U2ψðVÞ02

M4
Tθϕ

�
Tθϕ

sin2θ
−
2 cos θTϕ

sin3θ

�
:

Here, we also used the factN ðxμÞ ¼ N 0ðxa0ðxμÞÞ.6 The full
expression of (5.3) is quite huge to be written here as it will
be the multiplication of two W−1 matrices. However, we
display the shortest component of the B-tensor up to linear
order in U here:

Bθθ¼ðψ 00ðVÞT2
θ−ψ 0ðVÞTθθ−MÞ

þ2U
M2

ð−cotðθÞψ 0ðVÞ2TϕTθϕ−ψ 0ðVÞψ 00ðVÞTϕTθTθϕ

þMψ 0ðVÞTθθþψ 0ðVÞ2T2
θϕ

þψ 0ðVÞ2T2
θθ−ψ 0ðVÞψ 00ðVÞTθθT2

θÞþOðU2Þ: ð5:13Þ

If one sets U ¼ 0, the off-shell B-tensor reduces to on-shell
B-tensor, which we have already computed in the previous
subsection. It is clear from (5.13) that the off-shell B-tensor
also suffers a jump (U dependent) across the null shell
and the jump is parametrized by BMS parameters. Thus,
B-memory effect is again visible in the off-shell extension
of the soldering transformation. An alternative approach to
see the change in B-tensor for the null geodesics crossing
the shell could be to consider the Lie derivative of B-tensor
with respect to the vector field N 0. This would also give
rise to a B-memory effect for null geodesics.

VI. DISCUSSION

The motivation of this work is to find the memory effect
of the IGW supported at a horizon shell of extreme black
holes for timelike and null geodesics (or test detectors)
crossing the null shell. Although the memory correspond-
ing to BMS type symmetries discussed here is quite distinct
from the memory being studied in the far region or
asymptotic infinities of black holes, this study may serve
as a model for determining the effect of impulsive gravity
waves (together with some thin layer of null matter like
neutrino fluid) generated during violent astrophysical
phenomena on test particles. The appearance of BMS-like
symmetries at the horizon, or at any null surface situated at
a finite distance of a spacetime, provides an intriguing
possibility to investigate direct evidence of those sym-
metries. Our attempt here is to provide a theoretical model
that can capture such symmetries. It would be interesting
to see how our considerations can be related to recent
studies of BMS symmetries on null hypersurfaces and local
horizons [44,45].
Although the mathematical frameworks used in this

paper are already applied to study BMS-memory effect
for nonextreme black holes in [31], several new features
have also been obtained in this study for extreme black
holes. The nature of horizon shells containing BMS
memories for ERN black holes has a nonvanishing
surface current as opposed to the case of nonextreme
(Schwarzschild) black holes [31]. In fact, one cannot have
a physical shell carrying BMS-like charges with a vanish-
ing surface current in the ERN case. This feature changes
the way test (timelike) particles get deflected from their
initial position after passage of the IGW. There are also
other novel features of this study, which we summarize
below in more detail.
(1) We have shown how BMS supertranslation-like

symmetry arises as soldering freedom for a horizon
shell in ERN black holes. We started with estimating
the intrinsic properties of the null shell for ERN
black holes. We also study the BMS type soldering
freedom for the extreme BTZ case. The detailed
study for BTZ black holes is shown in Appendix A.
We observe, for both cases, there is no possibility of
a shell where the IGW and the matter supported on

6This follows from the hypersurface orthogonality of the
congruence.
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the shell get decoupled. Therefore, these horizon
shells do not support pure IGWs without matter.
This is same as in the case of nonextreme
black holes.

(2) We also discussed how conformal symmetries may
arise as soldering freedomwhen we place a null shell
infinitesimally close to the event horizon of an ERN
black hole. We have related this with the Penrose’s
cut-paste construction. For an ERN black hole,
introducing a double null coordinate system, we
have demonstrated the appearance of superrotation-
like symmetry near (but not on the) horizon.

(3) Next, we performed the off-shell extension of
soldering transformations for ERN black holes.
We used a Kruskal-like double null metric that is
regular at the horizon and obtained the off-shell
extension to the linear order ofU. We then computed
shell-intrinsic properties. The Kruskal shell for ERN
has nonvanishing pressure and surface current. This
is in contrast to the Kruskal shell in Schwarzschild
black holes where both of these intrinsic quantities
vanish. Thereafter, we obtained the components of
deviation vectors in terms of BMS-like parameters
that are present in the shell’s stress-energy tensor.
We show the test particles initially at rest get
displaced from their initial plane after they interact
with the shell supporting the IGW and null mater.
This corresponds to the memory effect for timelike
geodesics crossing the null shell. We have also
shown there cannot be a deflection that will keep
the test particles on the initial 2-d surface (codi-
mension 1-surface of the shell) and only induce a
relative displacement between them, as was seen for
a nonextreme black hole [31].

(4) Further, we computed the memory effect for null
geodesics passing orthogonally through the horizon
shell placed in ERN spacetime. We observed there
is a nonvanishing change in optical tensors (the
expansion and shear), which again shows a type of
memory effect (or B-memory) for null geodesics
crossing orthogonally to the null hypersurface. We
also get a finite jump in the expansion and shear for
the congruence at points infinitesimally away from
the shell. Also, due to the nonexistence of a pure
IGW, the jumps in shear cannot be attributed to the
pure gravitational degree of freedom encoded in the
IGW as was found for flat space [28].

The constructions depicted here, in principle, can be
generalized for Kerr and extreme Kerr spacetimes also. A
double null, or Kruskal type coordinate system to study the
memory effect, can be obtained in a very similar manner as
described in Sec. IV, but due to the absence of spherical
symmetry, the analytic calculation becomes much more
challenging. We would like to consider the rotating metrics
in 4-dimensions in the future.

It is known that any spacetime metric can be reduced to a
plane wave metric around a point of a null geodesic. This
was shown by Penrose, and the resulted metric is known as
Penrose limit of a spacetime [46]. As Penrose limit
produces plane wave spacetimes (pp-wave, plane symmet-
ric, homogeneous waves, etc.), it is comparatively much
easier to study geodesic deviation vectors and optical
tensors in those backgrounds. These studies can provide
some useful theoretical setups that may prove useful in the
future detection schemes of memory effect. Using Penrose
limit, the conventional noncovariant memory effect for
many impulsive gravitational wave and shock wave metrics
can be studied [47]. The near horizon limit of ERN black
holes has AdS2 × S2 geometry. In static coordinates, it
reads [37,48]

ds2 ≃ −λ2dt2 þ r20
λ2

dλ2 þ r20dΩ2; ð6:1Þ

where λ ¼ r−r0
r0

≪ 1 and r0 ¼ M is the horizon of the
black hole. The Penrose limit of this metric produces a
symmetric plane wave spacetime [49]. It will be interesting
to study the memory effect in such symmetric plane wave
spacetimes.
Another useful extension of this work is to study

different flux-balance laws as depicted in [50]. Studying
quantum effects in such IGW spacetimes generated in
extreme black holes could be another interesting study
where semiclassical features of near horizon symmetries
may show up [51].
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APPENDIX A: SOLDERING FREEDOM &
INTRINSIC QUANTITIES IN EXTREME

BTZ BLACK HOLES

In 3-dimensions, a BTZ black hole provides a good
model where we can study the horizon shells for black
holes with rotation. In 4-dimensions, the analysis becomes
quite difficult. We thus study the soldering freedom for
rotating BTZ black holes and try to gain some insight for
the case when a black hole possesses angular momentum.
First, we present the intrinsic quantities for an extreme

BTZ black hole. We solder two rotating extreme BTZ

metrics with the horizon situated at r0 ¼ r� ¼ l
ffiffiffiffi
M
2

q
.
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l2 ¼ − 1
Λ, and Λ < 0 is the cosmological constant. M is the

mass of the BTZ black holes. For M− manifold, in the EF
coordinate system, the metric takes the following form:

ds2¼−
ðr2−r20Þ2

r2l2
dv2þ2dvdrþr2ðdϕþNϕdvÞ2; ðA1Þ

where

Nϕ ¼ −
J
2r2

; J ¼ Ml: ðA2Þ

In general,
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Here, we see when the angular momentum J equalsMl, r�
becomes r0. Now, considering the supertranslation type
transformations as

vþ ¼ vþ TðϕÞ; rþ ¼ r; ϕþ ¼ ϕ; ðA4Þ

we obtain intrinsic quantities of the shell:

μ ¼ −
1

8π
σAB½κAB�

¼ −
1

8πr20
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8π
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1

8πr20
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vþϕ þ TϕΓ
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p ¼ −
1

8π
½κvv� ¼ −

1

8π
ðΓvþ

vþvþ − Γv
vvÞ: ðA7Þ

We again recover supertranslation in the shell’s intrinsic
quantities. We also observe there cannot be a shell without
matter supporting a pure IGW. We skip displaying the
long expressions for Christofell symbols, as those are not
required to comprehend the appearance of BMS type
symmetries at the horizon shell. It seems, in 3-dimensions,
one cannot make any shell that can induce something
similar to superrotation-like symmetry. Due to the periodic
identification of angular coordinates, no construction may
produce a feasible solution.

APPENDIX B: INVERSE JACOBIAN

We provide here the inverse Jacobian of the coordinate
transformation used in Eq. (5.4) for the extreme RN case.
The coordinate transformations are given in (4.9). We just
label the “þ” coordinates as “−” and compute the
components of N 0 on the hypersurface. The Jacobian
matrix reads

��∂xβ−
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