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By extending the framework of the gravitational clock compass we show how a suitably prepared set of
clocks can be used to extract information about the gravitational field in the context of general relativity.
Conceptual differences between the extended and the standard clock compass are highlighted. Particular
attention is paid to the influence of kinematic quantities on the measurement process and the setup of the
compass. Additionally, we present results of simulations of the inference process for the acceleration and
the curvature components. Several examples of different strategies for the computation of the posterior
probability distributions of the curvature components are discussed. This allows us to anticipate the
precision with which physical quantities could be determined in a realistic measurement.
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I. INTRODUCTION

The question of how the gravitational field can be
determined in an operational way is of fundamental impor-
tance in gravitational physics. One particular approach
which has received attention in recent years is the so-called
gravitational clock compass [1], which adapts the original
idea of Szekeres [2], which in turn may be viewed as an
implementation of the concepts introduced by Pirani [3] and
Synge [4] in the context of the geodesic deviation equation.
Here we make use of clock measurements in order to
determine the curvature of spacetime. This method has
been developed in [1,5] and can be viewed as complemen-
tary to the use of deviation equations [6] and swarms of test
bodies. An alternative derivation of the clock compass and
its use in the context of exact gravitational wave spacetimes
can be found in [7].
While the aforementioned works established the founda-

tions of the clock compass and demonstrated its ability to
measure all components of the gravitational field in special,
as well as in general spacetimes, the present work is focused
on methods which will help to manifest its practical use in
future experiments. To achieve this goal, we extend the
framework of the gravitational clock compass in two ways.

First, we derive new analytical solutions which determine
the acceleration and angular velocity of the reference frame
in which the measurements are performed. The same is
also carried out for the 20 independent components of the
curvature tensor of general relativity. Conceptual differences
between the extended and the standard clock compass are
highlighted. Particular attention is paid to the influence of
kinematic quantities on the measurement process and the
optimal setup of the compass.
Second, we explore the way in which the determination

of the physical quantities (acceleration, angular velocity,
curvature) could actually be performed from the data
collected by a given configuration of clocks. We do this
by generating mock datasets which are in turn used in the
simulation of the parameter determination process. Special
focus is put on different admissible strategies to compute
each curvature component.
The structure of the paper is as follows: In Sec. II we

review the frequency ratio of moving clocks in a general
spacetime background. This is followed by an introduction
to the gravitational clock compass in Sec. III. Subsequently
we show in Sec. IV how a clock compass can be used to
determine the state of motion (acceleration and angular
velocity) of a reference frame with respect to a free-falling
frame. In Sec. V the derivation of a general exact solution
for the curvature components in terms of the measurable
frequency ratios, as well as the position and velocities of the
clocks is presented. Subsequently we discuss in Sec. VI
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how, and with which precision, the different parameters
could be determined, by simulating the parameter estima-
tion using mock data. In Sec. VI A we explain how we
generate our mock data, and the incorporation of meas-
urement errors into the data. The mock data is then used to
determine probability distributions for the kinematic quan-
tities, as well as for the gravitational field components,
by means of the implementation of a MCMC method.
Particular examples for the determination of the acceler-
ation are presented in section VI B. We then proceed to
discuss in detail the different strategies for the determi-
nation of curvature components in Sec. VI C. Our con-
clusions are discussed in Sec. VII. Finally, we collect some
useful complementary material in the Appendixes A–C.

II. FREQUENCY RATIO OF CLOCKS

We start with the general result of [1] for the ratio of the
proper times dsjX and dsjY of two clocks X and Y,
respectively; the former at a position yα and the latter at
the origin of a Fermi coordinate system. The frame
associated to this coordinate system is characterized by
the acceleration aα and the angular velocity ωα, which in
this work we assume to be time-independent. Then the
frequency ratio between two clocks, see [1] for more
details, takes the following form:

�
dsjX
dsjY

�
2

¼
�
dy0

dsjY

�
2
�
1 − δαβvαvβ þ 2aαyα

þ yαyβðaαaβ − δαβωγω
γ þ ωαωβ − R0αβ0Þ

þ 2vαεαβγyβωγ −
4

3
vαyβyγRαβγ0

−
1

3
vαvβyγyδRγαβδ

�
þOð3Þ; ð1Þ

were we define the auxiliary function C̄ so that

C̄ðyα; vα; aα;ωα; RabcdÞ þ 1 ≔
�
dsjX
dsjY

�
2

: ð2Þ

Our conventions andnotation are summarized inAppendixA.
In contrast to [1], we will assume that the reference clock

is always at rest with respect to the reference frame. Then,
ðdy0Þ=ðdsjYÞ ¼ 1 and, together with (1), they imply that

C̄ ¼
�
−δαβvαvβ þ 2aαyα

þ yαyβðaαaβ − δαβωγω
γ þ ωαωβ − R0αβ0Þ

þ 2vαεαβγyβωγ −
4

3
vαyβyγRαβγ0

−
1

3
vαvβyγyδRγαβδ

�
þOð3Þ: ð3Þ

The ratio C̄ is related to the redshift z of X with respect
to Y, since by definition

1þ z ≔
�
dsjY
dsjX

�
; ð4Þ

thus

C̄þ 1 ¼
�
dsjX
dsjY

�
2

¼ ð1þ zÞ−2: ð5Þ

If z ≪ 1, then

C̄ ≈ −2z: ð6Þ

Fermi normal coordinates can be thought of as the
natural extension of inertial Cartesian coordinates [4].
One should note, that the validity of the coordinate system
in the vicinity of the central observer, is one of the limiting
factors of the whole framework. By construction, the
coordinate system used here is valid to describe physical
phenomena in a small region around the world line of
the central observer. The corresponding domain depends
on the actual state of motion, in particular on the magni-
tudes of the acceleration, angular velocity and the
curvature of spacetime, since they define corresponding
distance scales: laccel ¼ c2=jaαj, lrot ¼ c=jωαj, and
lcurv ¼ minfjRabcdj−1=2; jRabcdj=j∂eRabcdjg [8]. As in the
previous works on the gravitational compass [1,2,5,7],
we make the implicit assumption that the coordinate
system is of a sufficient accuracy with respect to the
effects to be measured, without actually specifying the
details of the field we are interested in. For a region
near the surface of the Earth the most severe restriction is
given by the curvature distance scale, since lgrav ¼
minfjrs=r3j−1=2; r=3g ≈ rEarth=3 ≈ 106 m. We take this
restriction into account in the choice of the distances
considered in the examples shown in Sect. VI.
Depending on the desired level of accuracy, and spacing
of the clocks, a very accurate modeling of the gravitational
field between the clocks would be required. It is also
clear, that a modeling of the time transfer up to any required
order can be performed in an iterative fashion, see for
example [9–11] for a covariant framework in terms of the
world function.

III. CLOCK COMPASS SETUP

For the location of the clocks considered in the present
work, we use the same type of arrangement as in [1], but
here we allow for numerical values different from 1 for the
positions of the clocks. Thereby their distance with respect
to the central reference clock appears explicitly in the
equations, which will turn out to be useful in the modeling
of the measurement process. In particular, we will study
how the precision of the determination of the physical
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parameters depends on the distance of the clocks to the
reference world line Y. We start by labeling 9 different
initial values for the positions of the clocks, as follows:

ð1Þyα ¼

0
B@

y11
0

0

1
CA; ð2Þyα ¼

0
B@

0

y22
0

1
CA; ð3Þyα ¼

0
B@

0

0

y33

1
CA;

ð4Þyα ¼

0
B@

y41
y42
0

1
CA; ð5Þyα ¼

0
B@

0

y52
y53

1
CA; ð6Þyα ¼

0
B@

y61
0

y63

1
CA;

ð7Þyα ¼ −ð1Þyα; ð8Þyα ¼ −ð2Þyα; ð9Þyα ¼ −ð3Þyα: ð7Þ

These positions are sketched in Fig. 1.
For the velocities, we consider the most general case

in which each clock has arbitrary direction and speed,
and write

ðnÞvα ¼

0
B@

vn1
vn2
vn3

1
CA; ð8Þ

where n denotes the nth clock, n ¼ 1;…; 9.
Acceleration and angular velocity are properties of the

reference system. In this sense, there is only one value for
the vectors aα and ωα, given the choice of reference frame,
and we denote them as

aα ¼

0
B@

a1
a2
a3

1
CA; and ωα ¼

0
B@

ω1

ω2

ω3

1
CA: ð9Þ

IV. DETERMINATION OF LINEAR
ACCELERATION AND ANGULAR VELOCITY

A. Determination of linear acceleration

For the determination of the linear acceleration, we
follow a very similar procedure as the one outlined in
[1], and consider the simplest case in which the contribu-
tion of the curvature is neglected. We start by rearranging
(3) as follows

2aαyα þ aαaβyαyβ ¼ B1ðC̄; yα; vα;ωαÞ; ð10Þ

here all measured proper time ratios, as well as all
prescribed quantities, are collected in the quantity B1 on
the right-hand side (rhs) of Eq. (10), which we define as:

B1ðC̄; yα; vα;ωαÞ ≔ C̄þ v2 − yαyβðωαωβ − δαβω
2Þ

− 2vαεαβγyβωγ; ð11Þ

where v2 ≔ δαβvαvβ and ω2 ≔ δαβω
αωβ.

Taking into account expressions (7)–(9) for each clock,
we end up with the system

2aαðnÞyα þ aαaβðnÞyαðnÞyβ ¼ B1ððnÞC̄; ðnÞyα; ðnÞvα;ωαÞ
≕ ðnÞB1; ð12Þ

where ðnÞC̄ is the value of the function given by (3)
evaluated at the position ðnÞyα and the velocity ðnÞvα.
In order to determine the linear acceleration we use 3

pairs of clocks at opposite positions, namely (ð1Þyα, ð7Þyα),
(ð2Þyα, ð8Þyα) and (ð3Þyα, ð9Þyα). This yields a set of equations
which can be used to solve for aα leading, in terms of
the C̄’s, to

a1 ¼
1

4y11
ðð1ÞC̄ − ð7ÞC̄ − 2ω2v13y11 − 2ω2v73y11

þ2ω3v12y11 þ 2ω3v72y11 þ ð1Þv2 − ð7Þv2Þ;

a2 ¼
1

4y22
ðð2ÞC̄ − ð8ÞC̄þ 2ω1v23y22 þ 2ω1v83y22

−2ω3v21y22 − 2ω3v81y22 þ ð2Þv2 − ð8Þv2Þ;

a3 ¼
1

4y33
ðð3ÞC̄ − ð9ÞC̄ − 2ω1v32y33 − 2ω1v92y33

þ2ω2v31y33 þ 2ω2v91y33 þ ð3Þv2 − ð9Þv2Þ: ð13Þ

These expressions allows us to compute the acceleration
from an arrangement of 6 clocks with arbitrary velocities
as parametrized in (8). If we consider the particular
case in which each clock has the same velocity, i.e.,
ðnÞvα ¼ ðv1; v2; v3Þ, we obtain

FIG. 1. Positions of the 9 clocks chosen for the first clock array,
see Eq. (7).
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a1 ¼
1

4y11
ðð1ÞC̄ − ð7ÞC̄ − 4ω2v3y11 þ 4ω3v2y11Þ;

a2 ¼
1

4y22
ðð2ÞC̄ − ð8ÞC̄þ 4ω1v3y22 − 4ω3v1y22Þ;

a3 ¼
1

4y33
ðð3ÞC̄ − ð9ÞC̄ − 4ω1v2y33 þ 4ω2v1y33Þ: ð14Þ

We notice that in these expressions the acceleration aα
depends on the angular velocity ωα. In [1] the velocities of
all clocks were chosen to be parallel to ωα, an assumption
not made in (14). If those vectors are parallel, then the terms
proportional to ωα vanish.
If we set the velocities of the clocks to zero, we obtain

a1 ¼
1

4y11
ðð1ÞC̄ − ð7ÞC̄Þ;

a2 ¼
1

4y22
ðð2ÞC̄ − ð8ÞC̄Þ;

a3 ¼
1

4y33
ðð3ÞC̄ − ð9ÞC̄Þ: ð15Þ

This of course agrees with the results in [1] if c211 ¼ 0.

B. Determination of angular velocity

Analogously to the strategy in the preceding section, we
rearrange the system (3) as follows:

2vαεαβγyβωγ −yαyβðδαβω2−ωαωβÞ¼B2ðyα;vα;aαÞ; ð16Þ

where

B2ðyα; vα; aαÞ ≔ C̄þ v2 − 2aαyα − aαaβyαyβ: ð17Þ

Taking into account (7)–(9) we end up with

2ðnÞvαεαβγðnÞyβωγ − ðnÞyαðnÞyβðδαβω2 − ωαωβÞ
¼ B2ððnÞyα; ðnÞvα; aαÞ≕ ðnÞB2: ð18Þ

1. Same initial conditions as in [1]

For reference, we first consider a configuration of six
clocks with the same initial conditions as in [1], i.e., using
clocks at the positions ð1Þyα, ð2Þyα, and ð3Þyα, with velocities
given by

ð1Þvα¼

0
B@
v11
0

0

1
CA; ð2Þvα¼

0
B@

0

v22
0

1
CA; ð3Þvα¼

0
B@

0

0

v33

1
CA: ð19Þ

We denote by ð1;2ÞC̄ the value of the function C̄ given by (3)
evaluated for the position ð1Þyα and velocity ð2Þvα, etc. Then
the angular velocity can be determined in terms of the

values of ð1;1ÞC̄, ð1;2ÞC̄, ð2;2ÞC̄, ð2;3ÞC̄, ð3;1ÞC̄, and ð3;3ÞC̄ of each
clock with corresponding position and velocity. We obtain:

ω1 ¼
1

2v33y22
½ð2;2ÞC̄ − ð2;3ÞC̄þ v222 − v233�;

ω2 ¼
1

2v11y33
½ð3;3ÞC̄ − ð3;1ÞC̄þ v233 − v211�;

ω3 ¼
1

2v22y11
½ð1;1ÞC̄ − ð1;2ÞC̄þ v211 − v222�: ð20Þ

Note that, unlike the result (13) for aα, this solution for
the angular velocity does not depend on the value of the
acceleration of the frame. This is due to our choice for the
positions and velocities of the present clock configuration,
which leads to a set of equations in which the contribution
of aα cancels out. This behavior was also present in the
analogous result reported in [1], although in that case
the expression is different due to the different choice of the
velocity of the reference clock.

2. Velocity perpendicular to the position

Now, we consider a configuration of clocks slightly
different from the one shown in the previous section. We
use pairs of clocks at the same positions as the previous
section. These are given by ð1Þyα, ð2Þyα, and ð3Þyα, with
velocities perpendicular to their respective position vector,
given by

ð1Þvα ¼

0
B@

0

v12
0

1
CA; ð2Þvα ¼

0
B@

0

0

v23

1
CA;

ð3Þvα ¼

0
B@

v31
0

0

1
CA; ð4Þvα ¼

0
B@

0

−v42
0

1
CA;

ð5Þvα ¼

0
B@

0

0

−v53

1
CA; ð6Þvα ¼

0
B@

−v61
0

0

1
CA: ð21Þ

Considering this configuration, the solution for the
angular velocity components can be written in terms of
the C̄’s as

ω1 ¼ −ð2;2ÞC̄þ ð2;5ÞC̄ − v223 þ v253
2y22ðv23 þ v53Þ

;

ω2 ¼ −ð3;3ÞC̄þ ð3;6ÞC̄ − v231 þ v261
2y33ðv31 þ v61Þ

;

ω3 ¼ −ð1;1ÞC̄þ ð1;4ÞC̄ − v212 þ v242
2y11ðv12 þ v42Þ

; ð22Þ

where ð1;1ÞC̄ is the value of the function C̄ given by (3),
evaluated for the position ð1Þyα and velocity ð1Þvα, etc. This

NEUMANN, PUETZFELD, and RUBILAR PHYS. REV. D 102, 044027 (2020)

044027-4



solution can be simplified considering that we set the
velocity of one of the clocks of the pair to zero, obtaining

ω1 ¼ −ð2;2ÞC̄þ ð2;0ÞC̄ − v223
2y22v23

;

ω2 ¼ −ð3;3ÞC̄þ ð3;0ÞC̄ − v231
2y33v31

;

ω3 ¼ −ð1;1ÞC̄þ ð1;0ÞC̄ − v212
2y11v12

; ð23Þ

where ð1;0ÞC̄ is the value of the function C̄ given by (3)
evaluated for the position ð1Þyα and zero velocity, etc.
Alternatively, a simpler solution for this case can be

found if we use 3 pairs of clocks at the same positions
explained above, but choosing the velocities of each pair
with the same position to be equal in magnitude but with
opposite directions. Under these conditions, we obtain

ω1 ¼ −ð2;2ÞC̄þ ð2;−2ÞC̄
4y22v23

;

ω2 ¼ −ð3;3ÞC̄þ ð3;−3ÞC̄
4y33v31

;

ω3 ¼ −ð1;1ÞC̄þ ð1;−1ÞC̄
4y11v12

; ð24Þ

where ð1;−1ÞC̄ is the value of the function C̄ given by (3),
evaluated for the position ð1Þyα and velocity −ð1Þvα, etc.

3. Clocks at rest

For clocks at rest, it is interesting to notice that the
absolute values of the components ωα can be determined by
using only three clocks. Indeed, with the three clocks at the
positions ð1Þyα, ð2Þyα, and ð3Þyα we can obtain, using Eq. (3),
expressions for ð1ÞC̄, ð2ÞC̄, and ð3ÞC̄, which form a system of
three equations for the three unknowns ω2

1, ω
2
2, and ω

2
3. The

solution then is found to be

ω2
1 ¼

ð1ÞC̄
2y211

−
ð2ÞC̄
2y222

−
ð3ÞC̄
2y233

−
a21
2
þ a22

2
þ a23

2
−

a1
y11

þ a2
y22

þ a3
y33

; ð25Þ

ω2
2 ¼ −

ð1ÞC̄
2y211

þ
ð2ÞC̄
2y222

−
ð3ÞC̄
2y233

þ a21
2
−
a22
2
þ a23

2
þ a1
y11

−
a2
y22

þ a3
y33

; ð26Þ

ω2
3 ¼ −

ð1ÞC̄
2y211

−
ð2ÞC̄
2y222

þ
ð3ÞC̄
2y233

þ a21
2
þ a22

2
−
a23
2
þ a1
y11

þ a2
y22

−
a3
y33

: ð27Þ

If we position the three clocks at the same distance to
the central reference clock, i.e., y11 ¼ y22 ¼ y33 ¼ y, we
obtain

ω2
1 ¼

1

2y2
ðð1ÞC̄ − ð2ÞC̄ − ð3ÞC̄ − a21y

2 þ a22y
2 þ a23y

2

− 2a1yþ 2a2yþ 2a3yÞ; ð28Þ

ω2
2 ¼

1

2y2
ð−ð1ÞC̄þ ð2ÞC̄ − ð3ÞC̄þ a21y

2 − a22y
2 þ a23y

2

þ 2a1y − 2a2yþ 2a3yÞ; ð29Þ

ω2
3 ¼

1

2y2
ð−ð1ÞC̄ − ð2ÞC̄þ ð3ÞC̄þ a21y

2 þ a22y
2 − a23y

2

þ 2a1yþ 2a2y − 2a3yÞ: ð30Þ

C. Simultaneous determination of the linear
acceleration and the angular velocity of the frame

Here we extend the analysis from [1] in order to find a
configuration which allows us to simultaneously obtain the
linear acceleration and the angular velocity, i.e., to
compute all six components (aα, ωα) using a suitable
arrangement of clocks. This is achieved by considering
pairs of clocks located along each axis and choosing
velocities with opposite direction, perpendicular to their
position vectors. Hence, the initial conditions for the 6
clocks are chosen as follows: the first 3 are located
at ð1Þyα, ð2Þyα, and ð3Þyα as defined in (7), with velocities
perpendicular to each position vector, i.e., we choose

ð1Þvα ¼

0
B@

0

v12
v13

1
CA; ð2Þvα ¼

0
B@

v21
0

v23

1
CA; ð3Þvα ¼

0
B@

v31
v32
0

1
CA:

The other 3 clocks are located at the same positions, but
with velocities opposite to the first group. The situation is
illustrated in Fig. 2.
For this configuration of clocks, we obtain the following

expressions for the angular velocity and the acceleration of
the frame:
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ω1 ¼ −
v12v31y11y33ðð2;2ÞC̄ − ð2;−2ÞC̄Þ þ v13v21y11y22ðð3;3ÞC̄ − ð3;−3ÞC̄Þ þ v21v31y22y33ðð1;1ÞC̄ − ð1;−1ÞC̄Þ

4y11y22y33ðv12v23v31 − v13v21v32Þ
;

ω2 ¼ −
v12v23y11y22ðð3;3ÞC̄ − ð3;−3ÞC̄Þ þ v12v32y11y33ðð2;2ÞC̄ − ð2;−2ÞC̄Þ þ v21v32y22y33ðð1;1ÞC̄ − ð1;−1ÞC̄Þ

4y11y22y33ðv12v23v31 − v13v21v32Þ
;

ω3 ¼ −
v13v23y11y22ðð3;3ÞC̄ − ð3;−3ÞC̄Þ þ v13v32y11y33ðð2;2ÞC̄ − ð2;−2ÞC̄Þ þ v23v31y22y33ðð1;1ÞC̄ − ð1;−1ÞC̄Þ

4y11y22y33ðv12v23v31 − v13v21v32Þ
; ð31Þ

and

a1 ¼
1

2y11

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1;1ÞCþ 2ð1;−1ÞCþ 4ω2

2y
2
11 þ 4ω2

3y
2
11 þ 4v21 þ 4

q
− 1

�
;

a2 ¼
1

2y22

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2;2ÞCþ 2ð2;−2ÞCþ 4ω2

1y
2
22 þ 4ω2

3y
2
22 þ 4v22 þ 4

q
− 1

�
;

a3 ¼
1

2y33

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3;3ÞCþ 2ð3;−3ÞCþ 4ω2

1y
2
33 þ 4ω2

2y
2
33 þ 4v23 þ 4

q
− 1

�
; ð32Þ

where one could insert (31) into (32) in order to obtain an
explicit final result. Note that the minus sign (−) in the
velocity indices indicates opposite velocity.

V. CURVATURE DETERMINATION

In order to find a similar analytical expression for the
curvature components, we rearrange (3) as follows:

ðnÞyαðnÞyβð−R0αβ0 −
4

3
ðmÞvγRγαβ0−

1

3
ðmÞvγðmÞvδRαγδβÞ

¼ B3ððnÞyα; ðmÞvγ; aα;ωαÞ≕ ðn;mÞB3; ð33Þ

where we now define B3 as

ðn;mÞB3 ≔ ðn;mÞC̄þ ðmÞv2 − 2aαðnÞyα

− ðnÞyαðnÞyβðaαaβ − δαβωγω
γ þ ωαωβÞ

− 2vαεαβγðnÞyβωγ: ð34Þ

Notice that the particular combination of curvature com-
ponents in Eq. (33), when written in terms of the newly
defined ðn;mÞB3, is the same as in [1]. The impact of our
different choice for the state of motion of the reference
clock, which is now at rest in contrast to the original one in
[1], is the explicit form of ðn;mÞB3, see (34). Therefore, the
results below are useful in both cases.

A. Obtaining the components of the curvature

We choose the same orientations and velocities for each
clock as in Sec. IV. D. of [1], but now we include their
proper distances to the central clock explicitly. For the
positions we choose ðnÞyα (n ¼ 1;…; 6) in (7), with all
distances set to equal values, i.e., y11 ¼ y22 ¼ y33 ¼
y41 ¼ y42 ¼ y52 ¼ y52 ¼ y61 ¼ y63 ¼ y. Furthermore, we
choose the following specific values for the velocities:

ð1Þvα ¼

0
B@

v11
0

0

1
CA; ð2Þvα ¼

0
B@

0

v22
0

1
CA; ð35Þ

ð3Þvα ¼

0
B@

0

0

v33

1
CA; ð4Þvα ¼

0
B@

v41
v42
0

1
CA; ð36Þ

FIG. 2. Clock configuration used in the simultaneous determi-
nation of the linear acceleration (32) and the angular velocity (31).
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ð5Þvα ¼

0
B@

0

v52
v53

1
CA; ð6Þvα ¼

0
B@

v61
0

v63

1
CA: ð37Þ

In this solution, the components of the curvature are
obtained by using clocks with positions and velocities
which differ from the ones in [1]. For each clock which is
not at rest, its velocity is chosen perpendicular to its the
position with respect to the central clock. This choice
was motivated by the equivalence to the configuration in
which each clock is (instantaneously) rotating around the
reference clock.
The first 6 components to be obtained are those corre-

sponding to the constrained clock compass, i.e., the con-
figuration of 6 clocks at rest discussed in Sec. IV. F of [1]:

R0110 ¼ −
ð1;0ÞB3

y2
; ð38Þ

R0220 ¼ −
ð2;0ÞB3

y2
; ð39Þ

R0330 ¼ −
ð3;0ÞB3

y2
; ð40Þ

R0120 ¼ −
1

2y2
ðð4;0ÞB3 þ y2ðR0110 þ R0220ÞÞ; ð41Þ

R0130 ¼ −
1

2y2
ðð6;0ÞB3 þ y2ðR0110 þ R0330ÞÞ; ð42Þ

R0230 ¼ −
1

2y2
ðð5;0ÞB3 þ y2ðR0220 þ R0330ÞÞ: ð43Þ

Here the index 0 in the ðn;0ÞB3 terms denotes clocks at rest
(as before, the position and the velocity indices are also
indicated). The 6 curvature components in the group above
are those which can be determined using clocks at rest.1 The
14 remaining independent curvature components can be
obtained as

R1210 ¼
3

8v22y2
ðð1;2ÞB3 − ð1;−2ÞB3Þ; ð44Þ

R1310 ¼
3

8v33y2
ðð1;3ÞB3 − ð1;−3ÞB3Þ; ð45Þ

R2320 ¼
3

8v33y2
ðð2;3ÞB3 − ð2;−3ÞB3Þ; ð46Þ

R1212 ¼
3

2v222y
2
ðð1;2ÞB3 þ ð1;−2ÞB3 þ 2y2R0110Þ; ð47Þ

R1313 ¼
3

2v233y
2
ðð1;3ÞB3 þ ð1;−3ÞB3 þ 2y2R0110Þ; ð48Þ

R2323 ¼
3

2v233y
2
ðð2;3ÞB3 þ ð2;−3ÞB3 þ 2y2R0220Þ; ð49Þ

R1220 ¼
1

4v11y2
ð−3ð2;1ÞB3 − 3R0220y2 þ R1212v211y

2Þ; ð50Þ

R1330 ¼
1

4v11y2
ð−3ð3;1ÞB3 − 3R0330y2 þ R1313v211y

2Þ; ð51Þ

R2330 ¼
1

4v22y2
ð−3ð3;2ÞB3 − 3R0330y2 þ R2323v222y

2Þ; ð52Þ

R1213 ¼
1

2v52v53y2
ð3ð1;5ÞB3 þ 3R0110y2

− v52y2ð4R1210 þ R1212v52Þ
− v53y2ð4R1310 þ R1313v53ÞÞ; ð53Þ

R1223 ¼
1

2v61v63y2
ð−3ð2;6ÞB3 − 3R0220y2

þ v61y2ðR1212v61 − 4R1220Þ
þ v63y2ð4R2320 þ R2323v63ÞÞ; ð54Þ

R1323 ¼
1

2v41v42y2
ð3ð3;4ÞB3 þ 3R0330y2

þ v41y2ð−R1313v41 þ 4R1330Þ
þ v42y2ð−R2323v42 þ 4R2330ÞÞ; ð55Þ

R1230 ¼
1

4v33y2
ð−3ð4;3ÞB3 − 3ðR0110 þ 2R0120 þ R0220Þy2

þ 4ðR1310 þ R2320Þv33y2
þ ðR1313 þ 2R1323 þ R2323Þv233y2Þ; ð56Þ

R2310 ¼
1

4v11y2
ð3ð5;1ÞB3 þ 3ðR0220 þ 2R0230 þ R0330Þy2

þ 4ðR1220 þ R1330Þv11y2
− ðR1212 þ 2R1213 þ R1313Þv211y2Þ: ð57Þ

Again, the minus sign (−) in the velocity index indicates
opposite velocity. This allows us to determine the 20
independent components of the curvature by means of
20 different clocks/measurements. Note that this solution is
different from the one presented in [1].
The solution in (38)–(57) relates measurements that need

to be performed and the physical parameters, i.e., the
curvature components, in a hierarchical way. This means

1The first 3 components can also be determined using clocks
with velocities parallel to the respective position, then R0110 ¼
−ð1;1ÞB3=y2, R0220 ¼ −ð2;2ÞB3=y2, and R0330 ¼ −ð3;3ÞB3=y2.

EXTENDED GRAVITATIONAL CLOCK COMPASS: NEW EXACT … PHYS. REV. D 102, 044027 (2020)

044027-7



that we write the expression of some curvature components
in terms of previously determined ones, plus the outcome of
new clock measurements. As will be discussed later, one
can use this hierarchy as a possible strategy to determine
the different curvature components. Alternatively, one
can obtained “direct” expressions for each curvature
component in terms of the measurements, by replacing
the corresponding previous components. The result is
displayed in Eqs. (B1)–(B20) in Appendix B.
The solution (38) tells us that the componentR0110 can be

determined by means of one clock at rest located along the
x-axis, so that both values ð1;0ÞB3 and y have to be known.We
denote this clock configuration by (1,0). The components
R0220 and R0330 can be determined analogously, this time by
means of the configurations (2,0) and (3,0), which are
located along the y- and the z-axis, respectively.
In order to determine R0120 one needs measurements

from more than one clock. As is apparent from Eq. (41), in
addition to the knowledge of R0110 and R0220, one needs
data from measurements with a clock at rest located in the
xy-plane at a 45 degree angle from the x and y axis [which
we denote by (4,0)]—cf. also ð4Þyα in (7), with y41¼y42¼y.
Equivalently, R0120 can be directly determined with the
frequency data from three clocks: (1,0), (2,0), and (4,0),
see Eq. (B4). Notice that in this case an additional
“simultaneous” determination of R0110, R0220, and R0120

is also possible, starting from the data of the same configu-
rations, i.e., (1,0), (2,0), and (4,0). The determination of
R0130 and R0230 can be performed in an analogous fashion,
by defining a second group, see Eqs. (42) and (43)
respectively and/or (B5) and (B6). Notice that, as can be
seen from Eq. (3), in a more general situation, when
considering clocks with generic positions in the x-y plane,
wewill needmeasurements of clockswith at least 3 different
positions in order to decouple the contribution of the
components R0110, R0220, and R0120 from the quantity C̄.
A third group of measurements is defined by (44)–(46).

Each of these components can be computed from data of
two different clock configurations: in the case of R1210 by
measurements of clocks in configurations (1,2) and ð1;−2Þ,
and similarly for R1310 and R2320.
A fourth group is given by (47)–(49). These expressions

show that, for instance, R1212 can be determined with data
of R0110 and the result of measurements of the clocks
configurations (1,2) and ð1;−2Þ. Equivalently, the direct
determination needs 3 clock configurations: (1,0), (1,2) and
ð1;−2Þ; i.e., from a combination of the data from the first
and third group above, see Eq. (B10). This also means that
the group of configurations (1,0), (1,2), and ð1;−2Þ suffices
to “simultaneously” determine the three components R0110,
R1210, and R1212. A similar relation holds for the group
R0110, R1310, and R1313 and the configurations (1,0), (1,3),
and ð1;−3Þ, as well as for R0220, R2320, and R2323 and the
configurations (2,0), (2,3), and ð2;−3Þ, see Eqs. (45) and
(48), as well as (46) and (49), respectively.

A fifth group of curvature components, represented by
(50)–(52), can be obtained by using two previously
determined curvature components, plus data from one
new clock. The alternative direct determination, as shown
in Eqs. (B13)–(B15), requires a total of five clock con-
figurations. Alternatively, one may perform a simultaneous
determination of R0110, R0220, R1210, R1212, and R1220 with
the help of the five configurations (1,0), (1,2), ð1;−2Þ,
(2,0), and (2,1). Such simultaneous measurements are also
possible for the group R0110, R0330, R1310, R1313, and R1330,
by using the configurations (1,0), (1,3), ð1;−3Þ, (3,0), and
(3,1); as well as for the group R0330, R0220, R2320, R2323, and
R2330, by utilizing (2,0), (2,3), ð2;−3Þ, (3,0), and (3,2).
A sixth group is given by (53)–(55), in which the

curvature can be obtained from previous data plus data
from one additional clock—R1213 requires measurements
from the (1,5), R1223 from the (2,6), and R1323 from the
(3,4) configuration. The fully resolved “direct” expressions
are shown in Eqs. (B16)–(B18). As with the previous
groups, one could also perform a simultaneous determi-
nation of the curvature from the measurements of a group
of suitably chosen clock configurations. As an example, we
infer that the configurations (1,0), (1,2), ð1;−2Þ, (1,3),
ð1;−3Þ, and (1,5) simultaneously determine R1213, R0110,
R1210, R1212, R1310, and R1313.
Finally, a seventh group is given by (56) and (57). The

determination of R1230 and R2310 requires only measure-
ments from one additional clock, in addition to the previous
configurations. As an example, the determination of R1230

requires data from the (4,3) configuration. Again, the fully
replaced expressions for those components can be found in
Appendix B.
In Table I the 20 curvature components are grouped by

the structure of the solution, and by the number of required
measurements. The choice of a hierarchical or simulta-
neous determination is going to play an important role in
the error analysis, which we discuss in the next section.

VI. SIMULATED PARAMETER ESTIMATION

In this section we perform simulations in order to
illustrate how the different parameters could be determined.

TABLE I. Number of measurements required for different
curvature components.

Curvature components Group # Measurements

R0110, R0220, R0330 1 1
R0120, R0130, R0230 2 3
R1210, R1310, R2320 3 2
R1212, R1313, R2323 4 3
R1220, R1330, R2330 5 5
R1213 6 6
R1223 6 8
R1323 6 10
R1230, R2310 7 12
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Additionally we estimate the precision with which we can
measure each physical quantity. In particular, we show how
parameter changes impact the determination of the accel-
eration, the angular velocity, and the curvature, by using
simulated data.

A. Data generation

In order to perform a simulation, we need to create data
for each clock (position and velocity), and a model for the
measurable variable, i.e., the proper time ratio, which in
turn determines the value of C̄.
For the mock dataset we generate, for each clock con-

figuration, N values for its position and velocity, assuming
a normal distribution for both variables (y ∼N ðȳ; σ2yÞ,
v ∼N ðv̄; σ2vÞ). With these values, and the assumed test
values for the quantities which we want to determine
(acceleration, angular velocity, and curvature components),
we obtain, by means of the master equation (3), the
corresponding values of the frequency ratio C̄ for each of
the N clocks. In a subsequent step we add noise to the C̄
values, therebymodeling the uncertainty of themeasurement
process of the proper times. For the noise we also assume a
Gaussian distribution δC̄ ∼N ð0; σ2C̄Þ with vanishing mean.
The standard deviation is set to the intrinsic instability of the
clock, as reported for example in [12]. Furthermore, we
assume that the errors in the frequency ratio, position, and
velocity are independent of each other.

B. Determination of the linear acceleration

First we perform a simulation in order to show how the
acceleration of the reference system could be determined.
We consider a reference frame moving with constant (time-
independent) acceleration aα in the direction of the x-axis,
assuming a test value a1 ¼ −9.8 m=s2. For the angular
velocity we assume the same orientation as the acceler-
ation, so that ω1 ¼ 7.3 × 10−5 rad=s (which would corre-
spond to the local angular velocity due to Earth’s rotation at
the north pole).
Taking into account the experimental results for state of

the art clocks given in [13,12], we work out the errors for
the frequency ratio variable C̄ when measured by such
clocks. Chou et al. [13] reported a fractional frequency
inaccuracy of 8.6 × 10−18 for optical clocks, and gave in
[12] an error of 1.6 × 10−17 for the fractional frequency
change of optical clocks with difference in height of 33 cm,
due to relativistic effects. Note that, due to (6), the absolute
error of the proper time ratio variable C̄ is twice the value of
the absolute error of the redshift. In the following, we use
that value as the standard deviation of our assumed normal
distribution, σC̄ ¼ 3.2 × 10−17, in our simulations.
Considering the above, we perform a simulation using a

mock dataset, generated as explained in Sec. VI A, using an
array of clocks at rest with respect to the reference clock—
which we previously worked out in Sec. IVA. We consider

N ¼ 100 samples of measurements (for each pair of clocks,
see Sec. IVA), with mean distances ȳ ranging from 0.37 m
(the distance reported in [12]) to 10.5 m, and with
σy ¼ 1 cm. For simplicity we consider a vanishing
mean value and standard deviation for the velocity (i.e.,
v̄ ¼ σv ¼ 0). Following [12] we set σC̄ ¼ 3.2 × 10−17.
Using the data generated in this way we then determine
the probability distribution for the acceleration a1, by using
a Markov chain Monte Carlo (MCMC) method, as imple-
mented in the emcee PYTHON package [14]. For the inference
of a1 we use a Gaussian likelihood together with flat priors
in combination with the master equation (3).
A representative example of the posterior fora1 for a set of

simulated measurements, and for different values of ȳ is
shown in Fig. 3. As expected, with increasing separation of
the clocks the variance of the inferred values of a1 decreases,
and the mean value approaches the assumed test value. An
increment of the mean distance from ȳ ¼ 1 m to ȳ ¼ 10 m
from the reference clock reduces the standard deviation of
the acceleration from �0.10 m=s2 to �0.011 m=s2.

FIG. 3. Posterior for a1 for different representative values of the
mean clock height. For this calculation, we use σC̄ ¼ 3.2 × 10−17,
and σy ¼ 1 cm. The black vertical line represents the test value of
a1 ¼ −9.8 m=s2, N ¼ 100.
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Additionally, we perform the calculation varying the
number N of clock measurements, with the same initial
conditions as in the previous case, but now setting ȳ ¼ 1 m.
The result is shown in Fig. 4. As expected, the precision in
the determination of a1 increases with the number of
measurements. For instance, with N ¼ 100 measurements,
we obtain a value of σa of the order of 0.1m=s2.

C. Determination of the curvature components

In this section we present results which illustrate the
measurement strategy and the precision with which curva-
ture components could be obtained. As a simplification, we
will suppose that our reference system is freefalling, i.e.,
aα ¼ 0 and ωα ¼ 0.
We will use the Schwarzschild metric as a guide for the

computation of the mock values of the curvature. The
nonvanishing components for the Riemann curvature tensor
of Schwarzschild spacetime in Schwarzschild coordinates
ðct; r; θ;φÞ are

Rtrrt ¼
rs
r3
; ð58Þ

Rθφθφ ¼ rrssin2θ; ð59Þ

2Rrθrθ ¼
rs

rs − r
; ð60Þ

2Rrφrφ ¼ rs
rs − r

sin2θ; ð61Þ

2Rtθθt ¼ −
rsðr − rsÞ

r2
; ð62Þ

2Rtφφt ¼ −
rsðr − rsÞ

r2
sin2θ; ð63Þ

where rs ¼ 2GM=c2 is the Schwarzschild radius.
Considering an orthonormal basis whose spacelike vectors
e1, e2 and e3 are aligned along the r, θ and φ directions
respectively. We then obtain (for further details see, for
instance, Ref. [15])

R0110 ¼ R2323 ¼
rs
r3
; ð64Þ

R0220 ¼ R0330 ¼ R1212 ¼ R1313 ¼ −
rs
2r3

: ð65Þ

In our simulations we would like to consider the component
R0120 as nonvanishing in order to deal with nonzero numeri-
cal quantities in our subsequent examples. Therefore, we
assign the value R0120 ¼ R0110=3 for this component by
hand. In summary, in our simulations we shall use the
following nonvanishing test values:

R0110 ¼ 3.415 × 10−23 m−2; ð66Þ

R0220 ¼ −1.708 × 10−23 m−2; ð67Þ

R0120 ¼ 1.138 × 10−23 m−2: ð68Þ

Notice that we choose r equal to the radius of the Earth,
so that the curvature components are of the order of the
curvature produced by our planet on its surface.

1. Obtaining one curvature component

We start with the simplest case in which we can
determine a single component of the Riemannian curvature
tensor, using only one clock configuration, as in the first
group discussed in Sec. V, for instance R0110. In this case
that component is determined by the value and uncertainty
of the distance y, as well as the auxiliary quantity C̄. The
statistical structure of this first type of measurement is
illustrated in Fig. 5.
We now perform a simulation with N ¼ 100 simu-

lated proper time ratio measurements, with positions

FIG. 4. Posterior for a1 for different representative values of the
number of initial samples, from 2 to 100. For this calculation, we
use σC̄ ¼ 3.2 × 10−17, ȳ ¼ 1 mand σy ¼ 1 cm. The black vertical
line represents the assumed test value of a1 ¼ −9.8 m=s2.
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y ∼N ðȳ ¼ 10 km; σ2y ¼ 104 m2Þ; as well as a normally
distributed C̄, with μC̄ given by the master equation, and
σC̄ ¼ 10−14, which could be considered as a moderately
optimistic value since it is three orders of magnitude higher
than the precision reported by [13] for experiments with
fairly ideal and controlled conditions. The results for
representative mock data are shown in Fig. 6. The dis-
tribution of values for the curvature are characterized by a
mean value of R̄0110 ¼ 3.06 × 10−23 m−2, and a standard
deviation of σR ¼ 0.99 × 10−23 m−2.

2. Varying parameters

Here we determine how the probability distributions for
the curvature component R0110 change when varying some

of the parameters of our simulation. Some representative
results are shown in Figs. 7–9. We can see from Figs. 7
and 8 that the precision of the curvature determination
increases, as expected, with growing number of measure-
ments as well as with the distance of the clocks to the
origin (reference clock), while the mean of the distribution
fluctuates as it approaches the assumed test value. For
instance, for the input values used in our simulations we
observed that the standard deviation of the posterior distri-
bution for the curvature component decreases from
≈3×10−23m−2 for N¼10 to ≈1×10−23m−2 for N¼100,
and finally to ≈3 × 10−24 m−2 for N ¼ 1000. These values
are consistent with a decay of the expected form σR ∼ N−1=2.
Similarly we observe from Fig. 8 how σR decreases as ȳ
increases. For instance, for ȳ ¼ 10 km, 20 km, and 40 km,
we obtain σR ≈ 9 × 10−24 m−2, 2 × 10−24 m−2, and
7 × 10−25 m−2, respectively. This is consistent with the
expected behavior of σR ∼ ȳ−2, see Eq. (C1).

FIG. 5. First type of measurement: R0110. Similarly for R0220

and R0330.

FIG. 6. Posterior for the curvature component R0110 using
realistic parameter values (see text). The red vertical line
represents the mean of the distribution. The grey vertical dashed
lines represent the percentiles 16 and 84, which for a Gaussian
distribution corresponds to the interval ½mean� 1σ�. The green
vertical line represents the test value (66). We consider N ¼ 100,
with y ∼N ðȳ ¼ 10 km; σ2y ¼ 104 m2Þ and σC̄ ¼ 10−14.

FIG. 7. The upper plot contains the variation of the probability
distribution for the curvature component R0110 for the indicated
number of measurements. We see how the mean value for
the curvature component approaches the test value (66). In the
lower plot (log-log scale) the standard deviation is shown to
decrease with increasing number of measurements. We have used
ȳ ¼ 10 km, σy ¼ 100 m, and σC̄ ¼ 10−14 as input parameters.
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3. Multiparameter Bayesian analysis

Now, we determine one of the curvature components of
the second group, see Table I, for instance R0120. In this
case, we need three clocks with three different positions.
Taking this into account, we simulate the simultaneous
determination of R0110, R0220, and R0120. We obtain dis-
tributions for these three curvature components, from
simulated measurements of the proper time ratios of
clocks at rest, with positions as discussed in Sec. VA.

FIG. 8. The upper plot contains the variation of the probability
distribution for the curvature component R0110 for the indicated
values of the distance/position of the clock. The lower plot (log-log
scale) shows the standard deviation of the distribution for different
values of ȳ. We used N ¼ 100, σy ¼ 100 m, and σC̄ ¼ 10−14.

FIG. 9. Standard deviation of the probability distribution of the
curvature component R0110 for different standard deviations of the
measurement of the frequency ratio C̄. The outer plot shows
the evolution in the interval of σC̄ from 10−15 to 10−13, in
logarithmic scale for the x-axis. The inner plot shows the evolution
of the samevariable over the interval of σC̄ from 10−15 to10−14, on a
linear scale.We have usedN ¼ 100, ȳ ¼ 10 km, and σy ¼ 100 m.

FIG. 10. Scheme for the simultaneous determination of R0110,
R0220 and R0120. The lines represent the dependencies given by
Eqs. (B1), (B2), and (B4).

FIG. 11. Probability distribution for the curvature components
R0110, R0220, and R0120, obtained simultaneously. We used
ȳ¼ 10 km, σyx ¼ σyy ¼ 100 m, σC̄ ¼ 10−14, and N ¼ 100 mea-
surements for each clock in configurations (1,0), (2,0), and (4,0)
(i.e., 3 × 100 clocks, positions, and frequency ratio values).
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The determination of the curvature components are affected
by the value of the distance y and of the auxiliary quantities
ð1;0ÞC̄, ð2;0ÞC̄, and ð4;0ÞC̄, and their uncertainties. The general
dependency of this second kind of curvature determination
is depicted in Fig. 10.
We simulate the values of the curvature using expres-

sions (66)–(68), while the other components are set to zero.
We also use the same parameters for the clocks as in
Sec. VI C 1, which are, N ¼ 100 (for each arrangement of
3 clocks) and ȳ¼ 10 km. The standard deviations are set to
σy ¼ 100 m and σC̄ ¼ 10−14. Here we neglect the influence
of the velocity of the clocks. The results are shown in
Fig. 11, from which we can infer the standard deviation of

the resulting distributions is the order of 10−23 m−2 for each
component, and that the test input values lie within a 2σ
interval. Fig. 12 shows how the standard deviations of each
of these three curvature components decreases when a
higher number N of measurements are used for the
inference.
In Fig. 13 we show an example of the simultaneous

inference of three curvature components, namely R0110,

FIG. 12. Evolution of the standard deviation for the simulta-
neous determination of the curvature components R0110, R0220,
and R0120 for different number of measurements. We used
ȳ¼ 10 km, σyx ¼ σyy ¼ 100 m, σC̄ ¼ 10−14.

FIG. 13. Scheme for the determination of the group (R0110,
R1210, R1212) from the measurements of configurations (1,0),
(1,2), and ð1;−2Þ. The lines represent the dependency given by
Eqs. (B1), (B7), and (B10). See Fig. 14 for the results of the
corresponding simultaneous determination.

FIG. 14. Probability distribution for the curvature components
R0110, R1210, and R1212, obtained simultaneously. We used
ȳ¼ 10 km, σy ¼ 100 m, v̄ ¼ 10−6c, σv ¼ 10−8c, σC̄ ¼ 10−14,
and N ¼ 100 measurements for each clock in configurations
(1,0), (1,2) and ð1;−2Þ (i.e., 3 × 100 clocks, positions, velocities,
and frequency ratio values).

FIG. 15. Scheme for the determination of the group (R0110,
R0220, R1210, R1220, R1212) from the measurements of configura-
tions (1,0), (2,0), (1,2), (2,1), and ð1;−2Þ. The lines represent the
dependencies given by Eqs. (B1), (B2), (B7), (B13), and (B10).
See Fig. 16 for the results of the corresponding simultaneous
determination.
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R1210 and R1212, starting from data of 3 clock configura-
tions. This case is qualitatively different from the first one
since now two of the clocks (those corresponding to
configurations (1,2) and ð1;−2Þ) are necessarily moving
with respect to the central clock, which allows to infer
values for R1210 and R1212, as discussed in detail in
Sec. VA. For this simulation we use N ¼ 100 (for each
arrangement of three clocks), ȳ¼ 10 km, σy ¼ 100 m,
v̄ ¼ 10−6c, σv ¼ 10−8c, and σC̄ ¼ 10−14. The results are
shown in Fig. 14. We observe that the test values (66)–(68)

are indeed recovered within the corresponding 2σ intervals.
Additionally, each curvature component is determined
with a different precision: the standard deviation of the
distribution for R0110, R1210, and R1212 are of the order of
10−23 m−2, 10−17 m−2, and 10−11 m−2, respectively. This is
a consequence of the additional effect of the velocity
involved in the analysis, which reduces the precision of
the determination of the curvature components “with more
spatial indices,” in a hierarchical way. This can be under-
stood by looking at the master equation (3), where the

FIG. 16. Obtained distribution for the curvature components R0110, R0220, R1210, R1212, and R1220, obtained simultaneously. In this
case, we used ȳ¼ 10 km. σy ¼ 100 m, σC̄ ¼ 10−14, v̄ ¼ 10−6c, and σv ¼ 10−8c and N ¼ 100 measurements for each clock in
configurations (1,0), (2,0), (1,2), ð1;−2Þ, and (2,1) (i.e., 5 × 100 clocks, positions, velocities, and frequency ratio values).
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curvature component R1210 contributes to the measurable
frequency ratio with a term which is suppressed by a factor
linear in the velocity v=c ∼ 10−6 when compared to R0110,
while the component R1212 is suppressed by a term
quadratic in v=c.
We also show the results of a simultaneous inference of

five curvature components, R0110, R0220, R1210, R1212, and
R1220, by using data from 5 clocks. See the discussion in
Sec. V and Fig. 15 which illustrates the process. Using

again N ¼ 100 (for each arrangement of five clocks),
ȳ ¼ 10 km, σy ¼ 100 m, v̄ ¼ 10−6c, σv ¼ 10−8c, and
σC̄ ¼ 10−14, the obtained result is shown in Fig. 16. The
behavior of this more complex case is similar to the
previous one, in the sense that the velocity defines a
hierarchy of precisions for the determination of each
curvature component: the distributions of R0110 and
R0220 have a standard deviation, for the values used in
our example, of the order of 10−23 m−2, while for R1210 and

FIG. 17. Posterior for the curvature component R0110 and additional nuisance parameters, using realistic parameter values. We used
ȳ¼ 10 km, σy ¼ 100 m, σC̄ ¼ 10−14, and N ¼ 100 measurements for each clock in configuration (1,0) (i.e., 1 × 100 clocks, positions,
velocities, and frequency ratio values).
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R1220 we obtain values of the order 10−17 m−2, and finally
R1212 is the component with the largest error of the order
10−10 m−2. If we compare how the component R0110 is
determined in this simultaneous determination with the
result of the simpler cases with three curvatures (Fig. 14)
and also with the single determination (Fig. 6), we notice
similar results for the spread of the corresponding obtained
distribution.
As an additional test we have also considered the

addition of nuisance parameters in the posterior analysis.
In Fig. 17 we show the result for the simpler curvature

component, R0110, when we also fit the parameter y0 and σy
as the mean value and standard deviation of the assumed
Gaussian distribution of the distance y; C̄ as the mean value
of the Gaussian distribution of the frequency ratio variable
C̄ and σC̄;m as the standard deviation of the variation of the
frequency ratio with respect to our model, given by the
master Eq. (3). The obtained values of these nuisance
parameters are within the expected range, as well as the
value for the component R0110, and with a precision similar
to that found in the simpler analysis in Fig. 6, as well as to
the result of the simultaneous curvature determination in

FIG. 18. Estimation of R0120 in a hierarchical way, with nuisance parameters estimation. We used ȳ¼ 10 km, σyx ¼ σyy ¼ 100 m,
σC̄ ¼ 10−14, and N ¼ 100 (i.e., 1 × 100 additional clocks, positions, and frequency ratio values in the (4,0) configuration).
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Fig. 16. A similar result can be obtained for the R0220

component.
Finally, we estimate again the component R0120 but, in

contrast to the simultaneous determination shown in
Fig. 11, now we perform a hierarchical calculation with
additional nuisance parameters. This means that we infer
the distribution for R0120 using the resulting distributions of
the components R0110 and R0220, which were calculated as
discussed in the paragraph above, as inputs. In Fig. 18 we
show the result for this curvature component, when we also
fit the parameters y0;x and y0;y as the mean values for the
x and y position coordinates of the clock, respectively; σy;x
and σy;y as the corresponding standard deviations; and σC̄;m
as the standard deviation of the variation of the frequency
ratio with respect to our model. The obtained values of
these nuisance parameters are again within the expected
range, as well as the value for the component R0120.
Looking at the standard deviation of the resulting proba-
bility distribution for R0120 we obtain a value of the order of
10−23 m−2, which is of the same order as the value resulting
from the simultaneous determination presented above and
displayed in Fig. 11.

VII. CONCLUSIONS AND OUTLOOK

We have worked out a new solution, as well as a
complete statistical description of the gravitational clock
compass [2,6]. The model of the compass presented here is
of direct experimental relevance for the operational deter-
mination of the gravitational field in general relativity by
means of clocks.
In particular, we extended the results from [1] in two

ways. First we derived new analytical expressions for the
acceleration and angular velocity of the reference frame in
terms of measurable frequency ratios of suitable clock
configurations. These exact solutions differ from those in
[1] by a different state of motion of the central reference
clock. Additionally, we presented a set of new analytical
expressions which allow for a simultaneous determination
of the kinematic properties of the underlying reference
frame. Furthermore, a new analytical compass solution for
all curvature components in Fermi coordinates was
obtained. This solution was subsequently classified by
the number of actual clock measurements which are
required for the determination of each curvature component
in the solution. Using this solution, we discussed different
experimental strategies to measure particular curvature
components. In general the components can either be
determined directly/simultaneously—together with other
curvature components from a larger clock configuration—
and/or hierarchically, i.e., using the knowledge of previ-
ously determined curvature components.
In the second half of our work we illustrated how the

statistical determination of some representative curvature
components could be carried out. Starting from mock

data—which takes into account possible variability of the
measured position and velocity of the clocks, as well as
of the corresponding frequency ratios—we computed the
posterior probability distributions of several curvature com-
ponents by using each of the different approaches (direct/
simultaneous, hierarchical). This lead to an estimate of the
precision with which each curvature component could be
determined in a realistic measurement, and how the resulting
probability distribution depends on the various parameters of
our model. Some curvature components are better deter-
mined by particular clock configurations, depending on the
positions/distances, velocities, and the precision of the
involved clocks. This behavior was expected, as becomes
clear from a comparison to our exact solution, since some of
the parameters contribute with different weights to the
measured frequency ratio, e.g., with factors linear in the
velocities, and some with quadratic terms, etc.
Our results indicate that the strategy of a hierarchical

determination of the curvature components leads to an
estimation of the curvature of similar precision, using the
samedata,when compared to the simultaneous approach.Our
discussion of the relationship between the different curvature
components, and the various alternatives to infer their values
from the measurable quantities, is of direct relevance for the
future experimental implementation of a clock compass.
It is straightforward to extend our current analysis to

include the simultaneous and/or the hierarchical determi-
nation of more components of the curvature tensor. Even
the full determination of all 20 independent components
does not require conceptually different techniques than the
ones presented here. By using the model defined by the
master Eq. (3), and suitable position and velocity data of a
swarm of clocks as well as their corresponding frequency
ratio with respect to a central clock, all 20 components can
be inferred analogously to the examples presented here.
Finally, it should be mentioned that highly accurate clock

networks, which are currently in use [16,17] and under
construction [18,19], present an exciting direct application
of the framework presented here.
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APPENDIX A: NOTATIONS AND CONVENTIONS

We follow the notation used in [1], in particular we set
c ¼ 1, raise and lower three dimensional indices of
kinematic quantities by means of the Euclidean metric,
i.e., ωα ¼ δαβωβ, etc. Note however, that for the curvature
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components we use the convention where the indices are
lowered using the full Lorentzian metric, which in turn
introduces a different sign in the terms involving Rγαβδ,
cf. Eq. (1). The symbols used in this work are summarized
in Table II.

APPENDIX B: FULLY RESOLVED FORM
OF THE CURVATURE SOLUTION

R0110 ¼ −
ð1;0ÞB3

y2
; ðB1Þ

R0220 ¼ −
ð2;0ÞB3

y2
; ðB2Þ

R0330 ¼ −
ð3;0ÞB3

y2
; ðB3Þ

R0120 ¼
1

2y2
ðð1;0ÞB3 þ ð2;0ÞB3 − ð4;0ÞB3Þ; ðB4Þ

R0130 ¼
1

2y2
ðð1;0ÞB3 þ ð3;0ÞB3 − ð6;0ÞB3Þ; ðB5Þ

R0230 ¼
1

2y2
ðð2;0ÞB3 þ ð3;0ÞB3 − ð5;0ÞB3Þ; ðB6Þ

R1210 ¼
3

8v22y2
ðð1;2ÞB3 − ð1;−2ÞB3Þ; ðB7Þ

R1310 ¼
3

8v33y2
ðð1;3ÞB3 − ð1;−3ÞB3Þ; ðB8Þ

R2320 ¼
3

8v33y2
ðð2;3ÞB3 − ð2;−3ÞB3Þ; ðB9Þ

R1212 ¼ −
3

2v222y
2
ð2ð1;0ÞB3 − ð1;2ÞB3 − ð1;−2ÞB3Þ; ðB10Þ

R1313 ¼ −
3

2v233y
2
ð2ð1;0ÞB3 − ð1;3ÞB3 − ð1;−3ÞB3Þ; ðB11Þ

R2323 ¼ −
3

2v233y
2
ð2ð2;0ÞB3 − ð2;3ÞB3 − ð2;−3ÞB3Þ; ðB12Þ

R1220 ¼
3

8v11v222y
2
ð2v222ðð2;0ÞB3 − ð2;1ÞB3Þ

þv211ð−2ð1;0ÞB3 þ ð1;2ÞB3 þ ð1;−2ÞB3ÞÞ; ðB13Þ

R1330 ¼
3

8v11v222y
2
ð2v233ðð3;0ÞB3 − ð3;1ÞB3Þ

þv211ð−2ð1;0ÞB3 þ ð1;3ÞB3 þ ð1;−3ÞB3ÞÞ; ðB14Þ

R2330 ¼
3

8v22v233y
2
ð2v233ðð3;0ÞB3 − ð3;1ÞB3Þ

þv222ð−2ð2;0ÞB3 þ ð2;3ÞB3 þ ð2;−3ÞB3ÞÞ; ðB15Þ

R1213 ¼ −
3

4v222v
2
33v52v53y

2
0

ð2ðv222v233 − v222v
2
53 − v233v

2
52Þð1;0ÞB3 þ ðv22v233v52 þ v233v

2
52Þð1;2ÞB3

þ ðv222v33v53 þ v222v
2
53Þð1;3ÞB3 − 2v222v

2
33

ð1;5ÞB3 − ðv22v233v52 − v233v
2
52Þð1;−2ÞB3

− ðv222v33v53 − v222v
2
53Þð1;−3ÞB3Þ; ðB16Þ

R1223 ¼
3

4v11v222v
2
33v61v63y

2
0

½2ðv211v233v61 − v11v233v
2
61Þð1;0ÞB3 − ðv211v233v61 − v11v233v

2
61Þð1;2ÞB3

þ 2ðv11v222v233 − v11v222v
2
63 − v222v

2
33v61Þð2;0ÞB3 þ 2v222v

2
33v61

ð2;1ÞB3 þ ðv11v222v33v63 þ v11v222v
2
63Þð2;3ÞB3

− 2v11v222v
2
33

ð2;6ÞB3 − ðv211v233v61 − v11v233v
2
61Þð1;−2ÞB3 − v11v222v33v63 − v11v222v

2
63Þð2;−3ÞB3�; ðB17Þ

TABLE II. Directory of symbols.

Symbol Explanation

gab Metric
YðsÞ, XðτÞ (Reference) world line
εαβγ 3D Levi-Civita symbol
xα Spatial Fermi coordinates
τ Proper time
δαβ 3D Euclidean metric
Rabcd ¼ Rabc

egde Riemann curvature
vα, ωα (Linear, angular) velocity
aα Acceleration
C̄, B1;2;3 Auxiliary quantities
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R1323 ¼ −
3

4v11v22v233v41v42y
2
0

½2ðv211v22v41 − v11v22v241Þð1;0ÞB3 − ðv211v22v41 − v11v22v241Þð1;3ÞB3

þ 2ðv11v222v42 − v11v22v242Þð2;0ÞB3 − ðv11v222v42 − v11v22v242Þð2;3ÞB3

þ 2ðv11v22v233 − v11v233v42 − v22v233v41Þð3;0ÞB3 þ 2v22v233v41
ð3;1ÞB3 þ 2v11v233v42

ð3;2ÞB3 − 2v11v22v233
ð3;4ÞB3

− ðv211v22v41 − v11v22v241Þð1;−3ÞB3 − ðv11v222v42 − v11v22v242Þð2;−3ÞB3�; ðB18Þ

R1230 ¼ −
3

8v11v22v33v41v42y20
½ð2ðv211v22v41 − v11v22v241 þ v11v22v41v42Þð1;0ÞB3

− ðv211v22v41 − v11v22v241 þ 2v11v22v41v42Þð1;3ÞB3 þ 2ðv11v222v42 þ v11v22v41v42 − v11v22v242Þð2;0ÞB3

− ðv11v222v42 þ 2v11v22v41v42 − v11v22v242Þð2;3ÞB3 þ 2ðv11v22v233 − v11v233v42 − v22v233v41Þð3;0ÞB3

þ 2v22v233v41
ð3;1ÞB3 þ 2v11v233v42

ð3;2ÞB3 − 2v11v22v233
ð3;4ÞB3 − 2v11v22v41v42ð4;0ÞB3 þ 2v11v22v41v42ð4;3ÞB3

− ðv211v22v41 − v11v22v241Þð1;−3ÞB3 − ðv11v222v42 − v11v22v242Þð2;−3ÞB3�; ðB19Þ

R2310 ¼
3

8v11v222v
2
33v52v53y

2
0

½2ðv211v222v233 − v211v
2
22v

2
53 − v211v

2
33v

2
52Þð1;0ÞB3 þ ðv211v22v233v52 þ v211v

2
33v

2
52Þð1;2ÞB3

þ ðv211v222v33v53 þ v211v
2
22v

2
53Þð1;3ÞB3 − 2v211v

2
22v

2
33

ð1;5ÞB3 þ 2v222v
2
33v52v53

ð2;0ÞB3 − 2v222v
2
33v52v53

ð2;1ÞB3

þ 2v222v
2
33v52

ð3;0ÞB3 − 2v222v
2
33v52v53

ð3;1ÞB3 − 2v222v
2
33v52v53

ð5;0ÞB3 þ 2v222v
2
33v52v53

ð5;1ÞB3

− ðv211v22v233v52 − v211v
2
33v

2
52Þð1;−2ÞB3 − ðv211v222v33v53 − v211v

2
22v

2
53Þð1;−3ÞB3�: ðB20Þ

APPENDIX C: ANALYTICAL EXPRESSIONS
FOR ERROR PROPAGATION

We derive an approximate analytical expression for the
error of the curvature. This result is then used to place upper
limits, depending on the desired target error for the
curvature, on the error of the variables which enter the
expression for the curvature. The simple analytical result is
useful for the adjustment of parameters in our simulations.
The general form of a curvature component like R ¼

R0110 is of the generic form R ¼ −ðC̄þ v2Þ=y2, see (34),
therefore, we infer that

�
σR
R

�
2

≈
�

σC̄
C̄þ v2

�
2

þ
�
2σy
y

�
2

þ
�

2vσv
C̄þ v2

�
2

: ðC1Þ

If we want to have a fractional error lower than a certain
value, this expression becomes an inequality,

�
σC̄

C̄þ v2

�
2

þ
�
2σy
y

�
2

þ
�

2vσv
C̄þ v2

�
2

<

�
σR
R

�
2

; ðC2Þ

which requires that

�
σC̄

C̄þ v2

�
2

<

�
σR
R

�
2

; ðC3Þ

�
2σy
y

�
2

<

�
σR
R

�
2

; ðC4Þ

and

�
2vσv
C̄þ v2

�
2

<

�
σR
R

�
2

: ðC5Þ

From this, we derive the necessary conditions

σC̄ <

				 σRR
				jC̄þ v2j; ðC6Þ

σy <

				 σRR
				 y2 ; ðC7Þ

and

σv <

				 σRR
C̄þ v2

2v

				: ðC8Þ

EXTENDED GRAVITATIONAL CLOCK COMPASS: NEW EXACT … PHYS. REV. D 102, 044027 (2020)

044027-19



[1] D. Puetzfeld, Y. N. Obukhov, and C. Lämmerzahl, Gravi-
tational clock compass in general relativity, Phys. Rev. D 98,
024032 (2018).

[2] P. Szekeres, The gravitational compass, J. Math. Phys.
(N.Y.) 6, 1387 (1965).

[3] F. A. E. Pirani, On the physical significance of the Riemann
tensor, Acta Phys. Pol. 15, 389 (1956); Republication of:
On the physical significance of the Riemann tensor, Gen.
Relativ. Gravit. 41, 1215 (2009).

[4] J. L. Synge, Relativity: The General Theory (North-Holland,
Amsterdam, 1960).

[5] Y. N. Obukhov and D. Puetzfeld, Measuring the gravita-
tional field in general relativity: From deviation equations
and the gravitational compass to relativistic clock gradiom-
etry, Relativistic Geodesy: Foundations and Applications,
edited by D. Puetzfeld et al., Fundamental Theories of
Physics (Springer, Cham, 2019), Vol. 196, p. 87, https://doi
.org/10.1007/978-3-030-11500-5_3.

[6] D. Puetzfeld and Y. N. Obukhov, Generalized deviation
equation and determination of the curvature in General
Relativity, Phys. Rev. D 93, 044073 (2016).

[7] P. A. Hogan and D. Puetzfeld, Gravitational clock compass
and the detection of gravitational waves, Phys. Rev. D 101,
044012 (2020).

[8] W. T. Ni and M. Zimmermann, Inertial and gravitational
effects in the proper reference frame of an accelerated,
rotating observer, Phys. Rev. D 17, 1473 (1978).

[9] C. Le Poncin-Lafitte, B. Linet, and P. Teyssandier, World
function and time transfer: general post-Minkowskian
expansions, Classical Quantum Gravity 21, 4463 (2004).

[10] P. Teyssandier, C. Le Poncin-Lafitte, and B. Linet, A
universal tool for determining the time delay and the

frequency shift of light: Synges World function, in Lasers,
Clocks and Drag-Free Control, edited by H. Dittus, C.
Lammerzahl, and S. G. Turyshev, Astrophysics and Space
Science Library Vol. 389 (Springer, Berlin, Heidelberg,
2008), p. 153, https://doi.org/10.1007/978-3-540-34377-6_6.

[11] P. Teyssandier and C. Le Poncin-Lafitte, General post-
Minkowskian expansion of time transfer functions,
Classical Quantum Gravity 25, 145020 (2008).

[12] C.W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland,
Optical clocks and relativity, Science 329, 1630 (2010).

[13] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland,
and T. Rosenband, Frequency Comparison of Two High-
Accuracy Alþ Optical Clocks, Phys. Rev. Lett. 104, 070802
(2010).

[14] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J.
Goodman, emcee: The MCMC Hammer, Publ. Astron.
Soc. Pac. 125, 306 (2013).

[15] D. Bini, A. Geralico, and R. T. Jantzen, Kerr metric, static
observers and Fermi coordinates, Classical Quantum Grav-
ity 22, 4729 (2005).

[16] C. Lisdat et al., A clock network for geodesy and funda-
mental science, Nat. Commun. 7, 12443 (2016).

[17] Boulder Atomic Clock Optical Network (BACON) Collabo-
ration, Frequency ratio measurements with 18-digit accuracy
using a network of optical clocks, arXiv:2005.14694.

[18] F. Riehle, Optical clock networks, Nat. Photonics 11, 25
(2017).

[19] A. Bauch, Time and frequency metrology in the context of
relativistic geodesy, Relativistic Geodesy: Foundations and
Applications, edited by D. Puetzfeld et al., Fundamental
Theories of Physics (Springer, Cham, 2019), Vol. 196, p. 1,
https://doi.org/10.1007/978-3-030-11500-5_1.

NEUMANN, PUETZFELD, and RUBILAR PHYS. REV. D 102, 044027 (2020)

044027-20

https://doi.org/10.1103/PhysRevD.98.024032
https://doi.org/10.1103/PhysRevD.98.024032
https://doi.org/10.1063/1.1704788
https://doi.org/10.1063/1.1704788
https://doi.org/10.1007/s10714-009-0787-9
https://doi.org/10.1007/s10714-009-0787-9
https://doi.org/10.1007/978-3-030-11500-5_3
https://doi.org/10.1007/978-3-030-11500-5_3
https://doi.org/10.1007/978-3-030-11500-5_3
https://doi.org/10.1103/PhysRevD.93.044073
https://doi.org/10.1103/PhysRevD.101.044012
https://doi.org/10.1103/PhysRevD.101.044012
https://doi.org/10.1103/PhysRevD.17.1473
https://doi.org/10.1088/0264-9381/21/18/012
https://doi.org/10.1007/978-3-540-34377-6_6
https://doi.org/10.1007/978-3-540-34377-6_6
https://doi.org/10.1007/978-3-540-34377-6_6
https://doi.org/10.1088/0264-9381/25/14/145020
https://doi.org/10.1126/science.1192720
https://doi.org/10.1103/PhysRevLett.104.070802
https://doi.org/10.1103/PhysRevLett.104.070802
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1088/0264-9381/22/22/006
https://doi.org/10.1088/0264-9381/22/22/006
https://doi.org/10.1038/ncomms12443
https://arXiv.org/abs/2005.14694
https://doi.org/10.1038/nphoton.2016.235
https://doi.org/10.1038/nphoton.2016.235
https://doi.org/10.1007/978-3-030-11500-5_1
https://doi.org/10.1007/978-3-030-11500-5_1
https://doi.org/10.1007/978-3-030-11500-5_1

