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We compute the gravitational-wave (GW) energy flux up to the next-to-next-to-leading (NNL) order of
tidal effects in a spinless compact binary system on quasicircular orbits. Starting from an effective matter
action, we obtain the stress-energy tensor of the system, which we use in a GW generation formalism based
on multipolar-post-Minkowskian and post-Newtonian (PN) approximations. The tidal contributions to the
multipole moments of the system are first obtained, from which we deduce the instantaneous GW energy
flux to NNL order (formally 7PN order). We also include the remaining tidal contributions of GW tails to
the leading (formally 6.5PN) and next-to-leading (7.5PN) orders. Combining it with our previous work on
the conservative equations of motion and associated energy, we get the GW phase and frequency evolution
through the flux-balance equation to the same NNL order. These results extend and complete several

preceding results in the literature.
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I. PHYSICAL DISCUSSION AND MOTIVATIONS

The discovery of gravitational waves (GWs) generated
by the inspiral and merger of two neutron stars (NSs) [1,2]
marked a breakthrough in fundamental physics, by
allowing for the first time a direct constraint on the equation
of state (EOS) of cold matter at supranuclear densities deep
inside NSs. This important test excluded some of the
stiffest EOSs, for which the pressure increases a lot for
a given increase in density, and which therefore offer more
resistance to the gravitational collapse, resulting in a NS
that is less compact. This finding is consistent with known
constraints on the radius of NSs from electromagnetic-
based observations [3]. However the majority of soft EOSs,
which are more easy to compress and thus predict a more
compact NS, are still viable (see [4,5] for reviews).

During the inspiral phase of coalescing NS binaries, the
orbital dynamics is dominated by point-mass contributions
and the waveform is essentially identical to that of black
holes. However, closer to the merger small corrections arise
due to the finite-size effects of NSs. These can be described
by resorting to a tidal expansion in the small parameter
~R,/rap, Wwhere R, is the size of one of the NSs and ryp is
the typical orbital separation. The tides arise from the
response of the NSs to the gradient of the companion’s
gravitational field across the matter distribution. The tidal
expansion is a multipole expansion where the mass
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quadrupole moment of the object is dominant, and higher
mass- or current-type moments are subdominant. The
deformation and finite-size effects are parametrized by a
series of coefficients associated with each multipole
moment and referred to as the tidal deformabilities (or
polarizabilities) of the NS.

For GW detectors, the main observable is the so-called
binary’s chirp, i.e., the time evolution of the compact
binary’s orbital frequency (7) and phase ¢(t) = [ drw(r)
through GW radiation reaction during the inspiral. The
detectors are sensitive to some particular combination of
the two deformabilities of the NS and the two masses that
enter the binary’s chirp. To the lowest tidal mass quadru-
pole order, the chirp is given by the combination of the two
relations,

1 39 .
X = 19—1/4 [1 + m/\@e-ﬁ/‘*} . (1.1a)
X732 39
P03 {1 * ?A(z)xs]’ (1.1b)

where v = m;m,/m? is the symmetric mass ratio, m =
my + m, is the total mass, and where we use the dimen-

sionless frequency x = (42)%/3 and time 6 = £ (1, — 1)
variables, with 7. denoting the instant of coalescence—at
which the distance between the particles formally vanishes
while the frequency diverges—eq, being an initial constant
phase, G the gravitational constant, and ¢ the speed of light.

The most commonly used approximant for GW data
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analysis in the Fourier domain is defined by using the
stationary-phase approximation (SPA), for which the phase
of the dominant mode at twice the orbital frequency reads

x 3v7 39 -
=27ft, — 209 — =+ o [1 = APp!0 1.2
v =2afi= 200 -5+ 2 1-DRove] - (12)
where we have posed v = (%Z”f)l/ 3, f being the Fourier

frequency of the GW signal.

Since x and »? are small post-Newtonian (PN) parameters
of the order of O(c~2), we see that the effect of the internal
structure of NS (in the nonspinning case) is comparable to
relativistic orbital effects occurring at the SPN order beyond
the point-particle contribution computed with the usual
Einstein quadrupole formula. Of course, the latter estimate
is just formal, since we have to take into account, besides the
small factor x> ~ v'°, the numerical value of the SPN coeffi-
cient parametrizing the finite-size effect in (1.1) and (1.2).

In principle, the coefficient A?) is directly measurable by
the GW detectors. However, in practice the constraint is
obtained under some prior regarding the values of the NS
spins [1]. The best one probably corresponds to the low-spin
scenario (say, with dimensionless spin parameter |y| <0.05),
since we expect from binary pulsar observations in our
galaxy that the spin-orbit and spin-spin terms will make
negligible contributions to the accumulated phase of NS
binaries. The data analysis process should improve in this
regard when we have more detections and higher signal-to-
noise ratios, so that we can measure independently the NS
spins using PN templates. The precise expression of A® in
terms of the companion parameters is [6,7]1
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where the individual dimensionless mass quadrupole
deformability parameter is defined by

@ _ 2,0 (Rac??
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(1.3)

(1.4)

Here m, and R, are the mass and radius of the NS, whereas

kf) is a characteristic numerical coefficient called the
(second) Love number [8]. Since Eq. (1.3) depends on both
the masses and tidal deformabilities, with the masses being
biased by gravitational lensing unlike the polarizabilities, the
observable combination (1.3) could be used to recognize
strongly lensed GW binary signals from unlensed ones with

'The normalization is chosen in such a way that A®) = A§2> =

A(zz) in the case of two identical neutron stars, i.e., with the same
mass and the same EOS.

intrinsically higher masses [9]. On the other hand, assuming
the absence of lensing, the simultaneous measurement of m,
m, and A® may provide an estimation of the redshift
independently of electromagnetic observations [10]. This is
particularly interesting for cosmography applications such as
the measurement of the Hubble-Lemaitre parameter.

Both the Love number and the compacity parameter C, =

gA"Z; depend on the particular EOS. The Love numbers and

tidal polarizabilities have been computed numerically for
NSs [11-14]. Typically k® ~0.1 and C=~0.15,> which
means that the quadrupole deformation coefficient (1.4) is a
large number of the order of ~1000; hence, the effect is large
enough to be measurable from GW signals with a reasonable
signal-to-noise ratio [6,7,18]. More precisely, we can esti-
mate its magnitude by computing the tidal phase from
Eq. (1.2) at the point of contact of the two NSs. At leading
order for two identical NSs (with common Love number k(?)
and compacity C), defining the contact point by v¢opee = C'/%
we expect the maximal tidal phase lag to be roughly [13]

39
l//rundzgi — __k<2)C_5/2 ~ —14 rad,

= (1.5)

which is amply sufficient for detection and data analysis (see,
e.g., [19,20]).

The tidal polarizabilities (1.6) are physical parameters to
the extent that they directly parametrize the effective matter
action, (2.1) and (2.2), we adopt in this work, following
Refs. [21,22], as an efficient and elegant tool to describe
tidal effects in the case of compact bodies. In the present
paper, we shall analyze the tidal response of NS binaries
and the modification of the GW phase to higher order,
corresponding to mass quadrupole, current quadrupole, and
mass octupole tidal interactions. Accordingly, we introduce
three tidal polarizability coefficients, conveniently denoted,
using standard normalization [11,14], as

2 Gmy\°> ) 2,0
Gu? E< = ) AP :§kg>R3, (1.6a)
Gol? = L jO0gs 1.6b
04 _&JA As (1.6b)
Gl = Z10R] 1.6
Ha T 15" fa (1.6¢)

and related to corresponding relativistic generalizations

kf), jl(f), and kf) of Love numbers for the mass quadru-
pole, current quadrupole, and mass octupole moments of
the body, with R denoting its radius in a coordinate system
such that the area of the sphere of radius R, is 47R3.

2By contrast, the Love numbers of black holes, i.e., in the limit

where the compacity C4 — %, are exactly zero [12,13,15-17].
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As we have seen, the tidal mass quadrupole contribution
to the phase (1.1) starts formally at SPN order; here, we
shall also compute the next-to-leading (NL) as well as the
next-to-next-to-leading (NNL) corrections arising formally
at 6PN and 7PN orders. The current quadrupole will start at
NL/6PN order and we shall control the NNL/7PN term
therein, while the mass octupole term will be purely a NNL/
7PN contribution. We shall finally include the tidal con-
tributions of GW tails to leading 6.5PN order, and to NL/
7.5PN order.

In the formalism of effective action on which we lean,
each compact object is described by an effective point
particle endowed with internal structure. The effect of the
internal structure is described by some nonminimal matter
couplings to gravity introduced at the level of the action,
involving relativistic tidal moments given by appropriate
covariant derivatives of the Riemann tensor (or its dual),
evaluated at the location of the particle, and partly con-
tracted with several occurrences of the four-velocity vector.

A regularization is required to remove the self-field of
the pointlike object, thus ‘“automatically” selecting the
external tidal field experienced by body A due to the other
bodies B # A composing the system. We rely on dimen-
sional regularization, which is known to give a complete
physical answer in high PN approximations (see notably
[23,24]). However, up to the NNL order, as shown in the
Appendix A, it is equivalent to the simpler Hadamard
“partie finie” regularization, so we actually use the
Hadamard regularization in our practical calculations.

In the previous work [22], we obtained the tidal effects in
the conservative equations of motion (EOMs) of compact
binary systems to NNL order in the PN expansion. The
internal structure and finite size of the compact objects
were described by means of the Fokker action associated

|
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*To present our results below we conveniently use a “tilted”
notation for the polarizability coefficients defined by Egs. (4.7)
and (4.8). For identical bodies, with Love numbers k2, ;@ and

k3 and compacity C, such notation reduces to (with, e.g., ﬁ(z) =
~(2) d ~(2) — 0
py’ and pio = 0)
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The formula (1.7) can easily be reconciled with Eq. (1.2) to the
leading order.

2

with the sum of the effective matter action and the Einstein-
Hilbert gravitational action (with a gauge fixing term),
through the three tidal polarizability coefficients (1.6). In
particular, we obtained the invariant energy of the compact
binary system in the case of quasicircular orbits, which was
found to be consistent with the (PN re-expansion) of the
known effective-one-body Hamiltonian [21].

In the present paper, we compute the tidal effects in the
GW energy flux to NNL order within the so-called PN-
matched multipolar-post-Minkowskian (MPM-PN) formal-
ism, which applies specifically in harmonic coordinates
[25-32]. The MPM-PN approach describes the waveform
by means of mass and current radiative multipole moments
defined in the asymptotic region, which are themselves
related to some appropriate source-type multipole moments
defined in the near zone for the whole matter system.
Beware that we work with two different kinds of multipole
moments in this article: the tidal moments, describing the
individual deformation of the bodies, and the source
multipole moments describing the mass distribution of
the overall system. Note that, at the lowest order, the theory
is linear, so that a given source multipole moment is the
sum of its point-particle counterpart for the orbital motion
and the corresponding tidal multipole moments of both
bodies.

The energy flux computed in the present paper, together
with the conservative energy deduced from the EOMs in
our previous work [22], are the two basic ingredients
required for insertion into the flux-balance equation and
computation of the phase or frequency evolution to NNL
order. As a matter of summary, we present here our end
result for the tidal part of the SPA phase in the case of equal
NS, with the same mass (v=1/4) and identical
polarizabilities:

500~(3)> 1)4—7r<2137~(2) a7
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Note that, besides the even PN corrections, there also
appear half-integer 6.5 and 7.5PN contributions, which are
due to propagating GW tails at infinity [26,28].

The rest of the paper is organized as follows. In Sec. II,
we recall the matter action we start with (details of its
construction are given in, e.g., [21,22]) and compute the
stress-energy tensor of the system as well as its 3 + 1
decomposition rewritten in a convenient form. Next, we
calculate, in Sec. III, the potentials sourced by the previous
stress-energy tensor (some long formulas are relegated to
Appendix B). In Sec. IV we apply the GW generation
formalism, which yields the source multipole moments of
the binary system in a general frame. Those are then
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specialized to the center of mass (COM) frame and, in a
last stage, for circular orbits (while the moments in a general
frame are too long, we present the COM moments in
Appendix B). As for the instantaneous GW flux, it is
computed in Sec. V in a modal form based on the mode
decomposition of the source multipole moments. The missing
tail part is obtained from those flux modes. In Sec. VI we
present our result for the phase evolution, both in the standard
Taylor form and in the Fourier domain, using the SPA. Finally,
in Sec. VII, we conclude and make comparisons with the
existing literature. We prove in Appendix A that the dimen-
sional and Hadamard regularizations are equivalent for this
problem up to NNL order. In Appendix B we provide the
lengthy expressions of the tidal matter variables and the source
multipole moments in the COM.

II. MATTER ACTION AND STRESS-ENERGY
TENSOR

A. General formalism

In the preceding paper [22], we analyzed the motion of a
compact binary system including tidal interactions. To do
so, we considered the gravitational Einstein-Hilbert action
endowed with the standard harmonic gauge fixing term, to
which we added the effective matter action for a system of N
massive gravitationally interacting compact bodies with inter-
nal structure. The motion was obtained by varying the
associated Fokker action. The next crucial step in our approach,
pursued in this section, consists in the computation of the
matter stress-energy tensor, whose vocation is to be inserted in
aGW generation formalism. For that purpose, we need only the
matter part of the action which admits the general form

N
Sm = Z/dTALA,
A=1

where the term associated with particle A integrates over its
proper time variation dz4 which is such that the four-velocity
culy = dy}{/dr, is normalized to gy, uliu/y = —1. Here, gi),
means that the metric is evaluated at the location of particle A,
with the self-field contribution from A removed with the help of
an appropriate self-field regularization, namely, dimensional
regularization.

In the approximation of point particles (pp) deprived of
internal structure and unresponsive to tidal fields, the action
is given by the standard mass term. To describe the
response of the internal structure of the compact objects
to tidal interactions, we add to the point-particle action the
following specific nonminimally coupled piece4:

(2.1)

*We use the same conventions and notation as in Ref. [22]. See
[21,22] for more details, as well as [6,12,13,15,33-36] for
preceding fundamental works and alternative discussions. See
also [37,38] for general definitions of the Dixon moments,
including spins, or [39—41] for a more practical approach at
the level of the action.

2) 2) 3)

Ly=-myc®+ % GGy + % HA Y + A GA Ghe.

12
(2.2)

To the NNL order investigated in this paper, it is sufficient
to consider the above three terms,” made of quadratic
products of tidal mass and current multipole moments,
namely, the mass quadrupole tidal moment G, the current

pvs
quadrupole Hj,, and the mass octupole Gj,,. They are
defined as®
Giy, = —C* Rty us, (2.3a)
HA, = 2c3Rz‘3€y>guﬁ us, (2.3b)
Gl = —CZVéRﬁ/_w)”ugug. (2.3¢)

The Riemann tensor and its dual are evaluated at point A
following the regularization, and we denote VjR;}UM =
(ViRup0)a the projected covariant derivative, defined
by (Vi)a=(LiV), with (L)), = (8 +upu’),. The
polarizability coefficients were already introduced in
Eq. (1.6).

The motivation for writing the Lagrangian (2.2) stems
from the fact that the matter action for a given body, in the
limit of small radius relevant for compact objects, can be
expanded near the worldline of a representative point on
which the resulting action is then localized, and that, in the
absence of spins, it can be only built from the metric and its
derivatives in a way that preserves parity and general
covariance. We already emphasized the crucial role played
by the self-field regularization, which must properly be the
dimensional regularization in this framework.

In order to compute the stress-energy tensor, we first
shift from the action (2.1) parametrized by the particle’s
proper time 74 to an action defined in terms of an arbitrary
parametrization 7. For instance, this parametrization can be
the same for all particles. Once this is done, the ensuing
expression for the action is manifestly invariant by repar-
ametrization. We thus pose (with @} = ¢}, @/ i1})

dr, = dz /i3,

>Other multipoles, proper time derivatives of tidal moments, as
well as cubic combinations of those quantities, can be checked to
appear at higher post-Newtonian order.

The dual of the Riemann tensor R,,, is defined as
Rips = %S”MKRM/,G, where ¢, stands for the totally antisym-
metric Levi-Civita tensor, with €413 = \/=g. The underlined
indices are to be excluded from the operation of symmetrization.
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The original action (2.1) now becomes (for simplicity’s
sake, we suppress the particle’s label until the end of this
section)

Sy = Z/d%i(uﬂ,g,w,R,w,m, ViRupo).  (2.5)

As it is written, the Lagrangian L is an (ordinary) function
of independent variables: the arbitrary parametrized four-
velocity ##, the covariant metric, the Riemann tensor and
the covariant derivative of the Riemann tensor. The
configuration variables are just the particle’s positions
y*(7) and their derivatives #*(7). We thus define the
linear momentum p,, as the conjugate momentum of the
position, i.e.,

oL

Pu= (2.6)

Following Refs. [37-39,41], we further introduce the
quadrupole current J##° and octupole current J#“/° as’

oL ) oL
uvpe _ _
3R , J 12 . (2.7)

Jrre = —6
Hvpo avﬂR Hvpo

The current J**° and the current J***° on its four last
indices have the same symmetries as the Riemann tensor. In
|

quad =

y 1 oW (x—y
TM /dT |:§ R(Mﬁpo_‘]l/)ipﬂ] 7( )

v 1 e 1 v)étpo
T = / de [EV”R%,MJW + 15 VI Rzpod W]

1 1 1
+V, / dr [_ ‘ R4, JPvisio _ 3 R to JVéio 3 Rz J(ﬂ”)fﬂ(f:|

1
+V,V,9, / d L wwv]

addition, J#¥7° satisfies the cyclic symmetry J#/re = ( as
a consequence of the Bianchi identity.

By varying the action with respect to the worldline of the
particle, we obtain the EOM [38]

Dpﬂ — _ljl/ﬂfmv R

1
dr 6 uuvpox — E JAWMKVMVXRD/)GK' (28)

Next, the stress-energy tensor is obtained by variation with
respect to the metric. With the action depending on the
Riemann tensor and its first covariant derivative, we obtain
it as the sum of pole, quadrupole, and octupole pieces [41],

wy . HY
™ = Tpole

+ Tﬁﬁad + Th. (2.9)
There is no dipole contribution since we neglect the spins.
The pole part takes the usual form of the stress-energy
tensor of a particle with worldline y*, four-linear momen-

tum p,, and four-velocity u* (parametrized by 7), namely,

54 (x —y)
=

[with 6*) (x — y) the four-dimensional Dirac distribution],

while the quadrupolar and octupolar pieces are given by

Thoe = /drp("u”) (2.10)

.
+V,V, / dr {—%JF’(W"] %\/__;y), (2.11a)
sW(x—y)
N
§Wx—y)
V=9
80(x—y) (2.11b)

V=9

As the latter formulas are general [37-39,41], we can apply them to the specific case of the Lagrangian (2.2). For simplicity,
we present the results setting ¢ = 1. Note the useful formula which links the current quadrupole invariant to the mass

quadrupole invariant:

H, H" = 4G,,G" + 2R, R ju* u’.

The linear momentum is then found to be

3 1
P = muty, + u? {_Ryayﬁ”yGaﬂ + 4 ”MGaﬁGaﬁ] +o [_ R}

1

1 1 1
+ /l(3> |:_ Ga/gyGaﬁyuﬂ - § G”ﬂyv(fR,;My[,u/’ - 6 G“ﬂyu(,VjRﬁl,mu/’u” — 6 1

4

(2.12)
1
a4 pap
R HY + 5 H Haﬁu,,]

o

G*"u*V Ry, ,u’ u”} . (2.13)

"The chosen prefactors match previous definitions in the literature [41]. As shown in Appendix A of [41], they are such that J#**° and
JHPe coincide with the Dixon quadrupole and octupole moments [37,38], respectively, at the considered approximation level. We refer
to (2.7) as multipole “currents” in order to reduce confusion with the tidal moments G;, H; as well as with the source multipole

moments I;, J; considered in Sec. IV.
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and we observe, as a check, the consequence of the
invariance of the action by worldline reparametrization,
namely,

u® o0 )
p,,u”——m+TG G +?H H*
4
—GﬂﬂyGﬂm/ = (214)

On the other hand, the explicit expressions of the quadru-
pole and octupole currents read

07 — (=3 GHl )
+ o2 (guya/}ua[_]/i[p u° 4 8/)6(lﬁu(lHﬁ[ﬂ ut! ) , (2 1 Sa)
Jaes — 4 3) (=2 1 Ayl GVkloyely, (2.15Db)

thereby completing the dynamics. As a verification of the
EOM and stress-energy tensor, we performed a direct
variation of the mass quadrupole contribution o ;&2) in
the action (2.2), i.e., without using the general formalism

(2.5) or the definitions of p,, J#*#°, and J#rre which led us
to an equivalent result.

B. Ready-to-use expressions

Equations (2.10) and (2.11) express the matter stress-
energy tensor, together with the explicit expressions (2.13)
of the linear momentum and (2.15) of the currents, in terms
of the tidal multipole moments. In turn, the tidal moments
are given in terms of the metric, curvature, and matter
variables by Eq. (2.3). In this section and the next one, we
need to rephrase the previous results in a more suitable way.
The matter stress-energy tensor takes the general form

T =) [UNSx + ValU§“8s) + VaVp(UF"8))
A
+ VYV, (U 5,)], (2.16)
where we use the coordinate-time ¢ parametrization and
denote 8, = 6®)[x —y,(¢)] the usual three-dimensional
Dirac distribution, and where (for 4% = dr/dz,)

v 1 w1 . v)ipo A )fﬂff 1 v)étpo
Uy = ug\/ -9 (pA”uA T3 3 Ry /lpaj "+~ VARA épa‘] 12V( RA-frpaJ ). (2.17a)
1 1 Ao Ao ( l/)gﬂﬁ

Ut — ~R (u J_ av)é, —R (u J>'f R.%. JW , 2.17b

A 3u8 /g < 4" a0l a Alacla T T RA sed s (2.170)

A T (2.17¢)

3ul /=9

1

U;X/aﬂy _ JVﬁ(/‘”)a (217(1)
3uA./

Note that all the U’s are symmetric over u and v; moreover, Uﬁ”"ﬁ and Uﬁ”aﬂy, over their 4 first indices, have the same

symmetries as the Jacobi tensor R¥W)P [remind the definitions (2.7)].
By expanding the covariant derivatives in (2.16) as the sum of partial derivatives and Christoffel symbols, we get some

ready-to-use formulas that are directly entered into our computational codes,®

TH — Z |:Tfl\‘/ll’ + aa(Tlll)yaaA) +
A

1
N

where

Thy = UM + 20U + (9,1 + TS, T U0 —

+ [0S + 0,(TY;

+ 205, 0,T Y + TS0, Tl — 9, (T8 ) + T, T + 20T, T

1
N

IY)) = 205, DT} + TSI —

namely,
Dop(THD8,) +— 0,5, (TH5,) (2.18)
Vami')
) yree (2.19a)

o« F( r )]Upﬂy(io-

o oY~ pA

I/)lyﬁa
oy p/l aﬁﬂ yé}U

¥All our calculations are done with the software Mathematica and the tensor package xAct [42].
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T;]t)va — \/_—g[ UHra sz Urvox _ 21'*((7114( Uy)amc _ 5\0_1'?}L U;w/)ﬂ(r + ao—r/% (2 Uu)upﬂo' + Uu)o’pﬁrx)

+ 1—‘/(1/; ( Uv)lapal—*;/m _ 1—*;2’ U}/ﬁapa) + ZF{;K (FZA Uﬂwdo‘ _ l—‘;/; Uu)a/do‘)

- 2r,<j;

T;éyaﬂ _ \/_—g[Um/aﬂ + ZF((TI;(UU)GaﬁK _ Uu)amcﬂ) + FgK(ZUﬂvaﬁK 4 Uﬂl/dkﬂ)]’

T;(t)uaﬁ}’ _ \/__gU/waﬂy‘

Finally, the basic matter variables that we use in our GW
generation formalism are defined by

TOO + Tii TOi
e s=

o= o;;=TV. (2.20)
These quantities will comprise a point-particle part and a
tidal part. The pp part is defined by the usual expression
corresponding to the minimal coupling to the metric, i.e.,
Eg. (2.10) in which p, is replaced by mu,, the first term in
(2.13), so that we have

0 2
_omyug U
Opp = \/——gl(l+?>5l +1<2,
mlu(l)

V=91

(2.21a)

(01)pp = vio + 12, (2.21b)

mlu(l)
vV —91

where m is the constant PN mass, the three-dimensional
Dirac distribution §; is confined to the worldline yi(7),
vl = dy! /dror v = (c, v}) denote the ordinary coordinate
velocity, u® = [=(g,,),v/|v}/c*]~1/? stands for the Lorentz
factor, and 1 <> 2 is the contribution of the other particle.
Beware that the point-particle part (2.21) will actually
involve tidal effects contained into the potentials para-
metrizing the metric as computed in Sec. III.

In order to compute the multipole moments of the system
I, J; defined in Sec. IV, we require ¢ to be known at NNL
order, o; at NL, and o;; at leading order, for both the point-
particle and tidal parts. For the treatment of the tidal
corrections, it is convenient to split the temporal and spatial
indices of Eq. (2.18). We then obtain the complete, ready-
to-use expressions for the “direct” tidal parts 6ga1> (67)idars
and (6;;) 4, in terms of the tidal multipole moments; these
are reported in Appendix B.

The tidal moments G;;, H;;, and G, (when evaluated at
point 1) have been computed in Eq. (4.1) of [22]. However,
in order to present the expressions of 64y, (6;)gqa. and

(6i)pp = vivls +1 o2, (2.21c¢)

(Uv)alcllvr'/;’( _ F;l UaKp/ln) + 2(Fz/11*£(7/’4< _ FgKF(ﬂ)Uu)Kp/IU} ,

" (2.19b)

(2.19¢)

(2.19d)

|
(6:j)aa as shown in Eq. (B1) and everywhere henceforth,
like for instance in Eq. (3.4), we would rather use the
tetradic components of these moments, denoted G, H ,,
and Gabc, obtained by projection on the worldline tetrad
e = (e, e,”) constructed as follows:

et = ut, (2.22a)

i

el = (7’” -7 U—) eai With e = (V7). (2:22b)
C

Here y" = g”’U_j is the inverse of the positive-definite
metric  y,, = g, + u,u, induced on the hypersurface
orthogonal to u* at the intersection point with the world-
line, and the spatial tetrad vectors are defined from the
square root (/7). of the positive definite-symmetric
matrix y;;. One can show that this basis is complete and
orthonormal (for more details, see [43]).

Remembering that the tidal moments are defined in the
particle’s local frame orthogonal to the four-velocity, i.e.,
G()a = IQIOO, = GOaﬂ = 0 (see [22] for discussion), we have
for instance (similarly for H;; and Gj)

Gij = eaiebjGab, (223a)

i
~

G = | ea'er) —2 e Oepy + 1000 0¢,0( G,y (2.23b
ab = |€a €r’ =2 "€(a €p) +7€u €p (2.23b)

ijs

where e”, denotes the (transposed) inverse of e,*. The
projection of the tidal tensors onto this tetrad simplifies
significantly the computations, mostly because the pro-
jected three-dimensional tidal tensors become traceless. We
know, however, from the fact that the Lagrangian (2.2) does
not depend on the tetrad (see also the discussion in Sec. II
of Ref. [22]), that the final results are independent of a
particular choice of tetrad (ey”, e,*) used in intermediate
calculations. Other groups [44] may use different conven-
tions for the tetrad with equivalent final results (see Table I
in Sec. VII).
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II1I. COMPUTATION OF THE METRIC
POTENTIALS

For this calculation, the metric, including tidal contri-
butions, is required up to NNL 7PN order. This is in
contrast with our previous work [22] on the NNL dynamics
and EOM, where it was sufficient to insert the 2PN metric
just for point particles, discarding internal structure effects;
what made that possible were the specific properties of the
Fokker action. Here, in order to get the multipole moments
at the desired accuracy, we do need the 2PN metric
including the tidal contributions therein. We employ our
traditional parametrization by the set of elementary poten-

tials {V, V,, W, X, R;}.°
VA 8 vy ) po(L
Joo = 2 A T S )
(3.1a)
4V, 8R; 1
2V 2V2\  4W 1
N S I R i Y4+ol—). 3.1
9ij l]< + c2 + C4> ot + <CG) ( C)

The above full 2PN metric is used, after dropping all tidal
terms, to compute the Riemann tensor and the tidal
moments (2.3), which allows controlling the tidal parts
(B1) of the matter currents. On the other hand, the NNL
tidal effects in the metric (3.1) are crucial for computing the
point-particle parts of the matter currents (2.21) and the
source multipole moments defined in Sec. IV, which will be
inserted later into the formula for the flux. Note that for the
computation of the source multipole moments in Eq. (4.4),
the only 2PN term is o o,py, in Which the metric only
appears through ,/=g; in this calculation at NNL, X and R,
do not appear, meaning that only V at NL order as well as
V;and W, ; atleading order will be strictly necessary. These
potentials are defined by

OV = —4zGo, (3.2a)
OvV; = —4zGo;, (3.2b)

|

Ve Gm, n 36U Grapning 1 {Gm [_ (nv
r 2r3 2 ! 2r

3 . . A a,b
+ ”gz) [G (R GiapGiap + (31’% Y (”101)2> —3  *

aba ¢ a,b 2
+ 2n{v]0,Gra, _ nini0; Glab>

r% 47"1

OW,; = —42G(o;; — 8;501) — O;VO,V.  (3.2¢)
The definitions are general and, of course, the source terms
may involve both pp and tidal contributions, e.g.,
6 = Opp + Oiga, Where the tidal part in terms of the tidal
moments is displayed in Eq. (B1).

The techniques we use for computing the potentials are
well documented elsewhere (see, e.g., [49,50]). In this
work, dissipative radiation reaction effects can be ignored
since they do not to contribute to the flux until the 2.5PN
order, so that the Green’s function will be taken to be the
symmetric one. As usual, it is essential to use a proper UV-
type regularization, namely, dimensional regularization. In
fact, for the present problem we do not need the corrections
it brings with respect to simpler purely three-dimensional
approaches, such as Hadamard’s regularization, which
gives equivalent results at the NNL tidal order. We present
in Appendix A a detailed proof of this statement.

The tidal contributions to the metric obtained in present
formalism show an interesting feature, already observed for
binary systems of spinning compact objects in [43]: the
tidal part of the potential V contains a distributional term,
which arises because of the distributional multiderivatives
in the expressions of the matter sources (B1). To the lowest
order, o4, is proportional to G,,,0,,(1/r;), and, since
Oup(1/ry) = 305013 —2£5,,5,, this leads to a distribu-
tional term for V proportional to the trace éabélub, but
which vanishes because the tidal tensors are projected onto
the tetrad and are traceless. At the NL 6PN order, though,
the distributional piece is nonzero and given by the
Gel’fand-Shilov formula [50] as

27 Gﬂgz)

Vdistr —
5

2 Glabv?v%l +1<2+ O(%). (3.3)
This term will not contribute to our calculation because the
NL potential V is only needed in a surface term at infinity
where the UV regularization is irrelevant. However, it
would be important to take this into account if we were
to evaluate the equivalent volume integral. For the ordinary
part of the complete potential V at the NL order, computed
with Hadamard’s regularization, we find

20? r 5 r2
1 1 2
+ + sz 73 =

ry 4ri, 4rirp 4y,

A b ba A
Gigpnini 3 Gigpniv] ninj0,Gu
3 5 (mvy) 3 - 2
r 2 1 r

"With a slight abuse of notation, the PN remainders O(c‘g, ¢, c‘6) mean either that the metric is accurate to 2PN order in the
standard sense, or that it is accurate to NNL order regarding tidal effects.
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G? 3 6 3 3 392 372
+_:112 r122 Grapn$ont + ( —— = =— ) Gapniynly + ( —— - 2,1 Gapning
b 2 27'2 8”'1

i, r 8ri  8r
9G*m? n\ T 4G0'(,2)eb,»jlfllajn‘fnﬁ’v’i 1
+§ 7 (I’llznl) 1—— - + 3 +1(—)2+O 3/ (34)
7’12 ry ry rl C

where we recall the definition (2.23) of the projected tidal moments. Consistently with the approximation, we also included
the ordinary point-particle part at 1PN order. Using the same method, we computed V; at leading order,

2) A a e 2 -
v, = Uli n 3Gﬂ§ )Glahnlnlf v+ Gﬂl {0 Glaz n GU& )fmleak”lf”]f 12+ O(1>. (3.5)

i 21”? ! 2rl r?

Notice that, due to the way the leading term of (o;);4, is Written in Eq. (B1b), some nonzero distributional terms are
generated by multi-derivatives, but they cancel out in the end, so the potential V; does not contain any. For the potential W, j
at leading order, we get
2,2
W:Gml( i ] 51/ 2) Gml

Y r 4r?

<>{sz

(n’lnjl - 5”) - szlmzal(i82j> InS

+ 4 (I 3”<1[2@1m”?2 + 387G, ynfynty) = G*ma Gy 0501 jyap In S

riri
G”le a,lin & 3, apb(aind _ Sij.2 ij. oa,ba ¢
+ﬁ EG,GIU—|—rlnlvlﬁ,Glj)a+§G1abn1n1(vlvl —8v7) = 8Yrnfv]0,Gap
1

(2
+2G01

S { G <1)1)H1akn nk + 6‘H1, n1) 5J€aka1kln ”i”’f}
1

_ o2 S Dy ()] 4 S s L sati (it 3 o0 !
G, mlGab[1286’j“b[ln<r0>}+16 i ;i +445 ny'n| 86/ +1<2+0 2 (3.6)

The point-particle part is depicted in the first line, where we denote 9,; = 9/9y', and S = r| + r, + ry,. These potentials
satisfy 0V = O(1/c%), AV; = O(1/c), and AWU = —0,;V0,;V + O(1/c) outside the particles. We also checked that they
obey the harmonic gauge constraints

11 . A 1
8t{v+? {§W+2V2} } +E),-{V,»+?[R,~ +VV,~}} = (9(?), (3.7a)

A 1. . 1

which yield at the NL order the same EOM as obtained in Ref. [22]. This test confirms the values of all potentials that are
required for the integration of the source multipole moments in Sec. IV. Note that, for this verification, we had to determine
V; at NL and also IA?,- at lowest order, where Ri is defined by

A 3
DRi = —471'G(V0'i - ViG) - 28kV5‘,-Vk - E@V@,V (38)
We do not give their values since they do not enter our later calculations.

IV. COMPUTATION OF SOURCE MULTIPOLE MOMENTS

The symmetric-trace-free (STF) multipole moments of isolated PN radiative sources are known from a matching between
the inner PN expansion in the system near zone and the outer MPM expansion in the far zone [30,31]. For any £ > 2, they
read
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r B 1 N 4(2£+ l)&/ 1 N (1) 2(2{4‘ 1)5)/# 2
I, (1) = FP [ &x|— dz|8,%, % — + i + z ¢
(1) BO/ X(r()) /_1 Z[‘XL 2+l +3) " YA DT 2)(2f £5) " xttzrfe).

(4.1a)
r\8 [l 20+ 1 (1)
Ji(t) = FP | x| — d i OpX 12 12 h) 1 . 4.1b
(1) BO/ X(r0> /_1 Zgab(l/|: ¢XL-1)asb ~ (7 +2)(27 +3) £+1XL-1)ac bc:|(x +zr/c) ( )
Here, &, = STF(x; x;, - - - x;,) is the multipolar factor, the brackets surrounding indices refer to the STF projection, and the

X’s (or their pamal tlme denvatlves X(")s), which must be evaluated at position x and at time ¢ + z|x|/c, are defined in
terms of the PN expansion of the stress-energy pseudotensor 7#¥ in harmonic coordinates by

Y= , S S (4.2)

The overbar refers to the PN expansion (see Sec. II in [50] for further discussion). Equation (2.20) gives the corresponding
matter parts. The expressions of the source moments (4.1) are formally valid up to any PN order. In practice, their PN-
expanded expressions are to be computed by means of the infinite PN series'”

/_i dz8,(2)Z(x, t + zr/c) = Z(Zk 22?:2)16—1— ! (r)ZkE(Zk)(XJ)' (4.3)

An important feature of Eq. (4.1) is the presence of the finite part (FP) operation when some complex parameter B goes to
zero. The role of the finite part is to deal with the infrared (IR) divergences initially introduced into the multipole moments
by the fact that their PN-expanded integrands diverge at spatial infinity (as r — +00). See Ref. [50] for details on how we
deal in practice with this IR regularization. At the NNL order, we shall explicitly verify that the IR constant r, in Eq. (4.1)
never appears.

Like in previous works [50,51], we find it convenient to decompose /; into three pieces corresponding to the three terms
entering (4.1), referred to as scalar (S), vector (V), and tensor (T) terms. Applying the formula (4.3), we further split each of
these pieces into parts labeled I, II, III, ... according to their PN order. This leads to the decomposition of the Zth order
mass-type moment to NNL order (omitting the PN remainders) as

I, = SI, + SII; + SII, + VI, + VI, +TI,, (4.4a)
4v 2 1 2
SI, =FP [ & —— V0,0,V — W05V OV +——0,V.0;V;
L / XXL{(H & %1 T 2Ge 2Gt 3Gt OV G diviov
1 2 1 .
- A(V?) - A(V3) - A(VW) 3, 4.4b
272G c? (V%) 3zGc? (V*) 272G c? ( ) } ( )
SII ! FP ¢ /d3xA +3 4 v ! 9;Vo,v (4.4¢)
=——-—FP— <0 S0V — VoV, .
L2220 +3)  di L G2
SIII ! rp 4’ / d3xz, rt (4.4d)
= -~ Xpr o, .
L7820 +3) (20 +5)  drit L
424 1) d 2 2 1
VI, = - FP— [ d o,V — S0V, +——=0;VO,V;
L 2(f+ )27 + 3) dt/ XX’L{J ta 20Vt GtV oY
4 Ge Ar( 2 a a (VV,')}, (446)

""The function &,(z) is defined [with &(z) denoting the one-dimensional Dirac distribution] by

¢+ 1!

2= ma

I
(1-2z%)7, so that / dz6,(z) =1 and lim &,(z) = 6(2).
-1

=+
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2(2¢41) a3
VI, = - FP— [ d*x&;, 7’0, 4.4f
L= T3 e+ D26 +3) (26 + 5) dt3/ X ro: (4.45)
222 +1) d? / 1
T, = FP— [ &*x%;;;{ 6;; +—=0;VO;V ¢. 44
LS @)+ +5) ap ) X\ it gpg YO (4-4¢)
Similarly, for the #th order current moments to NNL order,
‘]L - VIL + VIIL + TIL, (458.)
1on 1 1 3 1
VIL = 8ab<ifFP d XxL—l)a (g +7 Z(va—ﬁvb) +7G 8,-V8,,Vi +Zatvabv_§A(va) (45]3)
¢
VII ! rp L / Bxr23 (4.5¢)
=—————¢ui FP— X1 _1Y40ps .
L2220 +3) T de L=1)a%
(22 +1) /
Tl = - — [ & —8 Vo.v 4.5d
L Cz(f+2)(2f+3 ab XxL 1ac Opc + b ( )

The various encountered terms are of three types: (i) the
compact-support (C) terms, whose integrands are propor-
tional to the matter currents ¢’s, (ii) the noncompact (NC)
support terms, whose volume integrals extend up to
infinity, and (iii) the “surface” terms, also noncompact,
but whose integrands are either pure divergences or
products of X; and pure Laplacians. By integrating the
latter terms by parts (taking into account the regularization
factor %), one can transform them into easy-to-compute
surface integrals (see Sec. IIIC in [50] for details). In
particular, assuming that the expansion of F when r — oo
is powerlike (without logarithms), it can be proved that

B
P/d3x (1) R AF = —4n(2¢ + 1)(Frtiay),,

— 0

(4.6)

where the notation (- - -) ., means the Hadamard partie finie
regularization at infinity. With this formula, we have shown
that, at NNL order, all the terms of this type for F =
{V2, V3, VW,VV,} vanish. The remaining terms (C and
NC) can be integrated exactly. In the first case, we use the
characteristic property of the Dirac distribution in the con-
text of Hadamard’s regularization, [ d*xF(x,7)5, = (F),,
where (F), is the regularized value of the function F at
point x =Yy;. There is a similar formula for delta’s
derivatives obtained by integration by parts. In the second
case, we perform a brute-force integration after an appro-
priate change of variable as described in Sec. VD3
of Ref. [52].

The explicit expressions of the (tidal parts of the)
multipole moments of the system to NNL order are too
long to be listed. However, they are substantially shortened
by going to the frame of the COM. The conditions for going

|

from a general frame to the COM frame have been
investigated in Sec. V of Ref. [22]. For quantities in the
COM frame, it is convenient to redefine the polarizability
parameters as

1 (m m
i =5 (220 =200

my mp
o _L(my o m
so that, for instance, ,u(f> = ;4(1/) = ygf) and ) = 0 when

the two bodies are identical (with the same mass and
internal structure). The tidal parts of the multipole moments
in the COM frame are reported in Appendix B.

Next, we reduce the COM moments for quasicircular
orbits following Sec. VI of [22]. To present the results, we
introduce the normalized mass difference A =72 and
the PN parameter y = %‘ We denote n the unit direction
pointing from body 2 to 1, 4 the unit vector perpendicular to
n in the orbital plane, and # the unit vector perpendicular to
the orbital plane, such that (r,A,¢) forms a direct ortho-

normal triad. This implies notably that ' = r”—w

for exactly
circular orbits, with v’ = v} — v), representing the relative
velocity. It is also convenient to use the adimensionalized
versions of the polarizabilities (4.7) (with m = m; + m,

representing the total mass)
2\ 24+1 2\ 2041
~(¢ C A C ¢
'ui) B <Gm> G'ui)’ ox = <Gm> GGQ‘
(4.8)

The source moments for circular orbits including both the
point-particle part (see [53]) and the tidal part then read
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23435

o 1 13 461
= mr? | nlin) - = — -
Li; =mr {n n {v[l—l— < 0 141/>y+ < 512

1512 7

241 )\,
_1512”>y}

(2 - 3 1 222 N 3 67 160 _»
+ <3,u£r) +3A@ >7/ + [/49( 2+71/—71/2> + Ap? (—5—71/) +Tv0§r)]y6

[ (871, 907 9643 5 929 1\ +1853 _7201 2504 ,

Fo\56 T168” T 168 Y T a2 ” e T 7 7

1732 1013 299 365 104198

ity VP10 Ay V2 )y? —v—-—1?
ey Aron } }+ 378 T3t Tt )T 777"
(338} L 128 o 19 6ﬂ 5039 2603

7 3 v 2 v
19 1291 1649 64 1696 2048

+ A% <—2+421/ — U ) 5— i > ]y H (4.9a)

o 3 3
Lijr = mur? [n<’nfnk>{—A(1 —vy) + 18a®y5 + {Aﬂf) <—2 + 481/) + i <—29 - 601/) - 84A0'< )+ 8450 )} }

n I {=A(1 = 20)y + [AEP (=39 + 360) + 1P (39 — 420) — 724617 + 726y }]

Lij = mur*n'nin*nM[1 - 3v + (18/753) —18A2)y],

o 25 3
Jij = \/E(mr)3/2f<’nf>{ —Av {1 + <28 +—1/> y} + (-9Auf

663 117 177 477 69 346
A L) 4 (o2 ) + AP [ —10 - 5 (-10 -2
+{”+<28D+7U>+ﬂ_< 71/+14u>+ o N +a 7V &

Jijk = \/a(mr)s/zm

V.ENERGY FLUX FOR QUASICIRCULAR ORBITS

A. Mode decomposition of the instantaneous
part of the flux

Our main goal is to obtain the GW energy flux F =
(dE/dt)SW at the NNL/2PN order. When nonlinear tail
effects in the wave propagation are ignored, the resulting
“instantaneous” flux F;, at the NNL/2PN order is a mere

quadratic form of the (¢ 4 1)th time derivatives Z <Lf+1) (t) of
the source moments Z; = {I;,J;}, with general term

x I<LK+I)I(LK+1). Knowing those moments, the computation

of Fi 1s straightforward but can be performed in a
particularly convenient way by decomposing the STF
tensors Z; into some orthogonal STF basis associated
with a natural triad of the problem. This decomposition
induces a related mode splitting of the flux, which is
essential to its effective-one-body treatment [54]. We will
thus define here the flux modes more precisely and list their
tidal parts at the NNL order.

indnk {1 = 3u+ [P (21 = 270) — 12852 + 645751

(4.9b)
(4.9¢)
@ 4 9ua® + 12862 + 126@))y5
(4.9d)
(4.9¢)
|
As before we adopt the moving triad (r, A, €), with £ =

n X v/|n X v| = n x A representing the unit vector pointing
towards the Newtonian angular momentum or, alterna-
tively, the value of the former triad at the ascending node,
say (ng, Ay, €). By definition of the orbital phase for planar
orbits, we have n = cos ¢ng + sin ¢p4,. Posing m = (n +
11)\@ [or mg = (ny + i/lo)\/i], it is often useful, in three
dimensions, to introduce instead the associated complex
triads (m, m, €) [or (mg, @, ()], where the bar denotes
the complex conjugation. Notice the simple relations m =
e m, and £ = ¢, for nonspinning (planar) binaries. Our
orthogonal (un-normalized) STF basis will then be chosen
t0 be (@) <> With af™ = mML=M) for 0 <m < ¢,
and &) = (=1)"mMIZL=MD) for —£ < m < 0. The basis
afm is defined in a similar way. One can prove the
orthogonality condition:

(& = m)\(£ +m)!
2mf1(2¢ — D!

‘m=Em'
ap o =

- (5.1)
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Any source multipole moment Z; may now be written as

I, = ZIfm ‘m ZIfm £me—ime

|m|<# |m|<¢

(5.2)

For circular orbits, the coefficients Z,,, only depend on
the orbital frequency w. Because d¢/dt = w, with
@ =dw/dt = O(1/c>) vanishing up to the 2PN order,
differentiation of the expression (5.2) is equivalent to the

replacement ;™ — —imwa;™ (which removes the mode

m = 0). In particular, the component m of I(KH) is

proportional to e "%, as is the mode h,,, associated with
the latter multipole at linear order in the decomposition of
h = h, —ih, into spin-weighted spherical harmonics of
weight —2 for planar systems (see, e.g., Ref. [53] for further
explanations), which is a simple way to see that the two
decompositions coincide, apart from normalization factors
that must disappear from observable quantities.

The flux F;, for circular orbits is thus made of a sum of
terms

‘
(1) e+1) N~ (€ =m)!(£ +m)!
ot = Zl 2=l (2e — 1) (

+ O(w),

ma))2f+2|I)f’m |2

(5.3)

where we have used the orthogonality formula (5.1),

the definition of aL I as well as the reality condi-
tion for Z,, ie, Z,., = (=1)"Z,,. The precise
?-dependent global factors are given in Eq. (5.5)
below, after the replacement Y1) — Z(/+D for the
instantaneous part of the flux. We investigate the tail
part of the flux (which depends on the past of the
system) in Sec. V B.

Finally, the part of the instantaneous flux proportional
to |Zzp|? for 1 < m < ¢ will be denoted F¢" henceforth.
To present these modes to NNL order in the case of
quasicircular orbits, we employ the invariant dimension-
less PN parameter x = (942)*3. The nonzero tidal

corrections in the various modes are given by

e ) o/ 22 653 155 i 22 305 24
Fi = ﬂ(+)(1 +4v) + Ap2) + {ﬂg)<—21—421/+1/2> + A (—214-421/> +91/o-(+)}x
. 167 7603 125347 , 5123 167 68105 55985 ,
s 547560 T 1764 ¥ T 13237 54 5200 T 5000
Lo 284376 ;) 8084 o 80 )7
63 189 ~eg AS = 5.4
+6+( 63 1897 ) Tige AT VY (5.4a)

o /(1 2 0 1 4
= i (gr-3) i s o (<5 g0

1 5 5, 25
— Az (2 22,203
> 9“‘]“{ (112” 18" +63”>

+ AR <éy—§v2> +5% <—%+% —%v > + A2 <—%+%u>}x2, (5.4b)
i [0 (205, 85 ,) 300 ) (200 i,
2 (%u—%zﬂ) + 59 (%y 10596351/ ) —%A&@v]xz, (5.4c)
F2 = { 1)<§u—% 2+470 >+Aﬁ(_2> (—%v—i—zo )+a(f) <%y 36230 ﬂxz, (5.4d)
i = [4*2)(131414”_%”2) _B%A”U }’“L [ﬁ(f) <_122;96”+2411(1);2”2+%”3>
+ A® (43% —% 2) —1—533) <%v—%y2> —im}@v] X2, (5.4¢)
(10 g, )
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10 110 40 10 10
F2 — ~2)( vV 2, "V 3 A iy 2 54
inst [”* 567" " 13237 Tam” ) T\ T3t T ) ) (5.4¢)
For all modes we pose F{7 = 12 yxl0Ftm,

B. Mode calculation of the tail part of the flux

The full flux, including nonlinear propagation effects, is parametrized by the so-called mass and current radiative
multipole moments U, (¢) and V(1) as

G (1 1 16 1 1
F=% {g uyuy + [189 Uil + 25 Vi Vi )} +3 {m Usiin Ui+ 53 Lyly ,jk] - 0( ) } (5.5)
where we have restricted ourselves to the 2PN order. The physical content of this expression lies in the relationship between
the radiative moments and the source moments computed in Sec. IV. At the linear level, the radiative moments U; =
{U.,V.} are just the Zth time derivatives of the source moments Z; = {I;,J; }. At the quadratic level, the radiative
moments involve the interaction between the Arnowitt-Deser-Misner mass M and the source moments Z; in the form of the
nonlocal tail integrals [28]“:

UL () = 19 + 2M / del“ (¢ )ln<7f> +0( ) (5.6a)
Vi) =00 + 25 [ e - >1n(ﬂf> +0(C) (5.6b)

where 7, and 4, denote two gauge constants, which will cancel out in the end of our calculation. Consistently with the
approximation, we include the leading and NL tail effects which will correspond to formal 6.5 and 7.5PN contributions in
the tidal terms. We then need only the tail entering the mass quadrupole, current quadrupole, and mass octupole moments.'?

The computation of the tails is conveniently achieved by starting from the following alternative form for the
instantaneous and tail part of the radiative moments:

inst-ttai 2GM T T tood
Up() = 1,0 (1) + =5 {m(P—f)z(M(zH /0 delneZ{ (1 —7) + /7 fzf*”(t—f) . (5)

where 7 is an arbitrary time scale and P, denotes either 7, or 1,. Now, it was proved in Appendix B of [55] that, in
the case of decaying quasicircular orbits, the frequency on which depend the integrands in Eq. (5.7), e.g.,
(d/dt)“* DT, (t — T)afie™mP(=7)], can be substituted with its value at the current time 7, modulo some remainder
O(Inc/c®). This amounts to replacing the frequency w(f —7) by w(t) and the phase ¢(t —17) by ¢(t) — w(t)z. The
expression inside the square brackets in Eq. (5.7) then reads

T T . +oodr . 1
Z (=imw)* T, |In{ — +(—ima))/ drlnrelm“”+/ =L gimor a4+ O 1), (5.8)
P, 0 7 c

0<|m|<# T

After explicit integration we find

. : 2GMi 1
Yinstail — Z (=imw) T, {1 - wcm(w)} + (’)<£> (5.9)
c

5
0<[ml<t ¢

"For the present calculation, we do not need to consider other nontail (instantaneous) terms arising at the same order O(1/¢c?) as the
tails but only for # > 4 in the mass sector and # > 3 in the current sector (see Ref. [53]).

The expression of the link between the radiative moments I{; and the source moments Z; is known to simplify significantly when
appropriate mass and current canonical moments, M; = I; + O(1/¢’) and S L= =J, + O(1/c%), are introduced instead of the source
moments [see Eq. (5.9) of Ref. [53] ]. We checked that the leading correction in the canonical mass quadrupole moment M;; for which
tidal effects would give a contribution at the NNL/7.5PN level actually vanishes. On the other hand, the radiation reaction d1s51patlve
pieces O(@) being purely instantaneous and “time-odd,” cannot contribute to the flux for quasicircular orbits at this level.
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with ¢4, (w) = isign(m)z/2 — (In(|m|wP;) + yg). The flux is obtained by squaring Eq. (5.9) multiplied by an extra factor
—imw, keeping only the leading M x Z; correction. Exploiting the orthogonality relation (5.1) yields

f+ m 2GMmw . ~ 1
Finstrait Z ym— lfy 2/ — 1),), (mw)2f+2 |:1 + Tl(cm(w) - C,fm(a))):| + O<C6>
4
2rGM 1
—Zfﬁ’?{H ”63 wm} +O<g>- (5.10)
m=1

Thus, the tail contribution of the (£, m) flux piece at the relative 1.5PN order is simply given by 2zk,, Fi™ with
k,, = GomM /c3. Note that the factor k,, is just the first order term in the expansion of the squared module of the tail
resummed factor 7', introduced in Ref. [54]. The Arnowitt-Deser-Misner mass M must crucially include the leading tidal

corrections. For the tidal tail at the NNL/7.5PN order, it is sufficient to take (with here m = m; + m,)

E 1
M:m+—2:m[1—%(1—18ﬂf)x5>}+(’)(—4). (5.11)
c C

To end up, let us provide the resulting tail part of the flux for circular orbits at the NNL/7.5PN order for tidal effects:

5
Pl { (1 + 4)i'? + A

225053 2029 2 351 1 226 A

L A =2 222))i0 4 (——+220)60 - 250 (kb (52
+K 21 1344”7 48 ”)”* N < 21 64 ”>"‘ +< B89 ”)“* 187 | (5.12)

VI. GW PHASE EVOLUTION FOR QUASICIRCULAR ORBITS

Writing the GW energy flux as F = F, + Fjqa, We have just computed the tidal part of the dissipative energy flux,
Fidal» in Egs. (5.4) and (5.12). The part generated by point particles without internal structure, F, already known [56-59],
is given to consistent order by

3265245 1247 35 44711 9271 65 8191 583
_ 2Ly Lol 99 PPV Jerl 09 5 o, (0Pl D0 s/ |
Fw =56 { +< 336 12”)” X +( 9072 T 504 Y T 18Y )x +< ”>’”‘ }

pp?

{(1 + )i + A

/22 1217155 )\ o 223\ 176 N1,
s Al =22 == 2 - ——As®
+_< 21 1687 6”)"*+ (21 24”)“‘+<9+3 O TR ¥

+4z](1+ 4)i? + AE®]x32

L[(167 722429 15923, 965 N oy, , (167 66719 2779 )\ o
54 " 18144 336 U T 12 )M 54 2016 0 144" )M
173 145 .2 1731022 \ _, 80 g3
——— 4+ —1v—208 A —v 6@ + 2
+< 756+ 3 1/) + ( 756+ 77 y)a_ + TR

225053 2029 ,\ o) 22 351\ _ 1226 \_» A
4 s Al -2 2) - = —— 5@ |52\ 2
+ 7T|:< 51" 13a2% " 13 v)y+ + v + 18+ 5 Y Gy T (6.2)

BWe recall that the polarizability coefficients are defined by Eqs. (4.7) and (4.8). Note that the prefactors in front of (6.1) and (6.2) are
different.
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Together with the conservative energy of the system available in Eq. (6.5) of [22], the above energy flux permits
determining the frequency and phase evolution for circular orbits through the two ordinary differential equations

do _ _ Flo) do _
dt  dE/dw’ dr

(6.3)

As is well known, there are various ways to solve those equations approximately, called PN approximants, yielding
significant deviations from numerical relativity at small separations, i.e., outside the domain of validity of the PN expansion
[4]. Following the simplest adiabatic Taylor PN approximant, we obtain the phase in the time domain as ¢ = @, + @jigar,
where we recall the point-particle result up to 2.5PN order,

L[, (37 W3 55 Lom 15293365 27145 3085 ) ,
=- X — X
Po0 = T 35,50 1008 1016064 ' 1008 © " 144 ©
38645 65 \ . x
— 2= 3, 6.4
* (1344 16”)” “(x())} (6.4)

and where the tidal contribution is

3x5/2

Ptidal = _W

), o [(195 1595 325 )\ o (195 4415 \
1422 MO 1 | (24222, 122 22 )6
{( + 220 + A +[(56 4 YT ) 56 168 )F

5360 \ o5, )] 5% 0 A
+< 63+ X 1/)6+ 63A x 2[(14—221/)/4 + Aa¥)x

136190135 n 9751679451/ 281935 2452 )i? 1A 136190135 . 211985 Ut 1585 72
- Py
9144576 1524096 2016 * 9144576 864 432 "7

745 1933490 3770 745 19355 1000
( 93349 v— 1/2> 52 A(—— o 1/)6’(_2) 5 Vﬂf)}xz

_1512+ 1701 27 o+ 1512+ 81
397 5343 1315 . 397 6721 . 1 4156 . A
+n{<—§—7u+ P v2>ﬂ(+2>+A(—§— o6 v),u(_zﬂ— <§_ 5 u)af)—l—ga(})]x”z}. (6.5)

Next, motivated by data analysis applications, we provide the phase in the Fourier domain within the stationary-phase
approximation for the dominant mode at twice the orbital frequency, with Fourier GW frequency f and PN parameter

v= (”(i_#)l/ 3. We find for this phase: yS* = 2zf1, + ), + Wiga With

3 1+ 3715 + 55 16 15293365 + 27145 + 3085 ,\ 4 + 38645 65 sin( 2
= oY v? —1670° v v v ——— ==V |7V ,
Vo 128v2° 756 508032 504 72 252 3 Vg

5

v
— e {(1 +220)i? + Ap®

195 1595 325 )\ (o (195 4415 \_ 51730\ oo 5,
195 1595 A(1 4315 A o 1730 _ 0 Az,
+[<112+ 28 VTR )” * <112+ 336”)“‘ +< 126 ”)"* 1267 |"

— (14 220)i? +Aﬁ<_2>] V3

Yiidal =

27433728 | 4572288 © e0as U T3V K+ 27433728 2592 Y 1296”

745 1933490 3770 ,\ o) 745 19355 \ _, 1000
- - A _ 2) 4
( 4536 5103 VT8I ”)‘” < 4536 T 283 ”)"‘ o7 V)Y

397 5343 1315 ,)\ @ 307_6721 ) 2 812\ o) 2
_2Zh 907 A 2) —AGD | 3. :
”K 2 56 T4 ”)”* AT T3 ) T Tes V) Tt ) (6.60)

[(136190135 975167945 281935 2_'_5 3)~<2) (136190135 211985 1585 ) ®
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TABLE L

Comparison with the existing literature. We indicate for each order and each multipolar piece

contributing to the tidal phase ¢4, the previous references having achieved it and with which we agree (note that
Ref. [18] considers only the case of equal bodies). The contributions obtained with the present paper are indicated as
a check mark v/. Up to NNL order including tails, the tidal phase is now complete.

Pridal Mass Quadrupole Current Quadrupole Mass Octupole
5PN (L) [6,7,18,44,45] V X X

6PN (NL) [18,44,46] v [46,47] vV X
6.5PN (tail) [18,46] v X X

7PN (NNL) 4 v [46,48] vV
7.5PN (tail) 4 v 4

The result for the tidal part of the SPA phase in the case of
equal bodies, with the same mass and identical polar-
izability parameters, has already been provided in Eq. (1.7).

VII. SUMMARY AND CONCLUSIONS

In this paper and the preceding one [22], we have solved
the problem of the dynamics and GW emission of compact
binary systems without spins for tidal, internal structure-
dependent effects at the NNL order, meaning formally the
order 7.5PN (taking into account tails) in the GW phase
evolution. We used the formalism of the effective matter
action of Ref. [21], which describes massive pointlike
particles with internal structure by introducing specific
non-minimal couplings to the space-time curvature that
model the finite-size effects of the compact bodies due to
the tidal interactions. Since the matter action is localized on
the worldline of the particles, it is sometimes referred to as a
“skeletonized” action. To the NNL order there appear three
polarizability coefficients corresponding to mass quadru-
pole, current quadrupole, and mass octupole tidal inter-
actions. In Ref. [22], we derived the associated effective
Fokker action to obtain the conservative dynamics, i.e.,
EOM and conserved integrals of the motion.

In the present paper, we computed the matter stress-
energy tensor of the compact binary from the same effective
action, and inserted it into a GW generation formalism
based on MPM approximations for the external field [25],
which are matched to the PN expansion of the inner field
[30,31]. The MPM-PN approach constitutes a very general
way for computing the GW emission (and radiation
reaction onto the source) once one is given the matter
stress-energy tensor. In particular, we resorted to general
ready-to-use expressions for the source multipole moments
and nonlinear interactions between those moments (tails,
etc.) leading to the observable waveform at infinity and,
thus, the energy flux. At last, once the flux to NNL order for
tidal effects had been obtained and reduced for circular
orbits, we combined it with the result for the conservative
energy found in [22]. Namely, we employed the standard
flux-balance argument to determine the binary’s chirp, i.e.,
the orbital phase and frequency evolution through GW
emission for compact binaries on quasicircular orbits.

Our results extend and complete several previous results
in the literature. In Table I, we summarize the previous
achievements in the field for each PN order and multipole
component. We agree with all the previous results quoted in
Table 1. Finally, with the present paper, the tidal phase of
nonspinning NS binaries is complete up to the NNL order
including NL tails, which means formally up to the high
7.5PN level."
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APPENDIX A: PROOF THAT DIMENSIONAL
AND HADAMARD REGULARIZATIONS ARE
EQUIVALENT AT NNL ORDER

In order to show that dimensional and Hadamard
regularizations are equivalent at NNL order, we need to
show that the multipole moments integrated with these two
regularizations have the same value. The regularizations

“However we disagree with some coefficients in the literature:
first, with the 6PN coefficient due to the current quadrupole
moment computed in Ref. [48] and second, with the mass
quadrupole contribution to the tail term at the 7.5PN order as
reported in Ref. [18]. The latter reference obtains for the mass
quadrupole contributions to the SPA phase of two identical NS
[see Eq. (31) in [18]]:

39 3115
t//:i)é\;lv = —K;Z v’ [1 1243 v — v’
23073805 20 o) 20 .\ , 4283
( 3302208 812 T35177 )V T 1002 ™ |0

with x = 6/1<+2> in their notation (recall that we have fi?) = 0 for

identical NS). Further work [21] fixed @\ = 85/14 to be the
contribution of the NNL equations of motion to the phasing.
Now, the comparison with our present results, given for two equal
bodies by Eq. (1.2) in the Introduction, permits inferring that
22 = 642083/1016064, so that, with this value, we are in
agreement up to the NNL level for the mass quadrupole
interaction; but we find that the NL 7.5PN tail term has the
coefficient — 2137 7 ~ —12.296 instead of the coefficient — 4283

546 7 ¢ 10927 =
—12.322 obtained in Ref. [18].
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appear in two different steps of the computation: the
integration of the elementary potentials and the integration
of the multipole moments. We deal in Appendix A 1 with
the required potentials and in Appendix A2 with the
multipoles. In order to do so, we give general arguments
regarding the structure of the different quantities consid-
ered. In both parts of this proof, we use the fact that in
d = 3 + ¢ dimensions, the sources o, 0;, and ¢;; displayed
in Egs. (2.21) and (B1) have the same structure as in 3d and
that their value are continuous for € — 0.

1. Equivalence for potentials

As said in Sec. III, we only require the potentials V at
IPN and V;, W, ; at Newtonian order for the integration of
the multipole moments. Their definitions are given in
Eq. (3.2). Both V and V; have sources with compact
supports and are thus qualified of * compact support poten-
tials” (C). By contrast, the source of W involves a compact
part as well as a noncompact part, hence W, ; itself splits
correspondingly into a compact potential and a so-called
“noncompact-support potential” (NC). The latter is actually
a “0VOoV potential,” defined in general as a NC potential
whose source can be written as S(?V%V) = 9P A(C)grs B(C)
where A(©) and B(© are two C potentials, while p, is the
number of spatial or time derivatives considered. Both C or
OVOV types have to be treated differently since the
structure of their terms are different. The differences
between regularizations arise when we take the limit

= |x —y;| = 0. It is then very convenient to split for
a function F its regular part from its singular part when
r; — 0. For any function F admitting a powerlike expan-
sion (with possible powers of logarithms) when r; — 0, we
can define its regular part in the neighborhood of 1 as that
part of this expansion that is smooth (with £ € N), i.e.,

LaL 2k
Freg = Z fkrlrm

>0, k>0

(A1)

where lfk are STF tensor coefficients contracted with
L = STE(r{'#2...7""). What remains in the expansion
defines the so-called singular part Fg,, = F — Fpe,. The
extraction of the regular part of F at 1 defines an operator
Ry as R[F] = F,. The properties of this operator and its
counterpart Sy, such that S,[F] = Fgy,,, are discussed in
Sec. III B of Ref. [21]. Let us simply recall that they are
linear and commute with space or time derivatives.

For any potential P considered in our problem, having a
C part P(©) and a “VOV” part P(?V9V) it can be proved, by
means of the techniques described in Refs. [49,50], that
their regular and singular parts are of the form

O :Z Z 0, r=1- s’

sing 2k (A2a)
0<k 0<j<2k+n

c

a 2k—1—¢
P(c> T3

=D D X
g C2k s

0<k 0<j<2k+n

(A2b)

POV L

sing Sa+sp+2e
I<sp<pp+nyg 0<j<sp+sp r]
I<sg<pp+tnp  j+sp+speven

+ (alsAazsggq?n?) +1 < 2)}’ (A2c)

AT
(avov) _ Z Z n
Preg - & Sp+sg+2e

1<sp<pp-+tny 0<j<sp+sp r2
I<sgp<pptnp  j+sp+speven

+ x (aISAaZSBQrgg—e) +1 < 2)} (A24)

where p, comes from the definition of S(?Y%V) n, is the

number of spatial derivatives in the source of A(C), and

;= 0/0y!,. The functions gles * and ggnf;) are given by
oo (3+¢) {+1-¢
d e r
ggin)g =1y Zerl Af Y < ) . (A3a)
AL —2¢e
@ _ . L
rea = Ry =—rs° + )
Gre = Rilg 12 Zf+£(r12> P 2(1+e) &
(A3b)

with ¢\ = (=1)727-10(d /24 £=1)/[£\T(d/2—1) (1 =e¢)).
In order to show that the potentials have the same
expression for both regularizations, we have to check that
the structures of the regular and singular part are the same
for e =0 and ¢ # 0, meaning that poles in 1/e do not
appear.

a. Compact support

P(©) evaluated at x = y, in dimensional regularization or
directly in three dimensions with the help of Hadamard’s
procedure lead to the same result, for in neither case does
the purely singular part contribute. Indeed, in dimensional
regularization, for an appropriate choice of ¢, it automati-
cally vanishes for r; = 0. In the Hadamard’s finite part
regularization, the reason for which it is zero is instead that
the finite part of a function F' does belong to R;[F].

b. Noncompact support

Let us now demonstrate that the two terms in Eq. (A2c)
are equivalent for both regularizations. The potential
POYV) is sourced by
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SaSp

n
(ovov) _— E : 1
S - X o satspi2e + | x aSA
SASPA A rl

spspptnp

The first term in (A4) is the source of the first term in
Eq. (A2c). It is then sufficient to show that applying on the
former the Poisson integral in d dimensions properly
regularized at infinity, denoted as 5_1, cannot create a
pole. Indeed, in the absence of pole, the limit of the result
when ¢ — 0 is a well defined particular solution, which can
only differ from the Hadamard’s one by a regular homo-
geneous solution. This difference is also deprived of pole
and reduces to zero if the same regularization is used to cure
IR divergences at infinity in d and three dimensions. To
produce a pole in the current context, the d-dimensional
Poisson integral operator A~! has to be applied on con-
tributions of the form AL r{ "4 or Ak 71 with ¢ € Z.
On the other hand, since s, 5 > 1, our source term is made
of elementary STF pieces nfr{"% with a < —4, which
shows incidentally that its Poisson integral is well defined
at infinity; hence, it is legitimate to work with the operator
A~ instead of A~!. For this source term to contain a pole,
we must have either a = £ — 2 < —4, which is impossible,
or a =—¢ —73 with Z > 1. In that second situation, the
parity 7, of the sum of the £° coefficient in the power of r;,
namely, —Z — 3, and of the number of n’l factors, Z, is odd,
while the parity of the same sum, which we could refer to as
7,-type parity, computed for n3*%% /2T TE2 g even,
This contradicts the fact that those two parities must be
equal, and that, because the number of n’ factors in n545s
minus that in 2’ is necessarily an even integer, i.e., Z and
s + sp have the same parity. Thus, no pole can appear due
to the action of A~! and it is safe to take the limit ¢ — 0. As
for the first term of (A2d), regular near r; =0, its
expansion consists of elementary pieces L3¢, with
k € N, so none of them has the required form to produce
a pole either.

The second terms in (A2c) and (A2d) are expressed in
terms of the local functions (A3a) and (A3b). The limit
e — 0 is well defined for each of them and commutes with
the operators R; and S;. The precise expression of gsgg is
unimportant for the analysis. The poles manifesting them-
selves in the sum over # and in the last term of (A3b) are
mere constants, which are canceled after the action of the
derivatives 0,5, 05,, With here 54 + s5 > 2. In fact, their
combination even admits a finite limit € — 0, namely,
In(ry,/ry) — 1. The key point is that, due to g, there is a
nonzero regular part in the solution.

Note that the source (A4) produces distributional pieces,
e.g., M ;™69 (1/r1%%), but those are zero provided
—e is chosen to have a sufficiently large real part, thus

1 1 naAss
r1+e> s, <r1+£> +1< 2> + 2+M+s3+25}'
1 2 r

(A4)

|

vanishing in dimensional regularization. In the case & = 0,
they are consistently discarded following Hadamard’s
regularization [60].

2. Equivalence for the multipole moments

The multipole moments are defined as volume integrals
over certain regular kernels, typically %;;, multiplied by
compact sources (e.g., o), noncompact potentials, or
derivatives of noncompact potentials. Since the structure
of the involved potentials is known in d dimensions, we are
now in the position to investigate possible differences
between the dimensional and Hadamard regularization
arising from the volume integration.

a. Compact support

When the elementary source has a compact support, it
can always be rewritten, using the same manipulation as
for the transformation of the ¢’s, as a sum of derivatives
of (Frega””Pa"QQ...)6§3) (or likewise with 623)), where
P, Q, ..., are compact-support or VOV potentials. Then,
the factor in front of any given Dirac distribution can be
substituted with its value at point 1, i.e., 9"?P — (9"?P),,
which is nothing but (9" R[P]); both for Hadamard and
dimensional regularizations, according to the previous
discussion. Since, in addition, R,[P] is continuous as a
function of ¢ in the limit € — 0, we conclude that the two
prescriptions yield the same result for the integration of
compact-support terms, with the convention that the
Hadamard finite part (), of a product of derivative of
potentials 9"*P0"eQ --- should be “distributive,” i.e.,
defined as (9"*P),(0"Q); - - -.

b. Noncompact support
Let us next turn to the noncompact-support terms. To get
the UV difference DI between the integral 19 over a
sphere |x| < R of a source F®) in d = 3 + ¢ dimensions,
with formal Taylor expansion near x = yy,

FOx) = 3" f i (n)r e, (AS)
1

and its Hadamard counterpart [ d>xF(x), as & goes
to 0, we resort to the formula [61]:

1 1 .
DI:—Z[?—i—elnsl]/dQHE]l‘(_;q(nl), (A6)

&€ ] q
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where the sum over ¢ is finite. Based on this relation, we
shall show that DI = 0, taking advantage of the fact that the
angular integral of an odd number of n} is zero and that
[ A9y, AfAY =0 unless £ = p.

A close look at Eqs. (4.4) and (4.5) reveals that all
the terms but one are VAV -type potentials multiplied by
some regular functions. The only left term'” is proportional
to X, Wl-]-@,» ;V at Newtonian order and requires a separate
treatment.

Let us consider now the pure 0VOV-type terms, whose
source structure at the leading Newtonian order required
here is given by Eq. (A4). The derivatives in the product
s, r7' ¢85, ;"¢ comprise an ordinary and a distributional
part which does not trivially vanish. The distributional part
is made of derivatives of Dirac delta functions and is to be
treated in the same way as compact-support terms, this case
having already been discussed above.

Regarding the ordinary parts of the OVOV terms, since
evidently DI =0 for regular functions, we focus on
the singular part of these terms, which is only able to
generate a difference. The first term of Eq. (A4), namely,
> nlAnlB/ ppPaTSET2 ith 54 5 > 1, has a nonzero coef-
ficient fl _3 p in (A5) whenever s, + sz +2 = 3. This

coefficient is therefore proportional to n! and its angular
integral is zero. The second singular piece, of the form

> 0s, ik reg» 18 made of a sum of terms r%kﬂ” x

’"1_1 XA_“S" with k > 0, by virtue of Eq. (A1). The angular

integral offlp,q  nk n1 for p=-3=2k+7—-1-sy,
vanishes unless £ = s,, but this is impossible or, else, the
contradictory statements 2k —1 = -3 and k>0 would
hold simultaneously. As a consequence, there is no con-
tribution of the dVAV sources to DI.

Let us end with the ordinary part of the elementary inte-
grand X Wij(’)i iV, with W, = W,(j) + W(avav) truncated
at Newtonian order. The contributions assomated with the

©)

compact part Wu or the distributional part have already

been handled, so there only remains &, W a ) 8 ;V, taken

in the sense of functions. This product rnay be expanded
into four pieces:

@) xLalereg (W
[see Eq. (A])]
A%
(11) xLau 51ng(W( v V))reg’
Eq. (A2a) (for k = 0);
(iii) 2,0, Vieg (W)
times Eq. (A2c)

avav .
(iv) &, (W )gmga,]vsmg, of the form F,, times

Eq. (A2a) times Eq. (A2c).

dVdV))

reg: Which is purely regular

of the form F, times

of the form Fy,

sing?

"As we have seen in Eq. (4.6), source terms of the type x*AF
can be recast into surface integrals at infinity and are thus
irrelevant for the present discussion about UV divergences.

The piece (i) cannot contribute to DI, while (ii) is struc-
turally equal to 9, ry ' ¢F reg> Which has been already proved
not to contribute to DI either. The piece (iii) can be
decomposed into two parts, corresponding to the two terms
under the curly brackets in Eq. (A2c):

(ilia) The first part has a general term o ri¥" ik x
nd F7A 772 for which the same parity argument
as used in the VOV case applies: the z,-type
parity is even, so that the angular integral of the
73 coefficient is necessarily zero.

(iiib) For the second part, the specific source of V
starts to play a role in the analysis. The num-
ber of derivatives n in the leading tidal term of
o is equal to two (both of space type); hence, V
is schematically given by 9,,(f1(1)5;) + 1 <> 2.
This entails, for Wij, that sy 5 = pap +nap <3
in the expansion (A4) near r; =0 in that case
(with p, = pgp = 1), by virtue of Eq. (4.2c).
So, we find that s, <3 in the general term of
(iii), namely, r3*"“a} x Oy, (rd = =erit " =AY,
which, therefore cannot diverge faster than r]
Again, no contributions to DI arise.

The last piece, of type (iv), also consists of two sorts
of terms:

(iva) The first ones, £/ x Qgry1=¢ x ] 1_” 572 turn
out to be too divergent to contain 1/r; powers in
the tidal part. This is because we have for them
either k=4 and s, +sp>2, or k>2 and
s4 + sp = 4, according to whether the tides origi-
nate from V or W,»j. In the point-particle part, only

-2

P 573 does not diverge faster than 77> ™, but its
angular integral vanishes. In both events, the
corresponding DI is zero.

(ivb) As for the second sort of terms, Fmga,rl—l—e X

D15, 0as,
and reduces to that of the general term of 7| gim)g

It is thus even, preventing those terms to contribute
to Eq. (AS).

To conclude, we have shown that the Hadamard
regularization is equivalent to the dimensional regulari-
zation when integrating the C source terms of the 2PN
multipole moments that only involve compact-support
and OVOV-type potentials. Likewise for the integration
of NC sources of dVOV-type at leading order. We can
also use Hadamard’s regularization for the remaining
noncompact-support source o W,»j(‘?ijV at Newtonian
order, provided the corrections beyond the point-particle
model in V are at least dipolar, which is indeed the case
in our model [see the conditions on k and s, + sz, in
the above analysis of piece (iv)]. As a result, the
Hadamard regularization is sufficient for all the com-
putations presented in this paper.

gSlng , their z,-type parity is well defined
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APPENDIX B: TIDAL MATTER VARIABLES AND COM MULTIPOLE MOMENTS

In Sec. II B, we have split the matter currents defined by (2.20) as 6 = 6, + 6yga €tc., the point-particles parts being
given by (2.21) together with the metric computed in Sec. III. The tidal parts are expressed in terms of the tidal moments
Gy Hyp, and G, projected onto the tetrad (2.22) and evaluated at point 1 using the regularization, as

1 ol 14 1( 3., 3, 1.,
ol = = ——0p4 8 =Gy +— [ =2 G1ap1? + 2 GtV + =GV
Otidal \/_—g ub{ 1<,u1 |: 2 lab + C2 < 4 1ab V1 +2 1aiV1 0] +2 lab >

1 T A 1 . : 1. 1. A (N
+— (——Glubvi*——(Gl,-jv’lv Jo§oh + < Glmv vbvl — Glabv%VJrEGla,»Vv}fv’l —ZGW,V2

ct 16 8 8

+ 2G1ab(”’i Vi) - Zélaﬂfi Vy - Zélaﬂ)lfvi + G W + Glaiwbi>:|

de il 1 2 . 2. 4 .8 .
2 1b i [ i
+O-§ )<—6”]T2]1+F <_§€ainlhjU%U1 "‘g&'uijlik’[)[fUl’U{ +§€ain1thU1 +§€ain1thi>>}

1 Gapv 1 /1
g(aa { |: lcg 1+?< (Gluv 1)) Glab‘“ﬁ)]}

s, A
+3{ 1c (Grapv§0,V )+2(G1ababva))}>
1 o[ GiapdyV 1[4 7
——_98‘1{51(14(1){—74-? Glabvlfatv+§
~ - 7 A A ~ A ~
—2(G1,-jv’lvjl)(9aV—EGlabU%abV—4Glabalvb+5G1abV3bV+4(GlijajV,~)v‘1’+2G]b,~vi’8avi

~ . 7
(GlijvllajV)U? + =

261(117(”%51"/)”117

- 8GIaiU?8bvi - 2G1bi7]11)aiva + 461(”'”?51"/19 + G110, Wy — 2GIbiaiWab>:|

o8 8 8 . 8 .
A ggbinlajvlaiV_ggathlijU]aiV_gebinlajaiVb_ggainlbjaiVb

3

B

1 .
+ 51 </’4<12) |:C2 (_(Glabaabv) +

3 4 ~
) (Grap0up V)07 = 4(G10p0,0,V.,) + 6(G1ab8 Vo,V

)
~ B 9 . ~
+4(G1bi015ibva)+§(G1abG1ab) - GlabGlab )4

~ A 1 ~ N
(GlabGlab)> + ?(2(Glabv?atabv) + (Glaivtllv}ljaibv)

+7(G1ap0up V)V — 4(G 11050,V )

o2

8 16, . A 1 126, (G vt
0 1 1 lab®1%1
+—4 < = (€4 H 1180, V) — 3 — (&pijH1ap0}a V) +§(H1abH1ab)>> \/—952{ et

1 1
{ u'Vs GW,,} +1<2, (Bla)

[

\/—gahz 6

1 1. 1 /1., 1. 1. 1.
( tidal — \/_g 0,0 {51 [/41 (2 G +? <ZG1ai1’% —ZGUbU’fU]f —ZGmﬂZfU’l —§G1aiv>>

(2) Qs A
° 1 1y 61G1ia0.V
+ ;2 <3 zb]Hlajvl + 38ab]lejvl>:| } + at{lf

1 2 (1, 1.  1/1. 1. o, 1. o

—\/__g('?ab{él |:,Lt(1 )<2G1m1}? —EGlab’U’l +? <4G1ul"[]%’[]lf _ZGlahv%vll —ZG“J"U?UZILU‘{ +ZG]aj’UlfUIIU{
1. 1. .

—EGlaiV’U}f'f‘EGluhV’Ull))
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of_ L, 5 A (L a a Ly b L a e Ly
+ 0 —ggainlbj‘i‘c—z _ggainlbjUI +§£aij1ikylvl + — il j i _§€aij1bk”1”1

6
1 N . N
+8€aikHlbjU{U]1( + €ain1ij>>] }

() 2 2)
201 ¢piH 4,0,V
+51{ 01 &ipjT1avYj Ky

3¢? c?
(2)
1 o 2 - 2. 7
_—_gau{él [—clz <—§8auH1b/5bV—g*?aijlijahV)
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1 A, 1 A 3 A A, .
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+G11p0,Vy — G110,V + G0,V — Glabaivh>:| } +1<2, (B1b)
()i = ———21 - 1056,V 05,6, 000,V = ——0,4u®s, (L 6,,.0,v - 61,00,V
ij/tidal \/_—g t 2)“1 1Y1ij K1 01U14(i0j)a \/_—g ay M 01 D) 1ijY%a la(iY))
(2) a

1 D A 4 p w200 Eap(if1 )
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(2. 4 »_ 2. Q)

+61 geka(iHlj)kvl _geka(ivl Hlbk +1 < 2. (BIC)

In Sec. IV, the multipole moments have been computed to NNL order. We provide here their tidal parts in the frame of the

COM:
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