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We study the open and closed axisymmetric marginally outer trapped surfaces contained in leaves of
constant Painlevé-Gullstrand time for Schwarzschild spacetimes. We identify a family of closed marginally
outer trapped surface (MOTS) in the black hole interior characterized by an arbitrary number of self-
intersections. This suggests that the self-intersecting behavior reported by Pook-Kolb et al. [Phys. Rev. D
100, 084044 (2019)] may be a far more generic phenomenon than expected. We also consider open
surfaces, finding that their behavior is highly constrained but includes surfaces with multiple self-
intersections inside the horizon. We argue that the behavior of open MOTS identifies and constrains the
possible local behavior of MOTS during extreme mass ratio mergers.
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I. INTRODUCTION

In four-dimensional spacetime, a marginally outer
trapped surface (MOTS) is a two-dimensional closed space-
like surfacewith vanishing outward null expansion. The best
known example is a two-dimensional slice of the r ¼ 2m
Schwarzschild horizon. However, slices of horizons from
other stationary spacetimes are also MOTSs. These include
all black hole horizons in the Kerr-Newman family (outer
and inner) as well as (past) cosmological horizons.
When first introducing MOTS to students, it is common

to assign them the problem of showing that one or more of
these standard horizons are indeed marginally outer
trapped.1 Those first calculations are always coordinate-
adapted: one calculates the null expansions for surfaces of
constant time and radial coordinate and then demonstrates
that on the horizons those expansions vanish. This shows
that the horizons are the only coordinate adapted MOTSs,
but of course it does not say anything about more general
surfaces.

The full picture is significantly more complicated. Given a
parametrization of any two-surface, its expansion is deter-
mined by a second order differential operator. As such,
vanishing expansion means that the (parametrization of
the) surface satisfies a corresponding second order partial
differential equation. Equivalently, given any point in space-
time and any tangent plane to that point, the second order
equation can be used to integrate those initial conditions to a
surface of vanishing null expansion. This is similar (and in
special cases even equivalent) to theminimal surface problem
in Riemannian geometry. As for the marginally outer trapped
surfaces, there are an infinite number of minimal surfaces
through each point, one for each tangent plane.
Typically, MOTSs are searched for in the leaves of some

time foliation and so are automatically spacelike. Then,what
determines which (if any) of the surfaces of vanishing
expansion is a MOTS is whether or not they close.
Unlike the spacelike and vanishing outward null expansion
conditions,which can be determined point-by-point, closure
is inherently global. One needs to know the full surface in
order to be able to classify it as open or closed. However, that
closure can depend crucially on far-away (and spacelike
separated) features of the geometry. In particular, one can
imagine two locally equivalent spacetimes for which the
same partial surface may or may not be part of a MOTS
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depending on remote geometric features that either do or do
not cause it to ultimately close.
Hence, while all parts of the definition are important, it is

not unreasonable to think that we can learn much about the
local properties of MOTS by studying surfaces of vanishing
null expansion without worrying about whether or not they
close. Morally, this strategy is similar to that employed
when studying the mathematical properties of event hori-
zons. Locally, event horizons are surface-forming con-
gruences of null geodesics but globally, future boundary
conditions are necessary to identify the particular set of
curves that form an event horizon. However, many proper-
ties of event horizons can be understood from the
Raychaudhuri equation, which applies to any congruence
of null curves. Analogously, by studying the general
behaviors of marginally outer trapped open surfaces
(MOTOS), we can hope to learn about possible behaviors
of MOTS. The early parts of this paper will be devoted to
such an investigation for Schwarzschild spacetimes.
The physical problem that originally motivated this study

gives further impetus for studying these MOTOS. Consider
an extreme mass ratio black hole merger of nonrotating
black holes with the small black hole falling into the large
black hole along an (approximate) timelike geodesic of the
large black hole spacetime. Then close to the small black
hole, its gravitational field will be dominant. Hence, to
leading order, spacetime near the small black hole will be
Schwarzschild. This will continue to be the case even as the
small black holes crosses the large black hole horizon and
remain so inside (until the final approach to the singularity).
In the limit where the mass ratio becomes infinite, that
approximation becomes exact.
Emparan andMartínez very successfully used this limit to

study the evolution of event horizons during an extreme
mass ratio (EMR)merger [1,2] (see also [3] for an interesting
extension to neutron star-black hole mergers). In their
analysis, a congruence of null geodesics selected by its
asymptotic properties (e.g., that it be asymptotically planar)
propagating in the Schwarzschild geometry plays the role of
the event horizon of the large black hole. Since solutions of
the (null) geodesic equations in the Schwarzschild geometry
can be obtained in terms of elliptic functions, these authors
were able to obtain an “exact description” of the EMR
merger. The original motivation for the current paper was to
supplement the analysis of [1,2] by understanding the
properties of MOTS/apparent horizons. In such a case,
the MOTS associated with the large black hole cannot be
expected to close within the regime of the Schwarzschild
approximation and so we must necessarily study MOTOS.
However, even if these are understood perfectly, there
remains the complication of identifying the “correct”
MOTOS that is the “true” geometric horizon. We will
provide partial results toward this goal.
Our approach in this work will be to consider the possible

behaviors of MOTOS within the Painlevé-Gullstrand

slicing of the Schwarzschild spacetime. This slicing pro-
vides a number of advantages compared to the usual time-
symmetric Schwarzschild slicing. In Painlevé-Gullstrand,
surfaces of constant time are spacelike and so any two-
surface contained within such a slicewill necessarily also be
spacelike. However, in contrast to the time-symmetric
slicing, these coordinates are horizon penetrating which
makes it possible to study MOTOS that cross the horizon.
Moreover, this slicing is nonstatic which has the conse-
quence that the inward and outward expansions need not
vanish simultaneously. These three features lift a degeneracy
that is a special feature of the usual Schwarzschild slicing,
and consequently we expect the results for the Painlevé-
Gullstrand slicing to be more generic.
The paper is organized in the following way. In Sec. II,

we will set up the problem, deriving the formulas that
define the axisymmetric MOTOS in the Schwarzschild
spacetime that are contained in leaves of constant Painlevé-
Gullstrand time. While these equations can be solved
exactly only in the very simplest cases, Sec. III applies
analytic and perturbative techniques to learn as much as we
can about the possible properties of those MOTOS.
Section IV solves the equations numerically and system-
atically works through possible solutions and their behav-
iors. This turns out to be an interesting problem in its own
right and not as overwhelming as one might expect. A
highlight of this section is the discovery of fully fledged
MOTS inside r ¼ 2m that can have an arbitrary number of
self-intersections. Section V returns to the original moti-
vation and examines what the preceding sections can tell us
about the behavior of MOTS during extreme mass ratio
mergers. Section VI summarizes the results and looks
forward to future works. The Appendix is a technical
section that examines subleading order asymptotic behav-
iors of MOTOS in Schwarzschild Painlevé-Gullstrand.
A partial study of some of these MOTOS appeared in [4]

in the context of a study of horizon stability. However, we
now realize that there were problems with the MOT(O)S
generating algorithms in that paper. Those algorithms were
unable to track loops in the MOT(O)S and instead, when
faced with one, incorrectly showed the surface diving into
the singularity. Hence, the exotic looping structures seen in
this paper were missed in that earlier one.

II. MOTOS IN THE SCHWARZSCHILD
SPACETIME: PAINLEVE-GULLSTRAND

COORDINATES

A. General considerations

For the rest of this paper, we restrict our attention to two-
dimensional spacelike surfaces S in the four-dimensional
Schwarzschild spacetime. Then, at any point, the normal
space to such a surface is two-dimensional and timelike and
so can be spanned by two null vectors which we label lþ
and l−. We take both vectors to be future pointing (there is
no ambiguity of past and future for the cases we study) with
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lþ being outward and l− being inward pointing (for some
of the surfaces that we consider, this labeling is ambiguous
but we will deal with such problems as they arise). For
convenience, we cross-scale so that

lþ · l− ¼ −1: ð2:1Þ

The remaining 1 degree of scaling freedom, lþ → eflþ

and l− → e−fl− for a free function f will be irrelevant in
this paper.
The full spacetime metric gαβ will induce a spacelike

two-metric q̃AB on S that satisfies

q̃ABeαAe
β
B ¼ q̃αβ ¼ gαβ þ lþαl−β þ l−αlþβ; ð2:2Þ

and the expansions associated with these normals are

θþ ¼ q̃αβ∇αl
þ
β and θ− ¼ q̃αβ∇αl−

β : ð2:3Þ

In these expressions, Greek letters and capital Latin letters
are, respectively, spacetime and surface indices and eαA is
the pull-back/push-forward operator between the spaces.
We define MOTOS to be an open spacelike surfaces with

(at least) one normal direction of vanishing null expansion.
We will refer to that direction as outward.2 If we are
referring to a general case where the surface might be either
open or closed, we will use the somewhat awkward term
MOT(O)S.
Note that it is possible for θþ and θ− to vanish

simultaneously. For example, in standard Schwarzschild
coordinates

gαβdxαdxβ ¼ −
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2

þ r2ðdθ2 þ sin2 θdϕ2Þ; ð2:4Þ

hypersurfaces Σt of constant t with unit normal

ûαdxα ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
dt ð2:5Þ

have vanishing extrinsic curvature Kαβ ¼ 0. Then a two-
surface in Σt with spacelike normal r̂α will have null
normals (up to the usual rescaling)

lþ ¼ ûþ r̂ and l− ¼ 1

2
ðû − r̂Þ ð2:6Þ

and so

θþ ¼ q̃αβ∇αðûβ þ r̂βÞ ¼ q̃αβKαβ þ q̃αβ∇αr̂β

¼ q̃αβ∇αr̂β; ð2:7Þ

while

θ− ¼ 1

2
q̃αβ∇αðûβ − r̂βÞ ¼

1

2
q̃αβKαβ −

1

2
q̃αβ∇αr̂β

¼ −
1

2
q̃αβ∇αr̂β: ð2:8Þ

Hence, if one of these vanishes, both vanish: MOT(O)S are
minimal surfaces in the Σt. Rescalings of the null vectors
similarly scale the expansions and so do not affect whether
or not they vanish.
While this is an interesting situation in its own right

(which we will return to in Sec. VI), it is also a very special
case. Most coordinate systems (and in particular those for
dynamical spacetimes) do not have time slices of vanishing
extrinsic curvature. Hence, in the upcoming sections, we
will work in a coordinate system with nonstationary slices.
Then, for each point in space and each tangent plane, there
will actually be two MOT(O)S: one for lþ and one for l−.
Of course, there aremanymoreMOT(O)S than those found

in the leaves of any particular foliation. Hence, we do not
claim that all MOT(O)S in a Schwarzschild spacetime behave
in the sameway as the subset that we have studied. Testing the
generality of our results will be left for a future paper.

B. Schwarzschild Painlevé-Gullstrand

We choose to work in Painlevé-Gullstrand coordinates so
that the time slices are (i) spacelike (hence any two-surface
in them will also be spacelike), (ii) horizon penetrating (so
we can study MOT(O)S that cross r ¼ 2m), and (iii) non-
static (inward and outward null expansions will not vanish
simultaneously). As noted in both the Introduction and
previous section, we believe that these properties mean the
behaviors of the MOT(O)S found in this slicing will be
representative of those found in a generic slicing (as opposed
to that of standard, static, Schwarzschild coordinates).
As a bonus, since the hypersurfaces of constant Painlevé-

Gullstrand time are intrinsically Euclidean R3, we can use
Cartesian coordinates, x ¼ r sin θ and z ¼ r cos θ, to
describe curves in the ϕ ¼ 0 plane and understand them
in the usual Euclidean way.

1. Metric and normals

With Greek letters running over fτ; r; θ;ϕg, the
Schwarzschild metric in Painlevé-Gullstrand coordinates
takes the form [5]

2The “outer” in these names is not ideal. The nomenclature
was developed in the context of single black holes with non-self-
intersecting horizons for which the notions of in and out were
obvious. In the current context with multiple surfaces, some of
which may have many self-intersections, this notion is much less
clear. However, we keep this historical notation (partly because
marginally trapped surface already has another common mean-
ing). In this paper, outer really just means that the expansion
vanishes in at least one direction.
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gαβdxαdxβ ¼ −
�
1 −

2m
r

�
dτ2 þ 2

ffiffiffiffiffiffiffi
2m
r

r
dτdr

þ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð2:9Þ

As noted above, the Στ slices of constant τ are intrinsically
flat with the metric

hijdxidxj ¼ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ ð2:10Þ

and (nonflat) extrinsic curvature

Kijdxidxj ¼
ffiffiffiffiffiffiffi
m
2r3

r
dr2 −

ffiffiffiffiffiffiffiffiffi
2mr

p
ðdθ2 þ sin2 θdϕ2Þ; ð2:11Þ

which can be calculated from the future-oriented unit
timelike normal

û ¼
� ∂
∂τ
�
−

ffiffiffiffiffiffiffi
2m
r

r � ∂
∂r

�
ð2:12Þ

to those slices (as a one-form this is −dτ). In these
expressions, lowercase Latin letters run over fr; θ;ϕg.
An axisymmetric surface S in a given Στo can be

parametrized by coordinates ðλ;ϕÞ as

ðτo; r; θ;ϕÞ ¼ ðTo; RðλÞ;ΘðλÞ;ϕÞ ð2:13Þ

for some functions RðλÞ and ΘðλÞ. The tangent vectors to
this surface are

d
dλ

¼ _R

� ∂
∂r

�
þ _Θ

� ∂
∂θ

�
and

∂
∂ϕ ; ð2:14Þ

with dots indicating derivatives with respect to λ. The
induced two metric is

q̃ABdyAdyB ¼ ð _R2 þ R2 _Θ2Þdλ2 þ ðR2 sin2 ΘÞdϕ2; ð2:15Þ

with inverse

q̃AB
� ∂
∂yA

�
⊗

� ∂
∂yB

�
¼ 1

_R2 þ R2 _Θ2

� ∂
∂λ

�
⊗

� ∂
∂λ

�

þ 1

R2 sin2 Θ

� ∂
∂ϕ

�
⊗

� ∂
∂ϕ

�
:

Uppercase Latin letters run over fλ;ϕg.
From the tangent vectors (2.14), it is straightforward to

show that a unit spacelike normal to S in Στ is

r̂ ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ R2 _Θ2

p �
_Θ
� ∂
∂r

�
−

_R
R2

� ∂
∂θ

��
: ð2:16Þ

Hence, a suitable pair of null normals to S is given by

lþ ¼ ûþ r̂ or l− ¼ 1

2
ðû − r̂Þ: ð2:17Þ

As we will be looking for cases where the expansion
associated with one of these vanishes, the remaining scaling
freedom does not matter.
TheMOT(O)S that we deal with in the upcoming sections

will often be quite complicated and necessarily covered by
multiple coordinate patches. Then given that the orientation
of r̂ in (2.16) has been tied to details of those parametriza-
tions, it may (andwill) be necessary to switch back and forth
between lþ and l− as we switch coordinate patches in order
to maintain a consistent “outward” direction.

2. Expansions

The trace of the extrinsic curvature of S in Στ with
respect to r̂ is

θðr̂Þ ≡ q̃ij∇ir̂j

¼ q̃λλ
� ∂
∂λ

�
i ∂r̂i
∂λ − q̃ijΓk

ijr̂k

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ R2 _Θ2

p
×

�
Rð _R Θ̈−R̈ _ΘÞ þ _Θ _R2

_R2 þ R2 _Θ2
−

_R cotΘ
R

þ 2 _Θ
�
; ð2:18Þ

where

q̃ij ¼
�∂xi
∂yA

��∂xj
∂yB

�
q̃AB ð2:19Þ

is the push-forward of the inverse surface metric into Στ.
Note that as S is a surface in Euclidean R3, no m appears in
this expression.
However, the mass does show up in the extrinsic

curvature of S with respect to the unit timelike normal
û. In that case,

θðûÞ ≡ q̃αβ∇αûβ ¼ Kαβhαβ − Kαβr̂αr̂β

¼ −
ffiffiffiffiffiffiffi
2m

p

2R3=2

�
_R2 þ 4R2 _Θ2

_R2 þ R2 _Θ2

�
: ð2:20Þ

Thus, the two possible equations for vanishing null
expansions are

θþ ¼ θðûÞ þ θðr̂Þ ¼ 0 or θ− ¼ 1

2
ðθðûÞ − θðr̂ÞÞ ¼ 0:

ð2:21Þ

That is,
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�
�
_R Θ̈− _Θ R̈þ 3 _Θ _R2

R
−

_R cotΘ
R2

ð _R2 þ R2 _Θ2Þ þ 2R _Θ3

�

−
ffiffiffiffi
m
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ R2 _Θ2

p
ð _R2 þ 4R2 _Θ2Þ

R5=2 ¼ 0: ð2:22Þ

Though we have left λ general so far, it is easiest to work
with coordinate parametrizations. That is λ ¼ θ or λ ¼ r.
Then we have four possible MOT(O)S generating equa-
tions. For functions RðθÞ and ΘðrÞ and using subscripts to
indicate derivatives, they are

REq
� ∶ Rθθ −

3R2
θ

R
þ Rθ cot θ

R2
ðR2

θ þ R2Þ − 2R

�
ffiffiffiffi
m
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
θ þ R2

q
ðR2

θ þ 4R2Þ
R5=2 ¼ 0; ð2:23Þ

for which

r̂ ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
θ þ R2

q �� ∂
∂r

�
−
Rθ

R2

� ∂
∂θ

��
ð2:24Þ

(i.e., points in the positive r direction) and

ΘEq
� ∶ Θrr þ

3Θr

r
−
cotΘ
r2

ð1þ r2Θ2
rÞ þ 2rΘ3

r

∓
ffiffiffiffi
m
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2Θ2

r

p
ð1þ 4r2Θ2

rÞ
r5=2

¼ 0; ð2:25Þ

for which

r̂ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2Θ2

r

p �
Θr

� ∂
∂r

�
−

1

r2

� ∂
∂θ

��
ð2:26Þ

(i.e., points in the negative θ direction).
As noted above, for a complicated MOT(O)S, we may

need to use all of these equations to generate an appropriate
family of patches to fully cover it. The basic complication is
that it is not uncommon to have

dR
dθ

→ 0 ⇔
dΘ
dr

→ ∞ or ð2:27Þ

dΘ
dr

→ 0 ⇔
dR
dθ

→ ∞: ð2:28Þ

The infinities are clearly coordinate infinities: they are
simply cases where the surface becomes tangent to either ∂r
or ∂θ. Further, the fact that one derivative blows up as its
reciprocal goes to zero suggests a simple method for
dealing with them: switch back and forth between solving
for RðθÞ and ΘðrÞ to always avoid singularities.
This procedure is demonstrated in Fig. 1 which shows a

doubly self-intersecting MOTOS covered by seven patches.

It starts from the z-axis at ðr; θÞ ¼ ðm; 0Þ with a solution of
REq
þ and then cycles through ΘEq

− , REq
− , and ΘEq

þ before
starting again. As can be seen in the figure, the patches
significantly overlap and individual equations only fail
at the locations of coordinate discontinuities (marked
with × or þ).
We will make repeated use of this procedure to generate

MOT(O)S in Sec. IV. First, however, we consider what we
can learn analytically.

III. ANALYTICAL RESULTS

A. Minkowski limit m= 0

First, consider the simplest possible case. For m ¼ 0,
θðûÞ ¼ 0 and so the problem reduces to solving θðr̂Þ ¼ 0:
that is finding rotationally symmetric minimal surfaces in
Euclidean R3.
These are well known. Recall that a surface is minimal if

its two principal curvatures are equal in magnitude but
opposite in orientation. The degenerate case is a z ¼
constant plane for which both curvatures vanish, but the
more interesting case is a catenoid for which the principal
curvatures are nonzero. The principal curvature associated

FIG. 1. Cross-section of a (doubly) self-intersecting MOTOS
starting at r ¼ m and θ ¼ 0 (the z-axis is shown but the x is
omitted for clarity). The direction of vanishing null expansion is
shown by the arrows. This surface is built out of seven patches.
Starting from the z-axis, these are solutions of (i) REqþ (thin
black line), (ii) ΘEq− (thick dashed line), (iii) REq− (medium gray
line), (iv) ΘEqþ (thick dotted line), (v) REqþ (thin black line),
(vi) ΘEq− (thick dashed line), and (vii) REq− (medium gray line).
There is a substantial overlap of adjacent patches. ×s mark points
where dΘ=dr → ∞ and þs are points where dR=dθ → ∞.
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with the rotational symmetry is oriented inward toward the
z-axis and so the other must be outward. These opposite
orientations give catenoids their characteristic hyperbolic
shape that is shown in Fig. 2. The sharpest curvatures are
necessarily around the waist of the catenoid (which has the
smallest radius).
Quantitatively, in cylindrical coordinates ðρ;ϕ; zÞ, a

catenoid can be parametrized as

ρ ¼ ρo cosh

�
z − zo
ρo

�
for −∞ < z < ∞;−π < ϕ < π;

ð3:1Þ

where ðρo;ϕ; zoÞ is the circle of closest approach to the
z-axis. Sample catenoids with zo ¼ 0 are shown in Fig. 3.
Note the sharper curvature for those that approach closer to
the z-axis. In particular, in the limit ρo → 0, the catenoid
degenerates to become the plane z ¼ zo.
Converting to spherical coordinates but continuing to

parametrize with λ ¼ z, we obtain

RðzÞ ¼ ρo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2

�
z − zo
ρo

�
þ
�
z
ρo

�
2

s
; ð3:2Þ

ΘðzÞ ¼ arctan

�
ρo
z
cosh

�
z − zo
ρo

��
; ð3:3Þ

which, by direct substitution, can be confirmed to be a
solution to (2.22) (with m ¼ 0).

B. General behaviors

While we will need numerics to study the full solutions
of (2.23) and (2.25), we can still find constraints on
possible behaviors of those solutions. Our equations for
rotationally symmetric MOT(O)S are equivalently equa-
tions for curves in the x > 0 half-plane. Hence, under-
standing the surfaces is equivalent to understanding those
curves and in particular we can consider their possible end
points and turning points. That is what we do in this
section, starting with possible end points.

1. Intersections with the z-axis

First can a MOT(O)S intersect the z-axis of rotational
symmetry? The obvious difficulty that such surfaces must
overcome is that cot θ blows up at θ ¼ 0 and θ ¼ π and so
technically neither (2.23) nor (2.25) is defined there.
However, it is easy to see that there are analytic curves
that do intersect this axis and we find them by Taylor
expanding RðθÞ around θ ¼ 0 or θ ¼ π, substituting into
(2.23), and working order-by-order to solve for the series
expansion.
Then the blow-up is removed if and only if R0ð0Þ (or

R0ðπÞ) vanishes: any such curve must intersect the z-axis at
a right angle. Equivalently, intersections with the z-axis
must be such that there are no conical singularities in S.
To second order with r̂ pointing in the positive r

direction, we find

Rþ
0 ðθÞ ¼ Ro þ

ffiffiffiffiffiffi
Ro

p ð ffiffiffiffiffiffi
Ro

p
−

ffiffiffiffiffiffiffi
2m

p Þ
2

θ2 þOðθ4Þ; ð3:4Þ

R−
0 ðθÞ ¼ Ro þ

ffiffiffiffiffiffi
Ro

p ð ffiffiffiffiffiffi
Ro

p þ ffiffiffiffiffiffiffi
2m

p Þ
2

θ2 þOðθ4Þ: ð3:5Þ

The expansion coefficients are the same around θ ¼ π and
we see that intersections are allowed for any value of Ro
(except perhaps Ro ¼ 0 which we consider in the next
subsection).
Focusing first on Rþ note that, as would be expected,

Rþ ¼ 2m is a solution. However, for Ro > 2m, Rþ
increases while for Ro < 2m it decreases. The horizon is
an unstable fixed point of this equation. By contrast, for all
inward-oriented normals, R− increases as the curve moves
away from θ ¼ 0.

2. Intersections with r = 0?

Next, we attempt to use the same technique to explore
whether or not there are analytical curves that run into

FIG. 2. A typical catenoid in Euclidean R3. The shape is
characteristically hyperbolic with the sharpest principal curva-
tures around the narrow waist.

FIG. 3. Cross-sections of minimal surfaces with zo ¼ 0 for
Euclidean R3. Note that as ρo → 0 the catenoid reduces to the
z ¼ 0 plane. For zo ≠ 0, the surfaces are appropriately shifted up
or down in the z direction.
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r ¼ 0. Restricted as we are to axisymmetry, intrinsically
r ¼ 0 is a pointlike any other on the z-axis. However,
extrinsically the surface has a geometric singularity.
There is no Taylor series solution of the equations around

r ¼ 0, but if we expand as

ΘðrÞ ¼
X∞
i¼0

airi=2 ð3:6Þ

and substitute into (2.25), again trying to solve order-by-
order, we find the following solution:

Θ�ðrÞ ¼ θ0 �
ffiffiffiffiffiffiffi
r
2m

r �
−2þ 59

6

r
m
−
21003

80

r2

m2

þ 6211375

448

r3

m3
þ � � �

�
; ð3:7Þ

where θ0 must be either 0 or π. Thus, up to reflection
symmetry, the series is completely determined with no free
parameters appearing, suggesting that the curve intersect-
ing the origin is unique. Moreover, the curve makes a cusp
as it intersects the axis. However, as the origin corresponds
to a spacetime curvature singularity, this point around
which we are attempting to expand is not part of the
geometry.
Given that we are trying to expand around a singular

point, it is not too surprising that the series in brackets
appears to have vanishing radius of convergence: an
analysis of successive terms suggests that they grow
without bound. That said, the existence of the series
expansion suggests we may be dealing with a differentiable
but nonanalytic function. Rational polynomial approxima-
tions to the function (e.g., Padé approximants) exhibit
much better behavior. Solving for the behavior of z near
r ¼ 0, it is the same independent of whether � is used,

z ≈ r −
r2

m
þ � � � ; x ¼ �

ffiffiffiffiffi
2r
m

r �
−rþ 21

4

r2

m
� � �

�
: ð3:8Þ

The leading order behaviors of z and x here seem to match
well with our numerical results as the curves close in on
r ¼ 0. However, we have not definitively demonstrated the
existence of this singularity-entering curve.

3. Local extrema of RðθÞ
From the previous section, there is at most a single curve

that reaches r ¼ 0. Hence, a generic curve RðθÞ must have
minima. However, for interesting solutions (like Fig. 1) to
exist, we also require maxima. We now examine constraints
on such extrema.
For an extrema RðθoÞ ¼ Ro, RθðθoÞ ¼ 0 and so from

(2.23), we must have

RθθðθoÞ ¼ 2
ffiffiffiffiffiffi
Ro

p
ð

ffiffiffiffiffiffi
Ro

p ∓ ffiffiffiffiffiffiffi
2m

p
Þ ð3:9Þ

at those points. In this expression, the þ=− is for surfaces
of vanishing inward-/outward-oriented null expansions.
If m ¼ 0, it is clear that extrema can only be minima of

R. No maxima are possible. This is consistent with the
Euclidean exact solutions where the catenoids have mini-
mum values of R but no maximum values.
For m > 0, we must distinguish between inward- and

outward-oriented MOTOS. Surfaces with vanishing inward
(toward r ¼ 0) expansions cannot contain local maxima of
r. However, the situation is more interesting for surfaces
with vanishing outward (away from r ¼ 0) null expansions.
Any Ro > 2m is necessarily a local minima while any
Ro < 2m can only be maxima. Ro ¼ 2m is a saddle point
(a continuous set of points for which Rθ ¼ 0).
Putting these together we note that there cannot be any

local maxima in r outside of r ¼ 2m, and hence there
cannot be any closed axisymmetric MOTSs that extend
outside of that surface. This is consistent with the well-
known result that marginally trapped surfaces necessarily
reside entirely within the causal black hole region [6] as
well as the more recent geometric results of [7] (that MOTS
cannot extend into an exterior region with a timelike Killing
vector field).
The results are consistent with our analysis of curves

intersecting the z-axis. For Ro ≈ 2m, near-horizon outward-
oriented MOTOS will always “peel away” from the horizon
as one moves away from the extrema. However, they also
allow for much more exotic behaviors like those seen in
Fig. 1 (and will be seen in many later examples). Inside
r ¼ 2m, curves can curl around, switching their orienta-
tions, and so have both radial maxima and minima.

4. Local extrema of ΘðrÞ
Finally, consider possible turning points of ΘðrÞ. For

ΘðroÞ ¼ Θo and ΘrðroÞ ¼ 0, we have from (2.25) that

ΘrrðroÞ ¼
1

r2o

�
cotΘo �

ffiffiffiffiffiffiffi
m
2ro

r �
: ð3:10Þ

For m ¼ 0, we recover Euclidean results. For 0 < Θo <
π=2 and so cotðΘoÞ > 0, extrema can only be minima. For
π=2 < Θo < π and so cotðΘoÞ < 0, extrema can only be
maxima. These are the catenoids turning back from the
z-axis.
For m > 0, things are again more interesting. For

surfaces whose direction of vanishing null expansion is
toward θ ¼ 0 and 0 < Θ < π=2 (or θ ¼ π for π=2 <
Θ < π), the results from flat space remain qualitatively
the same. However, for the opposite orientation, there are
maxima for 0 < Θ < π=2 (and minima for π=2 < Θ < π)
if j cotΘoj <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2ro

p
.
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This is similar to the situations that we found for R in the
last subsection and so for a multipatch covered surface we
can have both maxima and minima of Θ.

C. The large-r limit

1. Minkowski limit m= 0

Even for minimal surfaces in Euclidean space, there is no
way to explicitly invert either (3.2) or (3.3) and so obtain an
explicit solution RðθÞ or ΘðrÞ in terms of elementary
functions. Here we consider the large-r limit.
For large r, we can perturbatively invert (3.2) to obtain

zflat ¼ ∓ ρo

�
X −

2X2 þ 1

4

�
ρo
r

�
2

þO
�
ρ4o
r4

��
; ð3:11Þ

where

X ¼ zo
ρo

þ ln

�
2r
ρo

�
ð3:12Þ

and the∓ depends on whether we are considering the upper
or lower branch of the catenoid (− upper, þ lower). Higher
order terms can include powers of X (and so ln r) in
addition to powers of 1=r. Note that limr→∞ X ¼ ∞ and so
z similarly diverges, though only logarithmically.
This slow growth can be also be seen in the large-r

behavior of (3.3). Asymptotically expanding with (3.11),
we obtain

Θflat�ðrÞ ¼
π

2
∓

�
X

�
ρo
r

�
þ 2X3 − 6X2 − 3

12

�
ρo
r

�
3
�

þO
�
ρ5o
r5

�
; ð3:13Þ

and so in the large-r limit Θ → π=2. By direct substitution,
it can be confirmed that this is a solution for Θeq� (2.25) at
large r with m ¼ 0.

2. General case

Next, consider m > 0. There we might expect the
minimal surfaces far from the black hole to behave
similarly to the m ¼ 0 case: an asymptotic series involving
powers of r and lnðrÞ. This initial ansatz is wrong; no such
solution exists. However, if we add in half-powers of r, we
do obtain a solution. To order 1=r2, we find asymptotic
solutions to ΘEq

� (2.25) of the form

Θ�
asympt ¼

π

2
� 2

ffiffiffi
2

p �
m
r

�
1=2

þ X̃

�
β

r

�
∓ 10

ffiffiffi
2

p

3

�
m
r

�
3=2

þ ð3X̃ − 7Þ
�
βm
r2

�
þO

�
miβj

r5=2

�
; ð3:14Þ

where iþ j ¼ 5=2; one should consistently choose either
the top or the bottom sign to get a solution of the ΘEq

� and

βX̃ ¼ αþ β ln r; ð3:15Þ

with α and β as free constants which distinguish the
individual solutions.
The non-m terms match up with the vacuum case (3.13)

but intriguingly the post-π
2
leading order term behavior

changes: there is now a dominant r−1=2 term. In particular,
this means that at large r,

z�asympt ¼ r cosΘ�
asympt ≈�2

ffiffiffiffiffiffiffi
2m

p
r1=2 − βX̃ þOðr−1=2Þ:

ð3:16Þ

That is, even asymptotically the large-r behavior of the
MOTOS is different from the m ¼ 0 case: z diverges as

ffiffiffi
r

p
rather than ln r. Note however that this means that the
leading order behavior is universal and independent of the
particular solution.
Thus, there is a qualitative difference between m ¼ 0

(Minkowksi space) and any m > 0. Even arbitrarily far
from the origin any nonzero mass still has an effect.
Finally, consider the case of a MOTOS that does not

intersect the z-axis and so has two asymptotic ends. Then
both ends must behave as (3.16) at large r. Consider
traversing the generating curve. If the direction of vanishing
null expansion is consistently oriented along the curve, one
end will necessarily asymptote as zþasympt while the other
will asymptote as z−asympt. That is, asymptotically it will
behave as

rasympt ≈
z2asympt

8m
: ð3:17Þ

We will see this behavior in Sec. IV C.
The only way to avoid these parabolic asymptotics

would be for the direction of vanishing null expansion
to switch somewhere along the curve. In that case at some
point on the curve, we would have θþðlÞ ¼ θ−ðlÞ ¼ 0 or

equivalently θû ¼ θr̂ ¼ 0. From (2.18) and (2.20), this
cannot happen smoothly as it would require _R ¼ _Θ ¼ 0.

D. Near-MOTS limit

We can also consider the behavior of curves close to
r ¼ 2m, looking for perturbative solutions to (2.23) of the
form

RðθÞ ¼ 2mð1þ ρðθÞÞ; ð3:18Þ

with jρj ≪ 1. To first order, the equations become

Rþ
eq∶ ρθθ þ cot θρθ − ρ ¼ 0; ð3:19Þ
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R−
eq∶ ρθθ þ cot θρθ − 3ρ ¼ 4; ð3:20Þ

which, respectively, define surfaces with the same or
opposite vanishing null orientation to r ¼ 2m. These have
solutions in terms of Legendre functions

ρþ ¼ AþPlþðcos θÞ þ BþQlþðcos θÞ; ð3:21Þ

ρ− ¼ −
4

3
þ A−Pl−ðcos θÞ þ B−Ql−ðcos θÞ; ð3:22Þ

where A� and B� are free constants and

lþ ¼ −
1þ i

ffiffiffi
3

p

2
and l− ¼ −

1þ i
ffiffiffiffiffi
11

p

2
: ð3:23Þ

We are mainly interested in the case where ρ → ρo and
ρθ → 0 as θ → 0 (i.e., where the curve intersects the
positive z-axis). Then B� ¼ 0 (the associated Legendre
functions diverge for θ ¼ 0) and we have

ρþ ¼ ρoPlþðcos θÞ; ð3:24Þ

ρ− ¼ −
4

3
þ
�
4

3
þ ρo

�
Pl−ðcos θÞ: ð3:25Þ

It is immediately obvious that for ρo ¼ 0 (i.e., zo ¼ 2m),
ρþ ¼ 0. This is in accord with the uniqueness theorem for
MOT(O)S [8,9]: in this case, two MOT(O)S touch with the
same orientation of their directions of vanishing null
expansion and so must be identical. Note too that for
nonzero ρo it will diverge by θ ¼ π, but that rate of
divergence is controlled by the initial proximity to r ¼ 2m.
By contrast, ρ− diverges from r ¼ 2m, even if ρo ¼ 0.

For ρo ≪ 1, that rate of divergence is essentially indepen-
dent of ρo. Further Pl−ðcos θÞ > Plþðcos θÞ for all θ and so
for any ρo, ρ− diverges faster than ρþ. These results will
make more sense when seen in the context of the upcoming
examples.

IV. NUMERICAL SOLUTIONS

In this section, we consider more general MOT(O)S
and find a rich family of possible surfaces. In Secs. IVA
and IV B, we will examine the possible rotationally
symmetric MOT(O)S that intersect the z-axis and which,
at that point, have their direction of vanishing null
expansion oriented in the positive z direction. Due to the
reflectional symmetry of Schwarzschild across z ¼ 0, this
is sufficient to understand all possible surfaces that intersect
the z-axis. Section IV C will survey some of the MOTOS
that do not intersect the z-axis.
For surfaces departing from the z-axis, the coordinate

representations break down: cot θ diverges for θ ¼ 0.
Hence, we make use of the perturbative expressions
(3.4) or (3.5) for an RðθÞ leaving the z-axis to find R

and Rθ at some small θo. Then we have initial conditions in
a location where everything is well defined.

A. From below

We begin with the case for which theMOT(O)S intersects
the z-axis at zo < 0 with the direction of vanishing null
expansion in the þz direction. From our considerations, in
Sec. III B, we expect there to be only minimum values of
RðθÞ for these surfaces and indeed this is what we find.
Representative surfaces are depicted in Figs. 4 and 5.
This family of curves is quite simple, but there are a

couple of features to note. First, the MOTOS can intersect
r ¼ 2m and nothing particularly special happens at the
point of intersection. The zo ¼ 2m MOTOS is tangent to
r ¼ 2m. As noted in the discussion of Sec. III D, this does

FIG. 4. Upward-oriented rotationally symmetric MOTOS
approaching (and passing) the r ¼ 2m MOTS from below.
The orientation of the null vector vanishing null expansion is
indicated by the arrows.

FIG. 5. Upward-oriented rotationally symmetric MOTOS in-
side r ¼ 2m. The orientation of the null vector vanishing null
expansion is indicated by the arrows. The MOTS and MOTOS
that can be tangent to each other are r ¼ 2m because they are
oriented in opposite directions.
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not violate the uniqueness theorem for MOTOS: the
horizon and zo ¼ 2m MOTOS have opposite orientations
at their point of contact.
The MOTOS are well behaved, maintaining their origi-

nal ordering as they extend outward from the z-axis to large
r. That this ordering continues to be maintained asymp-
totically is confirmed in the Appendix.

B. From above

1. Results

The MOTOS originating from zo > 0 have a much more
interesting set of behaviors than those with zo < 0. For this
case, the tangent surface at zo ¼ 2m has the same ori-
entation as r ¼ 2m and so by the uniqueness theorem is
identical. As can be seen in Figs. 6 and 7, this uniqueness is
the end point of a continuous process: MOTOS with
zo → 2m wrap more and more closely to r ¼ 2m during
the approach (as would be expected from the results of
Sec. III D). They then have to make sharper and sharper
turns to avoid θ ¼ π. The limit as zo → 2m is the MOTS at
r ¼ 2m along with the oppositely oriented zo ¼ 2m
MOTOS (the black curves in Fig. 7). From the perspective
of the generating curves, the limit is continuous. However,
the limiting curve itself is not smooth.
The curves on either side of zo ¼ 2m make their turns to

avoid the z-axis in different ways. For zo > 2m, they turn
counterclockwise (to their left if one is moving along the
curve starting from θ ¼ 0). However, for zo < 2m, the turn
is clockwise (to their right) and they then self-intersect
before exiting through r ¼ 2m. In both cases, they end up
moving off to large r with their direction of vanishing null
expansion oriented in the positive z direction.
MOTOS geometries become more complicated as zo

further decreases. As can be seen in Fig. 7, the loop grows,
pulls back from r ¼ 2m and migrates toward z ¼ 0.

This continues in Fig. 8 where the free end pulls back toward
the z-axiswith the turn becoming sharper and sharper until for
zo ¼ z1 ≈ 1.037m the curve intersects the z-axis at a right
angle: this limit is a closed surface and so a (self-intersecting)

FIG. 6. Upward-oriented rotationally symmetric MOTOS ap-
proaching (and passing) the r ¼ 2m MOTS from above. The
orientation of the null vector vanishing null expansion is
indicated by the arrows.

FIG. 7. Initially upward-oriented rotationally symmetric
MOTOS approaching (and passing) the r ¼ 2m MOTS from
above. Orientation vectors for the direction of vanishing null
expansion are henceforth omitted, but the direction can be tracked
by following curves from the positive z-axis. The orientations of
all curves are in the positive z direction at both the z-axis and as
they head off to infinity.

FIG. 8. Initially upward-oriented rotationally symmetric
MOTOS on either side of the one-loop MOTS. Note that the
second loop develops in a way that is qualitatively similar to
the development of the first. The orientations of all curves is
in the positive z direction at both the z-axis and as they head off
to infinity.
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MOTS. It pairs with the upward pointing surface from the last
section that intersects at zo ¼ −z1 to form the limit surface.
These general patterns repeat as we move deeper toward

the singularity. For zo < z1, a second loop forms which
then also migrates toward z ¼ 0 (Fig. 8). Ultimately, for
zo ¼ z2 ≈ 0.766, the two loops end up symmetrically
spaced around z ¼ 0 and we have another MOTS (the
second curve in Fig. 9).
These steps appear to repeat ad infinitum with shorter

and shorter periods. Starting from a MOTS at zi, for z < zi,
a loop forms and that loop migrates to join the other loops
arrayed around z ¼ 0. While this is happening, the branch
of the curve that heads out to infinity also pulls back toward
the z-axis until it pinches off there to form a new MOTS at
ziþ1 (with the other loops now symmetric around z ¼ 0).
The first 12 MOTSs are shown in Fig. 9. Some higher loop
MOTOS with intermediate zo values are shown in Fig. 10.
Thus, as zo → 0 from above, we expect more and more

loops to be squeezed into smaller and smaller areas.

FIG. 9. The first 12 (post-r ¼ 2m) rotationally symmetric MOTSs living in t ¼ constant slices of Schwarzschild in Painelevé-
Gullstand coordinates. Axes labels are in units of m and the subscript refers to the number of loops. The zi values were obtained from
numerical experiments: essentially using the shooting method for solving ODEs. There appear to be an infinite number of these surfaces.
Note that the scale changes between the first and second rows.

FIG. 10. Many-looped MOTOS. Notice that all three appear to
exit toward infinity heading downward. This is not coincidence
(see the Appendix).
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However, while curve complexity grows that complexity is
also more and more confined. We might then expect the
limit curve to be relatively simple and indeed this seems to
be the case. To leading order, note that all of these curves
are oriented upward as they finish their loops and exit
r ¼ 2m, and so asymptotically they must all approach
z ¼ −2

ffiffiffiffiffiffiffiffiffiffi
2mR

p
in the sameway that the zo < 0 curves did. In

fact, the similarity in the properties of the MOTOS as they
approach z ¼ 0 from above and below appear to be quite a
bit stronger than just leading order asymptotics. They also
appear to match at subleading order and are similar even for
relatively small values of r (see the Appendix).
Hence, the divergence in behaviors between upward-

oriented zo > 0 and zo < 0 MOTOS may not be quite as
different as it initially seemed. In fact, there seems to be a
continuity of many properties across zo ¼ 0. We will return
to this point in Sec. V.

2. Methods

Before moving on to other results, let us briefly examine
the mechanics of the numerical integrations that provided
these curves. Starting with the simplest case, for curves
zo ≳ 2m, there is a minimum value of θ (at the turnaround)
and so there is no single valued RðθÞ that will fully cover it.
Hence, we necessarily switch from Rþ

eq to Θþ
eq to find the

full generating curve for the MOTOS.
For the loops with zo ≲ 2mo curves, things are more

complicated. Moving along the curve, starting from the
positive z-axis, there are successive minima in θ and then r
and we necessarily progress from Rþ

eq through Θ−
eq to Θþ

eq to
generate the full curve. These curves make full use of the
allowed behaviors from Sec. III B.
For multiloop curves, there are many points where either

Rθ or Θr vanish. Hence, the integrations require repeated
cycles through the Rþ

eq;Θ−
eq; R−

eq;Θþ
eq family of equations

(roughly one cycle for each loop) to generate the full curve.

C. MOTOS that do not intersect the z-axis

Next, we consider MOTOS that do not intersect the
z-axis. This is necessarily a much broader class of surfaces
than in the previous section (where there was just one
parameter zo plus the orientation). However, as we saw in
Sec. III C 2, their asymptotic behaviour is severely con-
strained to be parabolic (3.17) and as we shall now see,
their inner structures turn out to be qualitatively similar to
the closed MOTS of Fig. 9.

1. Perpendicular to the x-axis

We start with surfaces that perpendicularly intersect the
x-axis at some xo. Then we are again looking at a one
parameter family of oriented curves, this time with a
reflectional symmetry through the x-axis. The techniques
for finding these surfaces are the same as before: cycling

through our four MOTOS equations in order to patch
together a full picture of the surface.
The behaviors of the MOTOS have familiar elements.

For xo > 2m, the initially inward-oriented surfaces of
Fig. 11 have the opposite orientation to r ¼ 2m and so
do not need to wrap around it as xo → 2m. However, the
rules for large-r behavior that we found in Sec. III C 2 still
apply and tell us that the “upward”-oriented branch
asymptotes to z ¼ −2

ffiffiffiffiffiffiffiffiffi
2mr

p
while the “downward”-

oriented branch asymptotes to z ¼ 2
ffiffiffiffiffiffiffiffiffi
2mr

p
. To achieve

these asymptotics, the branches have to cross the x-axis at
some x > xo and this can be seen for some of the MOTOS
in the figure (the ones with larger xo intersect beyond the
range shown). These MOTOS are self-intersecting even
while being always outside r ¼ 2m.
For xo < 2m, the usual intricacies show up. All the

MOTSs with an odd number of loops are also part of this
family. This is not shown directly in the figure, but it is
clear from an examination of Fig. 9 where the MOTSs with
an odd number of loops intersect the x-axis with inward
orientation.
For the initially outward-oriented MOTOS, shown in

Fig. 12, the original orientations of each branch match those
required asymptotically so there is no need for xo > 2m
surfaces to cross the x-axis and, in these examples, they do
not. As xo → 2m, they wrap close to r ¼ 2m as we saw for
those starting from the z-axis. Of course, r ¼ 2m is part of
this family. For xo < 2m, we once again find looping
surfaces. All MOTSs with an even number of loops are
also part of this family. Again, they are not shown in the
figure, but this is clear from the orientation of the
x-intercepts in Fig. 9.

FIG. 11. Typical (initially) inward-oriented MOTOS that per-
pendicularly cross the x-axis. A blow-up of the region inside
r ¼ 2m is shown in the inset.
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2. Not perpendicular to the x-axis

So far, we have considered one-parameter families of
curves: those that intercept either the x-axis or z-axis at
right angles. However, there are also many curves that do
not intercept perpendicularly. These actually include all

other possible (smooth) curves. A smooth curve that does
not intersect the z-axis necessarily has two ends and
asymptotically those ends will necessarily have opposite
orientations: one up and one down. However, by the
considerations of Sec. III C 2, asymptotically these must
end up on opposite sides of the x-axis. Hence, all of these
curves have to cross that axis somewhere.
This family includes all other curves, but they are more

difficult to study systematically as they are now para-
metrized by two numbers: the point and angle of inter-
section with the x-axis. However, from an initial study, we
do not think that these present any dramatically new
behaviors. The familiar elements are still all there. For
those starting and remaining outside r ¼ 2m, the branches
of inward-oriented ones are forced to self-intersect in order
to have the correct asymptotic behavior. Meanwhile,
initially outward-oriented ones necessarily wrap close to
r ¼ 2m if they approach it. And, as we have come to
expect, inside r ¼ 2m the MOTOS can have multiple self-
intersections. We show examples of curves of these types in
Figs. 13 and 14.

V. EXTREME MASS RATIO MERGERS

Aswas discussed in the Introduction, during a nonrotating
extrememass ratiomerger, onewould expect spacetime near
the small hole to be very close to Schwarzschild. In that
regime, full spacetimeMOTSshould be (very close to being)
sections of the MOTOS in the Schwarzschild spacetime.
Hence, all stages of an extreme mass ratio merger in some
neighborhood of the small black hole should find

FIG. 12. Typical (initially) outward-oriented MOTOS that
perpendicularly cross the x-axis. A blow-up of the region inside
r ¼ 2m is shown in the inset.

FIG. 13. Typical (initially) inward-oriented MOTOS that are
not symmetric around the z-axis (they have Rθðπ=4Þ ¼ 0). A
blow-up of the region inside r ¼ 2m is shown in the inset.

FIG. 14. Typical (initially) outward-oriented MOTOS that are
not symmetric around the z-axis (they have Rθðπ=4Þ ¼ 0). A
blow-up of the region inside r ¼ 2m is shown in the inset.
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representation among the families of surfaces studied in the
last section. The difficulty is, of course, identifying which
are the correct surfaces and then assembling them in the
correct order.
A time-ordered set of MOTS forms a marginally outer

trapped tube (MOTT), and there are partial differential
equations which define the evolution of such surfaces (see
e.g., [8,10,11]). Hence, given a MOTS in one leaf, one can
calculate its future evolution. However, the equations are
complicated (the time derivative for MOTS evolution is
determined by the solution of an elliptic differential
equation that must be solved on the MOTS) and while
they extend to MOTOS, solving them is a nontrivial
numerical problem and beyond the scope of this paper.
We intend to return to such evolutions in future works.

However, even in their absence, the results of the last two
sections still give rise to interesting results about the
evolution of MOTS in extreme mass ratio mergers. We
have a range of possible behaviors, along with an under-
standing that some other behaviors are impossible; the
possible evolutions are underconstrained but they are not
unconstrained. In this section, we will propose an evolution
that is consistent both with the surfaces uncovered in the
last sections as well as evolutions seen in full numerical
studies such as [12–15]. However, it should be kept in mind
that what follows is not a rigorous evolution but is instead
an informed speculation.

A. MOTS during the approach

Evolution up to the point where the large and small black
hole MOTS touch has been studied many times and is fairly
well understood. Figure 15 shows a possible assembly of
the pieces from the last few sections that is consistent with
that understanding. Note that the r ¼ 0 center of the
coordinate system has been offset in successive images
to make it clear that we are now thinking about a merger.
Initially in (a), the small MOTS is at r ¼ 2m and the

large black hole MOTOS is oriented upward and toward it:
the small black hole is outside of it. Note that the large
MOTS deform up toward the small one and this deforma-
tion increases in (b) as the small black hole gets closer. This
is consistent with the behaviors observed in [9,13,14].
There are also studies in which the large MOTS appear to

deform away from the small black hole ([12,16] and the
initial data surface shown in Fig. 2 of [9]). Such behavior is
impossible for us; all upward-oriented MOTOS starting
with zo < 0 deform toward the small black hole. However,
there is a significant difference between those papers which
show deformations toward the small black hole versus
those that show deformations away from it. Those
deforming away study the MOTS in time-symmetric slices
for which, as we saw earlier, the MOTSs are minimal
surfaces. Hence, the uniqueness theorem holds and one can
think of the deforming away as being preliminary to the
surfaces coinciding once they become tangent. By contrast,

those papers in which the MOTS deform toward the small
black hole study these surfaces in nontime-symmetric slices
for which the degeneracy between inner and outer expan-
sions is broken.
Going back to the figure, (c) proposes a jump of the large

horizon MOTOS to encompass the small. In (d), this
bifurcates into an inner and an outer MOTS. Such jumps
and bifurcations are commonly seen in numerical mergers,
and in particular this is consistent with [9,13,14].
The choice of the jump surface was not arbitrary.

Horizon jumps are generally identified with locations
where a MOTT is instantaneously tangent to the time
foliation [13,14,17–23]. Such a MOTS is also instanta-
neously “extremal” in the sense that small deformations
both inward and outward can transform it into an untrapped
surface. For MOTOS, we propose that the equivalent
condition be that such a deformation exist and the magni-
tude of the generating vector be bounded: most MOTOS
will not satisfy this requirement as they and their neighbor-
ing MOTOS will diverge as r → ∞. However, the MOTOS
originating from zo ≈ 4.45m does meet this requirement. In
the Appendix, it is shown to be at a turning point in the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 15. Possible frames in a movie of the early stages of an
extreme mass ratio merger. While all surfaces in these frames are
(portions) of MOTOS from the earlier sections, they have been
assembled by hand. Details should not be taken too seriously.
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asymptotic behavior, which will be sufficient to ensure that
the magnitude is bounded.
Returning to the figure, (e)–(g) show the inner MOTOS

starting to wrap around the small black hole (as it must
since they are oriented in the same direction on the z-axis)
while the outer MOTOS relaxes. The wrapping becomes
tighter and tighter until in (h) it coincides with the original
large black hole MOTOS (which now has a cusp) plus
r ¼ 2m. This is analogous to the behavior that is seen in,
for example, [13,14,20].

B. MOTS during the late merger

As noted, the evolution shown in Fig. 15 is not con-
troversial. Most black hole merger calculations show such
jumps and horizon creations. However, moving beyond the
point of tangency, we enter lesser known territory.
Figure 16 picks up at that point and focuses on the region
close to r ¼ 2m. The outer MOTOS is not shown in this
figure, but we expect that it would continue to relax.
This second proposed set of frames is organized around

the following three observations:
(1) From Sec. IV C, any MOTOS that does not intersect

the z-axis necessarily has one (upward-oriented) end
asymptotic to z ¼ −2

ffiffiffiffiffiffiffiffiffi
2mr

p
and the other (down-

ward-oriented) end asymptotic to z ¼ 2
ffiffiffiffiffiffiffiffiffi
2mr

p
.

(2) As we saw in Sec. IV B, if zi > 0 generates a self-
intersecting MOTS (as in Fig. 9), then it, along with
the tangent upward-oriented MOTOS starting from
−zi, combines to form the limit curve for upward-
oriented zo → zi MOTOS (from above and below).

(3) All upward-oriented MOTOS have the same z ¼
−2

ffiffiffiffiffiffiffiffiffi
2mr

p
asymptotic behavior. However, in the

Appendix, it is argued that as zo → 0 from above,
the subleading order terms may also match. Asymp-
totically, the zo > 0 and zo < 0 MOTOS approach
the same curve. Further, as discussed in Sec. IV B,
the zo > 0 complexities are confined in smaller and
smaller regions as that happens.

We interpret the first observation as indicating that only
MOTOS that intersect the z-axis should be considered in
modeling extreme mass ratio mergers. Including a two-
ended MOTOS would mean a MOTOS running to infinity
as z ¼ 2

ffiffiffiffiffiffiffiffiffi
2mr

p
and being oriented downward. This is not

consistent with the physical situation: a MOTOS should be
associated with either the original large black hole or the
merged black hole, but such a surface would be oriented in
the opposite direction from the original large black
hole MOTS.
Next, the second observation means that a subset of the

zo < 0 upward-oriented MOTOS are (in the limit) part of
the set of z0 > 0 upward-oriented MOTOS. The cleanest
way that this can happen is if the zo < 0MOTOS arrived at
each −zi at exactly the same time as the zo > 0 MOTOS
arrive at zi. As a working hypothesis, we will assume that

this is true. Among other nice properties, it provides us with
milestones at which we can match the zo > 0 and zo < 0
evolutions, even if we are not sure how the evolution
happens between those milestones.
The third observation is essentially the zo → 0 limit of

the second. By this observation, both above and below

FIG. 16. Possible frames in a movie of the later stages of an
extreme mass ratio merger, zooming in on the small black hole.
For post (a) subfigures, the r ¼ 2m MOTS is drawn as a dashed
line; however, the other, self-intersecting, MOTSs are only shown
when they appear as part of the sequence.
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MOTOS should arrive at zo ¼ 0 at the same time and
(possibly) annihilate at that point leaving only r ¼ 2m (and
presumably the other closed MOTS) inside the outer
horizon.
From these starting points, we arrive at the evolution

shown in Fig. 16, where for simplicity we have extended
the �zi milestone matching to all values. The true relation-
ship may be more complicated, but if the milestones are
correct it cannot be too different, especially for the smaller
values of zo where the zi become closer and closer together.
Regardless of these details, the big picture is that as the

inner MOTS contracts with zo → 0 from above, it develops
more and more loops and those loops become both tighter
and closer together. In the limit approaching the singularity,
there are an infinite number of loops packed infinitely close
together. At the same time, away from the singularity, the
MOTOS approach the same limit curve as when zo → 0
from below for the original large black hole MOTS. We
propose that when they meet, they annihilate and we are left
with the small black hole. This would then continue to
move into the interior of the large black hole while the outer
horizon (not shown in these diagrams) relaxes.
This sequence of events is consistent with the full

numerical simulations of [9] and [13,14]. In [9], the large
black hole MOTS can be seen developing a sharp point as
the small black hole singularity approaches (their Figs. 5
and 7). Unfortunately, that is as far as that simulation could
track the MOTS and so our proposed later steps cannot be
compared. A longer comparison can be made with [13,14].
In those papers, comparable-mass black holes are consid-
ered. Focusing on the more recent [14], Fig. 1 shows the
jump to pair create inner and outer MOTSs, followed by the
contraction of the inner horizon around the original MOTS
and then the formation of a self-intersecting MOTS [the
equivalent of the loops in our Fig. 16(b)]. This is as far as
the horizon finder of that simulation could follow the
MOTS.

VI. DISCUSSION

The observations of the preceding sections raise at least
as many questions as they answer. Here we discuss a few of
these issues.

A. Self-intersecting MOTS

We have found an (apparently) infinite number of self-
intersecting MOTSs inside r ¼ 2m. As far as we are aware,
such interior MOTSs have not been previously observed in
the Schwarzschild spacetime. While a full study of the
geometry of these surfaces will be left for an upcoming
paper, here we note that the MOTT generated by taking a
particular n-loop MOTS in each surface of constant τ is
neither an isolated nor a dynamical horizon [24].
To see this, first consider the three-surface ðτ; RðλÞ;

ΘðλÞ;ϕÞ that is generated by propagating a general

axisymmetric two-surface ðRðλÞ;ΘðλÞ;ϕÞ onto all surfaces
of constant τ. Then that surface has induced metric,

qijdyidyj ¼ −
�
1 −

2m
R

�
dτ2 þ 2

ffiffiffiffiffiffiffi
2m
R

r
_Rdτdλ

þ ð _R2 þ R2 _Θ2Þdλ2 þ R2 sin2 Θdϕ2; ð6:1Þ

which has determinant

detðqijÞ ¼ ðRð2m − RÞ _Θ2 − _R2ÞR2 sin2 Θ: ð6:2Þ

This is positive, zero, or negative at locations where the
surface is spacelike, null, or timelike, respectively.
The first thing to note is that, besides the horizon, there

are no consistent solutions that are purely null. From (6.2),
the surface is everywhere null only if either R ¼ 2m or

RðθÞ ¼ 2m tan2 ½ð−θ þ CÞ=2�
1þ tan2 ½ð−θ þ CÞ=2� : ð6:3Þ

This second possibility can easily be seen to be inconsistent
with (2.23) unless m ¼ 0. Hence, R ¼ 2m is the only such
null MOTT.
Returning to (6.2) we note that for R > 2m, any such

constant geometry, axisymmetric surface is necessarily
timelike. However, for R < 2m, the signature can be locally
spacelike, timelike, or null and can change as a function of
λ. In particular, if R < 2m, then wherever _R ¼ 0 the surface
is spacelike and wherever _Θ ¼ 0 it is timelike. Our self-
intersecting MOTSs all have maxima and minima of both R
and Θ and so the corresponding MOTT for each of these
surfaces has timelike, null, and spacelike sections. Hence,
the MOTTs are neither isolated nor dynamical horizons.
The full geometry of the MOTS (including their stabil-

ity) and their associated MOTTs will be studied in a
future paper.

B. Robustness of observations

In this paper, we have presented results for axisymmetric
MOT(O)S in a single time foliation for a single spacetime.
Hence, the generality of the results is not clear. There are
many obvious questions. Do all black holes harbor infinite
numbers of MOTS in their interiors? If so, do they only
exist in special time foliations? If not, do they exist for all
stationary black holes? Is axisymmetry required? Is asymp-
totic structure significant? How would things change for a
black hole with both outer and inner horizons (like
Reissner-Nordström)?
We expect the existence of interior self-intersecting

MOTS to be quite general and that they will exist in
axisymmetric spacetimes whether or not they are dynamic
and independent of the asymptotic structure. These results
should not be critically dependent on Schwarzschild
spacetime. This proposal is supported by the simulations
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of [13,14] which first identified self-intersecting MOTS
during a head-on merger. Also, in [4], the qualitative
behaviors of the MOTOS in the proximity of the standard
outer horizon MOTS appeared to be the same for the
whole Reissner-Nordström-deSitter family.3 We also do not
expect the asymptotic structure to play much of a role
(since these surfaces are likely to remain enclosed in any
black hole). Whether axisymmetry is critical is unclear. The
initial conditions for the surfaces certainly require fine-
tuning in order to close and it seems possible that the loss of
symmetry might disrupt this. On the other hand, there are
many more nonaxisymmetric surfaces so the increase in
freedom may balance off the fine-tuning problem.
We expect that there will be self-intersecting MOTSs

in other horizon-penetrating coordinate systems and we
also expect them to be constrained inside r ¼ 2m (for
Schwarzschild). For nonpenetrating time foliations, the
situation is of course quite different. By their nature, one
cannot find horizon-crossing MOTOS in those slices, but
also the r > 2m MOTOS may be quite different. While
preparing the current paper, we also studied the MOTOS in
the usual time-symmetric Schwarzschild foliation and so
can briefly present an example of a class of dramatically
different MOTOS.
Recall from Sec. II A that in Schwarzschild time slices

the MOTOS are minimal surfaces. This eliminates the
distinction between inward and outward orientations and in
particular means that no two MOTOS can be tangent
without being identical. Now, focus on region of spacetime
close to r ¼ 2m using the coordinates

r ¼ 2mð1þ eρÞ and

θ ¼ π

2
þ arctanðsinh ξÞ: ð6:4Þ

These coordinates blow-up the region spacetime close to
the horizon (r ¼ 2m is at ρ ¼ −∞) and are adapted for
curves which may make sharp turns very close to the z-axis
(limθ→0 ξ ¼ −∞ and limθ→π ξ ¼ ∞). Though we do not
provide details here, solving the minimal surface equations
proceeds by essentially the same methods that we used to
find MOTOS in this paper, though they are a little less
complicated as there is no need to worry about orientation.
Hence, there are only two equations to cycle through.
As in the current study, surfaces departing from the

z-axis must do so at a right angle. If they start close to
r ¼ 2m, they only slowly depart from it (like consistently
oriented surfaces in this paper). Similarly, they must turn
around before reaching the z-axis, but then something quite
different happens. After the turn, they are still consistently
oriented with r ¼ 2m (since they are minimal surfaces) and
so continue to only slowly retreat. If they are sufficiently

close, this process can repeat an arbitrary number of times
and so generate a MOTOS with an arbitrary number of
folds wrapped close to r ¼ 2m. Such a multifold surface is
shown in Fig. 17. Equivalent surfaces have been found in
Schwarzschild-AdS [25].
It is certainly possible that other foliations might harbor

other exotic MOT(O)S.

C. Extreme mass ratio mergers

While the application to extreme mass ratio mergers is
suggestive, many issues remain to be addressed.
As noted, it should be possible to dynamically evolve

MOTOS but doing that is highly nontrivial. In this paper,
we have instead attempted to assemble the possible
MOTOS into an evolution based on physical considerations
and full numerical studies. This presents a possible time
evolution, but checking whether or not it is correct will
require significantly more work.
Apart from evolving a given MOTOS in time there is

also the problem of identifying which are the initial
surfaces from which we should evolve. A possible filter
for identifying the correct MOTOS is that they should
asymptote to the event horizon [1]. Here the idea is that as
one gets far from the influence of the small black hole, the
event and apparent horizons should coincide as they do for
stationary spacetimes. Our initial calculations show that the
event horizon does indeed have the same leading order
asymptotic behavior as the upward-oriented MOTOS. So, it
is possible that this may work with the subleading order
terms selecting a MOTOS. However, keep in mind that for
much of the evolution, there will be multiple MOTOS to
identify, so this is likely not the full solution.
For this and other reasons, the asymptotic properties of the

MOTOS still need to be better understood. While it is

FIG. 17. Multiple wrappings of a minimal surface close to r ¼
2m in the Schwarzschild foliation. To get a feeling for the scales,
note that for ξ ¼ 20, 40, 60, 80, and 100, θ ≈ π to 8, 17, 25, 35,
and 43 decimal places, respectively. Meanwhile, for ρ ¼ −10,
−20, −40, −80, and −160, r ≈ 2m to 4, 8, 17, 34, and 69 decimal
places, respectively.

3But keep in mind that in that reference as one moves deeper
into the interior after the first turn from the z-axis, the remaining
parts of the MOTOS are incorrect.
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reasonable to argue that close to the small black hole we
should be able to understand MOTS as Schwarzschild
MOTOS, it is not so clear what one should do for small z
but large x. In our approximation, the large black hole is
represented by a MOTOS, but in the full solution it closes up
far from the smallMOTS. In that asymptotic regime, there are
competing limits and for large x onemight expect corrections
to the Schwarzschild approximation. This correction is
ignored in the main part of this paper but hinted at in the
complicated asymptotics of the Appendix. For example, the
MOTOS in each frame of Fig. 16 share leading order
asymptotics but often intersect outside of the frames.
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APPENDIX: SECOND ORDER ASYMPTOTIC
BEHAVIOR FOR MOTOS INTERSECTING

THE Z-AXIS

In this Appendix, we consider the large-r behaviors of
the MOTOS. From (3.16), we know that the leading order
asymptotic structure is universal with z ≈�2

ffiffiffiffiffiffiffiffiffi
2mr

p
.

However, we can extract the second-order (constant and
log r) corrections by subtracting that leading order term and
plotting what remains as a log-linear graph.
First, consider the upward-oriented MOTOS with zo < 0

from Sec. IVA which are plotted in Fig. 18. As might be
expected from Fig. 4, these MOTOS foliate their region of
spacetime, arriving at infinity in the same ordering with
which they left the z-axis. With the universal, leading order
2

ffiffiffiffiffiffiffiffiffiffi
2mR

p
removed, the curves are asymptotically log-linear

in ðzþasympt þ 2
ffiffiffiffiffiffiffiffiffi
2mr

p Þ plotted as a function of r. Further,
they appear to be parallel (up to r ¼ 106m). From the
figure, surfaces which start out below −2

ffiffiffiffiffiffiffiffiffi
2mr

p
will all

cross it for sufficiently large r.
For (initially) upward-oriented MOTOS with zo > 0, the

situation is more complicated. As was seen in Figs. 6–8, the
MOTOS can cross. Asymptotic behaviors are shown in
Fig. 19. This is a somewhat complicated figure and so
needs to be interpreted with some care.
As in Fig. 18, this figure plots the corrections to the leading

order zþ ≈ −2
ffiffiffiffiffiffiffiffiffi
2mr

p
. The first thing to notice is that for zo ≳

4.45m the z-coordinate of the MOTOS decreases relative to
−2

ffiffiffiffiffiffiffiffiffi
2mr

p
, while for 0 < zo ≲ 1.83m it increases (as was the

case for zo < 0). Further, in these regimes, the log-linear
relationship appears to hold. While remaining positive, the
slope of the curves oscillates, periodically becoming more or

less steep but appearing (from these numerical observations)
to do so in a tighter and tighter range.
For 1.83m≲ zo ≲ 4.45m, the situation is less straightfor-

ward. Here the log-linear relationship breaks down.However,
this is not surprising as it is also in this regime where the
asymptotic behavior switches from decreasing to increasing
(relative to −2

ffiffiffiffiffiffiffiffiffi
2mr

p
). During that transition, β in (3.15) will

necessarily transition through zero and so the lower order
(non-log-linear) terms will temporarily become dominant.
What is the reason for the slope oscillations? They

appear to be a by-product of the development of the loops.
Comparing Figs. 9 and 19, it can be seen that the switch to
decreasing slopes (top row of Fig. 19) closely follows the
formation of each new MOTS. From the first two such
formations shown in Figs. 6 and 7, that decrease happens as
the new loop forms which tilts slightly downward com-
pared to before the formation. However, as the loop
subsequently moves away from its site of formation, its
tail tilts up until the next loop forms when it tilts down
again. Qualitatively, this is the basic mechanism.
There is another important feature of Fig. 19. Although

the asymptotics oscillate, the range of those oscillations
decreases as the number of loops increases. Each range is
fully contained in that of the previous oscillation and the
upper and lower bounds appear to be converging.
Significantly, all of the ranges that we have checked contain
the zo → 0 limit curve from Fig. 18 and for the larger values
it appears to approach the upper bound of those ranges.
Hence, it appears that there is a continuity in the asym-

ptotic behaviors of the upward-oriented curves as zo → 0
from above and below: both have the same limiting curve.
In fact, if one plots a few sample curves, that limit seems to
also hold for smaller values of r (see e.g., Fig. 20). That
said, the limit cannot be smooth over the entire curve: r ¼ 0
is a singularity and as zo → 0 from above we expect an
infinite number of loops.

FIG. 18. Asymptotic behavior of upward-oriented rotationally
symmetric MOTOS that intersect the z-axis with zo < 0. The
vertical axis is the zþasympt coordinate with the universal −2

ffiffiffiffiffiffiffiffiffiffi
2mR

p
asymptotics removed. The starting location for the surfaces
ranges from zo ¼ −0.1m to zo ¼ −48.1m (hence their staggered
starting points). As expected, their asymptotic behavior is
log-linear.
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FIG. 19. Asymptotic behavior of upward-oriented MOTS starting from zo > 0. As in Fig. 18, the vertical axis measures zþasympt ¼
R cos θ þ 2

ffiffiffiffiffiffiffiffiffiffi
2mR

p
and as usual units are m. Arrows indicate the direction of decreasing zo (i.e., approaching r ¼ 0). Note that the

progression of figures with zo decreasing is up-down, up-down, up-down, up-down. The spacing of surfaces is noted in the bottom left
corner of each subfigure.

FIG. 20. The second curve from Fig. 10 plotted next to the (dashed) upward-oriented curve originating from zo ¼ −0.01.
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