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We investigate here the local versus global visibility of a spacetime singularity formed due to the
gravitational collapse of a spherically symmetric dust cloud having a nonzero velocity function. The
conditions are investigated that ensure the global visibility of the singularity, in the sense that the outgoing
null geodesics leave the boundary of the matter cloud in the future, whereas, in the past, these terminate at
the singularity. Explicit examples of this effect are constructed. We require that this must be a strong
curvature singularity in the sense of Tipler, to ensure the physical significance of the scenario considered.
This may act as a counterexample to the weak cosmic censorship hypothesis.
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I. INTRODUCTION

When a sufficiently massive cloud collapses unhindered
under the influence of its gravitational field, a spacetime
singularity is obtained. The visibility of such singularity
has created much interest in recent years, as that would
violate the cosmic censorship hypothesis. The first model
of the gravitational collapse was studied by Oppenheimer
and Snyder [1] in 1939 and by Datt [2] independently. The
model had zero pressure, and the density distribution was
homogeneous. The end state of such a collapse turns out to
be a singularity from where no nonspacelike geodesic can
escape. It was argued then that singularities were merely an
artifact of the exact symmetries [3], e.g., in the case of
gravitational collapse, it is the assumption of spherical
symmetry that might cause the occurrence of singularities.
However, in a real scenario, this would not be the case.
Hence, it was argued that no such singularities arise in
reality. However, the cosmological evidence provided by
the WMAP, COBE, and Planck of the cosmic microwave
background radiation indicates that the precursor of our
present Universe is a singularity, i.e., the Universe had a
singular initiation. Apart from this, the singularity theorems
provided by Penrose and Hawking [3,4] prove that singu-
larities could indeed form under very generic conditions in
gravitational collapse as well as cosmology. These obser-
vations, together with the above-mentioned theorems,
suggest the existence of singularities in the universe. It
is worth noting that the singularity theorem can be
interpreted in two different ways. One could interpret it

as proof of the existence of the regime in which general
relativity breaks down. According to this viewpoint, the
existence of singularities cannot be accepted [5–7].
Another viewpoint, proposed by Misner [8], says that
the general relativistic predictions of the singularity and
its properties should be taken into account as it may tell us
about what one should expect from some modification in
the general theory of gravity which works in the regime of a
strong field, for, e.g., a quantum theory of gravity [9]. Here,
we consider the latter approach. In support of this approach,
let us consider a scenario as follows: suppose we get some
observational signatures from extreme gravity region. Now,
these signatures contain traces of a quantum theory of
gravity. If we already have the knowledge of the predictions
of general relativity, then the difference in these observa-
tional traces and the predictions of general relativity may
tell us how to tune general relativity so as to give the
predictions which match with the observational signatures.
Once the existence of singularities is assumed, the next

step is to comprehend the nature of the neighborhood of the
singularity. One such property that needs to be investigated
is the visibility of the singularity [10–14]. It is known that
the big bang singularity is visible in principle because we
can see the null and timelike geodesics coming from it.
However, it was still unclear whether or not the singularities
arising as a result of gravitational collapse are necessarily
censored completely from the outside universe by an event
horizon. Penrose [15], in 1969, proposed what is now
known as the cosmic censorship hypothesis, which is
expressed in two forms: the weak cosmic censorship
hypothesis [16], which suggests that a singularity can
never be globally naked, i.e., visible to faraway asymptotic
observers. Its strong counterpart, called the strong cosmic
censorship hypothesis [17–19], states that the singularity
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can never be locally naked as well. Strong cosmic censor-
ship is equivalent to a spacetime being globally hyperbolic
[13,20]. It is a requirement for the uniqueness of the
maximal global hyperbolic development of some initial
data set [21–23]. One could refer to [24–31] for further
discussion on the development in the understanding of the
cosmic censorship hypothesis.
It was, however, shown by Eardley and Smarr [32],

Christodoulou [33], and Joshi and Dwivedi [34] that
introducing inhomogeneity in the mass profile of the
collapsing cloud could change the evolution of the apparent
horizon, thereby possibly allowing nonspacelike geodesics
to escape away from near the singularity without getting
trapped. As such, the assumption of a homogeneous star is
not very appropriate since it is expected that a star becomes
denser as we move toward it center.
Various mass distributions have been shown to give rise

to visible singularities which are locally naked [35–38].
The stability of locally naked singularities due to collapsing
dust cloud against some perturbation in the initial data has
also been studied by Deshingkar et al. [39] and later by
Mena et al. [40]. The local causal structure of the end state
of the collapse in the presence of nonvanishing pressure has
been studied wherein possibilities of locally naked singu-
larities have been depicted [41–47].
Nevertheless, the globally naked singularities, rather

than the locally naked singularities, may have more
observational significance. Some of the work dealing with
global visibility can be found in [48–53]. Deshingkar,
Jhingan, and Joshi [48] depicted some examples of mass
functions giving rise to a globally visible singularity where
the mass profile is a function of only r, i.e., the fluid under
consideration was dust. The collapse, in this case, is
considered to be marginally bound. Later, Jhingan and
Kaushik [51] used a certain transformation of coordinates
to put a restriction on the mass profile of a marginally
bound collapsing dust to ensure global visibility of the
singularity thus formed. On the contrary, Miyamoto et al.
[50] investigated some stellar models (density distribution
and total mass as the parameters) influenced by marginally
stable configurations of neutron stars for various equations
of state [54] and realized that for such configurations, the
outgoing null geodesic, if at all it exists, gets trapped inside
the event horizon, thereby making the singularity globally
invisible. Additionally, in massless scalar field collapse,
even though naked singularities were shown to occur [55],
the initial data giving rise to such singularities have a
positive codimension in a certain space of initial data.
Hence, the singularity in such case is an unstable phe-
nomenon, thereby preserving the cosmic censorship [56].
Suggestions in support of the validity of weak cosmic
censorship have also been discussed by Wald [57] and
Hod [58].
It is to be noted that the strength of singularities formed

due to the depicted mass functions in [48,50,51] was not

investigated. If any object hits the singularity and is crushed
to zero volume, then it is called a “strong” singularity,
according to Ellis and Schmidt [59]. The mathematically
precise statement given by Tipler [60] is as follows:
Let M be a smooth manifold of four dimensions along

with a smooth metric g with Lorentz signature ð−;þ;þ;þÞ
defined on it. For a causal geodesic γ∶½t0; 0Þ → M, the
volume element defined by wedge product of three inde-
pendent Jacobi field along γ, in a case γ is a timelike
geodesic (two independent Jacobi field in a case γ is null
geodesic), should approach to zero as λ → 0, where λ is the
affine parameter along the geodesic.
We call such singularity as “Tipler” strong. Sufficient

condition for a singularity to be strong in this sense was
provided by Clarke and Krolak [61]. Our basic purpose
here is to examine the global causal structure of a
singularity, keeping in mind the maintenance of its strength
in the sense of Tipler, to ensure the physical relevance of the
scenario considered. Also, marginally bound collapse is a
very special case which corresponds to a very specific
dynamics of the collapse, as we will see in the next
sections. Considering such a collapsing scenario makes
it easy to integrate one of Einstein’s field equations.
However, the generality is lost by doing so. Hence, we
take into consideration here the nonmarginally bound
collapse which incorporates all the possible dynamics of
the collapse (except one corresponding to marginally
bound) depending on the functional form taken by the
velocity function and permitted by the Einstein’s field
equations, thereby widening our scope of understanding the
gravitational collapse and its end state to a more general
scenario.
The paper is arranged as follows: In Sec. II, Einstein’s

field equations corresponding to an inhomogeneous col-
lapsing dust cloud is discussed. In Sec. III, the possibility of
global visibility of singularities formed due to bound dust
collapse is discussed. In Sec. IV, the strength of such
globally visible singularity in the sense of Tipler is
discussed. We end the paper with the concluding remarks
and stating a few open concerns in Sec. V. Here, we use the
units in which 8πG ¼ c ¼ 1.

II. LEMAITRE-TOLMAN-BONDI SPACETIME

The Lemaitre-Tolman-Bondi metric [62–64] is a spheri-
cally symmetric metric governing the spacetime of col-
lapsing dust clouds. It is given by

ds2 ¼ −dt2 þ R02

1þ f
dr2 þ R2dΩ2 ð1Þ

in the comoving coordinates t and r. We consider here a
type I matter field [3]. In such a matter field, the energy-
momentum tensor has nondiagonal entries as zero in a
comoving coordinate system. One of the eigenvalues ρ
represents the energy density as measured by a comoving
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observer at a point p. All observed fields with nonzero rest
mass can be classified under type I matter field. The
corresponding energy-momentum tensor along with van-
ishing pressure is given by

Tμν ¼ ρUμUν; ð2Þ

where Uμ, Uν are the components of the four-velocity.
Einstein’s field equations give us the expression of density
and pressure and the information about the dynamics of the
collapse as

ρ ¼ F02

R2R0 ; ð3Þ

p ¼ −
_F

R2 _R
; ð4Þ

and

_R2 ¼ F
R
þ f; ð5Þ

respectively. The superscripts dot and prime denote the
partial derivative with respect to t and r, respectively. Here,
F and f are, respectively, called the Misner-Sharp mass
function and the velocity function. The Misner-Sharp mass
function in case of dust is a function of r only and
independent of t. This can be seen from Eq. (4) which
tells us that _F ¼ 0 since p ¼ 0 in case of dust. F tells us
about the mass of the collapsing cloud inside a shell of
radial coordinate r at time t. For zero pressure, this mass is
conserved inside a fixed radial shell. For the collapsing
matter field to be well behaved at the initial time and at the
center of the cloud, certain regularity conditions need to be
maintained. The metric functions should by C2 differ-
entiable everywhere according to the obligations of the
Einstein’s field equations. The Misner-Sharp mass function
should have the following expression:

FðrÞ ¼ r3MðrÞ: ð6Þ
Here, M > 0 and is a regular, at least C2 function, having a
finite value at the limit of approach to the center, and is
called the mass profile of the collapsing cloud. In the case F
goes as r2 or lower power, it could be seen from the
Einstein’s field equation (3) that the density blows up at the
center at the initial epoch itself, which is undesirable.
Additionally, in order to avoid cusp in the energy density,
the function space of M is further restricted to follow the
condition

M0ð0Þ ¼ 0: ð7Þ
The positivity of energy density is achieved by restricting
F0 > 0 and R0 > 0. This is maintained by restricting the
mass profile as follows:

3M þ rM0 > 0: ð8Þ

Energy density can also be positive when F0 < 0 and
R0 < 0. However, in such a case, the mass profile becomes
negative near the center, which is not allowed.
A collapsing solution of Einstein’s field equation is

obtained by restricting the physical radius as _R < 0. This
means that a particular shell of fixed radial coordinate
collapses to form a singularity when R ¼ 0 for this shell.
However, R vanishes also at the regular center. Both these
cases can be differentiated by expressing the physical
radius as

Rðt; rÞ ¼ rvðt; rÞ: ð9Þ

Now, a shell of radial coordinate r is said to form a
singularity a time ts when vðts; rÞ ¼ 0. Rescaling of the
physical radius is done using the coordinate freedom such
that

Rðti; rÞ ¼ r; ð10Þ

where ti is the initial time. This can be rewritten as
vðti; rÞ ¼ 1.
The polarity of f classifies the spacetime in three

different categories: bound (elliptic), marginally bound
(flat), and unbound (hyperbolic) collapse, corresponding
to the restrictions f < 0, f ¼ 0, and f > 0, respectively.
Rewriting Eq. (5) as _v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ f=r2

p
demands that the

velocity function should have the form

f ¼ r2b0ðrÞ ð11Þ

as a regularity requirement. Here, b0ðrÞ is a sufficiently
differentiable function.
Equation (5) can be integrated to get

t − tsðrÞ ¼ −
R

3
2Gð−fR=FÞffiffiffiffi

F
p : ð12Þ

Here GðyÞ is defined as follows:

GðyÞ ¼
�
arcsin

ffiffiffi
y

p

y
3
2

−
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

�
for 0 < y < 1;

GðyÞ ¼ 2

3
for y ¼ 0;

GðyÞ ¼
�
−arcsinh ffiffiffiffiffiffi−yp

ð−yÞ32 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

�
for −∞ < y < 0:

ð13Þ

The constant of integration in Eq. (12) can be obtained
using Eq. (10) as
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tsðrÞ ¼
r3=2Gð−fr=FÞffiffiffiffi

F
p : ð14Þ

This is called the singularity curve. It gives us the
information about the time at which a shell of radial
coordinate r collapses to form a singularity R ¼ 0.
A singularity can be only locally naked if the null

geodesic can escape from the neighborhood of the singu-
larity but later in its path, comes across the trapped
surfaces, and falls back to the singularity. The boundary
of all trapped surfaces is called the apparent horizon. The
evolution of the apparent horizon is determined by equating
the physical radius with the Misner-Sharp mass function as
R ¼ FðrÞ. This, along with Eqs. (12) and (14), gives us the
time of formation of the apparent horizon as a function of
radial coordinate as

tAHðrÞ ¼
r3=2Gð−rf=FÞffiffiffiffi

F
p − FGð−fÞ: ð15Þ

It is also called the apparent horizon curve. Fð0Þ ¼ 0
implies tsð0Þ ¼ tAHð0Þ, thereby creating a possibility for
nonspacelike geodesic to have a positive tangent at r ¼ 0.
Such singularities are at least locally naked. The geodesics
may later get trapped, thereby keeping the weak cosmic
censorship intact. However, it is also possible that the
singular geodesic avoids getting trapped by the trapped
surfaces and reaches the boundary of the collapsing cloud
unhindered. Such singularities are studied in detail in the
next section.

III. GLOBAL VISIBILITY

The singularities which are only locally visible may not
be of much observational significance. This is because, in
such a case, an observer outside the event horizon will not
be able to receive any signal escaping from the neighbor-
hood of the singularity. For this reason, it is of extreme
importance to investigate whether or not there exists a
globally visible singularity.
For a singularity to be globally visible, null geodesics

originating from the neighborhood of the singularity should
not only avoid getting trapped by the trapped surfaces but
also reach the boundary of the star before the event horizon.
It turns out that for globally visible singularity, the latter
always implies the former. This is because, at r ¼ rc, the
apparent horizon coincides with the event horizon. We
know that the evolution of the event horizon of the
collapsing cloud is the same as the evolution of the null
geodesic along with the condition that at the boundary of
the cloud rc, the following equality should be satisfied:

FðrcÞ ¼ Rðt; rcÞ: ð16Þ

Now, the event horizon cannot start forming after the
initiation of the formation of trapped surfaces (or its

boundary, i.e., the apparent horizon). This is because
any null geodesic, more specifically outgoing null geo-
desic, forming inside the apparent horizon, will have a
negative tangent and fall back into the singularity. The
evolution of EH can be thought of as the evolution of the
last outgoing radial null geodesic escaping the center
without getting trapped and falling back to the singularity.
The equation of the null geodesic is given by

dt
dr

¼ R0ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p : ð17Þ

In the case of inhomogeneous dust, at r ¼ 0, the time of
formation of AH is the same as the time of formation of
central singularity, as seen from Eqs. (14) and (15) and the
fact that F vanishes. Hence, it can be concluded that the EH
starts forming either before or during the formation of the
singularity due to the collapse of the central shell, i.e.,

tEHð0Þ ≤ tsð0Þ: ð18Þ

Here, tEHðrÞ is the event horizon curve which is the solution
of Eq. (17) with the condition given by Eq. (16).
We now define a small neighborhood around the time of

formation of central singularity such that the null geodesic
escaping the center at a time belonging to this neighbor-
hood (an interval around tsð0Þ rather than a single point
tsð0Þ) will be termed singular. This neighborhood should
have a size of the order of Planck time.
One may question the choice of the size of this

neighborhood as a magnitude influenced by quantum
theory, even when general relativity is assumed to be
fundamental. Let us recall that, as mentioned in the
Introduction, we interpret the singularity theorem as
proposed by Misner [8]. Hence, we will determine the
result obtained by the general relativistic approach in the
strong gravity regime, which may help us to predict what
we must expect from a quantum theory of gravity.
If we can trace a singular null geodesic (SNG) reaching

the boundary before the event horizon, then we have

tSNGðrcÞ < tEHðrcÞ: ð19Þ

Now, we know that R is a monotone decreasing function of
t since _R < 0. Hence, we have

RðtSNGðrcÞ; rcÞ > RðtEHðrcÞ; rcÞ: ð20Þ

However, we know that RðtEHðrcÞ; rcÞ ¼ FðrcÞ from
Eq. (16). Hence, for a singular null geodesic reaching
the boundary before the event horizon, the following
inequality should be satisfied:

Rðt; rcÞ > FðrcÞ: ð21Þ
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Geometrically, the above inequality gives a positive value
of the expansion parameter for outgoing null geodesic
congruence Θl, at r ¼ rc, which is expressed in terms of
physical radius, Misner-Sharp mass function, and velocity
function as follows:

Θl ¼
2

R

� ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
F
R
þ f

r �
: ð22Þ

This specifies the divergent nature of these outgoing null
geodesic congruences at r ¼ rc.
Now, the expression of R in terms of the comoving

coordinates t and r is obtained from Eqs. (12) and (14) as

R ¼
�
r
3
2Gð−fr=FÞ − ffiffiffiffi

F
p

t
Gð−fR=FÞ

�2
3

: ð23Þ

In the case of marginally bound collapse, this is reduced to

R ¼
�
r
3
2 −

3

2

ffiffiffiffi
F

p
t

�2
3

: ð24Þ

However, in the case of nonmarginally bound collapse, we
use the Taylor expanded expression for the function GðyÞ
given by Eq. (13) around y ¼ 0 for 0 < y ≤ 1 as

GðyÞ ¼ 2

3
þ 1

5
yþ 3

28
y2 þ oðy3Þ: ð25Þ

This can then be used in Eq. (23) to write R explicitly as

Rðt; rÞ ¼ 5F
2f

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − oðy31Þ −

4f
5F

�
r
3
2

�
1 −

3fr
10F

þ oðy22Þ
�
−
3

2

ffiffiffiffi
F

p
t

�2
3

s !
ð26Þ

for nonvanishing velocity function, i.e., f ≠ 0. Here,

y1 ¼ −
fR
F

; y2 ¼ −
fr
F
: ð27Þ

Ignoring higher order, i.e., oðy31Þ and oðy22Þ in Eq. (26) is
equivalent to considering the expansion of G from Eq. (25)
only up to first order. Hence, large value of the ratio fR

F
may not give a good approximation. Therefore, in our

investigation, we make sure to keep this ratio small by
considering positivevelocity function having small deviation
from zero.
Deshingkar et al. [48] studied the global causal structure

of the end state of marginally bound collapse, wherein three
different mass distributions were considered. These mass
distributions had first-, second-, and third-order inhomo-
geneity terms, respectively, in the initial density. (Here, nth
order inhomogeneity term means the initial density profile
is of the form ρðrÞ ¼ ρ0 þ ρnrn, where ρ0 and ρn are

(a) (b)

FIG. 1. Causal structure of a singularity formed as an end state of a bound (elliptic) collapsing dust cloud. Apparent horizon, event
horizon, and singular null geodesics are represented by dashed black curves, solid black curves, and solid blue curves, respectively.
(a) The evolution of the event horizon starts from the center before the formation of the central singularity. Singular null geodesics, if at
all, can escape the singularity gets trapped later and falls back in, making the singularity only locally naked. (b) The evolution of the
event horizon starts during the formation of the central singularity. Singular null geodesics can escape and reach the faraway observer.
Here, fR

F ∼ 10−3 initially, and reduces in magnitude thereafter, in both these cases. Higher-order terms, oðy31Þ and oðy21Þ, arising in
Eq. (26) are neglected.
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constants. Also, the corresponding Misner-Sharp mass
function is of the form F ¼ F0r3 þ Fnþ3rnþ3, where F0

and Fnþ3 are constants). The general result obtained was
that a higher magnitude of the inhomogeneity term corre-
sponded to the end state as a globally visible singularity.
Here, we analyze the global behavior of the singularity
formed by bound collapse and for a mass function and the
velocity function given by

(a) (b)

FIG. 2. Causal structure of a Tipler strong singularity formed as an end state of a bound (elliptic) collapsing dust cloud. Apparent
horizon, event horizon, and singular null geodesics are represented by dashed black curves, solid black curves, and solid blue curves,
respectively. χ1 ¼ χ2 ¼ 0 and χ3 > 0. (a) The evolution of the event horizon starts from the center before the formation of the central
singularity. Singular null geodesics, if at all, can escape the singularity gets trapped later and falls back in, making the singularity only
locally naked. (b) The evolution of the event horizon starts during the formation of the central singularity. Singular null geodesics can
escape and reach the faraway observer. Here, fRF ∼ 10−3 initially, and reduces in magnitude thereafter, in both these cases. Higher-order
terms, oðy31Þ and oðy21Þ, arising in Eq. (26) are neglected.

FIG. 3. Causal structure of a Tipler strong singularity formed as
an end state of an unbound (hyperbolic) collapsing dust cloud.
Apparent horizon, event horizon, and singular null geodesics are
represented by dashed black curves, solid black curves, and solid
blue curves, respectively. χ1 ¼ χ2 ¼ 0 and χ3 > 0. The mass
profile, which ends as a globally visible singularity in bound case
(see Fig. 2), ends as a globally hidden singularity in unbound
case. Here, fR

F ∼ 10−3 initially and reduces in magnitude there-
after. Higher-order terms, oðy31Þ and oðy21Þ, arising in Eq. (26) are
neglected.

TABLE I. Here, mass function and velocity function of Eq. (38)
are considered. F0 ¼ 1 and tsð0Þ ¼ 2

3
. The collapse is unbound

(hyperbolic). The singularity thus formed is strong and globally
hidden since tEHð0Þ < 2

3
. tEHð0Þ is achieved by numerical

approximation rounded up to six decimal digits.

b00 F3 tEHð0Þ
10−1 −1 0.146174
10−1 −5 0.586922
10−1 −20 0.646240
10−1 −50 0.646667
10−1 −100 0.646667
10−1 −200 0.646667
10−2 −1 0.170522
10−2 −5 0.609225
10−2 −20 0.664501
10−2 −50 0.664667
10−2 −100 0.664667
10−2 −200 0.664668

b00 F3 tEHð0Þ
10−3 −1 0.172916
10−3 −5 0.611443
10−3 −20 0.666319
10−3 −50 0.666467
10−3 −100 0.666467
10−3 −200 0.666468
10−4 −1 0.173141
10−4 −5 0.611663
10−4 −20 0.666500
10−4 −50 0.666647
10−4 −100 0.666648
10−4 −200 0.666647

MOSANI, DEY, and JOSHI PHYS. REV. D 102, 044037 (2020)

044037-6



F ¼ F0r3 þ F2r5; f ¼ b00r2: ð28Þ

The boundary of the cloud is found such that the density
smoothly matches to zero there. Hence, the boundary is
given by

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
3F0

5F2

s
: ð29Þ

This is a second-order inhomogeneity in the mass function.
As seen in Fig. 1, the singularity is at least locally naked for
chosen values of F0 and F2. However, in Fig. 1(a), the
event horizon starts forming before the formation of the
central singularity, thereby making the singularity globally
hidden. The singular geodesic can escape the singularity
but later gets trapped and falls back. Now, increasing
the magnitude of the inhomogeneity term F2, as seen in
Fig. 1(b), affects the evolution of the event horizon in such
a way that its time of formation is delayed and now overlaps
with the time of formation of a central singularity. A null
geodesic with the property FðrcÞ < Rðt; rcÞ can be traced
with the criteria that the difference between the time of

escape of the null geodesic from the center and the time of
formation of the central singularity can be reduced as much
as we desire. In such a case, the singularity is considered as
globally visible.
It should be noted that even if such globally visible

singularities exist, it should not create a problem for the
cosmic censorship if such singularities are gravitationally
weak. We discuss this in more detail in the following
section.

IV. STRENGTH OF THE SINGULARITY

To maintain the strength of the singularity in the sense of
Tipler, Clarke, and Krolak has given a necessary and
sufficient condition which needs to be satisfied. The
criterion says that at least along one null geodesic, the
following inequality needs to be satisfied:

lim
λ→0

λ2RijKiKj > 0: ð30Þ

Here, λ is the affine parameter along the null geodesic
with λ ¼ 0 at the singularity. We can use this criterion to put
a restriction on a particular parameter signifying the

t=1

–0.4 –0.2 0.0 0.2 0.4
–0.4

–0.2

0.0

0.2

0.4

x

y

FIG. 4. Evolution of the collapsing star and the global causal structure is depicted here. F0 ¼ 1, F3 ¼ −15, and Fi ¼ 0 for i ≠ 1, 3.
b00 ¼ −0.001 and b0j ¼ 0 for j ≠ 0. fR

F ∼ 10−3 initially and reduces in magnitude thereafter. Higher-order terms, oðy31Þ and oðy21Þ,
arising in Eq. (26) are neglected. The singularity is Tipler strong with χ1 ¼ χ2 ¼ 0 and χ3 ≠ 0. The solid black disk represents the event
horizon which increases in size with time. No singular geodesic can escape and reach the boundary.
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nonlinear relation between the physical radius and the
tangent of the outgoing radial null geodesic at the singular
center. The time curve can be Taylor expanded around the
center r ¼ 0 as follows:

tðr; vÞ ¼ tð0; vÞ þ rχ1ðvÞ þ r2χ2ðvÞ þ r3χ3ðvÞ þOðr4Þ;
ð31Þ

where

χiðvÞ ¼
1

i!
dit
dri

����
r¼0

: ð32Þ

For a singularity to be at least locally visible, the tangent
of the future directed radial null geodesic from the
singularity at r → 0 should be positive. In the ðR; uÞ frame,
where u ¼ rα with α > 1, this tangent is written as
X0 ¼ limr→0

dR
du. It can be shown that

X
3
2

0 ¼ lim
r→0

1

α − 1
ðχ1ð0Þ þ 2rχ2ð0Þ þ 3r2χ3ð0Þ

þ 4r3χ4ð0Þ þ oðr4ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ð0Þ

p
r
5−3α
2 : ð33Þ

Here, the relation between the tangent of outgoing radial null
geodesic at the singularity and the components χi of the
Taylor expansion of the time curve at v ¼ 0 is depicted. To
ensure the positivity of X0, the first nonzero χi should be
positive.
Now, it is known that Eq. (30) can be satisfied only if

α ≥ 3. Also, the necessary criterion for the singularity to be
at least locally naked is given by α ≤ 3. Hence, the
necessary criterion for a singularity to be strong and locally
naked is given by [34]

α ¼ 3: ð34Þ

However, for α ¼ 3, if at all χ1 or χ2 is/are nonzero, then
X0 blows up. Hence, wewill have tomake sure that χ1 and χ2
should be zero. More specifically, χ1 and χ2 should be of
order at least r3 and r2, respectively, to avoid blowing up of
X0. The integral expression of χ1, χ2, and χ3 is as follows
[36,47]:

χ1ðvÞ ¼ −
1

2

Z
1

v

M1

v þ b01

ðM0

v þ b00Þ
3
2

dv; ð35Þ

t=0.7

–0.015 –0.010 –0.005 0.000 0.005 0.010 0.015
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t=0.95
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x
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x
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FIG. 5. Local causal structure is depicted here. F0 ¼ 1, F3 ¼ −15, and Fi ¼ 0 for i ≠ 1, 3. b00 ¼ −0.001 and b0j ¼ 0 for j ≠ 0.
fR
F ∼ 10−3 initially and reduces in magnitude thereafter. Higher-order terms, oðy31Þ and oðy21Þ, arising in Eq. (26) are neglected. The
singularity is Tipler strong with χ1 ¼ χ2 ¼ 0 and χ3 ≠ 0. Behavior of singular outgoing radial null geodesic wave front is represented by
blue color. Event horizon is represented by black colored circle.
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χ2ðvÞ ¼
Z

1

v

"
3

8

�
M1

v þ b01
�
2

�
M0

v þ b00
�5

2

−
1

2

M2

v þ b02�
M0

v þ b00
�3

2

#
dv; ð36Þ

and

χ3 ¼
Z

1

v

b01
ðM0

v þ b00Þ
3
2

�
−

5

16

�
b01

M0

v þ b00

�
2

þ 3

4

�M2

v þ b02
M0

v þ b00

��
−
1

2

ðM3

v þ b03Þ
ðM0

v þ b00Þ
3
2

dv: ð37Þ

Here Mi are the components nonminimally coupled to ri

in the Taylor expansion of M around r ¼ 0. M is the mass
profile, having relationwith theMisner-Sharpmass function,
as shown in Eq. (6). Also, b0i in Eqs. (35)–(37) are the
components nonminimally coupled with ri in the Taylor
expansion of the velocity profile b0ðrÞ around the center
r ¼ 0. Regularity condition dictates that fðrÞ ¼ r2b0ðrÞThe

mass profile and the velocity profile together determine the
polarity of χ3. For positive χ3, wehave a strong at least locally
naked singularity provided χ1 and χ2 vanish at v ¼ 0. Such
analysis was not done in [48] in the case ofmarginally bound
collapse for various mass functions considered therein. One
such example of mass function and velocity function for
which χ1 and χ2 vanish is given as follows:

t=1

–0.3 –0.2 –0.1 0.0 0.1 0.2 0.3
–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

x

y

FIG. 6. Evolution of the collapsing star and the global causal structure is depicted here. F0 ¼ 1, F3 ¼ −20, and Fi ¼ 0 for i ≠ 1, 3.
b00 ¼ −0.001 and b0j ¼ 0 for j ≠ 0. fR

F ∼ 10−3 initially and reduces in magnitude thereafter. Higher-order terms, oðy31Þ and oðy21Þ,
arising in Eq. (26) are neglected. The singularity is Tipler strong with χ1 ¼ χ2 ¼ 0 and χ3 ≠ 0. The solid black disk represents the event
horizon which increases in size with time. Escaping singular null geodesic wave fronts are represented by red and blue circles which
increases with time.
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F ¼ F0r3 þ F3r6; f ¼ b00r2: ð38Þ

The boundary of the cloud is found such that the density
smoothly matches to zero there. Hence, the boundary is
given by

rc ¼
�
−

F0

2F3

�1
3

: ð39Þ

Similar to the previous mass function, this mass function,
along with a positive velocity, also gives at least a locally
naked singularity for chosen values of F0 and F3. χ3 > 0 in
this case. However, in Fig. 2(a), outgoing singular radial null
geodesics having positive tangent at the center later gets
trapped and falls back to the singularity. Increasing the
magnitude of the inhomogeneity term, F3, alters the evolu-
tion of the event horizon in such a way that its initiation now
coincides with the time of formation of singularity due to
collapsing central shell, thereby allowing singular null geo-
desics to escape and reach the faraway observer, as observed
in Fig. 2(b).
In the case of a marginally bound collapse of dust, third-

order inhomogeneity in the mass profile can give globally
naked singularity for a wide range of F3 < 0 [39]. It can be
seen from Eqs. (35)–(37) that such singularity is Tipler
strong.
In the case of unbound collapse, we consider a velocity

function to have a positive value. It is found in Fig. 3 that
the mass function giving rise to the globally naked
singularity as the end state of bound collapse gives a
globally hidden singularity as the end state of unbound
collapse having velocity function with the same magnitude
but opposite polarity. Furthermore, it is observed in Table I
that at least so long as the mass function and the velocity
function are of the form Eq. (38) along with b00 > 0, a wide
range of coefficients in such mass and velocity function
give a globally hidden singularity as the end state.
In Fig. 4, dynamics of the collapse of the fluid are shown

for a particular mass function such that the outgoing radial
null geodesics get trapped, and there is no causal con-
nection between the singular region and the outside
observer. The singularity thus obtained is, however, locally
naked, as seen in Fig. 5. Figure 6 depicts the evolution of
the density profile, event horizon, and singular geodesics
escaping the boundary of the cloud without getting trapped
by any trapped surfaces. A different value of the mass
function is considered here. The magnitude of the inho-
mogeneity term in the Misner-Sharp mass function is more
in this case. An asymptotic observer may observe the wave
fronts of the escaped singular null geodesic highly red-
shifted. Null geodesic escaping from closer to the singu-
larity will be more redshifted. The light traveling frommore
close to the singularity is also traveling closer to the event
horizon. One could deduce that more redshifted the light is,
more significant it is, in respect of holding traces of the

quantum gravity. All the evolutions are in the comoving
frame. Figures 4–6 help in visualizing the evolution of the
collapsing cloud along with the evolution of the event
horizon and null trajectories. They also depict the dynamics
of density variation of the collapsing cloud due to inho-
mogeneous mass distribution, bright light indicating
denser.

V. CONCLUDING REMARKS

Some concluding remarks and open concerns are men-
tioned as follows:
(1) End state of a marginally bound collapse has been

studied in [39]. Considering f ¼ 0 eases the inte-
gration of Eq. (5) to obtain the expression of R as in
Eq. (24). However, such a scenario is a very
particular case corresponding to a very specific
dynamics of the collapse, as mentioned in the
Introduction, with a scaling function expressed as

vðt; rÞ ¼
�
1 −

3

2

ffiffiffiffi
F

p
t

r
3
2

�2
3

; ð40Þ

which is obtained from Eq. (24). Here we consider a
nonmarginally bound collapse of the inhomo-
geneous dust cloud and study the causal structure
of the singularity formed as the end state. Inves-
tigating the nonmarginally bound gravitational col-
lapse increases our scope of understanding the
gravitational collapse to a more general scenario.
It is worth mentioning that such a general scenario
also encapsulates a very important case wherein,
initially, all the fluid elements are at rest, i.e.,
_Rð0; rÞ ¼ 0. This is obtained by considering the
velocity function as

f ¼ −
F
r
; ð41Þ

which is obtained by substituting _Rð0; rÞ ¼ 0 in
Eq. (5). Such momentarily static initial condition is
motivated from the idea that collapse to a singularity
begins when some dynamical instability sets in, as
discussed in [50,65].

(2) Unless the globally naked singularity is physically
strong, it should not be taken as a serious counter-
example to the weak cosmic censorship. It is
important to note that the strength of the singularity
as defined by Tipler [60] involves vanishing of the
volume element formed by three independent Jacobi
fields along the timelike geodesic as it terminates in
a strong singularity, rather than the behavior of
individual Jacobi fields, as pointed out by Nolan
[66]. One can show examples of physically strong
singularity wherein the volume element does not
vanish and hence are classified as “Tipler weak.”
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This led Ori [67] to redefine the physically strong
singularity which extends the class of strong singu-
larity by including cases in which any of the Jacobi
fields is unbounded [66,67]. Such singularities are
termed as “deformationally strong” singularity.
However, here we have taken an interest in singu-
larities wherein the volume element defined by
independent Jacobi fields vanishes (Tipler strong).
We have proved the existence of such Tipler strong
singularities that are globally naked and formed due
to bound gravitational collapse.

(3) In deriving the explicit expression of the physical
radius in terms of t and r in Eq. (26) for non-
vanishing velocity function, only the first compo-
nent of the Taylor expansion of G is used from
Eq. (25). Hence, the accuracy of our further analysis
will get affected for large values of the term fR

F . To
minimize the error, small values of the magnitude of
the velocity function are considered. For larger
values, higher-order terms in the expansion of G
from Eq. (25) will have to be taken into account.
Once the explicit expression of the physical radius is
achieved, one can study the dynamics of the event
horizon, apparent horizon, and singular radial null
geodesics to investigate the global causal structure of
the singularity.

(4) It is the event horizon, which evolves like an
outgoing radial null geodesic, which starts from
the singularity satisfying the equality of the physical
radius and the Misner-Sharp mass function at the
boundary of the collapsing fluid. Hence, any out-
going radial null geodesic with the property that
F < R at r ¼ rc has to start from the center at a time
before the formation of the singularity. However, this
time difference between the escape of the light and
the formation of the singularity can be reduced as
much as desired. For such a null geodesic to be
singular, it should escape from the region, which is
in a small neighborhood of the singularity. This
small neighborhood should have a measure of the
order of Planck length. Only then will such un-
trapped null geodesic be considered significant and
will be expected to contain traces relevant to deepen
our understanding of how gravity works in the
quantum regime.

(5) In terms of observational significance, if at all there
exists a globally visible singularity, it may be
difficult to distinguish between singular and non-
singular geodesics escaping such singularity and
received by a telescope. However, light wave front,
which is more redshifted, is expected to come from
the region, which is more close to the singularity as
compared to the wave front, which is less redshifted.

(6) Consider Eq. (38) with negative F3 and positive b00.
This corresponds to the unbound collapse of fluid
with third-order inhomogeneity in mass profile. It is
found that as far as such mass and velocity functions
are considered, we may have tEHð0Þ < tsð0Þ, which
means that globally visible singularity may not be
achieved. This argument is supported by data in
Table I. So far, no concrete statement about the
global visibility of a strong singularity formed due to
unbound collapse of dust can be made, and further
investigation is needed. It may be possible that for
some other combination of mass function and
velocity function (unbound), the collapse ends in
a globally visible singularity. This will be inves-
tigated in more detail in our future work.

(7) A very important concern is that our analysis is
restricted to the end state of a collapsing dust cloud,
i.e., the pressure of the collapsing fluid is considered
to be zero. The effect on the global causal structure
of the singularity in the presence of pressure is
unknown. To understand the behavior of singular
null geodesic numerically requires information
about the explicit expression of the physical radius.
However, this is difficult to obtain when the Misner-
Sharp mass function varies with time, which is the
case when there is nonzero pressure. Investigating
the global visibility of a Tipler strong singularity
formed due to the collapse of a cloud having such
time-varying Misner-Sharp mass function will be a
significant step toward understanding the cosmic
censorship.
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