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With a scalar field nonminimally coupled to curvature, the underlying geometry and variational principle
of gravity—metric or Palatini—becomes important and makes a difference, as the field dynamics and
observational predictions generally depend on this choice. In the present paper, we describe a classification
principle which encompasses both metric and Palatini models of inflation, employing the fact that
inflationary observables can be neatly expressed in terms of certain quantities which remain invariant under
conformal transformations and scalar field redefinitions. This allows us to elucidate the specific conditions
when a model yields equivalent phenomenology in the metric and Palatini formalisms and also to outline a
method how to systematically construct different models in both formulations that produce the same
observables.
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I. INTRODUCTION

Recent observations of the cosmic microwave back-
ground radiation indicate that at large scales the Universe is
flat and homogeneous. These features can be explained by
postulating a quasi–de Sitter expansion during the very
early moments of the Universe. Furthermore, this infla-
tionary era is able to generate and preserve the primordial
inhomogeneities which became the seeds for the sub-
sequent large-scale structure that we observe. Inflation is
usually formulated by supplementing the Einstein-Hilbert
action with one or more real scalar fields whose energy
density drives the near-exponential expansion.
Recently, the Planck satellite mission [1] has constrained

the available parameter space and essentially excluded
many inflationary models. Two of the most popular models,
namely, Starobinsky [2] and nonminimal Higgs inflation
[3–6], still lie in the allowed region. Incidentally, these
theories, even though seemingly very different, belong to
the same equivalence class which is why they give the same
predictions for the observables. They also belong to the
class of scalar-tensor theories where the inflaton is gen-
erally nonminimally coupled to gravity but minimally

coupled to matter (Jordan frame). Of course, one can
always perform a rescaling of the metric and a scalar field
reparametrization and move to the Einstein frame where the
scalar field is minimally coupled to gravity. One can work
in either frame, while there is an ongoing debate as to which
one is physical [7–28]. To circumvent the issue, a frame-
invariant approach was developed in [29–31], then fruit-
fully applied to slow-roll inflation [32–34], and extended to
related theories and formulations [35–39]. The advantage
of this method is that, starting from any scalar-tensor
theory, one can define quantities that remain invariant
under the conformal Weyl rescaling of the metric and
scalar field reparametrization and then express the infla-
tionary observables in terms of these invariants.
Another issue that arises when one is interested in

nonminimally coupled theories is that of the employed
variational principle. In the metric formalism, the metric is
the only dynamical degree of freedom and the connection
is the Levi-Civita. However, in the Palatini or first order
formalism [40,41], the metric and the connection are
assumed to be independent variables and one has to vary
the action with respect to both of them. Both approaches
lead to the same field equation for an action whose
Lagrangian is linear in R and is minimally coupled, but
this is no longer true for more general actions. Regarding
inflation, the difference in the predictions between the two
variational principles has been recently studied in
[37,38,42–77]. In most of the previous studies, it was
shown that the metric and Palatini formulations generally
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give different results when inflation is concerned (see,
however, [49,50]). In this paper, we focus on the cases
when the two formalisms can produce similar results
and extend the classification scheme of [33] to include
Palatini models.
Future space missions (LITEBIRD [78], PIXIE [79],

PICO [80]) promise to determine the inflationary observ-
ables at high precision that will considerably narrow the
range of viable models. However, even when the invariant
potential can be effectively pinned down, there will remain
a degeneracy, as many fundamental actions in different
formulations and parametrizations can lead to the same
invariant potential and hence to the same values for the
observables. The aim of the current paper is to clarify the
situation and to outline a method of how to explore and
reconstruct such equivalent actions in a systematic way. In
the end, some actions in a given equivalence class would be
better motivated from the theoretical point of view, while
the degeneracy could be also broken by some observations
of noninflationary physics.
The paper is organized as follows. In the next section, we

adopt the approach of invariants to study general scalar-
tensor theories in both metric and Palatini formalisms. In
Sec. III, we focus on inflation and express the slow-roll
parameters and inflationary observables in terms of the
invariant potential and its derivatives. Then, in Sec. IV, we
determine under which conditions the metric and Palatini
formalisms can generate the same slow-roll parameters
when one starts from the same action and study some
examples. Conversely, starting from the same invariant
potential in Sec. V, we explore the reconstruction of the
corresponding metric and Palatini actions. We summarize
our results and conclude in Sec. VI. Finally, we include an
Appendix where we illustrate how an additional indepen-
dent (conformal) transformation of the connection enlarges
the general Palatini action, but a suitable choice neutralizes
the effect, a point that has not received much attention in the
literature so far.

II. ACTION AND INVARIANT QUANTITIES

Regardless of the gravity formulation, the action for
general scalar-tensor theory can be written as1 [81]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
AðΦÞR −

1

2
BðΦÞð∇ΦÞ2 − VðΦÞ

�
þ Sm½e2σðΦÞgμν; χm�; ð1Þ

where we used Planck units MPl ¼ 1 and metric signature
ð−;þ;þ;þÞ. The Ricci scalar R ¼ gμνRμν½Γ; ∂Γ� is a

function of the metric tensor gμν and the connection Γ.
The choice of the gravity formulation is reflected on the
expression of Γ in Eq. (1) [43],

Γλ
αβ ¼

�
λ

αβ

�

þ ð1 − δjΓÞ½δλα∂βωðΦÞ þ δλβ∂αωðΦÞ − gαβ∂λωðΦÞ�;
ð2Þ

where

ωðΦÞ ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffi
AðΦÞ

p
; ð3Þ

f λ
αβg is the Levi-Civita connection, δjk is the Kronecker
delta, and j ¼ g stands for the metric case while j ¼ Γ for
the Palatini one.
We refer to the set of fA;B;V; σg as the model

functions. By considering a Weyl rescaling of metric
(referred later as a change of frame) and scalar field
redefinition (referred later as a reparametrization)

gμν ¼ e2γ̄ðΦ̄Þḡμν; ð4aÞ

Φ ¼ f̄ðΦ̄Þ; ð4bÞ

the action functional (1) preserves its structure (up to
the boundary term) if the functions A, B, V, and σ
transform as [81]

ĀðΦ̄Þ ¼ e2γ̄ðΦ̄ÞAðf̄ðΦ̄ÞÞ; ð5aÞ

B̄ðΦ̄Þ ¼ e2γ̄ðΦ̄Þðf̄0Þ2Bðf̄ðΦ̄ÞÞ
− 6δjΓe2γ̄ðΦ̄Þ½ðγ̄0Þ2Aðf̄ðΦ̄ÞÞ − γ̄0f̄0A0�; ð5bÞ

V̄ðΦ̄Þ ¼ e4γ̄ðΦ̄ÞVðf̄ðΦ̄ÞÞ; ð5cÞ

σ̄ðΦ̄Þ ¼ σðf̄ðΦ̄ÞÞ þ γ̄ðΦ̄Þ; ð5dÞ

where prime denotes a derivative with respect to the scalar
field. The Jordan frame is defined by the condition
σðΦÞ ¼ 0. For what follows, we omit the matter part of
the action and take Sm ¼ 0, since our interest is now on
the scalar nonminimally coupled to gravity which will be
identified with the inflaton field.
By a straightforward calculation, it is possible to make

sure that in every spacetime point the numerical value of the
quantities [29]

ImðΦÞ ¼ e2σðΦÞ

AðΦÞ ; ð6Þ

1The most general Palatini action contains also additional
terms due to the nonmetricity of the theory [37]. However, it is
possible to show that the action can always be cast in the form of
Eq. (1). For the interested reader, the concerning details are given
in the Appendix.
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IVðΦÞ ¼ VðΦÞ
ðAðΦÞÞ2 ; ð7Þ

IΦðΦÞ ¼
Z

dΦ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðΦÞ
AðΦÞ þ

3

2
δjΓ

�
A0ðΦÞ
AðΦÞ

�
2

s
ð8Þ

remain invariant, i.e., Ī iðΦ̄Þ ¼ I iðΦÞ. In a similar vein, we
may introduce an invariant metric ĝμν ¼ Agμν, which is
unaffected by the conformal transformation (4a). One can
see that the invariant field IΦ has a different dependence on
the model functions when one considers the metric (we use
the notation Ig

Φ) or Palatini formalism (denoted as IΓ
Φ).

Still, in both formalisms, we may take the quantity IΦ as an
invariant description of the scalar degree of freedom in the
theory [29,37]. Negative values for the expression under the
square root in Eq. (8) suggest that the scalar field is a ghost,
while identically constant IΦ indicates that the scalar is not
dynamical. In the metric formulation, this occurs only when

BðΦÞ ¼ − 3
2

ðA0ðΦÞÞ2
AðΦÞ , while in the Palatini for BðΦÞ ¼ 0. In

both cases, the theory is equivalent to general relativity plus
a cosmological constant. A multiscalar generalization of the
integrand in Eq. (8) plays the role of the invariant volume
form on the space of scalar fields; hence, here IΦ has a
natural interpretation as an invariant “distance” in the one-
dimensional space of the scalar field [32,35].
By inverting Eq. (8), we may switch to use IΦ as the

basic variable instead of Φ, and employing the invariant
metric ĝμν, we can rewrite the action (1) in terms of
invariant quantities only [29],

Ŝ ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
1

2
ĝμνRμν½Γ; ĝμν� −

1

2
ð∇̂IΦÞ2 − IV

�
þ Sm½Imĝμν;ψ �: ð9Þ

An arbitrary scalar-tensor theory with four free functions
(1) can therefore be cast by the two transformations of
frame change and reparametrization (4) into the action (9)
endowed by two functions that carry invariant meaning.
The quantity ImðIΦÞ characterizes the coupling of gravity
to matter fields. For constant Im, the theory is equivalent to
general relativity with a minimally coupled scalar field;
otherwise, the scalar field participates in mediating the
gravitational interaction and the effective gravitational
“constant” starts to vary according to the scalar field value.
The quantity IVðIΦÞ is the invariant scalar potential. In the
case of inflation where the matter fields can be neglected,
the physics of the model is encoded by the invariant
potential alone [33]. The form of the invariant action (9)
coincides with the usual Einstein frame action, a circum-
stance which will help us to write down the inflationary
parameters in terms of the invariants in the next section.

III. SLOW-ROLL PARAMETERS AND
COMPUTATIONAL ALGORITHM

The action functional (9) can be identified as the Einstein
frame regarding the ĝμν metric. Then the equations of motion
coincide in both formulations of gravity, although in the
Palatini formalism the Levi-Civita connection is derived on
shell from its constraint equation δðΓÞŜ ¼ 0. The invariant
quantity IΦ assumes the role of the inflaton field driving
inflation, governed by its potential IVðIΦÞ. Assuming then
the usual slow-roll conditions, we can rewrite the potential
slow-roll parameters (PSRPs) as [32–34]

ϵ ¼ 1

2

�
d ln IV

dIΦ

�
2

; ð10Þ

η ¼ 1

IV

d2IV

dI2
Φ
: ð11Þ

At this point, we assumed that the integral in Eq. (8) is
solvable and the relation of IΦðΦÞ invertible,2 so that we can
obtain a relation of ΦðIΦÞ. Then, after a direct substitution
into IV , we express the PSRPs in terms of IVðIΦÞ.
The tensor-to-scalar ratio r, the scalar spectral index ns,

and the amplitude of the scalar power spectrum As are some
of the inflationary observable quantities posing strict
constraints on the parameter space of the inflationary
models. These are usually computed in the slow-roll
approximation and, up to first order in PSRPs, they read
as follows [33,34]:

r ¼ 8

�
d ln IV

dIΦ

�
2

; ð12Þ

ns ¼ 1 − 3

�
d ln IV

dIΦ

�
2

þ 2
1

IV

d2IV

dI2
Φ
; ð13Þ

As ¼
IV

12π2

�
d ln IV

dIΦ

�
−2
: ð14Þ

Note that all of the above observables are calculated at
horizon exit, IΦ ¼ I�

Φ. The number of e-foldings, char-
acterizing the duration of inflation, is given by

N ¼
Z

I�
Φ

Iend
Φ

IVðIΦÞ
�
dIVðIΦÞ
dIΦ

�
−1
dIΦ; ð15Þ

where Iend
Φ and I�

Φ are the field values at the end and start of
inflation, respectively.
The invariant formalism can be applied in a straightfor-

ward way to any model that can be recast in the form of

2The problem is still solvable also when IΦðΦÞ is not
invertible. In that case, Φ is used as a new variable and the
chain rule is applied in the computation of the derivatives.
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Eq. (9), by first identifying the model functions AðΦÞ,
BðΦÞ, VðΦÞ, and σðΦÞ. This is under the implicit
assumption that the model under consideration includes
only one dynamical scalar field Φ. As we explained
previously, we may use (8) to compute the invariant
quantity IΦðΦÞ and invert that relation to obtain ΦðIΦÞ.
By using ΦðIΦÞ, we can calculate the invariant potential
IVðIΦÞ and then solve ϵðI end

Φ Þ ¼ 1 to obtain the field value
at the end of inflation. The field value I�

Φ is obtained by
integrating (15) and assuming that the number of e-folds
lies somewhere in the allowed region of N ≃ ð50–60Þ
e-folds. Finally, the inflationary observables are readily
obtained from Eqs. (12)–(15) using the field value I�

Φ.
In the following sections, we apply this procedure in the

study of the inflationary predictions for scalar-tensor
theories in the metric and Palatini formulations.

IV. WHEN DO IDENTICAL METRIC AND
PALATINI ACTIONS YIELD (ALMOST)

THE SAME OSERVABLES?

Comparing Eqs. (7) and (8), we can see that the differ-
ence between the metric and Palatini formulation arises
from a different definition of the invariant field value.
Therefore, given the action in Eq. (1) (i.e., a set of functions
A, B and V), the metric and Palatini formulations usually
generate different invariant actions and therefore different
predictions. However, it might happen that the two for-
mulations produce the same slow-roll parameters when the
invariant potential and the invariant field value possess
certain properties. The slow-roll parameters are indepen-
dent of the overall normalization of the invariant potential;
therefore, it is enough to assume that invariant potential in
the two formulations, as functions of the corresponding
invariant field values, are proportional to each other,

Ig
V ∝ IΓ

V : ð16Þ

Unfortunately, we cannot provide a general criterion that
is more explicit than Eq. (16), because Eq. (8) contains an
integral over Φ and the corresponding solving technique
is strongly dependent on the actual definition of A and B.
On the other hand, we can provide a couple of explicit
examples: one relatively simple (A) and one more
complicated (B).

A. Example: Power law invariant potential

Given Eqs. (7) and (8), the simplest way to satisfy
Eq. (16) is by requiring

IV ∝ In
Φ; ð17Þ

Ig
Φ ∝ IΓ

Φ; ð18Þ

where n is some nonzero power. The class of models (17)
is well known (e.g., [1]) and goes under the name of
monomial inflation. Using Eqs. (10), (11), and (17), we see
that the corresponding slow-roll parameters are

ϵ ¼ n2

2I2
Φ
; ð19Þ

η ¼ nðn − 1Þ
I2
Φ

: ð20Þ

We can appreciate that the case n ¼ 2 is even more special,
since it accidentally implies also that ϵ ¼ η. With a couple
of straightforward computations, we can easily verify that
the tensor-to-scalar ratio and the scalar spectral index are

r ¼ 16n
nþ 4N

; ð21Þ

ns ¼ 1 −
2ðnþ 2Þ
nþ 4N

: ð22Þ

Furthermore, the combination of Eqs. (8) and (18)
implies

BðΦÞ
AðΦÞ ∝

�
A0ðΦÞ
AðΦÞ

�
2

; ð23Þ

therefore

IΓ;g
Φ ðΦÞ ∝

Z
dΦ
����A0ðΦÞ
AðΦÞ

���� ¼ ln
AðΦÞ
A0

; ð24Þ

whereA0 is a constant of integration that does not carry any
physical meaning and can be used to conveniently set the
zero value of the invariant field according to the problem at
hand. Imposing Eq. (17), we obtain�

ln
AðΦÞ
A0

�
n
∝

VðΦÞ
AðΦÞ2 : ð25Þ

Therefore, the metric and Palatini formulations produce the
same slow-roll parameters when

AðΦÞBðΦÞ ∝ ðA0ðΦÞÞ2; ð26Þ

VðΦÞ ∝ AðΦÞ2
�
ln
AðΦÞ
A0

�
n
: ð27Þ

From the two equations, we can immediately see that the
following class of nonminimal Coleman-Weinberg models
where:3

3Without loss of generality, we assume Φ > 0 in Secs. IV
and V.
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AðΦÞ ¼ ξΦ2; ð28Þ

BðΦÞ ¼ 1; ð29Þ

VðΦÞ ¼ β

�
ln

Φ
Φ0

�
n
Φ4 ð30Þ

satisfy the conditions (26) and (27), and therefore generate
slow-roll parameters that cannot discriminate between
metric and Palatini gravity. These results are in agreement
with the findings of [49] and the strong coupling limit
of [50].
Moreover, Eqs. (26) and (27) can also be used to back-

engineer models. For instance, choosing n ¼ 1 and a
natural inflation potential

VðΦÞ ¼ M4

�
1 − cos

�
Φ
Φ0

��
; ð31Þ

the addition of the following nontrivial nonminimal cou-
pling to gravity and noncanonical kinetic function:

AðΦÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
z

WðzÞ
r

; ð32Þ

BðΦÞ ¼
sin2ðΦΦ0

ÞWðzÞ3=2
4z3=2ðWðzÞ þ 1Þ2 ; ð33Þ

where WðzÞ is the Lambert W-function and z ¼
1 − cosðΦΦ0

Þ, would generate

IV ∝ IΦ; ð34Þ

ϵ ¼ 1

2I2
Φ
; ð35Þ

η ¼ 0; ð36Þ

regardless of the adopted gravity formulation. Therefore,
for n ¼ 1, the scalar spectral index and the tensor-to-scalar
ratio have the following values:

ns ¼ 0.9701; r ¼ 0.0796; for N ¼ 50;

ns ¼ 0.9751; r ¼ 0.0664; for N ¼ 60; ð37Þ

which are out of the 2σ Planck boundaries [1], but still
allowed at 3σ. Therefore, if the Universe happened to
be described by a nonminimal scalar field with model
functions (31)–(33) in action (1), the slow-roll parameters
would not be able to distinguish whether the underlying
theory is metric or Palatini in character.

B. Example: Logarithmic invariant potential

A more complicated way to satisfy Eq. (16) is the
following choice:

IV ∝ ðlnðIm
ΦÞÞn; ð38Þ

Ig
Φ ∝ ðIΓ

ΦÞl; ð39Þ

where Φ is a subscript while l, m, n are some powers. The
class of models (38) can be interpreted as a cosmological
constant subject to quantum corrections. Being somehow
new (only the case n ¼ 1 is well known (e.g., [1])), such a
class deserves a deeper investigation than the previous
example. Despite the nonlinear relation between the invari-
ant fields in the two formalisms in Eq. (39), the expressions
of the slow-roll parameters coming from Eq. (38) are

ϵ ¼ n2

2I2
Φðln IΦÞ2

; ð40Þ

η ¼ nðn − 1 − ln IΦÞ
I2
Φðln IΦÞ2

; ð41Þ

where the power m canceled out because of properties of
the logarithm. Inflation ends when

Iend
Φ ¼ nffiffiffi

2
p W

�
nffiffiffi
2

p
�

−1
; ð42Þ

while the number of e-folds turns out to be

N ¼ 1

n

�
−
I2
Φ
4

þ I2
Φ
2

ln IΦ

	
I�
Φ

Iend
Φ

: ð43Þ

Therefore, the value of the invariant field at the horizon
crossing is

I�
Φ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N0W

�
4N0

e

�
−1

s
; ð44Þ

where we have defined

N0 ¼ nN −
n2

8
W

�
nffiffiffi
2

p
�

−2

þ n2

4
W

�
nffiffiffi
2

p
�

−2
ln

�
nffiffiffi
2

p W

�
nffiffiffi
2

p
�

−1
�
: ð45Þ

Using (44), the scalar spectral index and the tensor-to-
scalar ratio can be expressed by

ns ¼ 1 −
nWð4N0

e Þð1þ nþ ln ð4N0Wð4N0
e Þ−1ÞÞ

N0ðln ð4N0Wð4N0
e Þ−1ÞÞ2

; ð46Þ
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r ¼ n2Wð4N0
e Þ

2N0ðln ð4N0Wð4N0
e Þ−1ÞÞ2

: ð47Þ

An example to illustrate this possibility can be realized
by the model functions

AðΦÞ¼ exp

�
1

2
ffiffiffi
6

p acoshð2ΦÞ− 1ffiffiffi
6

p Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Φ2−1

p �
; ð48Þ

BðΦÞ¼ exp
�

1

2
ffiffiffi
6

p acoshð2ΦÞ− 1ffiffiffi
6

p Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Φ2−1

p �
; ð49Þ

VðΦÞ ¼ AðΦÞ2ðlnΦ2Þ2: ð50Þ

In this case, by integrating Eq. (8), one obtains the invariant
field in the two formalisms as

IΓ
Φ ¼ Φ; ð51Þ

Ig
Φ ¼ Φ2: ð52Þ

While the invariant potentials differ by a constant factor,

IΓ
V ¼ 4ðln IΓ

ΦÞ2; ð53Þ

Ig
V ¼ ðln Ig

ΦÞ2; ð54Þ

as expected, the slow-roll parameters coincide,

ϵ ¼ 4

2I2
Φðln IΦÞ2

; ð55Þ

η ¼ 2ð2 − ln IΦÞ
I2
Φðln IΦÞ2

ð56Þ

and therefore yield the same ns and r (as functions of IΦ) in
both metric and Palatini formulations [cf. Eqs. (38), (55),
and (56) for n ¼ 2]. In this case, the scalar spectral index
and the tensor-to-scalar ratio take the following values:

ns ¼ 0.9699; r ¼ 0.0556; for N ¼ 50;

ns ¼ 0.9752; r ¼ 0.0450; for N ¼ 60; ð57Þ

which are within the 2σ Planck boundaries [1].
The model (48)–(50) looks rather contrived, but it

employs a parametrization where the calculational logic
is easy to see. However, hidden somewhere in the infinite
possibilities of reparametrizations, there might exist a
physically better motivated form of the same model, but
where the calculations become harder to deal with. It is not
easy to guess what a nicer parametrization could be, but as
an extra illustration let us just perform a simple scalar field
redefinition

Φ ¼ 1þ Φ̄2

4Φ̄
: ð58Þ

The model functions (48)–(50) transform under Eq. (58)
into

ĀðΦ̄Þ ¼ Φ̄
1

2
ffiffi
6

p
e−
ffiffi
6

p ðΦ̄4−1Þ
48Φ̄2 ; ð59Þ

B̄ðΦ̄Þ ¼ Φ̄
1

2
ffiffi
6

p ð1 − Φ̄2Þ2
16Φ̄4

e−
ffiffi
6

p ðΦ̄4−1Þ
48Φ̄2 ; ð60Þ

V̄ðΦ̄Þ ¼ Φ̄
1ffiffi
6

p
e−
ffiffi
6

p ðΦ̄4−1Þ
24Φ̄2

�
ln
ð1þ Φ̄2Þ2
16Φ̄2

�
2

; ð61Þ

and contrary to the previous form the functions, ĀðΦ̄Þ and
B̄ðΦ̄Þ do not coincide any more. A direct integration of
Eq. (8) yields the expressions of the invariant field now as

IΓ
Φ̄ ¼ 1þ Φ̄2

4Φ̄
; ð62Þ

Ig
Φ̄ ¼ 1þ Φ̄4

16Φ̄2
þ 1

8
; ð63Þ

where the last term had to be added as an integration
constant to maintain an explicit equivalence. By construc-
tion, we get the same invariant potentials (53), (54), and
PSRPs (55), (56). Note that if we had omitted the constant
of integration in (63), the proportionality of invariant fields
(39) would still hold, but the proportionality of invariant
potentials (38) would not be completely obvious at first
sight. Nevertheless, a direct calculation of the derivatives in
the inflationary parameters (12), (13) would yield the same
result with or without the integration constant.
As a final comment, let us stress that in all the examples

of this section the invariant PSRPs, and therefore the
predictions for r, ns, and N coincide in the metric and
Palatini cases, since the invariant potentials are proportional
to each other and the overall factor cancels out. However,
the amplitude of the scalar power spectrum (14) depends
explicitly on the invariant potential, and thus this observ-
able will be sensitive to the difference in the actual
normalization of the invariant potentials. The normalization
can be crucial in satisfying the observational constraints,
currently As ≃ 2.1 × 10−9 [1]. The metric and Palatini
models will yield the same phenomenology also in this
respect if a strict equivalence between the invariant poten-
tials holds, not just a proportionality (16). Starting from
exactly the same invariant actions, this is never the case.
However, for the examples considered before, a change in
the normalization of the model functions of the metric and
Palatini action will have the final effect of generating
exactly the same invariant potentials. For instance, for what
concerns Example A, the invariant potential under metric
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and Palatini are the same when the nonminimal couplings
in Eq. (28) satisfy the following condition:

ξΓ ¼ ξg
1þ 6ξg

; ð64Þ

where ξg;Γ are, respectively, the nonminimal coupling under
the metric and the Palatini formulation [49,50]. A more
general discussion about the generation of exactly equiv-
alent invariant potentials is presented in the next section.

V. WHEN DO DIFFERENT METRIC AND
PALATINI ACTIONS YIELD THE SAME

OBSERVABLES?

As described in [33], equivalent inflationary theories are
described by one invariant function4: IVðIΦÞ. However,
inflationary models can be produced by using three gen-
erating functions: AðΦÞ, BðΦÞ, and VðΦÞ. Therefore,
a priori knowledge of IVðIΦÞ allows us to derive only
one constraint that AðΦÞ, BðΦÞ, and VðΦÞ have to satisfy,
leaving two functions out of the three completely unde-
termined. Generally, we can express the invariant field IΦ
as the inverse function of the invariant potential5 in Eq. (7),

IΦ ¼
�
VðΦÞ
AðΦÞ2

�
−1 ≡ I−1

V ðΦÞ; ð65Þ

where the superscript “−1” stands for inverse function.
Using Eq. (8), we can write

I−1
V ðΦÞ ¼

Z
dΦ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðΦÞ
AðΦÞ þ

3

2
δjΓ

�
A0ðΦÞ
AðΦÞ

�
2

s
; ð66Þ

where the parameter δjΓ indicates the adopted gravity
formulation. Therefore, given the invariant function
IVðIΦÞ, Eq. (66) is the constraint that AðΦÞ, BðΦÞ, and
VðΦÞ must satisfy in order to create equivalent inflationary

theories also among different gravity formulations. This
means that (apart from pathological cases) we can ran-
domly choose two functions among AðΦÞ, BðΦÞ, and
VðΦÞ. If the third one satisfies Eq. (66), then the correct
IVðIΦÞ is always generated. However, the solution of the
constraint (66) is strongly dependent on the initial choice
of model functions, invariant potential, and gravity
formulation (metric or Palatini). Nevertheless, until the
constraint (66) is satisfied, the same invariant potential
IVðIΦÞ and therefore the same inflationary observables
[Eqs. (12)–(15)] are generated, regardless of initial model
functions and gravity formulation.
When AðΦÞ and VðΦÞ are given, it is always possible to

solve Eq. (66) and obtain the corresponding value for the
noncanonical kinetic function

BðΦÞ ¼ AðΦÞ
��

dI−1
V ðΦÞ
dΦ

	
2

−
3

2
δjΓ

�
A0ðΦÞ
AðΦÞ

�
2
�
; ð67Þ

where δjΓ reflects the adopted gravity formulation
[see Eq. (5)].
Instead, if AðΦÞ and BðΦÞ are fixed, the constraint can

be formally solved as

VðΦÞ ¼ AðΦÞ2IVðI−1
V ðΦÞÞ; ð68Þ

where I−1
V ðΦÞ is given in Eq. (66). However, in this

case, since the integral of an elementary function is not
automatically elementary, choosing AðΦÞ and BðΦÞ as
elementary functions of Φ does not always ensure that
VðΦÞ is elementary as well.
Finally, when BðΦÞ and VðΦÞ are chosen, the constraint

equation (66) becomes the following differential equation:

AðΦÞ
�
3

2
δjΓ

�
A0ðΦÞ
AðΦÞ

�
2

−
�
dI−1

V ðΦÞ
dΦ

	
2
�
þ BðΦÞ ¼ 0

ð69Þ

to be solved in order to determine AðΦÞ.
Next, we present an example in order to better illustrate

the different issues arising in each configuration.

A. Example: Generalized Starobinsky
invariant potential

Let us consider the following invariant potential:

IVðIΦÞ ¼ M4


1 − e−

ffiffiffi
2
3α

p
IΦ

�
2
; ð70Þ

which generalizes the Starobinsky potential [87–89]. The
model is well known too; therefore, we just summarize
briefly the main features. At the leading order in the
invariant field value, the slow-roll parameters are

4As already discussed in [33], the full gravitation equivalence
needs to take into account also the invariant Im, that describes the
couplings to matter. Therefore, ensuring only the same invariant
potential, the (p)reheating mechanism might still affect the value
of the observables and break the equivalence [49,82]. On the
other hand, we can see from (6) that, by adjusting accordingly the
function σ, we can easily obtain theories where Im is the same
under both gravity formulations, restoring the equivalence of
observables also when (p)reheating is considered.

5The computation of I−1
V is quite delicate. In many cases,

IVðIΦÞ is not a bijective (i.e., invertible) function; therefore, I−1
V

can be consistently identified only after a proper definition of the
domain of IVðIΦÞ. For more details about this topic, see [83] and
also [30,84]. This is related to the possible occurrence of a
singularity or exceptional point in the theory which could have
implications for cosmology or in the presence of black holes (see,
e.g., [85,86]). Nevertheless, here we restrict our attention to slow-
roll inflation and smooth functions, expecting no singularities to
arise.
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ϵ ≈
4

3αe2
ffiffiffi
2
3α

p
IΦ

; ð71Þ

η ≈
−4

3αe
ffiffiffi
2
3α

p
IΦ

; ð72Þ

while the number of e-folds is

N ≈
3α

4
e
ffiffiffi
2
3α

p
I�
Φ : ð73Þ

Therefore, at the leading order in N, we get that

ns ≈ 1 −
2

N
; ð74Þ

r ≈
12α

N2
: ð75Þ

Planck data sets log10 α < 1.3 at 95% CL [1].
We can invert Eq. (70) to obtain

I−1
V ðΦÞ ¼ −

ffiffiffiffiffiffi
3α

2

r
ln

 
1 −

1

M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðΦÞ
AðΦÞ2

s !
: ð76Þ

Therefore, the constraint in Eq. (66) becomes

Z
dΦ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðΦÞ
AðΦÞ þ

3

2
δjΓ

�
A0ðΦÞ
AðΦÞ

�
2

s

¼ −
ffiffiffiffiffiffi
3α

2

r
ln

 
1 −

1

M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðΦÞ
AðΦÞ2

s !
: ð77Þ

Let us consider now some case by case examples and see
how the initial choice of the model functions affects the
solving strategy of Eq. (77).

1. A and V are fixed

Taking, for instance, the following natural inflation
potential and nonminimal coupling to gravity:

AðΦÞ ¼ 1þ ξΦ2; ð78Þ

VðΦÞ ¼ M4

�
1 − cos

�
Φ
Φ0

��
; ð79Þ

we obtain the invariant potential in Eq. (70) if

BðΦÞΓ ¼ 3α

4AðΦÞΦ2
0

�AðΦÞ cosð Φ
2Φ0

Þ − 4ξΦ0Φ sinð Φ
2Φ0

Þ
AðΦÞ − ffiffiffi

2
p

sinð Φ
2Φ0

Þ

�2

ð80Þ

in the Palatini case, with AðΦÞ given in Eq. (78), and

BðΦÞg ¼ BðΦÞΓ − 6
ξ2Φ2

AðΦÞ ð81Þ

in the metric case.

2. A and B are fixed

We consider now a nonminimally coupled scalar field
with a canonical kinetic term

AðΦÞ ¼ 2

3α
Φ2; ð82Þ

BðΦÞ ¼ 1: ð83Þ

Solving Eq. (66), we can see that we reproduce the
invariant potential in Eq. (70) if the potential is

VðΦÞΓ ¼ 4M4

9α2

�
1 −

Φ0

Φ

�
2

Φ4 ð84Þ

in the Palatini case and

VðΦÞg ¼
4M4

9α2

�
1 −

�
Φ0

Φ

� ffiffiffiffiffi
4þα
α

p �2

Φ4 ð85Þ

in the metric case, where Φ0 is an integration constant.

3. B and V are fixed

In this last example, we consider a noncanonically
normalized scalar and a quartic potential

BðΦÞ ¼ 6ðα − 1ÞΦ2

AðΦÞ ; ð86Þ

VðΦÞ ¼ M4Φ4; ð87Þ

with α > 1. We need to determine AðΦÞ by solving the
differential equation in Eq. (69), where I−1

V , BðΦÞ and
VðΦÞ are given, respectively, in Eqs. (76), (86), and (87).
The specific choice in Eq. (86) allows us to solve such
differential equation in both the metric and the Palatini
cases. With a convenient choice of the integration con-
stants, the corresponding solution is

AðΦÞg ¼ 1þΦ2 ð88Þ

in the metric case and

AðΦÞΓ ¼ Φ2


1þΦ−2

ffiffiffiffiffi
α−1
α

p �
ð89Þ

in the Palatini case. The special value of α ¼ 1 requires
an additional comment. In this case, the potential (70)
becomes exactly the Starobinsky one and the noncanonical
kinetic term (86) becomes identically zero in both the
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metric and the Palatini formulations. For the first case, this
not a problem because it coincides with the formulation of
the Starobinsky model via the auxiliary field in the Jordan
frame. On the other hand, as discussed in Sec. II, in the
Palatini formulation, the invariant field IΦ is not dynamical
and the problem does not have a solution. However, it is
still possible to reproduce the potential (70) from (87) in the
Palatini formulation by relaxing the condition (86). For
instance, choosing

BðΦÞΓ ¼ αΦ2

AðΦÞ ; ð90Þ

we would get

AðΦÞΓ ¼ Φ2ð1þΦ−
ffiffi
2
3

p
Þ: ð91Þ

VI. SUMMARY AND CONCLUSIONS

In the present paper, we studied the slow-roll parameters
and inflationary observables in the framework of scalar-
tensor theories of gravity in the metric and Palatini
formulations. The model functions AðΦÞ, BðΦÞ, VðΦÞ
allow us to construct quantities, which are invariant under
a conformal transformation of the metric and behave as
scalar functions under the scalar field redefinition. Using
this frame invariant approach, we expressed the slow-roll
parameters ϵ, η, as well as the inflationary observable
quantities ns, r, As, and explained in detail how to compute
them in the case of different model functions.
Next, in the main part of the paper, we clarified what

conditions must be met for the metric and Palatini formal-
isms to give the same observable quantities. Due to the fact
that most of the observable quantities are independent of
the overall normalization factor, we concluded that it is
sufficient for the invariant potentials in both formulations
to be proportional to each other in order to obtain equal
predictions for r, ns, and N (but not As) in both formu-
lations. We illustrated this general statement by two
specific examples. After that, starting from the same
invariant potential, we showed how by fixing two out of
the three model functions we can straightforwardly obtain
the third. We demonstrated the different possibilities by
considering as an example an invariant potential of the
Starobinsky form. One then sees how seemingly different
models of inflation can give the same values of the
observed parameters.
A deeper case-by-case study may unveil other configu-

rations where the same model functions, but with different
values of the free parameters, share the same invariant
potential and therefore give the same values for observ-
ables. The framework described here provides a tool
that enables to easily check different models against
observations, as well as to reconstruct variations of models
with a given phenomenology.

If the next generation satellites (LITEBIRD [78], PIXIE
[79], PICO [80]) will be launched and after data will be
collected, the available parameter space will be even more
constrained, leaving us with a reduced set of allowed
invariant potentials and more indications about which
gravity formulation satisfies additional criteria like elegance,
simplicity, or minimality.
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APPENDIX: MORE DETAILS ABOUT THE
PALATINI ACTION

The most general action for a class of Palatini scalar-
tensor theories of gravity featuring nonmetricity vectors
entering the action functional in a linear way can be written
as follows [37,38]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
AðΦÞRðg;ΓÞ − 1

2
BðΦÞð∇ΦÞ2

− VðΦÞ − C1ðΦÞQμ∇μΦ − C2ðΦÞQ̄μ∇μΦ
�

þ Sm½e2σðΦÞgμν; χm�: ðA1Þ

The action contains three independent variables: metric
tensor, affine connection, and scalar field. It also features
six arbitrary functions of the scalar field: fA;B; C1; C2;V; σg,
providing, together with the dynamical variables, the so-
called “frame” for the action (A1). The vectorsQμ and Q̄μ are
defined as

Qμ ¼ gμνgαβ∇Γ
νgαβ ¼ gμνgαβQναβ; ðA2aÞ

Q̄μ ¼ −gμνgαβ∇Γ
αgνβ ¼ −gμνgαβQανβ: ðA2bÞ

The∇Γ is definedwith respect to the independent connection;
therefore, the covariant derivative of themetricwill not vanish
in general.
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In the Palatini approach, the metric tensor is fundamen-
tally independent of the connection. When we use the Weyl
(or conformal) transformation of the metric, the connection
remains unchanged. We might use this freedom and
postulate additional transformations of the connection
preserving the light cones. We introduce the following
transformation formulas for the dynamical variables enter-
ing the action functional:

gμν ¼ e2γ̄1ðΦ̄Þḡμν; ðA3aÞ

Γα
μν ¼ Γ̄α

μν þ 2δαðμ∂νÞγ̄2ðΦ̄Þ − ḡμνḡαβ∂βγ̄3ðΦ̄Þ; ðA3bÞ

Φ ¼ f̄ðΦ̄Þ: ðA3cÞ

The transformations are governed by three smooth func-
tions of the scalar field ðγ1; γ2; γ3Þ and are accompanied by
a redefinition of the scalar field. The transformations
(A3a)–(A3c) are invertible,

ḡμν ¼ e2γ1ðΦÞgμν; ðA4aÞ

Γ̄α
μν ¼ Γα

μν þ 2δαðμ∂νÞγ2ðΦÞ − gμνgαβ∂βγ3ðΦÞ; ðA4bÞ

Φ̄ ¼ fðΦÞ; ðA4cÞ

and the relations between the gamma functions and the
diffeomorphism of the scalar field are given by

γ̄i ¼ −γi∘f; ðA5aÞ

f̄ ¼ f−1: ðA5bÞ

The action (A1) turns out to be form invariant under the
action of transformations (A3a)–(A3c), which means that
solutions to the field equations obtained in one frame are
mapped into corresponding solutions in another frame,
assuming that the six functions of the scalar field
fA;B; C1; C2;V; αg change in the following way:

ĀðΦ̄Þ ¼ e2γ̄1ðΦ̄ÞAðf̄ðΦ̄ÞÞ; ðA6aÞ

B̄ðΦ̄Þ ¼ e2γ̄1ðΦ̄Þ
�
Bðf̄ðΦ̄ÞÞðf̄0ðΦ̄ÞÞ2 þ f̄0ðΦ̄ÞðC1ðf̄ðΦ̄ÞÞð8γ̄01ðΦ̄Þ − 10γ̄02ðΦ̄Þ þ 2γ̄03ðΦ̄ÞÞ

− C2ðf̄ðΦ̄ÞÞð2γ̄01ðΦ̄Þ − 7γ̄02ðΦ̄Þ þ 5γ̄03ðΦ̄ÞÞÞ þ 3

�
4Aðf̄ðΦ̄ÞÞγ̄02ðΦ̄Þγ̄03ðΦ̄Þ −Aðf̄ðΦ̄ÞÞðγ̄02ðΦ̄ÞÞ2 −Aðf̄ðΦ̄ÞÞðγ̄03ðΦ̄ÞÞ2

þ dAðf̄ðΦ̄ÞÞ
fΦ̄

ðγ̄02ðΦ̄Þ þ γ̄03ðΦ̄ÞÞ − 2Aðf̄ðΦ̄ÞÞγ̄01ðΦ̄Þðγ̄02ðΦ̄Þ þ γ̄03ðΦ̄ÞÞ
�	

; ðA6bÞ

C̄1ðΦ̄Þ ¼ e2γ̄1ðΦ̄Þ
�
f̄0ðΦ̄ÞC1ðf̄ðΦ̄ÞÞ −Aðf̄ðΦ̄ÞÞ

�
3

2
γ̄02ðΦ̄Þ þ 1

2
γ̄03ðΦ̄Þ

�	
; ðA6cÞ

C̄2ðΦ̄Þ ¼ e2γ̄1ðΦ̄Þ½f̄0ðΦ̄ÞC2ðf̄ðΦ̄ÞÞ −Aðf̄ðΦ̄ÞÞð3γ̄02ðΦ̄Þ − γ̄03ðΦ̄ÞÞ�; ðA6dÞ

V̄ðΦ̄Þ ¼ e4γ̄1ðΦ̄ÞVðf̄ðΦ̄ÞÞ; ðA6eÞ

σ̄ðΦ̄Þ ¼ σðf̄ðΦ̄ÞÞ þ γ̄1ðΦ̄Þ: ðA6fÞ

It is always possible to choose the functions ðγ2; γ3Þ in
such a way that the functions C1 and C2 vanish. Indeed, one
must take

γ̄02ðΦÞ ¼ −2C1ðΦÞ − C2ðΦÞ
6AðΦÞ ; ðA7aÞ

γ̄03ðΦÞ ¼ −2C1ðΦÞ þ C2ðΦÞ
2AðΦÞ : ðA7bÞ

Such a choice will transform the action (A1) to the
following one:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
AðΦÞRðg; Γ̄Þ− 1

2
B̄ðΦÞð∇ΦÞ2−VðΦÞ

�
þSm½e2σðΦÞgμν;χm�; ðA8Þ

where

B̄ðΦÞ ¼ BðΦÞ þA0ðΦÞðC2ðΦÞ − 4C1ðΦÞÞ
AðΦÞ

þ 11C22ðΦÞ − 4C21ðΦÞ − 16C1ðΦÞC2ðΦÞ
6AðΦÞ ; ðA9Þ

which justifies the choice of the initial action (1) without
the Ci functions.
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