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We compute the gravitational-wave (GW) energy flux up to the next-to-next-to-leading (NNL) order of
tidal effects in a spinless compact binary system on quasicircular orbits. Starting from an effective matter
action, we obtain the stress-energy tensor of the system, which we use in a GW generation formalism based
on multipolar-post-Minkowskian and post-Newtonian (PN) approximations. The tidal contributions to the
multipole moments of the system are first obtained, from which we deduce the instantaneous GW energy
flux to NNL order (formally 7PN order). We also include the remaining tidal contributions of GW tails to
the leading (formally 6.5PN) and next-to-leading (7.5PN) orders. Combining it with our previous work on
the conservative equations of motion and associated energy, we get the GW phase and frequency evolution
through the flux-balance equation to the same NNL order. These results extend and complete several
preceding results in the literature.
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I. PHYSICAL DISCUSSION AND MOTIVATIONS

The discovery of gravitational waves (GWs) generated
by the inspiral and merger of two neutron stars (NSs) [1,2]
marked a breakthrough in fundamental physics, by
allowing for the first time a direct constraint on the equation
of state (EOS) of cold matter at supranuclear densities deep
inside NSs. This important test excluded some of the
stiffest EOSs, for which the pressure increases a lot for
a given increase in density, and which therefore offer more
resistance to the gravitational collapse, resulting in a NS
that is less compact. This finding is consistent with known
constraints on the radius of NSs from electromagnetic-
based observations [3]. However the majority of soft EOSs,
which are more easy to compress and thus predict a more
compact NS, are still viable (see [4,5] for reviews).
During the inspiral phase of coalescing NS binaries, the

orbital dynamics is dominated by point-mass contributions
and the waveform is essentially identical to that of black
holes. However, closer to the merger small corrections arise
due to the finite-size effects of NSs. These can be described
by resorting to a tidal expansion in the small parameter
∼RA=rAB, where RA is the size of one of the NSs and rAB is
the typical orbital separation. The tides arise from the
response of the NSs to the gradient of the companion’s
gravitational field across the matter distribution. The tidal
expansion is a multipole expansion where the mass

quadrupole moment of the object is dominant, and higher
mass- or current-type moments are subdominant. The
deformation and finite-size effects are parametrized by a
series of coefficients associated with each multipole
moment and referred to as the tidal deformabilities (or
polarizabilities) of the NS.
For GW detectors, the main observable is the so-called

binary’s chirp, i.e., the time evolution of the compact
binary’s orbital frequency ωðtÞ and phase φðtÞ ¼ R

dtωðtÞ
through GW radiation reaction during the inspiral. The
detectors are sensitive to some particular combination of
the two deformabilities of the NS and the two masses that
enter the binary’s chirp. To the lowest tidal mass quadru-
pole order, the chirp is given by the combination of the two
relations,
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where ν ¼ m1m2=m2 is the symmetric mass ratio, m ¼
m1 þm2 is the total mass, and where we use the dimen-
sionless frequency x≡ ðGmω

c3 Þ2=3 and time θ≡ νc3
5Gm ðtc − tÞ

variables, with tc denoting the instant of coalescence—at
which the distance between the particles formally vanishes
while the frequency diverges—φ0 being an initial constant
phase,G the gravitational constant, and c the speed of light.
The most commonly used approximant for GW data
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analysis in the Fourier domain is defined by using the
stationary-phase approximation (SPA), for which the phase
of the dominant mode at twice the orbital frequency reads

ψ ¼ 2πftc − 2φ0 −
π

4
þ 3v−5
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39

2
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�
; ð1:2Þ

where we have posed v≡ ðπGmf
c3 Þ1=3, f being the Fourier

frequency of the GW signal.
Since x and v2 are small post-Newtonian (PN) parameters

of the order of Oðc−2Þ, we see that the effect of the internal
structure of NS (in the nonspinning case) is comparable to
relativistic orbital effects occurring at the 5PN order beyond
the point-particle contribution computed with the usual
Einstein quadrupole formula. Of course, the latter estimate
is just formal, since we have to take into account, besides the
small factor x5 ∼ v10, the numerical value of the 5PN coeffi-
cient parametrizing the finite-size effect in (1.1) and (1.2).
In principle, the coefficient Λ̃ð2Þ is directly measurable by

the GW detectors. However, in practice the constraint is
obtained under some prior regarding the values of the NS
spins [1]. The best one probably corresponds to the low-spin
scenario (say, with dimensionless spin parameter jχj≤0.05),
since we expect from binary pulsar observations in our
galaxy that the spin-orbit and spin-spin terms will make
negligible contributions to the accumulated phase of NS
binaries. The data analysis process should improve in this
regard when we have more detections and higher signal-to-
noise ratios, so that we can measure independently the NS
spins using PN templates. The precise expression of Λ̃ð2Þ in
terms of the companion parameters is [6,7]1
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where the individual dimensionless mass quadrupole
deformability parameter is defined by

Λð2Þ
A ¼ 2

3
kð2ÞA

�
RAc2

GmA

�
5

: ð1:4Þ

HeremA and RA are the mass and radius of the NS, whereas

kð2ÞA is a characteristic numerical coefficient called the
(second) Love number [8]. Since Eq. (1.3) depends on both
the masses and tidal deformabilities, with the masses being
biased by gravitational lensing unlike the polarizabilities, the
observable combination (1.3) could be used to recognize
strongly lensed GW binary signals from unlensed ones with

intrinsically higher masses [9]. On the other hand, assuming
the absence of lensing, the simultaneous measurement ofm1,
m2 and Λ̃ð2Þ may provide an estimation of the redshift
independently of electromagnetic observations [10]. This is
particularly interesting for cosmography applications such as
the measurement of the Hubble-Lemaître parameter.
Both the Love number and the compacity parameter CA ≡

GmA
RAc2

depend on the particular EOS. The Love numbers and

tidal polarizabilities have been computed numerically for
NSs [11–14]. Typically kð2Þ ≃ 0.1 and C ≃ 0.15,2 which
means that the quadrupole deformation coefficient (1.4) is a
large number of the order of ∼1000; hence, the effect is large
enough to be measurable from GW signals with a reasonable
signal-to-noise ratio [6,7,18]. More precisely, we can esti-
mate its magnitude by computing the tidal phase from
Eq. (1.2) at the point of contact of the two NSs. At leading
order for two identical NSs (with common Love number kð2Þ

and compacity C), defining the contact point byvcontact¼C1=2,
we expect the maximal tidal phase lag to be roughly [13]

ψmax
tidal ¼ −

39

32
kð2ÞC−5=2 ≃ −14 rad; ð1:5Þ

which is amply sufficient for detection and data analysis (see,
e.g., [19,20]).
The tidal polarizabilities (1.6) are physical parameters to

the extent that they directly parametrize the effective matter
action, (2.1) and (2.2), we adopt in this work, following
Refs. [21,22], as an efficient and elegant tool to describe
tidal effects in the case of compact bodies. In the present
paper, we shall analyze the tidal response of NS binaries
and the modification of the GW phase to higher order,
corresponding to mass quadrupole, current quadrupole, and
mass octupole tidal interactions. Accordingly, we introduce
three tidal polarizability coefficients, conveniently denoted,
using standard normalization [11,14], as

Gμð2ÞA ≡
�
GmA

c2

�
5

Λð2Þ
A ¼ 2

3
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Gσð2ÞA ¼ 1

48
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Gμð3ÞA ¼ 2

15
kð3ÞA R7

A; ð1:6cÞ

and related to corresponding relativistic generalizations

kð2ÞA , jð2ÞA , and kð3ÞA of Love numbers for the mass quadru-
pole, current quadrupole, and mass octupole moments of
the body, with RA denoting its radius in a coordinate system
such that the area of the sphere of radius RA is 4πR2

A.
1The normalization is chosen in such a way that Λ̃ð2Þ ¼ Λð2Þ

1 ¼
Λð2Þ
2 in the case of two identical neutron stars, i.e., with the same

mass and the same EOS.

2By contrast, the Love numbers of black holes, i.e., in the limit
where the compacity CA → 1

2
, are exactly zero [12,13,15–17].
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As we have seen, the tidal mass quadrupole contribution
to the phase (1.1) starts formally at 5PN order; here, we
shall also compute the next-to-leading (NL) as well as the
next-to-next-to-leading (NNL) corrections arising formally
at 6PN and 7PN orders. The current quadrupole will start at
NL/6PN order and we shall control the NNL/7PN term
therein, while the mass octupole term will be purely a NNL/
7PN contribution. We shall finally include the tidal con-
tributions of GW tails to leading 6.5PN order, and to NL/
7.5PN order.
In the formalism of effective action on which we lean,

each compact object is described by an effective point
particle endowed with internal structure. The effect of the
internal structure is described by some nonminimal matter
couplings to gravity introduced at the level of the action,
involving relativistic tidal moments given by appropriate
covariant derivatives of the Riemann tensor (or its dual),
evaluated at the location of the particle, and partly con-
tracted with several occurrences of the four-velocity vector.
A regularization is required to remove the self-field of

the pointlike object, thus “automatically” selecting the
external tidal field experienced by body A due to the other
bodies B ≠ A composing the system. We rely on dimen-
sional regularization, which is known to give a complete
physical answer in high PN approximations (see notably
[23,24]). However, up to the NNL order, as shown in the
Appendix A, it is equivalent to the simpler Hadamard
“partie finie” regularization, so we actually use the
Hadamard regularization in our practical calculations.
In the previous work [22], we obtained the tidal effects in

the conservative equations of motion (EOMs) of compact
binary systems to NNL order in the PN expansion. The
internal structure and finite size of the compact objects
were described by means of the Fokker action associated

with the sum of the effective matter action and the Einstein-
Hilbert gravitational action (with a gauge fixing term),
through the three tidal polarizability coefficients (1.6). In
particular, we obtained the invariant energy of the compact
binary system in the case of quasicircular orbits, which was
found to be consistent with the (PN re-expansion) of the
known effective-one-body Hamiltonian [21].
In the present paper, we compute the tidal effects in the

GW energy flux to NNL order within the so-called PN-
matched multipolar-post-Minkowskian (MPM-PN) formal-
ism, which applies specifically in harmonic coordinates
[25–32]. The MPM-PN approach describes the waveform
by means of mass and current radiative multipole moments
defined in the asymptotic region, which are themselves
related to some appropriate source-type multipole moments
defined in the near zone for the whole matter system.
Beware that we work with two different kinds of multipole
moments in this article: the tidal moments, describing the
individual deformation of the bodies, and the source
multipole moments describing the mass distribution of
the overall system. Note that, at the lowest order, the theory
is linear, so that a given source multipole moment is the
sum of its point-particle counterpart for the orbital motion
and the corresponding tidal multipole moments of both
bodies.
The energy flux computed in the present paper, together

with the conservative energy deduced from the EOMs in
our previous work [22], are the two basic ingredients
required for insertion into the flux-balance equation and
computation of the phase or frequency evolution to NNL
order. As a matter of summary, we present here our end
result for the tidal part of the SPA phase in the case of equal
NS, with the same mass (ν ¼ 1=4) and identical
polarizabilities3:

ψ tidal ¼ −
117
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117
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�
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�
: ð1:7Þ

Note that, besides the even PN corrections, there also
appear half-integer 6.5 and 7.5PN contributions, which are
due to propagating GW tails at infinity [26,28].
The rest of the paper is organized as follows. In Sec. II,

we recall the matter action we start with (details of its
construction are given in, e.g., [21,22]) and compute the
stress-energy tensor of the system as well as its 3þ 1
decomposition rewritten in a convenient form. Next, we
calculate, in Sec. III, the potentials sourced by the previous
stress-energy tensor (some long formulas are relegated to
Appendix B). In Sec. IV we apply the GW generation
formalism, which yields the source multipole moments of
the binary system in a general frame. Those are then

3To present our results below we conveniently use a “tilted”
notation for the polarizability coefficients defined by Eqs. (4.7)
and (4.8). For identical bodies, with Love numbers kð2Þ, jð2Þ, and
kð3Þ, and compacity C, such notation reduces to (with, e.g., μ̃ð2Þ ≡
μ̃ð2Þþ and μ̃ð2Þ− ¼ 0)

μ̃ð2Þ ¼ 1

48

kð2Þ

C5
; σ̃ð2Þ ¼ 1

1536

jð2Þ

C5
; μ̃ð3Þ ¼ 1

960

kð3Þ

C7
:

The formula (1.7) can easily be reconciled with Eq. (1.2) to the
leading order.
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specialized to the center of mass (COM) frame and, in a
last stage, for circular orbits (while the moments in a general
frame are too long, we present the COM moments in
Appendix B). As for the instantaneous GW flux, it is
computed in Sec. V in a modal form based on the mode
decomposition of the sourcemultipolemoments. Themissing
tail part is obtained from those flux modes. In Sec. VI we
present our result for the phase evolution, both in the standard
Taylor formand in theFourier domain, using theSPA.Finally,
in Sec. VII, we conclude and make comparisons with the
existing literature. We prove in Appendix A that the dimen-
sional and Hadamard regularizations are equivalent for this
problem up to NNL order. In Appendix B we provide the
lengthyexpressionsof the tidalmatter variables and the source
multipole moments in the COM.

II. MATTER ACTION AND STRESS-ENERGY
TENSOR

A. General formalism

In the preceding paper [22], we analyzed the motion of a
compact binary system including tidal interactions. To do
so, we considered the gravitational Einstein-Hilbert action
endowed with the standard harmonic gauge fixing term, to
which we added the effective matter action for a system of N
massive gravitationally interacting compact bodies with inter-
nal structure. The motion was obtained by varying the
associatedFokkeraction.Thenextcrucial step inourapproach,
pursued in this section, consists in the computation of the
matter stress-energy tensor, whose vocation is to be inserted in
aGWgenerationformalism.For thatpurpose,weneedonly the
matter part of the action which admits the general form

Sm ¼
XN
A¼1

Z
dτALA; ð2:1Þ

where the term associated with particle A integrates over its
proper time variation dτA which is such that the four-velocity
cuμA ¼ dyμA=dτA is normalized to gAμνu

μ
Au

μ
A ¼ −1. Here, gAμν

means that the metric is evaluated at the location of particle A,
with theself-fieldcontributionfromA removedwith thehelpof
an appropriate self-field regularization, namely, dimensional
regularization.
In the approximation of point particles (pp) deprived of

internal structure and unresponsive to tidal fields, the action
is given by the standard mass term. To describe the
response of the internal structure of the compact objects
to tidal interactions, we add to the point-particle action the
following specific nonminimally coupled piece4:

LA ¼ −mAc2 þ
μð2ÞA

4
GA

μνG
μν
A þ σð2ÞA

6c2
HA

μνH
μν
A þ μð3ÞA

12
GA

λμνG
λμν
A :

ð2:2Þ

To the NNL order investigated in this paper, it is sufficient
to consider the above three terms,5 made of quadratic
products of tidal mass and current multipole moments,
namely, the mass quadrupole tidal moment GA

μν, the current
quadrupole HA

μν, and the mass octupole GA
λμν. They are

defined as6

GA
μν ¼ −c2RA

μρνσu
ρ
Au

σ
A; ð2:3aÞ

HA
μν ¼ 2c3R�A

ðμρνÞσu
ρ
Au

σ
A; ð2:3bÞ

GA
λμν ¼ −c2∇⊥

ðλR
A
μρνÞσu

ρ
Au

σ
A: ð2:3cÞ

The Riemann tensor and its dual are evaluated at point A
following the regularization, and we denote ∇⊥

λ R
A
μνρσ ≡

ð∇⊥
λ RμνρσÞA the projected covariant derivative, defined

by ð∇⊥
λ ÞA ¼ ð⊥κ

λ∇κÞA with ð⊥ν
λÞA ¼ ðδνλ þ uλuνÞA. The

polarizability coefficients were already introduced in
Eq. (1.6).
The motivation for writing the Lagrangian (2.2) stems

from the fact that the matter action for a given body, in the
limit of small radius relevant for compact objects, can be
expanded near the worldline of a representative point on
which the resulting action is then localized, and that, in the
absence of spins, it can be only built from the metric and its
derivatives in a way that preserves parity and general
covariance. We already emphasized the crucial role played
by the self-field regularization, which must properly be the
dimensional regularization in this framework.
In order to compute the stress-energy tensor, we first

shift from the action (2.1) parametrized by the particle’s
proper time τA to an action defined in terms of an arbitrary
parametrization τ̄. For instance, this parametrization can be
the same for all particles. Once this is done, the ensuing
expression for the action is manifestly invariant by repar-
ametrization. We thus pose (with ū2A ¼ gAμνū

μ
Aū

ν
A)

dτA ¼ dτ̄
ffiffiffiffiffiffiffiffiffi
−ū2A

q
; uμA ¼ ūμAffiffiffiffiffiffiffiffiffi

−ū2A
p ; LA ¼ L̄Affiffiffiffiffiffiffiffiffi

−ū2A
p :

ð2:4Þ

4We use the same conventions and notation as in Ref. [22]. See
[21,22] for more details, as well as [6,12,13,15,33–36] for
preceding fundamental works and alternative discussions. See
also [37,38] for general definitions of the Dixon moments,
including spins, or [39–41] for a more practical approach at
the level of the action.

5Other multipoles, proper time derivatives of tidal moments, as
well as cubic combinations of those quantities, can be checked to
appear at higher post-Newtonian order.

6The dual of the Riemann tensor Rμνρσ is defined as
R�
μνρσ ≡ 1

2
εμνλκRλκ

ρσ , where εμνλκ stands for the totally antisym-
metric Levi-Civita tensor, with ε0123 ¼ ffiffiffiffiffiffi−gp

. The underlined
indices are to be excluded from the operation of symmetrization.
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The original action (2.1) now becomes (for simplicity’s
sake, we suppress the particle’s label until the end of this
section)

Sm ¼
XZ

dτ̄ L̄ðūμ; gμν; Rμνρσ;∇λRμνρσÞ: ð2:5Þ

As it is written, the Lagrangian L̄ is an (ordinary) function
of independent variables: the arbitrary parametrized four-
velocity ūμ, the covariant metric, the Riemann tensor and
the covariant derivative of the Riemann tensor. The
configuration variables are just the particle’s positions
yμðτ̄Þ and their derivatives ūμðτ̄Þ. We thus define the
linear momentum pμ as the conjugate momentum of the
position, i.e.,

pμ ¼
∂L̄
∂ūμ : ð2:6Þ

Following Refs. [37–39,41], we further introduce the
quadrupole current Jμνρσ and octupole current Jλμνρσ as7

Jμνρσ ¼ −6
∂L̄

∂Rμνρσ
; Jλμνρσ ¼ −12

∂L̄
∂∇λRμνρσ

: ð2:7Þ

The current Jμνρσ and the current Jλμνρσ on its four last
indices have the same symmetries as the Riemann tensor. In

addition, Jλμνρσ satisfies the cyclic symmetry J½λμν�ρσ ¼ 0 as
a consequence of the Bianchi identity.
By varying the action with respect to the worldline of the

particle, we obtain the EOM [38]

Dpμ

dτ
¼ −

1

6
Jνρσκ∇μRνρσκ −

1

12
Jλνρσκ∇μ∇λRνρσκ: ð2:8Þ

Next, the stress-energy tensor is obtained by variation with
respect to the metric. With the action depending on the
Riemann tensor and its first covariant derivative, we obtain
it as the sum of pole, quadrupole, and octupole pieces [41],

Tμν ¼ Tμν
pole þ Tμν

quad þ Tμν
oct: ð2:9Þ

There is no dipole contribution since we neglect the spins.
The pole part takes the usual form of the stress-energy
tensor of a particle with worldline yμ, four-linear momen-
tum pμ, and four-velocity uμ (parametrized by τ), namely,

Tμν
pole ¼

Z
dτpðμuνÞ

δð4Þðx − yÞffiffiffiffiffiffi−gp ; ð2:10Þ

[with δð4Þðx − yÞ the four-dimensional Dirac distribution],
while the quadrupolar and octupolar pieces are given by

Tμν
quad ¼

Z
dτ
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3
Rρ

ξλσJðμνÞξλσ
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δð4Þðx − yÞffiffiffiffiffiffi−gp
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�
1

3
JσρðμνÞλ

�
δð4Þðx − yÞffiffiffiffiffiffi−gp : ð2:11bÞ

As the latter formulas are general [37–39,41], we can apply them to the specific case of the Lagrangian (2.2). For simplicity,
we present the results setting c ¼ 1. Note the useful formula which links the current quadrupole invariant to the mass
quadrupole invariant:

HμνHμν ¼ 4GμνGμν þ 2RμνσκRμνσ
λuκuλ: ð2:12Þ

The linear momentum is then found to be

pμ ¼ muμ þ μð2Þ
�
−RμαγβuγGαβ þ 3

4
uμGαβGαβ

�
þ σð2Þ

�
1

3
R�
ðμαγÞβu

γHαβ þ 1

2
HαβHαβuμ

�

þ μð3Þ
�
1

4
GαβγGαβγuμ −

1

3
Gαβγ∇⊥

α Rβμγρuρ −
1

6
Gαβγuα∇⊥

μ Rβργσuρuσ −
1

6
⊥μαGαβγuκ∇κRβργσuρuσ

�
; ð2:13Þ

7The chosen prefactors match previous definitions in the literature [41]. As shown in Appendix A of [41], they are such that Jμνρσ and
Jλμνρσ coincide with the Dixon quadrupole and octupole moments [37,38], respectively, at the considered approximation level. We refer
to (2.7) as multipole “currents” in order to reduce confusion with the tidal moments GL, HL as well as with the source multipole
moments IL, JL considered in Sec. IV.
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and we observe, as a check, the consequence of the
invariance of the action by worldline reparametrization,
namely,

pμuμ ¼ −mþ μð2Þ

4
GμνGμν þ σð2Þ

6
HμνHμν

þ μð3Þ

12
GλμνGλμν ¼ L: ð2:14Þ

On the other hand, the explicit expressions of the quadru-
pole and octupole currents read

Jμνρσ ¼ μð2Þð−3u½μGν�½ρuσ�Þ
þ σð2ÞðεμναβuαHβ½ρuσ� þ ερσαβuαHβ½μuν�Þ; ð2:15aÞ

Jλμνρσ ¼ μð3Þð−2⊥λ
κu½μGν�κ½ρuσ�Þ; ð2:15bÞ

thereby completing the dynamics. As a verification of the
EOM and stress-energy tensor, we performed a direct

variation of the mass quadrupole contribution ∝ μð2ÞA in
the action (2.2), i.e., without using the general formalism

(2.5) or the definitions of pμ, Jμνρσ , and Jλμνρσ, which led us
to an equivalent result.

B. Ready-to-use expressions

Equations (2.10) and (2.11) express the matter stress-
energy tensor, together with the explicit expressions (2.13)
of the linear momentum and (2.15) of the currents, in terms
of the tidal multipole moments. In turn, the tidal moments
are given in terms of the metric, curvature, and matter
variables by Eq. (2.3). In this section and the next one, we
need to rephrase the previous results in a more suitable way.
The matter stress-energy tensor takes the general form

Tμν ¼
X
A

½Uμν
A δA þ∇αðUμνα

A δAÞ þ∇α∇βðUμναβ
A δAÞ

þ∇α∇β∇γðUμναβγ
A δAÞ�; ð2:16Þ

where we use the coordinate-time t parametrization and
denote δA ≡ δð3Þ½x − yAðtÞ� the usual three-dimensional
Dirac distribution, and where (for u0A ¼ dt=dτA)

Uμν
A ¼ 1

u0A
ffiffiffiffiffiffi−gp

�
pðμ
A u

νÞ
A þ 1

3
RA

ðμ
λρσJ

νÞλρσ
A þ 1

6
∇λRA

ðμ
ξρσJ

λνÞξρσ
A þ 1

12
∇ðμRAξτρσJ

νÞξτρσ
A

�
; ð2:17aÞ

Uμνα
A ¼ 1

3u0A
ffiffiffiffiffiffi−gp

�
−
1

2
RA

ðμ
ξλσJ

ανÞξλσ
A − RA

ðμ
ξλσJ

νÞαξλσ
A þ RA

α
ξλσJ

ðμνÞξλσ
A

�
; ð2:17bÞ

Uμναβ
A ¼ −

2

3u0A
ffiffiffiffiffiffi−gp JαðμνÞβA ; ð2:17cÞ

Uμναβγ
A ¼ −

1

3u0A
ffiffiffiffiffiffi−gp JγβðμνÞαA : ð2:17dÞ

Note that all the U’s are symmetric over μ and ν; moreover, Uμναβ
A and Uμναβγ

A , over their 4 first indices, have the same
symmetries as the Jacobi tensor RαðμνÞβ [remind the definitions (2.7)].
By expanding the covariant derivatives in (2.16) as the sum of partial derivatives and Christoffel symbols, we get some

ready-to-use formulas that are directly entered into our computational codes,8 namely,

Tμν ¼
X
A

�
T μν

M þ 1ffiffiffiffiffiffi−gp ∂αðT μνα
D δAÞ þ

1ffiffiffiffiffiffi−gp ∂αβðT μναβ
Q δAÞ þ

1ffiffiffiffiffiffi−gp ∂αβγðT μναβγ
O δAÞ

�
; ð2:18Þ

where

T μν
M ¼ Uμν þ 2Γðμ

λρU
νÞλρ þ ½∂λΓ

ðμ
ρσ þ Γκ

ρσΓ
ðμ
λκ�UνÞλρσ − Γðμ

λκΓ
νÞ
ρσUκλρσ ð2:19aÞ

þ ½∂λΓ
ðμ
γδΓ

νÞ
ρσ þ ∂σðΓðμ

ρλΓ
νÞ
γδÞ − 2Γκ

λσΓ
ðμ
κρΓνÞ

γδ þ Γκ
γδΓ

ðμ
κρΓνÞ

λσ − 2Γκ
σγΓ

ðμ
ρλΓ

νÞ
κδ�Uρλγδσ

þ ½2Γκ
σγ∂λΓ

ðμ
κδ þ Γκ

σλ∂κΓ
ðμ
γδ − ∂σðΓκ

γδΓ
ðμ
κλÞ þ Γρ

γδΓκ
σλΓ

ðμ
ρκ þ 2Γρ

κδΓκ
σγΓ

ðμ
ρλ − ∂λσΓ

ðμ
γδ�UνÞλγδσ;

8All our calculations are done with the software Mathematica and the tensor package xAct [42].
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T μνα
D ¼ ffiffiffiffiffiffi

−g
p ½Uμνα þ Γα

σκUμνσκ − 2Γðμ
σκUνÞασκ − ∂σΓα

ρλU
μνρλσ þ ∂σΓ

ðμ
ρλð2UνÞαρλσ þ UνÞσρλαÞ

þ Γðμ
λγðUνÞλσραΓγ

ρσ − ΓνÞ
ρσUγλσραÞ þ 2Γρ

σκðΓα
ρλU

μνκλσ − Γðμ
λρU

νÞακλσÞ
− 2Γðμ

ρλðUνÞακλσΓρ
σκ − ΓνÞ

σκUακρλσÞ þ 2ðΓα
ρλΓ

ðμ
σκ − Γα

σκΓ
ðμ
ρλÞUνÞκρλσ�; ð2:19bÞ

T μναβ
Q ¼ ffiffiffiffiffiffi

−g
p ½Uμναβ þ 2Γðμ

σκðUνÞσαβκ −UνÞασκβÞ þ Γα
σκð2Uμνσβκ þUμνσκβÞ�; ð2:19cÞ

T μναβγ
O ¼ ffiffiffiffiffiffi

−g
p

Uμναβγ: ð2:19dÞ

Finally, the basic matter variables that we use in our GW
generation formalism are defined by

σ ≡ T00 þ Tii

c2
; σi ≡ T0i

c
; σij ≡ Tij: ð2:20Þ

These quantities will comprise a point-particle part and a
tidal part. The pp part is defined by the usual expression
corresponding to the minimal coupling to the metric, i.e.,
Eq. (2.10) in which pμ is replaced by muμ, the first term in
(2.13), so that we have

σpp ¼
m1u01ffiffiffiffiffiffiffiffi−g1
p

�
1þ v21

c2

�
δ1 þ 1 ↔ 2; ð2:21aÞ

ðσiÞpp ¼
m1u01ffiffiffiffiffiffiffiffi−g1
p vi1δ1 þ 1 ↔ 2; ð2:21bÞ

ðσijÞpp ¼
m1u01ffiffiffiffiffiffiffiffi−g1
p vi1v

j
1δ1 þ 1 ↔ 2; ð2:21cÞ

where m1 is the constant PN mass, the three-dimensional
Dirac distribution δ1 is confined to the worldline yi1ðtÞ,
vi1 ¼ dyi1=dt or v

μ
1 ¼ ðc; vi1Þ denote the ordinary coordinate

velocity, u01 ¼ ½−ðgμνÞ1vμ1vν1=c2�−1=2 stands for the Lorentz
factor, and 1 ↔ 2 is the contribution of the other particle.
Beware that the point-particle part (2.21) will actually
involve tidal effects contained into the potentials para-
metrizing the metric as computed in Sec. III.
In order to compute the multipole moments of the system

IL, JL defined in Sec. IV, we require σ to be known at NNL
order, σi at NL, and σij at leading order, for both the point-
particle and tidal parts. For the treatment of the tidal
corrections, it is convenient to split the temporal and spatial
indices of Eq. (2.18). We then obtain the complete, ready-
to-use expressions for the “direct” tidal parts σtidal, ðσiÞtidal,
and ðσijÞtidal in terms of the tidal multipole moments; these
are reported in Appendix B.
The tidal moments Gij, Hij, and Gijk (when evaluated at

point 1) have been computed in Eq. (4.1) of [22]. However,
in order to present the expressions of σtidal, ðσiÞtidal, and

ðσijÞtidal as shown in Eq. (B1) and everywhere henceforth,
like for instance in Eq. (3.4), we would rather use the
tetradic components of these moments, denoted Ĝab, Ĥab,
and Ĝabc, obtained by projection on the worldline tetrad
eαμ ¼ ðe0μ; eaμÞ constructed as follows:

e0μ ≡ uμ; ð2:22aÞ

eaμ ¼
�
γμi − γμ0

vi

c

�
eai with eai ≡ ð ffiffiffi

γ
p Þai: ð2:22bÞ

Here γμν ¼ gμλ⊥ν
λ is the inverse of the positive-definite

metric γμν ¼ gμν þ uμuν induced on the hypersurface
orthogonal to uμ at the intersection point with the world-
line, and the spatial tetrad vectors are defined from the
square root ð ffiffiffi

γ
p Þai of the positive definite-symmetric

matrix γij. One can show that this basis is complete and
orthonormal (for more details, see [43]).
Remembering that the tidal moments are defined in the

particle’s local frame orthogonal to the four-velocity, i.e.,
Ĝ0α ¼ Ĥ0α ¼ Ĝ0αβ ¼ 0 (see [22] for discussion), we have
for instance (similarly for Hij and Gijk)

Gij ¼ eaiebjĜab; ð2:23aÞ

Ĝab ¼
�
eaiebj−2

vi1
c
eða0ebÞjþ

vi1v
j
1

c2
ea0eb0

�
Gij; ð2:23bÞ

where eβν denotes the (transposed) inverse of eαμ. The
projection of the tidal tensors onto this tetrad simplifies
significantly the computations, mostly because the pro-
jected three-dimensional tidal tensors become traceless. We
know, however, from the fact that the Lagrangian (2.2) does
not depend on the tetrad (see also the discussion in Sec. II
of Ref. [22]), that the final results are independent of a
particular choice of tetrad ðe0μ; eaμÞ used in intermediate
calculations. Other groups [44] may use different conven-
tions for the tetrad with equivalent final results (see Table I
in Sec. VII).
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III. COMPUTATION OF THE METRIC
POTENTIALS

For this calculation, the metric, including tidal contri-
butions, is required up to NNL 7PN order. This is in
contrast with our previous work [22] on the NNL dynamics
and EOM, where it was sufficient to insert the 2PN metric
just for point particles, discarding internal structure effects;
what made that possible were the specific properties of the
Fokker action. Here, in order to get the multipole moments
at the desired accuracy, we do need the 2PN metric
including the tidal contributions therein. We employ our
traditional parametrization by the set of elementary poten-
tials fV; Vi; Ŵij; X̂; R̂ig,9

g00 ¼ −1þ 2V
c2

−
2V2

c4
þ 8

c6

�
X̂ þ ViVi þ

V3

6

�
þO

�
1

c8

�
;

ð3:1aÞ

g0i ¼ −
4Vi

c3
−
8R̂i

c5
þO

�
1

c7

�
; ð3:1bÞ

gij ¼ δij

�
1þ 2V

c2
þ 2V2

c4

�
þ 4Ŵij

c4
þO

�
1

c6

�
: ð3:1cÞ

The above full 2PN metric is used, after dropping all tidal
terms, to compute the Riemann tensor and the tidal
moments (2.3), which allows controlling the tidal parts
(B1) of the matter currents. On the other hand, the NNL
tidal effects in the metric (3.1) are crucial for computing the
point-particle parts of the matter currents (2.21) and the
source multipole moments defined in Sec. IV, which will be
inserted later into the formula for the flux. Note that for the
computation of the source multipole moments in Eq. (4.4),
the only 2PN term is ∝ σ2PN, in which the metric only
appears through

ffiffiffiffiffiffi−gp
; in this calculation at NNL, X̂ and R̂i

do not appear, meaning that only V at NL order as well as
Vi and Ŵij at leading order will be strictly necessary. These
potentials are defined by

□V ¼ −4πGσ; ð3:2aÞ
□Vi ¼ −4πGσi; ð3:2bÞ

□Ŵij ¼ −4πGðσij − δijσkkÞ − ∂iV∂jV: ð3:2cÞ

The definitions are general and, of course, the source terms
may involve both pp and tidal contributions, e.g.,
σ ¼ σpp þ σtidal, where the tidal part in terms of the tidal
moments is displayed in Eq. (B1).
The techniques we use for computing the potentials are

well documented elsewhere (see, e.g., [49,50]). In this
work, dissipative radiation reaction effects can be ignored
since they do not to contribute to the flux until the 2.5PN
order, so that the Green’s function will be taken to be the
symmetric one. As usual, it is essential to use a proper UV-
type regularization, namely, dimensional regularization. In
fact, for the present problem we do not need the corrections
it brings with respect to simpler purely three-dimensional
approaches, such as Hadamard’s regularization, which
gives equivalent results at the NNL tidal order. We present
in Appendix A a detailed proof of this statement.
The tidal contributions to the metric obtained in present

formalism show an interesting feature, already observed for
binary systems of spinning compact objects in [43]: the
tidal part of the potential V contains a distributional term,
which arises because of the distributional multiderivatives
in the expressions of the matter sources (B1). To the lowest
order, σtidal is proportional to Ĝ1ab∂abð1=r1Þ, and, since
∂abð1=r1Þ ¼ 3n̂ab1 r−31 − 4π

3
δabδ1, this leads to a distribu-

tional term for V proportional to the trace δabĜ1ab, but
which vanishes because the tidal tensors are projected onto
the tetrad and are traceless. At the NL 6PN order, though,
the distributional piece is nonzero and given by the
Gel’fand-Shilov formula [50] as

Vdistr ¼ 2π

5

Gμð2Þ1

c2
Ĝ1abva1v

b
1δ1 þ 1 ↔ 2þO

�
1

c4

�
: ð3:3Þ

This term will not contribute to our calculation because the
NL potential V is only needed in a surface term at infinity
where the UV regularization is irrelevant. However, it
would be important to take this into account if we were
to evaluate the equivalent volume integral. For the ordinary
part of the complete potential V at the NL order, computed
with Hadamard’s regularization, we find

V ¼ Gm1

r1
þ 3Gμð2Þ1 Ĝ1abna1n

b
1

2r31
þ 1

c2

�
Gm1

�
−
ðn1v1Þ2
2r1

þ 2v21
r1

þ Gm2

�
−

r1
4r312

−
5

4r1r12
þ r22
4r1r312

��

þ μð2Þ1

�
G

�
3

4r1
Ĝ1abĜ1ab þ

�
3v21 −

15

4
ðn1v1Þ2

�
Ĝ1abna1n

b
1

r31
þ 3

2
ðn1v1Þ

�
Ĝ1abna1v

b
1

r31
−
na1n

b
1∂tĜ1ab

r21

�

þ 2na1v
b
1∂tĜ1ab

r21
−
na1n

b
1∂2

t Ĝ1ab

4r1

�

9With a slight abuse of notation, the PN remainders Oðc−8; c−7; c−6Þ mean either that the metric is accurate to 2PN order in the
standard sense, or that it is accurate to NNL order regarding tidal effects.
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þ G2m2

r312

�
3r12
2r21

Ĝ1abna12n
b
1 þ

�
−

6

r1
−

3

2r2

�
Ĝ1abna12n

b
12 þ

�
−

3

8r1
−
39r212
8r31

þ 3r22
8r31

�
Ĝ1abna1n

b
1

�

þ 9

2

G3m2
2

r712

�
ðn12n1Þ

�
1 −

r1
r2

�
−
r12
r2

��
þ 4Gσð2Þ1 εbijĤ1ajna1n

b
1v

i
1

r31

�
þ 1 ↔ 2þO

�
1

c3

�
; ð3:4Þ

where we recall the definition (2.23) of the projected tidal moments. Consistently with the approximation, we also included
the ordinary point-particle part at 1PN order. Using the same method, we computed Vi at leading order,

Vi ¼
Gm1

r1
vi1 þ

3Gμð2Þ1 Ĝ1abna1n
b
1

2r31
vi1 þ

Gμð2Þ1 na1∂tĜ1ai

2r21
þ Gσð2Þ1 εiabĤ1aknb1n

k
1

r31
þ 1 ↔ 2þO

�
1

c

�
: ð3:5Þ

Notice that, due to the way the leading term of ðσiÞtidal is written in Eq. (B1b), some nonzero distributional terms are
generated by multi-derivatives, but they cancel out in the end, so the potential Vi does not contain any. For the potential Ŵij

at leading order, we get

Ŵij ¼
Gm1

r1
ðvi1vj1 − δijv21Þ þ

G2m2
1

4r21
ðni1nj1 − δijÞ −G2m1m2∂1ði∂2jÞ ln S

þ μð2Þ1

�
G2m2

r1r312
ðĜ1ij − 3nði12Ĝ1jÞana12 þ 3δijĜ1abna12n

b
12Þ −G2m2Ĝ1ab∂2ði∂1jÞab ln S

þ G
r31

�
r21
2
∂2
t Ĝ1ij þ r1na1v

ði
1 ∂tĜ1jÞa þ

3

2
Ĝ1abna1n

b
1ðvi1vj1 − δijv21Þ − δijr1na1v

b
1∂tĜ1ab

��

þ 2Gσð2Þ1

r31

�
εðiab

�
vjÞ1 Ĥ1aknb1n

k
1 þ

r1
3
∂tĤ1jÞanb1

�
− δijεabkĤ1klna1n

l
1v

b
1

�

−G2μð2Þ1 m1Ĝab

�
5

128
∂ijab

�
ln

�
r1
r0

��
þ 5

16

na1n
b
1

r41
δij þ

1

4r41
δaði

�
njÞ1 n

b
1 −

3

8
δjÞb

��
þ 1 ↔ 2þO

�
1

c

�
: ð3:6Þ

The point-particle part is depicted in the first line, where we denote ∂Ai ≡ ∂=∂yiA and S≡ r1 þ r2 þ r12. These potentials
satisfy □V ¼ Oð1=c3Þ, ΔVi ¼ Oð1=cÞ, and ΔŴij ¼ −∂iV∂jV þOð1=cÞ outside the particles. We also checked that they
obey the harmonic gauge constraints

∂t

�
V þ 1

c2

�
1

2
Ŵ þ 2V2

��
þ ∂i

�
Vi þ

2

c2
½R̂i þ VVi�

�
¼ O

�
1

c3

�
; ð3:7aÞ

∂tVi þ ∂j

�
Ŵij −

1

2
δijŴ

�
¼ O

�
1

c

�
; ð3:7bÞ

which yield at the NL order the same EOM as obtained in Ref. [22]. This test confirms the values of all potentials that are
required for the integration of the source multipole moments in Sec. IV. Note that, for this verification, we had to determine
Vi at NL and also R̂i at lowest order, where R̂i is defined by

□R̂i ¼ −4πGðVσi − ViσÞ − 2∂kV∂iVk −
3

2
∂tV∂iV: ð3:8Þ

We do not give their values since they do not enter our later calculations.

IV. COMPUTATION OF SOURCE MULTIPOLE MOMENTS

The symmetric-trace-free (STF) multipole moments of isolated PN radiative sources are known from a matching between
the inner PN expansion in the system near zone and the outer MPM expansion in the far zone [30,31]. For any l ≥ 2, they
read
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ILðtÞ ¼ FP
B¼0

Z
d3x

�
r
r0

�
B
Z

1

−1
dz

�
δlx̂LΣ −

4ð2lþ 1Þδlþ1

c2ðlþ 1Þð2lþ 3Þ x̂iLΣ
ð1Þ
i þ 2ð2lþ 1Þδlþ2

c4ðlþ 1Þðlþ 2Þð2lþ 5Þ x̂ijLΣ
ð2Þ
ij

�
ðx; tþ zr=cÞ;

ð4:1aÞ

JLðtÞ ¼ FP
B¼0

Z
d3x

�
r
r0

�
B
Z

1

−1
dzεabhil

�
δlx̂L−1iaΣb −

2lþ 1

c2ðlþ 2Þð2lþ 3Þ δlþ1x̂L−1iacΣ
ð1Þ
bc

�
ðx; tþ zr=cÞ: ð4:1bÞ

Here, x̂L ≡ STFðxi1xi2 � � � xilÞ is the multipolar factor, the brackets surrounding indices refer to the STF projection, and the
Σ’s (or their partial time-derivatives ΣðnÞ’s), which must be evaluated at position x and at time tþ zjxj=c, are defined in
terms of the PN expansion of the stress-energy pseudotensor τ̄μν in harmonic coordinates by

Σ≡ τ̄00 þ τ̄ii

c2
; Σi ≡ τ̄0i

c
; Σij ≡ τ̄ij: ð4:2Þ

The overbar refers to the PN expansion (see Sec. II in [50] for further discussion). Equation (2.20) gives the corresponding
matter parts. The expressions of the source moments (4.1) are formally valid up to any PN order. In practice, their PN-
expanded expressions are to be computed by means of the infinite PN series10

Z
1

−1
dzδlðzÞΣðx; tþ zr=cÞ ¼

Xþ∞

k¼0

ð2lþ 1Þ!!
ð2kÞ!!ð2lþ 2kþ 1Þ!!

�
r
c

�
2k
Σð2kÞðx; tÞ: ð4:3Þ

An important feature of Eq. (4.1) is the presence of the finite part (FP) operation when some complex parameter B goes to
zero. The role of the finite part is to deal with the infrared (IR) divergences initially introduced into the multipole moments
by the fact that their PN-expanded integrands diverge at spatial infinity (as r → þ∞). See Ref. [50] for details on how we
deal in practice with this IR regularization. At the NNL order, we shall explicitly verify that the IR constant r0 in Eq. (4.1)
never appears.
Like in previous works [50,51], we find it convenient to decompose IL into three pieces corresponding to the three terms

entering (4.1), referred to as scalar (S), vector (V), and tensor (T) terms. Applying the formula (4.3), we further split each of
these pieces into parts labeled I, II, III, … according to their PN order. This leads to the decomposition of the lth order
mass-type moment to NNL order (omitting the PN remainders) as

IL ¼ SIL þ SIIL þ SIIIL þ VIL þ VIIL þ TIL; ð4:4aÞ

SIL ¼ FP
Z

d3xx̂L

�
σ þ 4V

c4
σii −

2

πGc4
Vi∂t∂iV −

1

πGc4
Ŵij∂2

ijV −
1

2πGc4
ð∂tVÞ2 þ

2

πGc4
∂iVj∂jVi

−
1

2πGc2
ΔðV2Þ − 2

3πGc4
ΔðV3Þ − 1

2πGc4
ΔðVŴÞ

�
; ð4:4bÞ

SIIL ¼ 1

2c2ð2lþ 3Þ FP
d2

dt2

Z
d3xx̂Lr2

�
σ þ 4

c2
σV −

1

πGc2
∂iV∂iV

�
; ð4:4cÞ

SIIIL ¼ 1

8c4ð2lþ 3Þð2lþ 5Þ FP
d4

dt4

Z
d3xx̂Lr4σ; ð4:4dÞ

VIL ¼ −
4ð2lþ 1Þ

c2ðlþ 1Þð2lþ 3Þ FP
d
dt

Z
d3xx̂iL

�
σi þ

2

c2
σiV −

2

c2
σVi þ

1

πGc2
∂jV∂iVj

þ 3

4πGc2
∂tV∂iV −

1

2πGc2
ΔðVViÞ

�
; ð4:4eÞ

10The function δlðzÞ is defined [with δðzÞ denoting the one-dimensional Dirac distribution] by

δlðzÞ≡ ð2lþ 1Þ!!
2lþ1l!

ð1 − z2Þl; so that
Z

1

−1
dzδlðzÞ ¼ 1 and lim

l→þ∞
δlðzÞ ¼ δðzÞ:
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VIIL ¼ −
2ð2lþ 1Þ

c4ðlþ 1Þð2lþ 3Þð2lþ 5Þ FP
d3

dt3

Z
d3xx̂iLr2σi; ð4:4fÞ

TIL ¼ 2ð2lþ 1Þ
c4ðlþ 1Þðlþ 2Þð2lþ 5Þ FP

d2

dt2

Z
d3xx̂ijL

�
σij þ

1

4πG
∂iV∂jV

�
: ð4:4gÞ

Similarly, for the lth order current moments to NNL order,

JL ¼ VIL þ VIIL þ TIL; ð4:5aÞ

VIL ¼ εabhilFP
Z

d3xx̂L−1ia

�
σb þ

1

c2

�
2ðσbV − σVbÞ þ

1

πG

�
∂iV∂bVi þ

3

4
∂tV∂bV −

1

2
ΔðVVbÞ

���
ð4:5bÞ

VIIL ¼ 1

2c2ð2lþ 3Þ εabhilFP
d2

dt2

Z
d3xr2x̂L−1iaσb; ð4:5cÞ

TIL ¼ −
ð2lþ 1Þ

c2ðlþ 2Þð2lþ 3Þ εabhilFP
d
dt

Z
d3xx̂L−1iac

�
σbc þ

1

4πG
∂bV∂cV

�
: ð4:5dÞ

The various encountered terms are of three types: (i) the
compact-support (C) terms, whose integrands are propor-
tional to the matter currents σ’s, (ii) the noncompact (NC)
support terms, whose volume integrals extend up to
infinity, and (iii) the “surface” terms, also noncompact,
but whose integrands are either pure divergences or
products of x̂L and pure Laplacians. By integrating the
latter terms by parts (taking into account the regularization
factor rB), one can transform them into easy-to-compute
surface integrals (see Sec. III C in [50] for details). In
particular, assuming that the expansion of F when r → ∞
is powerlike (without logarithms), it can be proved that

FP
B¼0

Z
d3x

�
r
r0

�
B
x̂LΔF ¼ −4πð2lþ 1ÞðFrlþ1n̂LÞ∞;

ð4:6Þ

where the notation ð� � �Þ∞ means the Hadamard partie finie
regularization at infinity. With this formula, we have shown
that, at NNL order, all the terms of this type for F ¼
fV2; V3; VŴ; VVig vanish. The remaining terms (C and
NC) can be integrated exactly. In the first case, we use the
characteristic property of the Dirac distribution in the con-
text of Hadamard’s regularization,

R
d3xFðx; tÞδ1 ¼ ðFÞ1,

where ðFÞ1 is the regularized value of the function F at
point x ¼ y1. There is a similar formula for delta’s
derivatives obtained by integration by parts. In the second
case, we perform a brute-force integration after an appro-
priate change of variable as described in Sec. V D 3
of Ref. [52].
The explicit expressions of the (tidal parts of the)

multipole moments of the system to NNL order are too
long to be listed. However, they are substantially shortened
by going to the frame of the COM. The conditions for going

from a general frame to the COM frame have been
investigated in Sec. V of Ref. [22]. For quantities in the
COM frame, it is convenient to redefine the polarizability
parameters as

μðlÞ� ¼ 1

2

�
m2

m1

μðlÞ1 �m1

m2

μðlÞ2

�
;

σðlÞ� ¼ 1

2

�
m2

m1

σðlÞ1 �m1

m2

σðlÞ2

�
; ð4:7Þ

so that, for instance, μðlÞþ ¼ μðlÞ1 ¼ μðlÞ2 and μðlÞ− ¼ 0 when
the two bodies are identical (with the same mass and
internal structure). The tidal parts of the multipole moments
in the COM frame are reported in Appendix B.
Next, we reduce the COM moments for quasicircular

orbits following Sec. VI of [22]. To present the results, we
introduce the normalized mass difference Δ≡ m1−m2

m and
the PN parameter γ ¼ Gm

rc2. We denote n the unit direction
pointing from body 2 to 1, λ the unit vector perpendicular to
n in the orbital plane, and l the unit vector perpendicular to
the orbital plane, such that ðn; λ;lÞ forms a direct ortho-
normal triad. This implies notably that λi ¼ vi

rω for exactly
circular orbits, with vi ¼ vi1 − vi2 representing the relative
velocity. It is also convenient to use the adimensionalized
versions of the polarizabilities (4.7) (with m ¼ m1 þm2

representing the total mass)

μ̃ðlÞ� ¼
�

c2

Gm

�
2lþ1

GμðlÞ� ; σ̃ðlÞ� ¼
�

c2

Gm

�
2lþ1

GσðlÞ� :

ð4:8Þ

The source moments for circular orbits including both the
point-particle part (see [53]) and the tidal part then read

TIDAL EFFECTS IN THE GRAVITATIONAL-WAVE PHASE … PHYS. REV. D 102, 044033 (2020)

044033-11



Iij ¼ mr2
�
nhinji

�
ν

�
1þ

�
−

1

42
−
13

14
ν

�
γ þ

�
−

461

1512
−
23435

1512
ν −

241

1512
ν2
�
γ2
�

þ
�
3μ̃ð2Þþ þ 3Δμ̃ð2Þ−

�
γ5 þ

�
μ̃ð2Þþ

�
−
3

2
þ 1

7
ν −

222

7
ν2
�
þ Δμ̃ð2Þ−

�
−
3

2
−
67

7
ν

�
þ 160

3
νσ̃ð2Þþ

�
γ6

þ
�
μ̃ð2Þþ

�
871

56
þ 907

168
νþ 9643

168
ν2 þ 929

42
ν3
�
þ Δμ̃ð2Þ−

�
871

56
þ 1853

24
ν −

7201

168
ν2
�
þ σ̃ð2Þþ

�
388

9
ν −

2504

7
ν2
�

þ 1732

63
Δνσ̃ð2Þ−

�
γ7
�
þ λhiλji

�
ν

��
11

21
−
11

7
ν

�
γ þ

�
1013

378
þ 299

378
ν −

365

378
ν2
�
γ2
�
þ
�
μ̃ð2Þþ

�
3þ 104

7
ν −

198

7
ν2
�

þ Δμ̃ð2Þ−

�
3 −

38

7
ν

�
þ 128

3
νσ̃ð2Þþ

�
γ6 þ

�
μ̃ð2Þþ

�
−
19

2
þ 617

42
νþ 5039

42
ν2 þ 260

21
ν3
�

þ Δμ̃ð2Þ−

�
−
19

2
þ 1291

42
ν −

1649

42
ν2
�
þ σ̃ð2Þþ

�
−
64

9
ν −

1696

7
ν2
�
þ 2048

63
Δνσ̃ð2Þ−

�
γ7
��

; ð4:9aÞ

Iijk ¼ mνr3
�
nhinjnki

�
−Δð1 − νγÞ þ 18μ̃ð2Þ− γ5 þ

�
Δμ̃ð2Þþ

�
−
3

2
þ 48ν

�
þ μ̃ð2Þ−

�
−
39

2
− 60ν

�
− 84Δσ̃ð2Þþ þ 84σ̃ð2Þ−

�
γ6
�

þ nhiλjλkif−Δð1 − 2νÞγ þ ½Δμ̃ð2Þþ ð−39þ 36νÞ þ μ̃ð2Þ− ð39 − 42νÞ − 72Δσ̃ð2Þþ þ 72σ̃ð2Þ− �γ6g
�
; ð4:9bÞ

Iijkl ¼ mνr4nhinjnknli½1 − 3νþ ð18μ̃ð2Þþ − 18Δμ̃ð2Þ− Þγ5�; ð4:9cÞ

Jij ¼
ffiffiffiffi
G

p
ðmrÞ3=2lhinji

�
−Δν

�
1þ

�
25

28
þ 3

14
ν

�
γ

�
þ ð−9Δνμ̃ð2Þþ þ 9νμ̃ð2Þ− þ 12Δσ̃ð2Þþ þ 12σ̃ð2Þ− Þγ5

þ
�
Δμ̃ð2Þþ

�
663

28
νþ 117

7
ν2
�
þ μ̃ð2Þ−

�
−
177

7
νþ 477

14
ν2
�
þ Δσ̃ð2Þþ

�
−10 −

690

7
ν

�
þ σ̃ð2Þ−

�
−10 −

346

7
ν

��
γ6
�
;

ð4:9dÞ

Jijk ¼
ffiffiffiffi
G

p
ðmrÞ5=2 ν

m
lhinjnkif1 − 3νþ ½μ̃ð2Þþ ð21 − 27νÞ − 12Δμ̃ð2Þ− þ 64σ̃ð2Þþ �γ5g: ð4:9eÞ

V. ENERGY FLUX FORQUASICIRCULARORBITS

A. Mode decomposition of the instantaneous
part of the flux

Our main goal is to obtain the GW energy flux F ≡
ðdE=dtÞGW at the NNL/2PN order. When nonlinear tail
effects in the wave propagation are ignored, the resulting
“instantaneous” flux F inst at the NNL/2PN order is a mere

quadratic form of the (lþ 1)th time derivatives I ðlþ1Þ
L ðtÞ of

the source moments IL ≡ fIL; JLg, with general term

∝ I ðlþ1Þ
L I ðlþ1Þ

L . Knowing those moments, the computation
of F inst is straightforward but can be performed in a
particularly convenient way by decomposing the STF
tensors IL into some orthogonal STF basis associated
with a natural triad of the problem. This decomposition
induces a related mode splitting of the flux, which is
essential to its effective-one-body treatment [54]. We will
thus define here the flux modes more precisely and list their
tidal parts at the NNL order.

As before we adopt the moving triad ðn; λ;lÞ, with l ¼
n × v=jn × vj ¼ n × λ representing the unit vector pointing
towards the Newtonian angular momentum or, alterna-
tively, the value of the former triad at the ascending node,
say ðn0; λ0;l0Þ. By definition of the orbital phase for planar
orbits, we have n ¼ cosϕn0 þ sinϕλ0. Posing m ¼ ðnþ
iλÞ ffiffiffi

2
p

[or m0 ¼ ðn0 þ iλ0Þ
ffiffiffi
2

p
], it is often useful, in three

dimensions, to introduce instead the associated complex
triads ðm; m̄;lÞ [or ðm0; m̄0;l0Þ], where the bar denotes
the complex conjugation. Notice the simple relations m ¼
e−iϕm0 and l ¼ l0 for nonspinning (planar) binaries. Our
orthogonal (un-normalized) STF basis will then be chosen
to be ðαlmL Þl;jmj≤l, with αlmL ¼ mhMlL−Mi for 0 ≤ m ≤ l,

and αlmL ¼ ð−1Þmm̄hjMjlL−jMji for −l ≤ m < 0. The basis
αlm0L is defined in a similar way. One can prove the
orthogonality condition:

αlmL ᾱlm
0

L ¼ ðl −mÞ!ðlþmÞ!
2ml!ð2l − 1Þ!! δm;m0 : ð5:1Þ
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Any source multipole moment IL may now be written as

IL ¼
X
jmj≤l

Ilmα
lm
L ¼

X
jmj≤l

Ilmα
lm
0L e

−imϕ: ð5:2Þ

For circular orbits, the coefficients Ilm only depend on
the orbital frequency ω. Because dϕ=dt ¼ ω, with
_ω≡ dω=dt ¼ Oð1=c5Þ vanishing up to the 2PN order,
differentiation of the expression (5.2) is equivalent to the
replacement αlmL → −imωαlmL (which removes the mode

m ¼ 0). In particular, the component m of I ðlþ1Þ
L is

proportional to e−imϕ, as is the mode hlm associated with
the latter multipole at linear order in the decomposition of
h ¼ hþ − ih× into spin-weighted spherical harmonics of
weight−2 for planar systems (see, e.g., Ref. [53] for further
explanations), which is a simple way to see that the two
decompositions coincide, apart from normalization factors
that must disappear from observable quantities.
The flux F inst for circular orbits is thus made of a sum of

terms

I ðlþ1Þ
L I ðlþ1Þ

L ¼
Xl
m¼1

ðl −mÞ!ðlþmÞ!
2m−1l!ð2l − 1Þ!! ðmωÞ2lþ2jIlmj2

þOð _ωÞ; ð5:3Þ

where we have used the orthogonality formula (5.1),

the definition of αl−jmj
L , as well as the reality condi-

tion for IL, i.e., Il−m ¼ ð−1ÞmIlm. The precise
l-dependent global factors are given in Eq. (5.5)
below, after the replacement Uð1Þ → I ðlþ1Þ for the
instantaneous part of the flux. We investigate the tail
part of the flux (which depends on the past of the
system) in Sec. V B.
Finally, the part of the instantaneous flux proportional

to jIlmj2 for 1 ≤ m ≤ l will be denoted F lm
inst henceforth.

To present these modes to NNL order in the case of
quasicircular orbits, we employ the invariant dimension-
less PN parameter x ¼ ðGmω

c3 Þ2=3. The nonzero tidal
corrections in the various modes are given by

F22
inst ¼ μ̃ð2Þþ ð1þ 4νÞ þ Δμ̃ð2Þ− þ

�
μ̃ð2Þþ

�
−
22

21
−
653

42
νþ 155

21
ν2
�
þ Δμ̃ð2Þ−

�
−
22

21
þ 305

42
ν

�
þ 224

9
νσ̃ð2Þþ

�
x

þ
�
μ̃ð2Þþ

�
167

54
−
7603

756
ν −

125347

1764
ν2 þ 5123

1323
ν3
�
þ Δμ̃ð2Þ−

�
167

54
−
68105

5292
νþ 55985

5292
ν2
�
ν

þ σ̃ð2Þþ

�
−
284

63
−
376

189
ν2
�
þ 8084

189
Δσ̃ð2Þ− νþ 80

3
μ̃ð3Þþ ν

�
x2; ð5:4aÞ

F21
inst ¼

�
μ̃ð2Þþ

�
1

6
ν −

2

3
ν2
�
−

1

12
Δμ̃ð2Þ− νþ σ̃ð2Þþ

�
−
1

9
þ 4

9
ν

�
−
1

9
Δσ̃ð2Þ−

�
xþ

�
μ̃ð2Þþ

�
5

112
ν −

5

18
ν2 þ 25

63
ν3
�

þ Δμ̃ð2Þ−

�
1

6
ν −

35

36
ν2
�
þ σ̃ð2Þþ

�
−
173

756
þ 439

189
ν −

152

27
ν2
�
þ Δσ̃ð2Þ−

�
−
173

756
þ 32

63
ν

��
x2; ð5:4bÞ

F33
inst ¼

�
μ̃ð2Þþ

�
3645

448
ν −

3645

112
ν2
�
−
3645

448
Δμ̃ð2Þ− ν

�
xþ

�
μ̃ð2Þþ

�
−
27945

448
νþ 244215

896
ν2 −

20655

224
ν3
�

þ Δμ̃ð2Þ−

�
13365

224
ν −

15795

224
ν2
�
þ σ̃ð2Þþ

�
10935

224
ν −

10935

56
ν2
�
−
1215

224
Δσ̃ð2Þ− ν

�
x2; ð5:4cÞ

F32
inst ¼

�
μ̃ð2Þþ

�
20

21
ν −

100

21
ν2 þ 40

7
ν3
�
þ Δμ̃ð2Þ−

�
−
20

63
νþ 20

21
ν2
�
þ σ̃ð2Þþ

�
320

189
ν −

320

63
ν2
��

x2; ð5:4dÞ

F31
inst ¼

�
μ̃ð2Þþ

�
1

1344
ν −

1

336
ν2
�
−

1

1344
Δμ̃ð2Þ− ν

�
xþ

�
μ̃ð2Þþ

�
−

23

12096
νþ 107

24192
ν2 þ 11

864
ν3
�

þ Δμ̃ð2Þ−

�
1

432
ν −

13

6048
ν2
�
þ σ̃ð2Þþ

�
17

2016
ν −

17

504
ν2
�
−

1

224
Δσ̃ð2Þ− ν

�
x2; ð5:4eÞ

F44
inst ¼

�
μ̃ð2Þþ

�
2560

81
ν −

28160

189
ν2 þ 10240

63
ν3
�
þ Δμ̃ð2Þ−

�
−
2560

189
νþ 2560

63
ν2
��

x2; ð5:4fÞ
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F42
inst ¼

�
μ̃ð2Þþ

�
10

567
ν −

110

1323
ν2 þ 40

441
ν3
�
þ Δμ̃ð2Þ−

�
−

10

1323
νþ 10

441
ν2
��

x2: ð5:4gÞ

For all modes we pose F lm
inst ¼ 192c5

5G νx10Flm
inst.

B. Mode calculation of the tail part of the flux

The full flux, including nonlinear propagation effects, is parametrized by the so-called mass and current radiative
multipole moments ULðtÞ and VLðtÞ as

F ¼ G
c5

�
1

5
Uð1Þ

ij U
ð1Þ
ij þ 1

c2

�
1

189
Uð1Þ

ijkU
ð1Þ
ijk þ

16

45
Vð1Þ
ij Vð1Þ

ij

�
þ 1

c4

�
1

9072
Uð1Þ

ijkmU
ð1Þ
ijkm þ 1

84
Vð1Þ
ijkV

ð1Þ
ijk

�
þO

�
1

c6

��
; ð5:5Þ

where we have restricted ourselves to the 2PN order. The physical content of this expression lies in the relationship between
the radiative moments and the source moments computed in Sec. IV. At the linear level, the radiative moments UL ¼
fUL; VLg are just the lth time derivatives of the source moments IL ¼ fIL; JLg. At the quadratic level, the radiative
moments involve the interaction between the Arnowitt-Deser-Misner massM and the source moments IL in the form of the
nonlocal tail integrals [28]11:

ULðtÞ ¼ IðlÞL ðtÞ þ 2GM
c3

Z þ∞

0

dτIðlþ2Þ
L ðt − τÞ ln

�
τ

τl

�
þO

�
1

c5

�
; ð5:6aÞ

VLðtÞ ¼ JðlÞL ðtÞ þ 2GM
c3

Z þ∞

0

dτJðlþ2Þ
L ðt − τÞ ln

�
τ

λl

�
þO

�
1

c5

�
; ð5:6bÞ

where τl and λl denote two gauge constants, which will cancel out in the end of our calculation. Consistently with the
approximation, we include the leading and NL tail effects which will correspond to formal 6.5 and 7.5PN contributions in
the tidal terms. We then need only the tail entering the mass quadrupole, current quadrupole, and mass octupole moments.12

The computation of the tails is conveniently achieved by starting from the following alternative form for the
instantaneous and tail part of the radiative moments:

U instþtail
L ðtÞ ¼ I ðlÞ

L ðtÞ þ 2GM
c3

�
ln
�
T
Pl

�
I ðlþ1ÞðtÞ þ

Z
T

0

dτ ln τI ðlþ2Þ
L ðt − τÞ þ

Z þ∞

T

dτ
τ
I ðlþ1Þ
L ðt − τÞ

�
; ð5:7Þ

where T is an arbitrary time scale and Pl denotes either τl or λl. Now, it was proved in Appendix B of [55] that, in
the case of decaying quasicircular orbits, the frequency on which depend the integrands in Eq. (5.7), e.g.,
ðd=dtÞðlþ1Þ½Ilmðt − τÞαlm0L e−imϕðt−τÞ�, can be substituted with its value at the current time t, modulo some remainder
Oðln c=c5Þ. This amounts to replacing the frequency ωðt − τÞ by ωðtÞ and the phase ϕðt − τÞ by ϕðtÞ − ωðtÞτ. The
expression inside the square brackets in Eq. (5.7) then reads

X
0<jmj≤l

ð−imωÞlþ1Ilm

�
ln

�
T
Pl

�
þ ð−imωÞ

Z
T

0

dτ ln τeimωτ þ
Z þ∞

T

dτ
τ
eimωτ

�
αlmL þO

�
ln c
c5

�
: ð5:8Þ

After explicit integration we find

U instþtail
L ¼

X
0<jmj≤l

ð−imωÞlIlm

�
1 −

2GMimω

c3
clmðωÞ

�
þO

�
ln c
c5

�
; ð5:9Þ

11For the present calculation, we do not need to consider other nontail (instantaneous) terms arising at the same orderOð1=c3Þ as the
tails but only for l ≥ 4 in the mass sector and l ≥ 3 in the current sector (see Ref. [53]).

12The expression of the link between the radiative moments UL and the source moments IL is known to simplify significantly when
appropriate mass and current canonical moments, ML ¼ IL þOð1=c5Þ and SL ¼ JL þOð1=c5Þ, are introduced instead of the source
moments [see Eq. (5.9) of Ref. [53] ]. We checked that the leading correction in the canonical mass quadrupole moment Mij for which
tidal effects would give a contribution at the NNL/7.5PN level actually vanishes. On the other hand, the radiation reaction dissipative
pieces Oð _ωÞ being purely instantaneous and “time-odd,” cannot contribute to the flux for quasicircular orbits at this level.
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with clmðωÞ ¼ i signðmÞπ=2 − ðlnðjmjωPlÞ þ γEÞ. The flux is obtained by squaring Eq. (5.9) multiplied by an extra factor
−imω, keeping only the leading M × IL correction. Exploiting the orthogonality relation (5.1) yields

F instþtail ∝
Xl
m¼1

ðl −mÞ!ðlþmÞ!
2m−1l!ð2l − 1Þ!! ðmωÞ2lþ2

�
1þ 2GMmω

c3
iðclmðωÞ − c̄lmðωÞÞ

�
þO

�
1

c6

�

¼
Xl
m¼1

F lm
inst

�
1þ 2πGMω

c3
m

�
þO

�
1

c6

�
: ð5:10Þ

Thus, the tail contribution of the ðl; mÞ flux piece at the relative 1.5PN order is simply given by 2πkmF lm
inst with

km ¼ GωmM=c3. Note that the factor km is just the first order term in the expansion of the squared module of the tail
resummed factor Tlm introduced in Ref. [54]. The Arnowitt-Deser-Misner massM must crucially include the leading tidal
corrections. For the tidal tail at the NNL/7.5PN order, it is sufficient to take (with here m ¼ m1 þm2)

M ¼ mþ E
c2

¼ m

�
1 −

νx
2

�
1 − 18μ̃ð2Þþ x5

��
þO

�
1

c4

�
: ð5:11Þ

To end up, let us provide the resulting tail part of the flux for circular orbits at the NNL/7.5PN order for tidal effects:

F tail ¼
768πc5

5G
νx23=2
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ð1þ 4νÞμ̃ð2Þþ þ Δμ̃ð2Þ−

þ
��

−
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−
5053

1344
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−
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�
σ̃ð2Þþ −

Δ
18

σ̃ð2Þ−

�
x
�
: ð5:12Þ

VI. GW PHASE EVOLUTION FOR QUASICIRCULAR ORBITS

Writing the GW energy flux as F ¼ F pp þ F tidal, we have just computed the tidal part of the dissipative energy flux,
F tidal, in Eqs. (5.4) and (5.12). The part generated by point particles without internal structure,F pp, already known [56–59],
is given to consistent order by

F pp ¼
32c5ν2x5
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ð6:1Þ
Then, the tidal contribution to the flux complete to NNL order (including leading and NL tail terms) reads13

F tidal ¼
192c5νx10
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13We recall that the polarizability coefficients are defined by Eqs. (4.7) and (4.8). Note that the prefactors in front of (6.1) and (6.2) are
different.
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Together with the conservative energy of the system available in Eq. (6.5) of [22], the above energy flux permits
determining the frequency and phase evolution for circular orbits through the two ordinary differential equations

dω
dt

¼ −
F ðωÞ
dE=dω

;
dφ
dt

¼ ω: ð6:3Þ

As is well known, there are various ways to solve those equations approximately, called PN approximants, yielding
significant deviations from numerical relativity at small separations, i.e., outside the domain of validity of the PN expansion
[4]. Following the simplest adiabatic Taylor PN approximant, we obtain the phase in the time domain as φ ¼ φpp þ φtidal,
where we recall the point-particle result up to 2.5PN order,

φpp ¼ −
1
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; ð6:4Þ

and where the tidal contribution is

φtidal ¼ −
3x5=2
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Next, motivated by data analysis applications, we provide the phase in the Fourier domain within the stationary-phase
approximation for the dominant mode at twice the orbital frequency, with Fourier GW frequency f and PN parameter
v≡ ðπGmf

c3 Þ1=3. We find for this phase: ψSPA ¼ 2πftc þ ψpp þ ψ tidal with

ψpp ¼
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ψ tidal ¼−
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The result for the tidal part of the SPA phase in the case of
equal bodies, with the same mass and identical polar-
izability parameters, has already been provided in Eq. (1.7).

VII. SUMMARY AND CONCLUSIONS

In this paper and the preceding one [22], we have solved
the problem of the dynamics and GW emission of compact
binary systems without spins for tidal, internal structure-
dependent effects at the NNL order, meaning formally the
order 7.5PN (taking into account tails) in the GW phase
evolution. We used the formalism of the effective matter
action of Ref. [21], which describes massive pointlike
particles with internal structure by introducing specific
non-minimal couplings to the space-time curvature that
model the finite-size effects of the compact bodies due to
the tidal interactions. Since the matter action is localized on
the worldline of the particles, it is sometimes referred to as a
“skeletonized” action. To the NNL order there appear three
polarizability coefficients corresponding to mass quadru-
pole, current quadrupole, and mass octupole tidal inter-
actions. In Ref. [22], we derived the associated effective
Fokker action to obtain the conservative dynamics, i.e.,
EOM and conserved integrals of the motion.
In the present paper, we computed the matter stress-

energy tensor of the compact binary from the same effective
action, and inserted it into a GW generation formalism
based on MPM approximations for the external field [25],
which are matched to the PN expansion of the inner field
[30,31]. The MPM-PN approach constitutes a very general
way for computing the GW emission (and radiation
reaction onto the source) once one is given the matter
stress-energy tensor. In particular, we resorted to general
ready-to-use expressions for the source multipole moments
and nonlinear interactions between those moments (tails,
etc.) leading to the observable waveform at infinity and,
thus, the energy flux. At last, once the flux to NNL order for
tidal effects had been obtained and reduced for circular
orbits, we combined it with the result for the conservative
energy found in [22]. Namely, we employed the standard
flux-balance argument to determine the binary’s chirp, i.e.,
the orbital phase and frequency evolution through GW
emission for compact binaries on quasicircular orbits.

Our results extend and complete several previous results
in the literature. In Table I, we summarize the previous
achievements in the field for each PN order and multipole
component. We agree with all the previous results quoted in
Table I. Finally, with the present paper, the tidal phase of
nonspinning NS binaries is complete up to the NNL order
including NL tails, which means formally up to the high
7.5PN level.14
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APPENDIX A: PROOF THAT DIMENSIONAL
AND HADAMARD REGULARIZATIONS ARE

EQUIVALENT AT NNL ORDER

In order to show that dimensional and Hadamard
regularizations are equivalent at NNL order, we need to
show that the multipole moments integrated with these two
regularizations have the same value. The regularizations

TABLE I. Comparison with the existing literature. We indicate for each order and each multipolar piece
contributing to the tidal phase φtidal the previous references having achieved it and with which we agree (note that
Ref. [18] considers only the case of equal bodies). The contributions obtained with the present paper are indicated as
a check mark ✓. Up to NNL order including tails, the tidal phase is now complete.

φtidal Mass Quadrupole Current Quadrupole Mass Octupole

5PN (L) [6,7,18,44,45] ✓ ✗ ✗
6PN (NL) [18,44,46] ✓ [46,47] ✓ ✗
6.5PN (tail) [18,46] ✓ ✗ ✗
7PN (NNL) ✓ ✓ [46,48] ✓
7.5PN (tail) ✓ ✓ ✓

14However we disagree with some coefficients in the literature:
first, with the 6PN coefficient due to the current quadrupole
moment computed in Ref. [48] and second, with the mass
quadrupole contribution to the tail term at the 7.5PN order as
reported in Ref. [18]. The latter reference obtains for the mass
quadrupole contributions to the SPA phase of two identical NS
[see Eq. (31) in [18] ]:

ψDNV
tidal ¼ −κT2

39

4
v5
�
1þ 3115

1248
v2 − πv3

þ
�
23073805

3302208
þ 20

81
ᾱð2Þ2 þ 20

351
β222

�
v4 −

4283

1092
πv5

�
;

with κT2 ¼ 6μ̃ð2Þþ in their notation (recall that we have μ̃ð2Þ− ¼ 0 for
identical NS). Further work [21] fixed ᾱð2Þ2 ¼ 85=14 to be the
contribution of the NNL equations of motion to the phasing.
Now, the comparison with our present results, given for two equal
bodies by Eq. (1.2) in the Introduction, permits inferring that
β222 ¼ 642083=1016064, so that, with this value, we are in
agreement up to the NNL level for the mass quadrupole
interaction; but we find that the NL 7.5PN tail term has the
coefficient − 2137

546
π ≃ −12.296 instead of the coefficient − 4283

1092
π ≃

−12.322 obtained in Ref. [18].
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appear in two different steps of the computation: the
integration of the elementary potentials and the integration
of the multipole moments. We deal in Appendix A 1 with
the required potentials and in Appendix A 2 with the
multipoles. In order to do so, we give general arguments
regarding the structure of the different quantities consid-
ered. In both parts of this proof, we use the fact that in
d ¼ 3þ ε dimensions, the sources σ, σi, and σij displayed
in Eqs. (2.21) and (B1) have the same structure as in 3d and
that their value are continuous for ε → 0.

1. Equivalence for potentials

As said in Sec. III, we only require the potentials V at
1PN and Vi, Ŵij at Newtonian order for the integration of
the multipole moments. Their definitions are given in
Eq. (3.2). Both V and Vi have sources with compact
supports and are thus qualified of “compact-support poten-
tials” (C). By contrast, the source of Ŵij involves a compact
part as well as a noncompact part, hence Ŵij itself splits
correspondingly into a compact potential and a so-called
“noncompact-support potential” (NC). The latter is actually
a “∂V∂V potential,” defined in general as a NC potential
whose source can be written as Sð∂V∂VÞ ¼ ∂pAAðCÞ∂pBBðCÞ,
where AðCÞ and BðCÞ are two C potentials, while pA is the
number of spatial or time derivatives considered. Both C or
∂V∂V types have to be treated differently since the
structure of their terms are different. The differences
between regularizations arise when we take the limit
r1 ¼ jx − y1j → 0. It is then very convenient to split for
a function F its regular part from its singular part when
r1 → 0. For any function F admitting a powerlike expan-
sion (with possible powers of logarithms) when r1 → 0, we
can define its regular part in the neighborhood of 1 as that
part of this expansion that is smooth (with k ∈ N), i.e.,

Freg ¼
X

l≥0;k≥0
f̂
1

L
k r̂

L
1 r

2k
1 ; ðA1Þ

where 1f̂
L
k are STF tensor coefficients contracted with

r̂L1 ¼ STFðri11 ri21 …ril1 Þ. What remains in the expansion
defines the so-called singular part Fsing ¼ F − Freg. The
extraction of the regular part of F at 1 defines an operator
R1 as R1½F� ¼ Freg. The properties of this operator and its
counterpart S1, such that S1½F� ¼ Fsing, are discussed in
Sec. III B of Ref. [21]. Let us simply recall that they are
linear and commute with space or time derivatives.
For any potential P considered in our problem, having a

C part PðCÞ and a “∂V∂V” part Pð∂V∂VÞ, it can be proved, by
means of the techniques described in Refs. [49,50], that
their regular and singular parts are of the form

PðCÞ
sing ¼

X
0≤k

X
0≤j≤2kþn

∝
∂Jr2k−1−ε1

c2k
; ðA2aÞ

PðCÞ
reg ¼

X
0≤k

X
0≤j≤2kþn

∝
∂Jr2k−1−ε2

c2k
; ðA2bÞ

Pð∂V∂VÞ
sing ¼

X
1≤sA≤pAþnA
1≤sB≤pBþnB

� X
0≤j≤sAþsB
jþsAþsBeven

∝
n̂J1

rsAþsBþ2ε
1

þ ∝ ð∂1SA∂2SBg
ð3þεÞ
sing þ 1 ↔ 2Þ

�
; ðA2cÞ

Pð∂V∂VÞ
reg ¼

X
1≤sA≤pAþnA
1≤sB≤pBþnB

� X
0≤j≤sAþsB
jþsAþsBeven

∝
n̂J2

rsAþsBþ2ε
2

þ ∝ ð∂1SA∂2SBg
ð3þεÞ
reg þ 1 ↔ 2Þ

�
; ðA2dÞ

where pA comes from the definition of Sð∂V∂VÞ, nA is the
number of spatial derivatives in the source of AðCÞ, and
∂Ai ≡ ∂=∂yiA. The functions gð3þεÞ

reg and gð3þεÞ
sing are given by

gðdÞsing ¼ S1½gðdÞ� ¼ r−2ε12

Xþ∞

l¼0

cð3þεÞ
l

lþ 1
n̂L12n̂

L
1

�
r1
r12

�
lþ1−ε

; ðA3aÞ

gðdÞreg ¼R1½gðdÞ� ¼−r−2ε12

Xþ∞

l¼0

cð3þεÞ
l

lþ ε

�
n̂L12
rl12

�
r̂L1 þ

1

2ð1þ εÞ
r−2ε0

ε
;

ðA3bÞ

with cðdÞl ¼ð−1Þl2l−1Γðd=2þl−1Þ=½l!Γðd=2−1Þð1−εÞ�.
In order to show that the potentials have the same
expression for both regularizations, we have to check that
the structures of the regular and singular part are the same
for ε ¼ 0 and ε ≠ 0, meaning that poles in 1=ε do not
appear.

a. Compact support

PðCÞ evaluated at x ¼ y1 in dimensional regularization or
directly in three dimensions with the help of Hadamard’s
procedure lead to the same result, for in neither case does
the purely singular part contribute. Indeed, in dimensional
regularization, for an appropriate choice of ε, it automati-
cally vanishes for r1 ¼ 0. In the Hadamard’s finite part
regularization, the reason for which it is zero is instead that
the finite part of a function F does belong to R1½F�.

b. Noncompact support

Let us now demonstrate that the two terms in Eq. (A2c)
are equivalent for both regularizations. The potential
Pð∂V∂VÞ is sourced by
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Sð∂V∂VÞ ¼
X

sA≤pAþnA
sB≤pBþnB

�
∝

nSASB1

r2þsAþsBþ2ε
1

þ
�
∝ ∂SA

�
1

r1þε
1

�
∂SB

�
1

r1þε
2

�
þ 1 ↔ 2

�
þ ∝

nSASB2

r2þsAþsBþ2ε
2

�
: ðA4Þ

The first term in (A4) is the source of the first term in
Eq. (A2c). It is then sufficient to show that applying on the
former the Poisson integral in d dimensions properly
regularized at infinity, denoted as Δ̃−1, cannot create a
pole. Indeed, in the absence of pole, the limit of the result
when ε → 0 is a well defined particular solution, which can
only differ from the Hadamard’s one by a regular homo-
geneous solution. This difference is also deprived of pole
and reduces to zero if the same regularization is used to cure
IR divergences at infinity in d and three dimensions. To
produce a pole in the current context, the d-dimensional
Poisson integral operator Δ−1 has to be applied on con-
tributions of the form n̂L1 r

l−2þqε
1 or n̂L1 r

−l−3þqε
1 with q ∈ Z.

On the other hand, since sA;B ≥ 1, our source term is made
of elementary STF pieces n̂L1 r

αþqε
1 with α ≤ −4, which

shows incidentally that its Poisson integral is well defined
at infinity; hence, it is legitimate to work with the operator
Δ−1 instead of Δ̃−1. For this source term to contain a pole,
we must have either α ¼ l − 2 ≤ −4, which is impossible,
or α ¼ −l − 3 with l ≥ 1. In that second situation, the
parity πσ of the sum of the ε0 coefficient in the power of r1,
namely, −l − 3, and of the number of ni1 factors, l, is odd,
while the parity of the same sum, which we could refer to as
πσ-type parity, computed for nSASB1 =r2þsAþsBþ2ε

1 is even.
This contradicts the fact that those two parities must be
equal, and that, because the number of ni factors in nSASB
minus that in n̂L is necessarily an even integer, i.e., l and
sA þ sB have the same parity. Thus, no pole can appear due
to the action of Δ̃−1 and it is safe to take the limit ε → 0. As
for the first term of (A2d), regular near r1 ¼ 0, its
expansion consists of elementary pieces r̂L1 r

2k
1 , with

k ∈ N, so none of them has the required form to produce
a pole either.
The second terms in (A2c) and (A2d) are expressed in

terms of the local functions (A3a) and (A3b). The limit
ε → 0 is well defined for each of them and commutes with

the operators R1 and S1. The precise expression of gðdÞreg is
unimportant for the analysis. The poles manifesting them-
selves in the sum over l and in the last term of (A3b) are
mere constants, which are canceled after the action of the
derivatives ∂1SA∂2SB , with here sA þ sB ≥ 2. In fact, their
combination even admits a finite limit ε → 0, namely,
lnðr12=r0Þ − 1. The key point is that, due to greg, there is a
nonzero regular part in the solution.
Note that the source (A4) produces distributional pieces,

e.g., nSA1 r−nA−1−ε1 ∂nBð1=r1þε
1 Þ, but those are zero provided

−ε is chosen to have a sufficiently large real part, thus

vanishing in dimensional regularization. In the case ε ¼ 0,
they are consistently discarded following Hadamard’s
regularization [60].

2. Equivalence for the multipole moments

The multipole moments are defined as volume integrals
over certain regular kernels, typically x̂ij, multiplied by
compact sources (e.g., σ), noncompact potentials, or
derivatives of noncompact potentials. Since the structure
of the involved potentials is known in d dimensions, we are
now in the position to investigate possible differences
between the dimensional and Hadamard regularization
arising from the volume integration.

a. Compact support

When the elementary source has a compact support, it
can always be rewritten, using the same manipulation as
for the transformation of the σ’s, as a sum of derivatives

of ðFreg∂nPP∂nQQ…Þδð3Þ1 (or likewise with δð3Þ2 ), where
P;Q;…, are compact-support or ∂V∂V potentials. Then,
the factor in front of any given Dirac distribution can be
substituted with its value at point 1, i.e., ∂nPP → ð∂nPPÞ1,
which is nothing but ð∂nPR1½P�Þ1 both for Hadamard and
dimensional regularizations, according to the previous
discussion. Since, in addition, R1½P� is continuous as a
function of ε in the limit ε → 0, we conclude that the two
prescriptions yield the same result for the integration of
compact-support terms, with the convention that the
Hadamard finite part ðÞ1 of a product of derivative of
potentials ∂nPP∂nQQ � � � should be “distributive,” i.e.,
defined as ð∂nPPÞ1ð∂nQQÞ1 � � �.

b. Noncompact support

Let us next turn to the noncompact-support terms. To get
the UV difference DI between the integral IðdÞ over a
sphere jxj < R of a source FðεÞ in d ¼ 3þ ε dimensions,
with formal Taylor expansion near x ¼ y1,

FðεÞðxÞ ¼
X

f
1

ðεÞ
p;qðn1Þrpþqε

1 ; ðA5Þ

and its Hadamard counterpart
R
jxj<R d3xFðxÞ, as ε goes

to 0, we resort to the formula [61]:

DI ¼ 1

ε

X
q

�
1

qþ 1
þ ε ln s1

� Z
dΩ2þεf

1

ðεÞ
−3;qðn1Þ; ðA6Þ
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where the sum over q is finite. Based on this relation, we
shall show thatDI ¼ 0, taking advantage of the fact that the
angular integral of an odd number of ni1 is zero and thatR
dΩ2þεn̂L1 n̂

P
1 ¼ 0 unless l ¼ p.

A close look at Eqs. (4.4) and (4.5) reveals that all
the terms but one are ∂V∂V-type potentials multiplied by
some regular functions. The only left term15 is proportional
to x̂LŴij∂ijV at Newtonian order and requires a separate
treatment.
Let us consider now the pure ∂V∂V-type terms, whose

source structure at the leading Newtonian order required
here is given by Eq. (A4). The derivatives in the product
∂SAr

−1−ε
1 ∂SBr

−1−ε
2 comprise an ordinary and a distributional

part which does not trivially vanish. The distributional part
is made of derivatives of Dirac delta functions and is to be
treated in the same way as compact-support terms, this case
having already been discussed above.
Regarding the ordinary parts of the ∂V∂V terms, since

evidently DI ¼ 0 for regular functions, we focus on
the singular part of these terms, which is only able to
generate a difference. The first term of Eq. (A4), namely,P

nSA1 nSB1 =r2þsAþsBþ2ε
1 , with sA;B ≥ 1, has a nonzero coef-

ficient f1
ðεÞ
−3;q in (A5) whenever sA þ sB þ 2 ¼ 3. This

coefficient is therefore proportional to ni1 and its angular
integral is zero. The second singular piece, of the formP ∂SAr

−1−ε
1 Freg, is made of a sum of terms ∝ r2kþl

1 n̂L1 ×

r−1−sA−ε1 n̂SA1 with k ≥ 0, by virtue of Eq. (A1). The angular

integral of f1
ðεÞ
p;q ∝ n̂L1 n̂

SA
1 , for p ¼ −3 ¼ 2kþ l − 1 − sA,

vanishes unless l ¼ sA, but this is impossible or, else, the
contradictory statements 2k − 1 ¼ −3 and k ≥ 0 would
hold simultaneously. As a consequence, there is no con-
tribution of the ∂V∂V sources to DI.
Let us end with the ordinary part of the elementary inte-

grand x̂LŴij∂ijV, with Ŵij ¼ ŴðCÞ
ij þ Ŵð∂V∂VÞ

ij , truncated
at Newtonian order. The contributions associated with the

compact part ŴðCÞ
ij or the distributional part have already

been handled, so there only remains x̂LŴ
ð∂V∂VÞ
ij ∂ijV, taken

in the sense of functions. This product may be expanded
into four pieces:

(i) x̂L∂ijV
ðCÞ
reg ðŴð∂V∂VÞ

ij Þreg, which is purely regular
[see Eq. (A1)];

(ii) x̂L∂ijV
ðCÞ
singðŴð∂V∂VÞ

ij Þreg, of the form Freg times
Eq. (A2a) (for k ¼ 0);

(iii) x̂L∂ijV
ðCÞ
reg ðŴð∂V∂VÞ

ij Þsing, of the form Freg

times Eq. (A2c);

(iv) x̂LðŴð∂V∂VÞ
ij Þsing∂ijV

ðCÞ
sing, of the form Freg times

Eq. (A2a) times Eq. (A2c).

The piece (i) cannot contribute to DI, while (ii) is struc-
turally equal to ∂Jr−1−ε1 Freg, which has been already proved
not to contribute to DI either. The piece (iii) can be
decomposed into two parts, corresponding to the two terms
under the curly brackets in Eq. (A2c):

(iiia) The first part has a general term ∝ r2kþl
1 n̂L1 ×

nJ1r
−sA−sB−2ε
1 , for which the same parity argument

as used in the ∂V∂V case applies: the πσ-type
parity is even, so that the angular integral of the
r−31 coefficient is necessarily zero.

(iiib) For the second part, the specific source of V
starts to play a role in the analysis. The num-
ber of derivatives n in the leading tidal term of
σ is equal to two (both of space type); hence, V
is schematically given by ∂abðf1ðtÞδ1Þ þ 1 ↔ 2.
This entails, for Ŵij, that sA;B ¼ pA;B þ nA;B ≤ 3

in the expansion (A4) near r1 ¼ 0 in that case
(with pA ¼ pB ¼ 1), by virtue of Eq. (4.2c).
So, we find that sA ≤ 3 in the general term of
(iii), namely, r2kþl

1 n̂L1 × ∂1SAðr−1−l
0−ε

12 r1þl0−ε
1 n̂L

0
1 Þ,

which, therefore, cannot diverge faster than r−21 .
Again, no contributions to DI arise.

The last piece, of type (iv), also consists of two sorts
of terms:

(iva) The first ones, x̂ij × ∂Kr−1−ε1 × n̂J1r
−sA−sB−2ε
1 , turn

out to be too divergent to contain 1=r31 powers in
the tidal part. This is because we have for them
either k ¼ 4 and sA þ sB ≥ 2, or k ≥ 2 and
sA þ sB ¼ 4, according to whether the tides origi-
nate from V or Ŵij. In the point-particle part, only

r̂ij1 r
−5−3ε
1 does not diverge faster than r−3þqε

1 , but its
angular integral vanishes. In both events, the
corresponding DI is zero.

(ivb) As for the second sort of terms, Freg∂Ir−1−ε1 ×

∂1SA∂2SBg
ð3þεÞ
sing , their πσ-type parity is well defined

and reduces to that of the general term of r−11 gð3Þsing.
It is thus even, preventing those terms to contribute
to Eq. (A5).

To conclude, we have shown that the Hadamard
regularization is equivalent to the dimensional regulari-
zation when integrating the C source terms of the 2PN
multipole moments that only involve compact-support
and ∂V∂V-type potentials. Likewise for the integration
of NC sources of ∂V∂V-type at leading order. We can
also use Hadamard’s regularization for the remaining
noncompact-support source ∝ Ŵij∂ijV at Newtonian
order, provided the corrections beyond the point-particle
model in V are at least dipolar, which is indeed the case
in our model [see the conditions on k and sA þ sB, in
the above analysis of piece (iv)]. As a result, the
Hadamard regularization is sufficient for all the com-
putations presented in this paper.

15As we have seen in Eq. (4.6), source terms of the type x̂LΔF
can be recast into surface integrals at infinity and are thus
irrelevant for the present discussion about UV divergences.
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APPENDIX B: TIDAL MATTER VARIABLES AND COM MULTIPOLE MOMENTS

In Sec. II B, we have split the matter currents defined by (2.20) as σ ¼ σpp þ σtidal etc., the point-particles parts being
given by (2.21) together with the metric computed in Sec. III. The tidal parts are expressed in terms of the tidal moments
Ĝ1ab, Ĥ1ab, and Ĝ1abc projected onto the tetrad (2.22) and evaluated at point 1 using the regularization, as

σtidal ¼ −
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Ĝ1aivb1 −

1

2
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Ĝ1abv21v

i
1 −

1

4
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Ĝ1ajvb1v

i
1v

j
1

−
1

2
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εabjĤ1ij∂bV

�

þ μð2Þ1

c2

�
−
1

2
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− μð2Þ1 δ1Ĝ1aði∂jÞaV −

1ffiffiffiffiffiffi−gp ∂a

�
μð2Þ1 δ1

�
1

2
Ĝ1ij∂aV − Ĝ1aði∂jÞV

��

−
1ffiffiffiffiffiffi−gp ∂t∂a

�
δ1

�
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In Sec. IV, the multipole moments have been computed to NNL order. We provide here their tidal parts in the frame of the
COM:
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