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The properties of interior spacetimes sourced by stationary cylindrical anisotropic fluids are here
analytically studied for both nonrigid and rigid rotation. As regards nonrigid rotation, this is, to our
knowledge, the first work dedicated to such a study. We give here a complete equation set describing these
spacetime properties. In particular, we focus our attention on both nonrigid and rigid rotation gravito-
electromagnetic features and are thus led to display strong hints in favor of conjecturing purely electric
Weyl tensor existence in this framework. We have also been able to characterize new purely magnetic
physically consistent spacetimes and have found new rigidly rotating exact solution classes to the five
Einstein’s field equations pertaining to the issue and the two purely magnetic constraints we have derived
for this purpose. This should be considered as a prominent result, since extremely few purely magnetic
exact solutions are available in the literature.
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I. INTRODUCTION

A long-standing technique to assist in spacetime metric
studies involving Einstein’s general relativity field equa-
tions is to impose symmetry constraints, i.e., Killing
vectors. Now, one Killing vector implies a rather tricky
problem, while with two, even though still involved, the
problem simplifies such as to become rather tractable, at
least in a number of simplifying cases [1,2]. Cylindrical
symmetry, implying two Killing vectors, has therefore
attracted much attention since the pioneering work by
Levi-Civita identifying in 1919 vacuum static cylindrical
spacetimes [3] and their extension to stationary ones
obtained independently by Lanczos in 1924 [4] and by
Lewis in 1932 [5]. The Lewis solution describes a vacuum
exterior sourced by a matter cylinder rotating around its
symmetry axis. The vacuum solution outside a cylindrical
source in translation along its symmetry axis is mathemati-
cally akin to the Lewis solution with exchanged z and ϕ
coordinates. It has been shown that they are, however,
physically different [6]. Nonvacuum cylindrically symmet-
ric spacetime investigations date back to 1937 when van
Stockum gave the metric solution for a rigidly rotating
infinitely long dust cylinder [7]. Since then, cylindrically
symmetric spacetimes have been extensively investigated
for a number of different purposes [1,2]. For a recently

published review on cylindrical systems in general
relativity, see [8].
In [9], nonvacuum stationary spacetimes sourced by a

cylindrical anisotropic fluid have been considered, while
only rigid rotation has been studied. In the present work, we
extend this study to the nonrigid rotation case, and
complete and improve the rigid case analysis proposed
in [9]. We first aim here at thoroughly analyzing the
stationary nonrigidly rotating anisotropic fluid cylinder
mathematical and physical features, with a focus on its
Weyl tensor gravito-electromagnetic properties. Then we
exemplify our results by applying the obtained equation set
to the rigid rotation case. The more prominent result we
obtain in the gravito-electromagnetism framework is the
display of purely magnetic Weyl tensor spacetimes exhib-
iting physically consistent properties.
Actually, any nonconformally flat spacetime’s Weyl

tensor can be pointwise decomposed into an electric,
Eαβ, and a magnetic, Hαβ, part with respect to a given
unit timelike congruence, uα, and this decomposition
determines entirely the Weyl tensor. Eαβ and Hαβ are
traceless, symmetric, and spacelike tensors. Such a decom-
position was first introduced in [10] and developed in [11],
where it has been applied to the vacuum Riemann tensor in
an attempt to find out a possible analogy between gravi-
tational and classical electromagnetic quantities. However,
such an analogy is not that straightforward, and can even be
physically misleading if not handled with care [12].
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A nonconformally flat spacetime for which the Weyl
tensor magnetic (electric) part identically vanishes with
respect to some uα is called purely electric (magnetic) and
its Weyl tensor is said to be purely electric (magnetic) with
respect to uα. Since Eαβ and Hαβ (with respect to uα) are
diagonalizable, the purely electric (magnetic) spacetime
Petrov type is necessarily I or D, and, at each point, uα is a
Weyl principal vector and is essentially unique (up to sign)
for the Petrov type I spacetimes [13,14] which will be
considered here. Now, the purely electric (magnetic) types
can be characterized with no reference to uα by using the
complex quadratic, cubic, and zero-dimensional Weyl
tensor invariants.
Actually, while many purely electric spacetimes are

known [15–23] and, in particular, all static ones, this is
not the case for purely magnetic spacetimes even though
there can be found in the literature a rather great involve-
ment in trying to find out mathematically and/or physically
consistent such solutions [13,14,24–32]. Currently, no
purely magnetic vacuum solutions, with or without Λ
cosmological constant, are known. This has led to the
conjecture that purely magnetic vacua do not exist in an
open four-dimensional (4D) region [14,33]. Proofs for this
conjecture have been displayed, but merely for spacetimes
exhibiting particular Petrov types or specific physical
properties [33–42]. As regards nonvacuum solutions,
almost every known purely magnetic spacetimes are
Petrov type D [13,27,28,30,43–47] or IðM∞Þ in the
extended McIntosh-Arianrhod classification [48,49], and
the last one only for perfect fluids [14]. The only type
IðMþÞ purely magnetic spacetime available in the literature
has been mathematically constructed and its physical
meaning remains unspecified [32]. The specific improve-
ment here proposed consists in obtaining IðM∞Þ purely
magnetic spacetimes sourced by actual physically consis-
tent fluids of which we give a detailed analysis. We have
thus been led to exhibit rigidly rotating exact solutions to
the whole set of five Einstein’s field equations pertaining to
the issue and the two purely magnetic constraint equations
we have derived for the purpose.
Even though Hawking and Ellis [50] have excluded

purely magnetic spacetimes from their singularity theorem
conditions, arguing that such spacetimes should be unphys-
ical, their argument applies only for modeling the whole
universe. There is no obvious physical reason why purely
magnetic solutions such as the ones displayed here should
not be used as models for particular astrophysical objects or
for some spacetime regions.
The paper is organized as follows: in Sec. II, we set up

the stationary cylindrically symmetric line element which
will be used for both nonrigidly rotating and rigidly rotating
fluid classes. In Sec. III, we display the field equations, the
hydrodynamical scalars, vectors, and tensors, the regularity
and junction conditions, and a gravito-electromagnetic
analysis conducted for the nonrigid rotation case. We are

thus led to propose, as a strongly based conjecture, that
purely electric and purely magnetic Petrov type IðM∞Þ
such nonstatic spacetimes exist, and we give the simplified
equation set they verify in each case, purely electric or
purely magnetic. Section IV is devoted to an analogous
rigid case analysis. We show that purely electric cylindri-
cally symmetric spacetime staticity can merely be conjec-
tured, while not proved, for rigid rotation. Purely magnetic
rigidly rotating spacetimes sourced by a fluid with vanish-
ing radial and azimutal stresses are given in Sec. Vas exact
solutions for both the field equation set and the purely
magnetic constraints derived in Sec. IV. Our conclusions
are displayed in Sec. VI.

II. CYLINDRICAL SPACETIME
INSIDE THE SOURCE

We consider a stationary cylindrically symmetric aniso-
tropic nondissipative fluid bounded by a cylindrical surface
Σ and whose stress-energy tensor we write as

Tαβ ¼ ðρþ PrÞVαVβ þ Prgαβ

þ ðPϕ − PrÞKαKβ þ ðPz − PrÞSαSβ; ð1Þ

where ρ is the fluid energy density; Pr, Pz, and Pϕ are the
principal stresses; and Vα, Kα, and Sα are 4-vectors
satisfying

VαVα ¼ −1; KαKα ¼ SαSα ¼ 1;

VαKα ¼ VαSα ¼ KαSα ¼ 0: ð2Þ

We assume, for the inside Σ spacetime, the spacelike ∂z
Killing vector to be hypersurface orthogonal, such as to
ease its subsequent matching to the exterior Lewis metric
Weyl class. Hence, the stationary cylindrically symmetric
line element reads

ds2 ¼ −fdt2 þ 2kdtdϕþ eμðdr2 þ dz2Þ þ ldϕ2; ð3Þ

where f, k, μ, and l are real functions of the radial
coordinate r only. Owing to cylindrical symmetry, the
coordinates are bound to conform to the following ranges:

−∞ ≤ t ≤ þ∞; 0 ≤ r; −∞ ≤ z ≤ þ∞;

0 ≤ ϕ ≤ 2π; ð4Þ

where the two limits of the ϕ coordinate are topologically
identified. We number the coordinates x0 ¼ t, x1 ¼ r,
x2 ¼ z, and x3 ¼ ϕ.

III. NONRIGIDLY ROTATING FLUID

We consider first the nonrigid rotation case. The fluid
4-velocity, satisfying conditions (2), can thus be chosen as
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Vα ¼ vδα0 þΩδα3; ð5Þ

where v and Ω are functions of r only. Since Vα has to
satisfy the timelike condition provided in (2), we have

fv2 − 2kvΩ − lΩ2 − 1 ¼ 0: ð6Þ

The two spacelike 4-vectors used to define the stress-
energy tensor while verifying conditions (2) can be chosen
as

Kα ¼ −
1

D
½ðkvþ lΩÞδα0 þ ðfv − kΩÞδα3�; ð7Þ

Sα ¼ e−μ=2δα2; ð8Þ

with

D2 ¼ flþ k2: ð9Þ

A. Field equations

With the above choice for the three 4-vectors defining
the stress-energy tensor, and using (6) into (1), we obtain
the five nonzero components of this stress-energy tensor,
and we can write the following five Einstein’s field
equations for the inside Σ spacetime:

G00 ¼
e−μ

2

�
−fμ00 − 2f

D00

D
þ f00 − f0

D0

D
þ 3fðf0l0 þ k02Þ

2D2

�
¼ κ½ρf þ ðρþ PϕÞD2Ω2�; ð10Þ

G03 ¼
e−μ

2

�
kμ00 þ 2k

D00

D
− k00 þ k0

D0

D
−
3kðf0l0 þ k02Þ

2D2

�
¼ −κ½ρkþ ðρþ PϕÞD2vΩ�; ð11Þ

G11 ¼
μ0D0

2D
þ f0l0 þ k02

4D2
¼ κPreμ; ð12Þ

G22 ¼
D00

D
−
μ0D0

2D
−
f0l0 þ k02

4D2
¼ κPzeμ; ð13Þ

G33 ¼
e−μ

2

�
lμ00 þ 2l

D00

D
− l00 þ l0

D0

D
−
3lðf0l0 þ k02Þ

2D2

�
¼ −κ½ρl − ðρþ PϕÞD2v2�; ð14Þ

where the primes stand for differentiation with respect to r.
We have thus six equations, i.e., (6) and (10)–(14) for ten

unknown functions of r, namely, f, k, μ, l, v, Ω, ρ, Pr, Pz,
and Pϕ. Therefore, four equations of state connecting the
matter observables or ad hoc assumptions on the metric
functions would have to be imposed in order to solve the
field equations. However, Eqs. (10)–(14) can be partially
integrated as follows. From (10) and (14), we can derive

�
lf0 − fl0

D

�0
¼ 2κðρþ PϕÞDeμðfv2 þ lΩ2Þ: ð15Þ

From (10) and (11), we obtain�
kf0 − fk0

D

�0
¼ 2κðρþ PϕÞDeμðkΩ2 − fvΩÞ: ð16Þ

Equations (11) and (14) yield�
kl0 − lk0

D

�0
¼ −2κðρþ PϕÞDeμðkv2 þ lvΩÞ: ð17Þ

Using (15)–(17), and assuming Ω ≠ 0, i.e., the nonrigid
rotation case, with fv2 ≠ −lΩ2, kΩ ≠ fv, kv ≠ −lΩ, and,
of course, v ≠ 0, we can write

1

fv2 þ lΩ2

�
lf0 − fl0

D

�0
¼ 1

kΩ2 − fvΩ

�
kf0 − fk0

D

�0

¼ 1

kv2 þ lvΩ

�
lk0 − kl0

D

�0
: ð18Þ

B. Hydrodynamical scalars, vectors, and tensors

The timelike 4-vector Vα can be invariantly decomposed
into three independent parts through the genuine tensor
Vα;β as

Vα;β ¼ − _VαVβ þ ωαβ þ σαβ; ð19Þ

where

_Vα ¼ Vα;βVβ; ð20Þ

ωαβ ¼ V ½α;β� þ _V ½αVβ�; ð21Þ

σαβ ¼ Vðα;βÞ þ _VðαVβÞ: ð22Þ

The three above quantities are called, respectively, the
acceleration vector, the rotation or twist tensor, and the
shear tensor. For the timelike 4-vector given by (5), the
(20)–(22) nonzero components are

_V1 ¼ −Ψ; ð23Þ

2ω01 ¼ −ðfv − kΩÞ0 − ðfv − kΩÞΨ; ð24Þ

2ω13 ¼ −ðkvþ lΩÞ0 − ðkvþ lΩÞΨ; ð25Þ

2σ01 ¼ −fv0 þ kΩ0 þ ðfv − kΩÞΨ; ð26Þ

2σ13 ¼ kv0 þ lΩ0 − ðkvþ lΩÞΨ; ð27Þ

with
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Ψ ¼ fvv0 − kðvΩÞ0 − lΩΩ0 ¼ −
1

2
ðv2f0 − 2vΩk0 − Ω2l0Þ;

ð28Þ

where the equality in (28) follows from (6) differentiated
with respect to r. The modulus of the acceleration vector is

_Vα _Vα ¼ e−μΨ2: ð29Þ

The rotation scalar, ω, defined by

ω2 ¼ 1

2
ωαβωαβ; ð30Þ

follows from

ω2 ¼ f
4eμD2ðfv − kΩÞ2 ½ðkf

0 − fk0Þv2 þ ðlf0 − fl0ÞvΩ

þ ðkl0 − lk0ÞΩ2 þD2ðv0Ω − vΩ0Þ�2: ð31Þ

The shear scalar, σ, defined by

σ2 ¼ 1

2
σαβσαβ; ð32Þ

follows from

σ2 ¼ e−μD2

4
ðv0Ω − vΩ0Þ2: ð33Þ

Equation (33) shows that choosing a corotating frame for
the stationary fluid source, implyingΩ ¼ 0, leads to σ ¼ 0,
meaning thus that the source rigidly rotates.

C. Regularity conditions

The regularity conditions on the symmetry axis for
metric (3) have already been displayed in [9]. However,
since they will be needed in the following, we recall them
briefly here, using our own notations. They imply [2]

lim
r→0

gαβX;αX;β

4X
¼ 1; ð34Þ

where X ¼ gϕϕ. Equations (3) and (34) yield

lim
r→0

e−μl02

4l
¼ 1: ð35Þ

The requirement that gϕϕ vanishes on the axis implies

l¼0 0; ð36Þ

where ¼0 means that the values are taken at r ¼ 0.
Since, from a physical point of view, there cannot be

singularities along the axis, we impose that, at this limit,

spacetime tends to flatness; hence we scale the coordinates
such that, for r → 0, the metric becomes

ds2 ¼ −dt2 þ 2ωr2dtdϕþ dr2 þ dz2 þ r2dϕ2; ð37Þ

from which

f¼0 1; k¼0 μ¼0 0; ð38Þ
follow, implying

D¼0 0; ð39Þ

and, from (35) and (37),

l0 ¼0 0: ð40Þ

Then, from the above and the requirement that the Einstein
tensor components in (10)–(14) do not diverge, we have

f0 ¼0 k0 ¼0 k00 − k0
D0

D
¼0 0; ð41Þ

and from (40) and (41) we obtain

D0 ¼0 k00 ¼0 0: ð42Þ

D. Junction conditions

These conditions have also been displayed in [9] for
metric (3). For completeness, and also since they will be
partially needed further on, we recall them here briefly, in a
version adapted to nonrigid rotation and to our own
notations.
Outside the fluid cylinder, a vacuum solution to the field

equations is needed. Since our system is stationary, the
Lewis metric [5] will be used to represent such an exterior
spacetime. And its Weyl class [51] is here chosen for
junction condition purposes. This metric can be written as

ds2 ¼ −Fdt2 þ 2Kdtdϕþ eMðdR2 þ dz2Þ þ Ldϕ2; ð43Þ

where

F ¼ aR1−n − aδ2R1þn; ð44Þ

K ¼ −ð1 − abδÞδR1þn − abR1−n; ð45Þ

eM ¼ Rðn2−1Þ=2; ð46Þ

L ¼ ð1 − abδÞ2
a

R1þn − ab2R1−n; ð47Þ

with
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δ ¼ c
an

; ð48Þ

where a, b, c, and n are real constants. See [9] for
comments about the respective coordinate systems inside
and outside the fluid cylinder and [51] for more details
about the Lewis metric Weyl class.
In accordance with Darmois’ junction conditions [52],

metric (3) and metric (43)’s coefficients and their
derivatives must be continuous across the Σ surface,

f¼Σ a1F; k¼Σ a2K; eμ ¼Σ a3eM; l¼Σ a4L; ð49Þ

f0

f
¼Σ 1

R
þ n

δ2Rn þ R−n

δ2R1þn − R1−n ; ð50Þ

k0

k
¼Σ 1

R
þ n

ð1 − abδÞδRn − abR−n

ð1 − abδÞδR1þn þ abR1−n ; ð51Þ

μ0¼Σ n2 − 1

2R
; ð52Þ

l0

l
¼Σ 1

R
þ n

ð1 − abδÞ2Rn þ a2b2R−n

ð1 − abδÞ2R1þn − a2b2R1−n : ð53Þ

The first fundamental form continuity imposes (49) where
the a1, a2, a3, and a4 constants can be transformed away by
rescaling the coordinates, while (50)–(53) are produced by
the second fundamental form continuity. Hence, the above

equations inserted into (12) imply Pr¼Σ 0, as expected.
In the low density limit, the n parameter is connected to

the Newtonian mass per unit length σ of a uniform line
mass, as follows [51]:

σ ¼ 1 − n
4

: ð54Þ

Comments about other spacetime properties issuing from
the above relations are displayed in [9], part of them
pertaining exclusively to the rigid rotation case. We do not
recall them here since they will not be needed for present
purposes.

E. Stress-energy tensor conservation

Writing the stress-energy tensor conservation is
analogous to writing the Bianchi identity

Tβ
1;β ¼ 0: ð55Þ

From (1), we have

Tαβ ¼ ðρþ PrÞVαVβ þ Prgαβ þ ðPϕ − PrÞKαKβ

þ ðPz − PrÞSαSβ: ð56Þ

With Vα given by (5), and the spacelike vectors Kα and Sα

given, respectively, by (7) and (8), which we insert into
(56), using (3) and (6), Bianchi identity (55) reduces to

Tβ
1;β ¼ P0

r − ðρþ PϕÞΨþ ðPr − PϕÞ
D0

D

þ 1

2
ðPr − PzÞμ0 ¼ 0: ð57Þ

F. Gravito-electromagnetism

In this section we will study metric (3)’s gravito-
electromagnetic properties when its Weyl tensor features
are coupled to the field equations (10)–(14).

1. The Weyl tensor

The Weyl tensor nonzero components, Cαβγδ, valid for
both nonrigid and rigid rotation cases, are

C0101 ¼
f00

4
−
fμ00

12
−
fD00

6D
−
f0μ0

4

−
f0D0

4D
þ fμ0D0

4D
þ fðf0l0 þ k02Þ

6D2
; ð58Þ

C0202 ¼ −
f00

4
−
fμ00

12
þ fD00

3D
þ f0μ0

4

þ f0D0

4D
−
fμ0D0

4D
−
fðf0l0 þ k02Þ

3D2
; ð59Þ

C0303 ¼
e−μ

6
ð−DD00 þD2μ00 þ f0l0 þ k02Þ; ð60Þ

C0113 ¼
k00

4
−
kμ00

12
−
kD00

6D
−
k0μ0

4
−
k0D0

4D

þ kμ0D0

4D
þ kðf0l0 þ k02Þ

6D2
; ð61Þ

C0223 ¼ −
k00

4
−
kμ00

12
þ kD00

3D
þ k0μ0

4
þ k0D0

4D

−
kμ0D0

4D
−
kðf0l0 þ k02Þ

3D2
; ð62Þ

C1212 ¼
eμ

6

�
−μ00 þD00

D
−
f0l0 þ k02

D2

�
; ð63Þ

C1313 ¼ −
l00

4
þ lμ00

12
þ lD00

6D
þ l0μ0

4

þ l0D0

4D
−
lμ0D0

4D
−
lðf0l0 þ k02Þ

6D2
; ð64Þ

C2323 ¼
l00

4
þ lμ00

12
−
lD00

3D
−
l0μ0

4
−
l0D0

4D

þ lμ0D0

4D
þ lðf0l0 þ k02Þ

3D2
: ð65Þ
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They satisfy the five following relations:

C1212 ¼ −
e2μ

D2
C0303; ð66Þ

D2ðC0101 þ C0202Þ þ feμC0303 ¼ 0; ð67Þ

kðC0101 þ C0202Þ ¼ fðC0113 þ C0223Þ; ð68Þ

lðC0101 þ C0202Þ ¼ −fðC1313 þ C2323Þ; ð69Þ

lC0101 þ fC2323 þ kðC0113 − C0223Þ ¼ 0: ð70Þ

There are thus only three independent Weyl tensor
components.

2. Conformal flatness

As it is well-known, any spacetime whose Weyl tensor
vanishes is conformally flat. In this section, we show that,
when metric (3) obtains, a null Weyl tensor is incompatible
with the regularity conditions on the symmetry axis. As a
consequence, conformal flatness is not allowed for the
corresponding spacetimes.
Assuming Cαβγδ ¼ 0 for any α, β, γ, and δ, we should

have, in particular, C0303 ¼ 0 and C0223 ¼ 0, which, using
(60) and (62), give

D0

D
¼ ðkμ0 − k0Þ0

kμ0 − k0
; ð71Þ

which can be integrated as

c1ðkμ0 − k0Þ ¼ D; ð72Þ

where c1 is an integration constant.
An analogous reasoning conducted with C0303 ¼ 0 and

C1313 ¼ 0, using (60) and (64), yields

D0

D
¼ ðlμ0 − l0Þ0

lμ0 − l0
; ð73Þ

which can be integrated as

c2ðlμ0 − l0Þ ¼ D; ð74Þ

where c2 is an integration constant.
Then, from (72) and (74), we obtain

μ0 ¼ c1k0 − c2l0

c1k − c2l
; ð75Þ

which we can integrate as

eμ ¼ c3ðc1k − c2lÞ; ð76Þ

where c3 is an integration constant.
Now, regularity conditions (36) and (38) inserted into

(76) would give

1¼0 0; ð77Þ

which is obvious nonsense issuing from the C0303, C0223,
and C1313 vanishing assumptions.
We are thus led to the conclusion that, since the three

Weyl tensor components C0303, C0223, and C1313 are not
allowed to simultaneously vanish, the corresponding space-
times cannot be conformally flat.

3. Purely electric and purely magnetic spacetimes

Nonconformally flat Weyl tensor electric and magnetic
parts, respectively, Eαβ and Hαβ, as measured by an
observer with 4-velocity uα (unit timelike congruence),
are pointwise defined from the Weyl tensor Cαβγδ and its
dual C̃αβγδ by contraction with the 4-velocity vector uα as

Eαβ ¼ Cαγβδuγuδ; ð78Þ

Hαβ ¼ C̃αγβδuγuδ ¼
1

2
ϵαγϵδCϵδ

βρu
γuρ;

ϵαβγδ ≡ ffiffiffiffiffiffi
−g

p
ηαβγδ; ð79Þ

where ηαβγδ ¼ þ1 or −1 for α, β, γ, δ, in even or odd order,
respectively, and 0 otherwise. As the Weyl tensor itself, its
electric and magnetic parts are traceless symmetric tensors,
and they determine it entirely.
Spacetimes for which the Weyl tensor magnetic part

vanishes are called purely electric while those for which the
electric part vanishes are named purely magnetic.
Although, while considering (78) and (79), one could
presume both the purely electric and the purely magnetic
properties to be dependent on the uα choice, this is actually
not the case. If one such property holds, then uα is a Weyl
principal vector. Moreover, for Petrov type I spacetimes
such as those we will study below, uα is uniquely
determined (up to sign) by the Weyl tensor components,
Cαβγδ [49,53].
We will show below that stationary nonrigidly rotating

cylindrical anisotropic fluid interior solutions can exhibit
for some of them a purely electric Weyl tensor and for
others a purely magnetic one, provided their metric
functions satisfy particular constraints. For this and
Petrov classification purposes, we will use the properties
of the Weyl tensor complex invariants [48,54]. We first
define

Qαβ ¼ Eαβ þ iHαβ: ð80Þ

MARIE-NOËLLE CÉLÉRIER and NILTON O. SANTOS PHYS. REV. D 102, 044026 (2020)

044026-6



The quadratic, I, cubic, J, and zero-dimensional, M,
invariants can then be written as [10,23,33]

I ¼ Qα
βQ

β
α ¼ λ21 þ λ22 þ λ23

¼ −2ðλ1λ2 þ λ2λ3 þ λ3λ1Þ
¼ Eα

βE
β
α −Hα

βH
β
α þ 2iEα

βH
β
α; ð81Þ

J ¼ Qα
βQ

β
γQ

γ
α ¼ λ31 þ λ32 þ λ33 ¼ 3λ1λ2λ3

¼ Eα
βE

β
γE

γ
α − iHα

βH
β
γH

γ
α þ 3iEα

βðEβ
γ þ iHβ

γ ÞHγ
α; ð82Þ

M ¼ 2ðλ1 − λ2Þ2ðλ2 − λ3Þ2ðλ3 − λ1Þ2
9λ21λ

2
2λ

2
3

¼ I3

J2
− 6; ð83Þ

where the λi solutions of equation

λ3 −
1

2
λI −

1

3
J ¼ 0 ð84Þ

are Qαβ’s eigenvalues. A Petrov type I or D Weyl tensor is
purely electric (magnetic) iff every λi is real (imaginary), or,
according to [33], iff I is real positive (negative) and M is
real non-negative or infinite.
The spacetimes considered here have been shown in

Sec. III F 2 to be nonconformally flat. We can therefore
apply the above rule from Ref. [33] that implies the Weyl
tensor complex invariants to exhibit their properties of
interest. Since these invariants are observer’s unit velocity
4-vector independent, we choose, for calculation conven-
ience and without loss of generality, a corotating with the
fluid observer with unit timelike 4-velocity of the kind

uα ¼ voδα0; ð85Þ

which moreover will be shown below to be actually a Weyl
principal vector for the studied solution classes. This
4-velocity, being unit and timelike, thus obeys

uαuα ¼ −1; ð86Þ

which gives

fv2o − 1 ¼ 0: ð87Þ

Inserting (85) into (78) and using (87) with metric (3)’s
contravariant coefficients, we obtain the following nonzero
Weyl tensor electric part components as measured by such
an observer:

E11 ¼
C0101

f
; ð88Þ

E22 ¼
C0202

f
; ð89Þ

E33 ¼
C0303

f
; ð90Þ

which are not independent, since, by (67) virtue, we have

D2E11 þD2E22 þ feμE33 ¼ 0: ð91Þ

Therefore, for this observer’s congruence, the Weyl tensor
electric part exhibits two independent components.
Then, inserting (85) into (79), and using (87) and metric

(3)’s contravariant coefficients, we obtain the only nonzero
Weyl tensor magnetic part component as

H12 ¼ H21 ¼
1

D

�
C0223 −

k
f
C0202

�
: ð92Þ

Inserting (88)–(92) into (81) and (82), while using metric
(3)’s coefficients, we obtain

I ¼ e−2μ

f2
½ðC0101Þ2 þ ðC0202Þ2� þ

ðC0303Þ2
D4

− 2e−2μðH12Þ2;

ð93Þ

J ¼ 3e−2μ

f2D2
C0303½C0101C0202 þ f2ðH12Þ2�: ð94Þ

Now, inserting (59) and (62) into (92) gives

H12 ¼
eμ

4f

�
e−μ

�
kf0 − fk0

D

��0
: ð95Þ

Inserting (95) into (93) and using (67), I becomes

I ¼ 2e−2μ

f2
½ðC0101Þ2 þ ðC0202Þ2 þ C0101C0202�

−
1

8f2

��
e−μ

�
kf0 − fk0

D

��0�2

: ð96Þ

We thus see that both I and J are real, since the metric
functions considered here are themselves real.
In the following, we will analyze particular cases which

share the same properties; i.e., they all verify J ¼ 0 and
I ≠ 0. Recalling that any purely electric or magnetic
spacetime is Petrov type I, we note that, in the extended
Petrov classification by Arianrhod and McIntosh [48,49],
fJ ¼ 0; I ≠ 0g corresponds to IðM∞Þ, with one of the λi
being identically zero. Of course, in this case, M goes to
infinity and the rule of McIntosh et al. [33] applies.
Therefore, we will use this rule to determine whether the
corresponding Weyl tensor is purely electric (magnetic),
which is the case iffM is real non-negative or infinite and I
is real positive (negative). Our task will thus be to
determine the I sign.
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From (94), there are two cases for which J vanishes:
either C0303 ¼ 0 or C0101C0202 þ f2ðH12Þ2 ¼ 0. We will
examine below both possibilities.
We begin with studying the case for which

C0303 ¼ 0; ð97Þ

which, using (60), gives

D00

D
¼ μ00 þ f0l0 þ k02

D2
: ð98Þ

Inserting (97) into (93), using (95), I becomes

I¼ e−2μ

f2
½ðC0101Þ2þðC0202Þ2�−

1

8f2

��
e−μ

�
kf0−fk0

D

��0�2

:

ð99Þ

We see from (99) that I is the sum of a positively defined
term and of a negatively defined one. Without loss of
generality, we can therefore assume I ≠ 0, since, given a
solution of the field equations (10)–(14) verifying also (98),
the I invariant may possibly vanish only for an a priori
countable r value set or it should be identically nonzero.
Hence, the rule of McIntosh et al. [33] applies. Notice that,
with I ≠ 0, once C0303 is fixed by (97), two independent
Weyl tensor nonzero components still remain.
Now, using (92) into ½C0101C0202 þ f2ðH21Þ2� ¼ 0, this

other relation implying J ¼ 0 can be written

D2C0101C0202 þ ðfC0223 − kC0202Þ2 ¼ 0: ð100Þ

Then, inserting (59) and (62) into (100), we obtain

D2C0101C0202 þ
1

16

�
ðfk0 − kf0Þ

�
μ0 þD0

D

�

− ðfk0 − kf0Þ0
�
2

¼ 0: ð101Þ

Recall that every spacetime whose metric functions verify
(99) or (101), implying J ¼ 0, is therefore Petrov
type IðM∞Þ.
Now, we will analyze the purely electric and purely

magnetic subsamples.

1. Purely electric spacetimes.—Recall that any J ¼ 0Weyl
tensor is purely electric provided its I invariant is positive.
Beginning with the (99) case, which we will refer to as

the first J ¼ 0 case, we see that a sufficient, while not
necessary, condition is

�
e−μ

�
kf0 − fk0

D

��0
¼ 0; ð102Þ

which can be integrated as

kf0 − fk0 ¼ c4eμD; ð103Þ

c4 being an integration constant. It can easily be checked
that above Eq. (103) actually verifies the regularity con-
ditions displayed in Section III C. Now, from (92) and (93),
we see that (102) imposes, on the Weyl tensor components,
a new constraint that reads

fC0223 − kC0202 ¼ 0: ð104Þ

However, one nonzero independent component still
remains since we have seven relations, (66)–(70), (97),
and (104), for eight nonzero Cαβγδ. The corresponding
spacetimes are thus nonconformally flat.
Then, we simplify once more the field equations by

inserting (103) into (16), which gives

μ0 ¼ 2κ

c4
Dðρþ PϕÞðkΩ2 − fvΩÞ: ð105Þ

Notice that in the nonrigid rotation case where Ω ≠ 0,
Eq. (105) implies μ0 ≠ 0, thus σ ≠ 0, and hence a nonflat
exterior (see Sec. IV F 1 for an inverse detailed demon-
stration). Therefore the interior spacetime is not bound to
be static.
Now, we consider the second J ¼ 0 case and insert (103)

into (101). We obtain

C0101C0202 ¼ 0; ð106Þ
which has two solutions
C0101 ¼ 0
where we insert (58) that gives

f00

2
−
fμ00

6
−
fD00

3D
−
f0μ0

2
−
f0D0

2D
þfμ0D0

2D
þfðf0l0 þ k02Þ

3D2
¼ 0:

ð107Þ

C0202 ¼ 0
where we insert (59) that gives

−
f00

4
−
fμ00

12
þfD00

3D
þf0μ0

4
þf0D0

4D
−
fμ0D0

4D
−
fðf0l0 þk02Þ

3D2
¼ 0:

ð108Þ

We have thus implicitly defined three classes of purely
electric interior spacetimes sourced by a stationary non-
rigidly rotating anisotropic fluid whose metric functions are
solutions of the seven differential equations (10)–(14), (98),
and either, respectively, (103), (107), or (108), and of the
timelike condition (6). Notice that, in the first J ¼ 0 case,
four among these equations can be replaced by (15)–(17)
and (105) which are partially integrated equations, i.e.,
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interesting simplifications for future analytic or numerical
resolutions. This eight equation set exhibits ten unknown r
functions: the four metric functions and the six fluid
parameters which have thus to be determined by an
appropriate equation of state choice, none of these eight
equations implying necessary staticity for the solutions.
These considerations lead us to conjecture that such purely
electric spacetimes do actually exist. However, a large
number of mathematically and physically interesting purely
electric solutions can be found in the literature, e.g., all the
static spacetimes [2]. This is at variance with the purely
magnetic type of which scarce examples are known
[32,53]. A large tractable part of such solutions sourced
by the here studied fluid and verifying J ¼ 0, are analyzed
in below subsection.

2. Purely magnetic spacetimes.—Recall that, from the rule
of McIntosh et al. [33], any fJ ¼ 0; I < 0g spacetime is
purely magnetic.
Now, the vanishing of the first term in Eq. (99) is a

sufficient, while not necessary, condition for I to be
negative, and this implies

C0101 ¼ C0202 ¼ 0; ð109Þ

together with (97) which still obtains. Hence, in this case,
three Weyl tensor components vanish. However, these
components are linked by a linear constraint through
(67). We are thus left, here also, with one nonzero
independent Weyl tensor component, and therefore space-
times of this class are nonconformally flat.
Considering the first J ¼ 0 case, we can write C0101 ¼

C0303 ¼ 0 into which we insert (58) and (60), to obtain

D0

D
¼ ðfμ0 − f0Þ0

fμ0 − f0
; ð110Þ

which can be integrated as

c5ðfμ0 − f0Þ ¼ D; ð111Þ
where we insert (38), (39), and (41) to obtain a new
regularity condition on the z axis, which we write as

μ0 ¼0 0: ð112Þ
Then, removing all the second derivatives from (10), (12),
(13), C0101 ¼ 0, and C0303 ¼ 0 into both of which we insert
(58) and (60), we obtain

μ0eμ
�
f0− 4

fD0

D

�
¼ 2κ½ðρ− 2PrþPzÞfþðρþPϕÞD2Ω2�:

ð113Þ

We have therefore implicitly defined a class of purely
magnetic interior spacetimes sourced by a stationary non-
rigidly rotating anisotropic fluid whose metric functions are

solutions of the seven differential equations (10)–(14), (98),
and (111) and of the timelike condition (6). Four among
these equations can be replaced by (15)–(17) and (113)
which are partially integrated equations. As for the purely
electric case, this eight equation set exhibits ten unknown r
functions. Analogous considerations lead us therefore to
conjecture that such purely magnetic spacetimes actually
exist. However, an extremely small number of mathemati-
cally, and moreover physically, interesting purely magnetic
solutions can be found in the literature [31,32,53]. Our
strongly based conjecture is therefore significant progress
toward the purely magnetic property understanding.
Now, we display the analysis of the second J ¼ 0 case.
From (67), (109) implies C0303 ¼ 0, and (100) gives

fC0223 − kC0202 ¼ 0; ð114Þ

from which we obtain, with (109), C0223 ¼ 0. Now, while
C0101, C0202, and C0303 are not independent from one
another by virtue of (67), (68)–(70) consideration shows
that C0223 is actually independent of the other two. Three
independent Weyl tensor component vanishing implies the
corresponding spacetimes have got a null Weyl tensor.
They are therefore conformally flat and, in this case, the
rule of McIntosh et al. [33] does not apply.
In Sec. III F 3, we have therefore exhibited the existence,

and partially characterized, three classes of purely electric
and one class of purely magnetic interior, i.e., nonvacuum,
spacetimes, sourced by a nonrigidly rotating stationary
cylindrical anisotropic fluid.

IV. RIGIDLY ROTATING FLUID

Now we come to the rigid rotation case which has been
already considered in [9] but needs the study of some
essential points that have not been analyzed there and a few
clarifications.
In the following, we will adapt the analysis made in

Sec. III for the nonrigid rotation case to the rigid rotation
one. We have shown, in Sec. III B, that rigid rotation occurs
when Ω ¼ 0. From (6), this implies fv2 ¼ 1. We will thus
obtain the relations and expressions pertaining to rigid
rotation by inserting

Ω ¼ 0; fv2 ¼ 1; ð115Þ
into theequationswritten for thenonrigidcase, provided they
are not issued from dividing or multiplying by Ω, i.e., zero.

A. Field equations

Inserting (115) into (10)–(14), we obtain [9]

G00¼
e−μ

2

�
−fμ00−2f

D00

D
þf00−f0

D0

D
þ3fðf0l0 þk02Þ

2D2

�
¼ κρf; ð116Þ
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G03 ¼
e−μ

2

�
kμ00 þ 2k

D00

D
− k00 þ k0

D0

D
−
3kðf0l0 þ k02Þ

2D2

�
¼ −κρk; ð117Þ

G11 ¼
μ0D0

2D
þ f0l0 þ k02

4D2
¼ κPreμ; ð118Þ

G22 ¼
D00

D
−
μ0D0

2D
−
f0l0 þ k02

4D2
¼ κPzeμ; ð119Þ

G33 ¼
e−μ

2

�
lμ00 þ 2l

D00

D
− l00 þ l0

D0

D
−
3lðf0l0 þ k02Þ

2D2

�

¼ κ

f
ðρk2 þ PϕD2Þ: ð120Þ

With Ω ¼ 0, Eq. (16) becomes�
kf0 − fk0

D

�0
¼ 0; ð121Þ

which we can integrate as in [9]

kf0 − fk0 ¼ c6D; ð122Þ

where c6 is an integration constant. It is easy to verify that
inserting the above rigid constraints (115) into the remain-
ing equation of (18) gives the same result as (122).

B. Hydrodynamical scalars, vectors, and tensors

The fluid 4-velocity, satisfying conditions (2), can be
chosen in the rigid rotation case by setting Ω ¼ 0 in (5)
which gives

Vα ¼ vδα0: ð123Þ

The two spacelike 4-vectors (7) and (8) chosen to define the
stress-energy tensor and verifying conditions (2) become

Kα ¼ −
v
D
ðkδα0 þ fδα3Þ; ð124Þ

Sα ¼ e−
μ
2δα2; ð125Þ

respectively.
The timelike 4-vector Vα can be as well invariantly

decomposed into three independent parts through the
genuine tensor Vα;β as in (19). Now, Ψ, as defined by
(28), becomes, with the rigid rotation constraints (115),

Ψ ¼ fvv0 ¼ −
1

2
f0v2 ¼ −

f0

2f
; ð126Þ

which we insert into (23) to obtain the acceleration vector
only nonzero component as

_V1 ¼
f0

2f
: ð127Þ

Substituting Ω ¼ 0 and (126) into (24)–(27), we obtain,
respectively,

2ω01 ¼ −ðf0vþ 2fv0Þ; ð128Þ

2ω13 ¼ −ðk0vþ 2kv0Þ; ð129Þ

σ01 ¼ 0; ð130Þ

σ13 ¼ 0; ð131Þ

which confirms that rigid rotation is actually shear-free.
Now, insertingΩ ¼ 0 and (126) into (29) and (31), gives,

respectively, the acceleration vector modulus

_Vα _Vα ¼ e−μfv02; ð132Þ

and the rotation scalar, ω, from

ω2 ¼ 1

4f2eμD2
ðkf0 − fk0Þ2; ð133Þ

which becomes, while inserting (122),

ω2 ¼ c26
4f2eμ

: ð134Þ

We stress that this rotation scalar depends only on the
metric functions f and eμ and that it cannot vanish, since
c6 ¼ 0 would imply k ¼ 0, and hence the cylindrical static
Levi-Civita vacuum solution which does not pertain to the
interior solution class we are considering here.

C. Regularity conditions

The regularity conditions on the axis which have been
displayed in Sec. III C above still obtain in the rigid case
since they only depend on the metric functions and not on
the fluid parameters. Hence, we will refer to them in the
following without any further rotation type specification.

D. Junction conditions

As the regularity conditions, the junction conditions
which have been displayed in Sec. III D are still valid in the
rigid rotation case. However, using the fluid properties
pertaining solely to rigid rotation, we can derive a couple of
new interesting results. Inserting (44), (45), (47), (48), (50),
and (51) into (122), we obtain c6 ¼ �2c. However, since
the sign can be absorbed into the constant definitions, we
write [9]

c6 ¼ 2c: ð135Þ

MARIE-NOËLLE CÉLÉRIER and NILTON O. SANTOS PHYS. REV. D 102, 044026 (2020)

044026-10



E. Stress-energy tensor conservation

Inserting (126) into (57), we obtain the stress-energy
tensor conservation equation, i.e., Bianchi identity, which
reads

Tβ
1;β ¼ P0

r þ
1

2
ðρþ PϕÞ

f0

f
þ ðPr − PϕÞ

D0

D

þ 1

2
ðPr − PzÞμ0 ¼ 0; ð136Þ

analogous to Eq. (12) of Ref. [9] where a typo correction
should be made.1

F. The Weyl tensor

TheWeyl tensor nonzero components are the same in the
rigid rotation case as in the nonrigid one since they depend
only on the metric functions. They are thus given by (58)–
(65) and obey the (66)–(70) constraints which imply there
are only three independent Weyl tensor components. The
same arguments as displayed in Sec. III F 2 imply that the
corresponding spacetimes are also nonconformally flat.
Now, we will study these solutions’ purely electric and

purely magnetic properties. Owing to the above statements,
the complex Weyl tensor invariants are the same as in the
nonrigid rotation case. Moreover, since the considered
spacetimes are nonconformally flat and since we will still
consider only the J ¼ 0 case, they are of Petrov type
IðM∞Þ and the rule of [33] applies.
Therefore, the differences we will encounter here with

respect to the nonrigid rotation problem will only be issued
from the field equations and related results, Eq. (122) in
particular, the main ones being encompassed into the
relations of (115).

1. Purely electric spacetimes

For the rigid rotation case, Ω ¼ 0 inserted into the first
J ¼ 0 case equation, (105), gives μ0 ¼ 0, hence μ ¼ const,
which becomes, with the regularity condition (38), μ ¼ 0.
Now, using matching condition (52), we obtain n ¼ 1
which gives, from (54), σ ¼ 0, in the low density limit. The
σ Newtonian mass per unit length vanishing produces a flat,
though non-Minkowskian, exterior spacetime, sourced by
spinning stationary strings [51].
For the second J ¼ 0 case, the sufficient, but not

necessary, condition for I to be positive, i.e., (102) has
been shown to imply (103), which, divided by (122), gives

eμ ¼ c6
c4

; ð137Þ

that implies μ0 ¼ 0, which results, as above, in μ ¼ 0,
hence σ ¼ 0.
We are thus led to conjecture that any purely electric

interior solution for spacetimes sourced by rigidly rotating
stationary cylindrical anisotropic fluid are flat. However,
we have given an actual proof of this statement only for the
studied subclasses which do not exhaust the I > 0
condition.
This is at variance with the statement that purely electric

solutions should be necessarily static, as concluded improp-
erly in [9].2 Our own method, using invariants which are the
observer’s unit velocity 4-vector independent, gives instead
proper general results which we have displayed here while
stressing their application limits.

2. Purely magnetic spacetimes

The only J ¼ 0 case to be considered here is the first one,
since the second one leads to conformally flat spacetimes as
shown in Sec. III F 3. The sufficient condition for I to be
negative is still (109) as in Sec. III F 3 2. We have seen that
this equation can be integrated as (111), which therefore
obtains also here. Inserting Ω ¼ 0 into (113) gives

μ0eμ
�
f0

f
− 4

D0

D

�
¼ 2κðρ − 2Pr þ PzÞ: ð138Þ

Such purely magnetic spacetimes are therefore solutions
of the five (116)–(120) field equations, where one among
these equations can be replaced by the partially integrated
(122), plus the two (111) and (138) constraint equations, for
four metric functions and four fluid parameters, which
means seven equations for eight unknown r functions.
Provided an equation of state (eos) is added, this set might
be solvable. However, this eos should not be too tight,
while, if so, the necessary number of degrees of freedom is
overcome and the problem becomes overdetermined, thus,
generally, unsolvable. To exemplify this statement we
display in Sec. V the analysis of a particular eos leading
to an exact purely magnetic solution class and, in
Appendix A, a special subcase of this eos already consid-
ered in [9] and that we show to be ruled out as a (116)–
(120), (111), (138) solution.
Moreover, recall we have justified in Sec. IV B that these

rigidly rotating fluids exhibit nonvanishing rotation scalars
as is demanded for a rotating fluid and vanishing shears
known as pertaining to rigid rotation. Our results show

1Pr has to be replaced by Pϕ there in the right-hand side’s
second term.

2The reasoning in [9] is not rigorous actually since kf0 − fk0 ¼
0 does not result in k ¼ 0 [their regularity conditions (22) merely

give 0 − 0¼0 0], but instead in D ¼ 0, from their Eq. (14), our
(122). This would imply, owing to the metric signature which
imposes the metric functions f, l, and k to be positively defined,
f ¼ l ¼ k ¼ 0, hence an absurd result for the metric. Therefore,
the only solution to their Eq. (72) is γ0 ¼ 0, i.e., μ0 ¼ 0 in our
notations.
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therefore that in the cylindrically symmetric case, even
shear-free fluid motion can source purely magnetic space-
times, provided rotation should be involved.

V. INTERIOR SPACETIMES SOURCED BY
STATIONARY CYLINDRICAL ANISOTROPIC

RIGIDLY ROTATING FLUIDS: PURELY
MAGNETIC EXACT SOLUTIONS

Here, we consider the rigid rotation case for a peculiar
fluid eos chosen as

Pr ¼ Pϕ ¼ 0: ð139Þ

Such an equation of state could describe, e.g., a rigidly
rotating astrophysical object issuing jets in its symmetry
axis direction. With (139) inserted, the rigidly rotating fluid
field equations (116)–(120) become

−fμ00 − 2f
D00

D
þ f00 − f0

D0

D
þ 3fðf0l0 þ k02Þ

2D2
¼ 2κρfeμ;

ð140Þ

kμ00 þ 2k
D00

D
− k00 þ k0

D0

D
−
3kðf0l0 þ k02Þ

2D2
¼ −2κρkeμ;

ð141Þ

2μ0DD0 þ f0l0 þ k02 ¼ 0; ð142Þ

D00

D
−
μ0D0

2D
−
f0l0 þ k02

4D2
¼ κPzeμ; ð143Þ

lμ00 þ2l
D00

D
− l00 þ l0

D0

D
−
3lðf0l0 þk02Þ

2D2
¼ 2κρk2eμ

f
; ð144Þ

and the (136) Bianchi identity becomes

μ0 ¼ ρ

Pz

f0

f
: ð145Þ

The field equations (140) and (143), give, using (142),

4

�
1þ Pz

ρ

�
fDD00 þ Pz

ρ
½2fD2μ00 − 2D2f00

þ 2f0DD0 − 3fðf0l0 þ k02Þ� ¼ 0: ð146Þ

Now, inserting (135) into (122) we obtain

k0 ¼ kf0 − 2cD
f

; ð147Þ

which we substitute into (142) together with (145) such as
to obtain, with the help of (9) and its derivative with respect
to r,

2

�
1þ Pz

ρ

�
ff0D0 −

Pz

ρ
Dðf02 − 4c2Þ ¼ 0: ð148Þ

Now, we differentiate (145) with respect to r, and obtain

μ00 ¼ ρ

Pz

f00

f
−

ρ

Pz

f02

f2
þ Pzρ

0 − ρP0
z

P2
z

f0

f
: ð149Þ

Then, we insert (145) into (142) which becomes

f0l0 þ k02 ¼ −2
ρ

Pz

f0

f
DD0: ð150Þ

Now, inserting (148) and (150) into (146) gives

2

�
1þ Pz

ρ

�
f2D00 þ

�
1 −

Pz

ρ

�
Dff00 −Df02

þ
�
ρ0

ρ
−
P0
z

Pz

�
Dff0 þ

�
3þ Pz

ρ

�
ff0D0 ¼ 0: ð151Þ

Then, using (148) and its derivative with respect to r into
Eq. (151), we obtain, after some rearrangements,

�
f02 þ 4c2

Pz

ρ

��
2

�
1þ Pz

ρ

�
ff00 þ 2

�
ρ0

ρ
−
P0
z

Pz

�
ff0

−
�
2þ Pz

ρ

�
f02 þ 4c2

Pz

ρ

�
¼ 0: ð152Þ

Notice that (152) proceeds solely from the field equations
and from the Bianchi identity which can replace one of
them, with the (139) eos substituted. This equation has two
solutions. They will both be considered in turn in the
following.

A. First solution of (152)

This first solution obtains for

f02 þ 4c2
Pz

ρ
¼ 0; ð153Þ

which can be written as

f0 ¼ �2c

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s
: ð154Þ

The above equation implies of course Pz < 0. While a
negative pressure does not describe a standard fluid, it has
been considered anyhow for some applications, e.g., in
cosmology where dark energy acts as a negative pressure.
Therefore, we will study this solution for completeness.
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Equation (145), with (154) inserted, becomes

μ0 ¼ � 2c
f

ffiffiffiffiffiffi
−ρ
Pz

r
: ð155Þ

Now, we want to find under which conditions this
general relativity (GR) solution verifies the two purely
magnetic constraints (111) and (138). If both constraints
are satisfied, the corresponding spacetime is purely mag-
netic. If they are not, we can say nothing about the solution
gravitomagnetic nature, since (111) and (138) are sufficient
but not necessary conditions for the spacetime to be purely
magnetic.
Thus, we insert (154) and (155) into (111) and obtain

D ¼ �2cc5

� ffiffiffiffiffiffi
−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
: ð156Þ

Now, we apply the regularity conditions (39) to (156) and
(41) to (153), keeping in mind that c ≠ 0 and c5 ≠ 0, or
otherwise we would have f0 ¼ μ0 ¼ D ¼ 0 for all r from
(154)–(156).
We thus obtain

Pz ¼0 ρ¼0 0; ð157Þ

which is a constraint on the ρðrÞ and PzðrÞ functions
vanishing at r ¼ 0.
Equation (156) differentiated with respect to r gives

D0 ¼ �cc5

�
P0
z

Pz
−
ρ0

ρ

�� ffiffiffiffiffiffi
−ρ
Pz

r
þ

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
: ð158Þ

We use (139), (154), (155), (156), and (158) into (138)
second purely magnetic constraint equation and obtain

eμ ¼ κ

2c
Af2

Bþ Cf
; ð159Þ

where we have defined

AðrÞ ¼ P2
zðρ2 − P2

zÞ; ð160Þ

BðrÞ ¼ cP2
zðρ − PzÞ; ð161Þ

CðrÞ ¼ �
ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s
ðPzρ

0 − ρP0
zÞðρþ PzÞ: ð162Þ

Then, we differentiate (159) with respect to r and insert
(154) and (155) to obtain the second order in f equation
couple, one equation for each plus and minus sign:

� 2c

� ffiffiffiffiffiffi
−ρ
Pz

r
− 2

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
Bþ

�
�2c

� ffiffiffiffiffiffi
−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
C

þ AB0 − A0B
A

�
f þ

�
AC0 − A0C

A

�
f2 ¼ 0; ð163Þ

whose coefficients are functions of ρðrÞ, of PzðrÞ, and of
their first and second derivatives. Since we require f to be
real, this implies a constraint on ρðrÞ, PzðrÞ, and their first
and second derivatives that reads

Δ ¼
�
AB0 − A0B

A
� 2c

� ffiffiffiffiffiffi
−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
C

�2

∓ 8c

� ffiffiffiffiffiffi
−ρ
Pz

r
− 2

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s ��
AC0 − A0C

A

�
B ≥ 0: ð164Þ

If ρðrÞ and PzðrÞ are such that they verify (164) for all r, at
least with either the plus or the minus sign, then fðrÞ
follows as a (163) real root:

—if Δ ¼ 0, we have one fðrÞ solution for each
fρðrÞ; PzðrÞg couple verifying (164), which can be
doubled if both signs plus and minus obtain in (164).
This solution is

f ¼ −
½AB0−A0B

A � 2cð
ffiffiffiffi
−ρ
Pz

q
−

ffiffiffiffiffiffi
−Pz
ρ

q
ÞC�

2ðAC0−A0CÞ
A

: ð165Þ

—if Δ > 0, we have two fðrÞ solutions for each
fρðrÞ; PzðrÞg couple verifying (164), which can be
doubled if both signs plus and minus obtain in (164).
They read

fϵ¼
−½AB0−A0B

A �2cð
ffiffiffiffi
−ρ
Pz

q
−

ffiffiffiffiffiffi
−Pz
ρ

q
ÞC�þ ϵ

ffiffiffiffi
Δ

p

2ðAC0−A0CÞ
A

; ð166Þ

where ϵ can take the values�1 independently of the�
sign coming from (154).

We have thus obtained fðrÞ, which we insert into (159)
to obtain eμðrÞ. We already know DðrÞ as given by (156).
Then, inserting (154) and (156) into (147), we obtain

1

2c

ffiffiffiffiffiffi
−ρ
Pz

r
fk0 ∓ k� 2cc5

�
ρ

Pz
− 1

�
¼ 0; ð167Þ

which is a first order differential equation for kðrÞ that,
knowing fðrÞ from (165) or (166) depending on whether
Δ ≥ 0 vanishes or not, we can integrate as

k ¼ e
R

r

r0
−QðuÞdu

�
c7 þ

Z
r

r0

SðvÞ½−e
R

v

r0
QðuÞdu�dv

�
; ð168Þ
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where c7 is an integration constant, r0 is a constant
integration limit verifying r0 < rΣ, and

QðrÞ ¼∓ 2c
f

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s
; ð169Þ

SðrÞ ¼ � 4c2c5
f

� ffiffiffiffiffiffi
−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
: ð170Þ

It is easy to see, considering (38) and (41), that (167) is
consistent with the (157) regularity condition.
Knowing DðrÞ, fðrÞ, and kðrÞ through ρðrÞ, PzðrÞ, and

derivatives, we use (9) to compute the last lðrÞ metric
function as

l ¼ D2 − k2

f
: ð171Þ

However, since we have five field and two purely
magnetic constraint differential equations for six free
functions—fðrÞ, kðrÞ, eμðrÞ, lðrÞ, ρðrÞ and PzðrÞ—we
should be able to derive, from one or from a combination of
the seven differential equations at hand, constraint equa-
tions for ρðrÞ, PzðrÞ, and possibly their first and second
derivatives. For this purpose, we insert (142) into (143) and
obtain

D00 ¼ κPzeμD: ð172Þ

Differentiating (158) with respect to r, we obtain D00 as a
function of ρðrÞ, PzðrÞ, and their first and second deriv-
atives, which we insert into (172) together with (156) and
(159), and obtain

− κ2P3
zðρ2 − P2

zÞ
� ffiffiffiffiffiffi

−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
f2 � c

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
ρ0

ρ
−
P0
z

Pz

�
ρ2Pz

�
1þ Pz

ρ

���
P00
z

Pz
−
ρ00

ρ
þ
�
ρ0

ρ
þ P0

z

Pz

��
ρ0

ρ
−
P0
z

Pz

��

×

� ffiffiffiffiffiffi
−ρ
Pz

r
þ

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
þ 1

2

�
ρ0

ρ
−
P0
z

Pz

�
2
� ffiffiffiffiffiffi

−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s ��
f þ c2P2

zðρ − PzÞ

×

��
P00
z

Pz
−
ρ00

ρ
þ
�
ρ0

ρ
þ P0

z

Pz

��
ρ0

ρ
−
P0
z

Pz

��� ffiffiffiffiffiffi
−ρ
Pz

r
þ

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
þ 1

2

�
ρ0

ρ
−
P0
z

Pz

�
2
� ffiffiffiffiffiffi

−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s ��
¼ 0: ð173Þ

Compared to (163), Eq. (173) implies, since each coefficient of, respectively, the f2, the f, and the zero-order term must
be proportional to each other in both equations,

− κ2P3
zðρ2−P2

zÞ
� ffiffiffiffiffiffi

−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s ��
AC0 −A0C

A

�
−1

¼�c

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
ρ0

ρ
−
P0
z

Pz

�
ρ2Pz

�
1þPz

ρ

�

×

��
P00
z

Pz
−
ρ00

ρ
þ
�
ρ0

ρ
þP0

z

Pz

��
ρ0

ρ
−
P0
z

Pz

��� ffiffiffiffiffiffi
−ρ
Pz

r
þ

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
þ 1

2

�
ρ0

ρ
−
P0
z

Pz

�
2
� ffiffiffiffiffiffi

−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s ��

×

�
AB0 −A0B

A
� 2c

� ffiffiffiffiffiffi
−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
C

�−1

¼�
��

P00
z

Pz
−
ρ00

ρ
þ
�
ρ0

ρ
þP0

z

Pz

��
ρ0

ρ
−
P0
z

Pz

��� ffiffiffiffiffiffi
−ρ
Pz

r
þ

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s �
þ1

2

�
ρ0

ρ
−
P0
z

Pz

�
2
� ffiffiffiffiffiffi

−ρ
Pz

r
−

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s ���
2

� ffiffiffiffiffiffi
−ρ
Pz

r
− 2

ffiffiffiffiffiffiffiffiffi
−Pz

ρ

s ��−1
;

ð174Þ

which is a double constraint on ρðrÞ, Pz, and derivatives. These equations cannot simplify to mere trivial forms owing to the
κ2 factor in the first term which is present in neither of the two other ones. This κ expression cannot even vanish, since it
would imply either Pz ¼ 0 or Pz ¼ ρ, corresponding, respectively, to α ¼ 0 or α ¼ 1 in Appendix A where such eos are
shown not to satisfy the sufficient conditions for purely magnetic spacetimes.
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B. Second solution of (152)

This second solution reads

2

�
1þ Pz

ρ

�
ff00 þ 2

�
ρ0

ρ
−
P0
z

Pz

�
ff0

−
�
2þ Pz

ρ

�
f02 þ 4c2

Pz

ρ
¼ 0: ð175Þ

Now, we differentiate (9) with respect to r and obtain

l0 ¼ 2ðDD0 − kk0Þ
f

−
ðD2 − k2Þf0

f2
; ð176Þ

which we insert into (142) together with (145) and (147)
and obtain

2D0

D
¼ f02 − 4c2

ð ρ
Pz
þ 1Þff0 : ð177Þ

The above results depend only on the field equations (and
the Bianchi identity) for the considered (139) eos. Now, we
introduce the constraint that spacetimes should be purely
magnetic in the sufficient sense displayed by (111)
and (138).
Inserting (145) into (111), we obtain

D ¼ c5f0
�
ρ

Pz
− 1

�
; ð178Þ

which we derive with respect to r, divide the result by (178)
and obtain

2D0

D
¼ 2

f00

f0
þ 2

Pzρ
0 − ρP0

z

ðρ − PzÞPz
; ð179Þ

that we insert into (177), and the result into (175), that
becomes

f0

f
¼ 2Pz

Pz − ρ

�
ρ0

ρ
−
P0
z

Pz

�
; ð180Þ

which, used into (145), gives

μ0 ¼ 2ρ

Pz − ρ

�
ρ0

ρ
−
P0
z

Pz

�
: ð181Þ

Inserting (177), (180) and (181) into the (138) purely
magnetic constraint equation where we have set Pr ¼ 0, we
obtain

eμ ¼ κ

2

Ef2

ðGþHf2Þ ; ð182Þ

with

EðrÞ ¼ ðρþ PzÞ2ðρ − PzÞ; ð183Þ

GðrÞ ¼ 2c2ρðρ − PzÞ; ð184Þ

HðrÞ ¼ ρPz

�
ρ0

ρ
−
P0
z

Pz

�
2

: ð185Þ

Notice that the regularity conditions are verified, identically
by (178), and by (182) provided

κ

2

E
ðGþHÞ ¼0 1: ð186Þ

Then, we differentiate (182) with respect to r and substitute
(180) and (181) into the result, which gives

f2 ¼
½2ðρ−2PzÞ

ρ−Pz
ðρ0ρ − P0

z
Pz
Þ þ E0

E �G −G0

H0 − ½ 2ρ
ρ−Pz

ðρ0ρ − P0
z

Pz
Þ þ E0

E �H
: ð187Þ

Taking the square root of Eq. (187), we choose the plus sign
so that the metric signature should be consistent with our
previous choice and obtain

f ¼
�½2ðρ−2PzÞ

ρ−Pz
ðρ0ρ − P0

z
Pz
Þ þ E0

E �G − G0

H0 − ½ 2ρ
ρ−Pz

ðρ0ρ − P0
z

Pz
Þ þ E0

E �H

�1=2

: ð188Þ

The f real requirement imposes the following constraint on
ρðrÞ, Pz, and their first and second derivatives:

½2ðρ−2PzÞ
ρ−Pz

ðρ0ρ − P0
z

Pz
Þ þ E0

E �G − G0

H0 − ½ 2ρ
ρ−Pz

ðρ0ρ − P0
z

Pz
Þ þ E0

E �H
> 0: ð189Þ

Now, inserting (187) into (182), we obtain

eμ ¼ κE
2H

�
1þ

H0
H − 2ρ

ρ−Pz
ðρ0ρ − P0

z
Pz
Þ − E0

E
2ðρ−2PzÞ
ρ−Pz

ðρ0ρ − P0
z

Pz
Þ þ E0

E − G0
G

�−1
: ð190Þ

Substituting f0, given by (180) where we insert (188), into
(178), we obtain

D¼2c5

�
P0
z

Pz
−
ρ0

ρ

��½2ðρ−2PzÞ
ρ−Pz

ðρ0ρ−P0
z

Pz
ÞþE0

E �G−G0

H0− ½ 2ρ
ρ−Pz

ðρ0ρ−P0
z

Pz
ÞþE0

E �H

�1=2

: ð191Þ

To obtain an equation for k, we insert (178) and (180) into
(147), which gives

k0 þ 2Pz

ρ − Pz

�
ρ0

ρ
−
P0
z

Pz

�
k −

4cc5
f

�
ρ0

ρ
−
P0
z

Pz

�
¼ 0; ð192Þ

where we insert f as given by (188) and obtain a first order
differential equation for k that can be integrated as
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k ¼ e
R

r

r1
−WðuÞdufc8 þ

Z
r

r1

YðvÞ½−e
R

v

r1
WðuÞdu�dvg; ð193Þ

where c8 is an integration constant, r1 is a constant
integration limit verifying r1 < rΣ, and

WðrÞ ¼ 2Pz

ρ − Pz

�
ρ0

ρ
−
P0
z

Pz

�
; ð194Þ

YðrÞ ¼ −
4cc5
f

�
ρ0

ρ
−
P0
z

Pz

�
: ð195Þ

It is easy to see, considering (38) and (41), and since c ≠ 0
and c5 ≠ 0, that (192) is consistent with these regularity
conditions provided

ρ0

ρ
−
P0
z

Pz
¼0 0; ð196Þ

which is a new regularity constraint on ρðrÞ, PzðrÞ, and
their first derivatives, which has to be satisfied together
with (186). From both (186) and (196) regularity con-
ditions, we obtain the simplified following one:

κðρþ PzÞ2 ¼0 4c2ρ: ð197Þ
The last metric function lðrÞ follows from (9), once fðrÞ,
kðrÞ, and DðrÞ are known.
As explained in Sec. VA, the differential equation

number compared to the free r function one implies a
constraint equation on ρðrÞ and PzðrÞ which we derive
again from (172). Differentiating twice (178) with respect
to r while inserting (180) and substituting the result into
(172) together with (182) and (191), we obtain

f2 ¼ −2GN
2HN þ κ2Pzðρ

0
ρ −

P0
z

Pz
ÞE

; ð198Þ

with

N ¼ 2

ρ − Pz

�
ρ0

ρ
−
P0
z

Pz

��
1

ρ − Pz

�
ρ0

ρ
−
P0
z

Pz

��
−2P2

z

�
ρ0

ρ
−
P0
z

Pz

�
þ ρP0

z − Pzρ
0
�

þ 3Pz

�
ρ00

ρ
−
ρ02

ρ2
−
P00
z

Pz
þ P02

z

P2
z

��
þ P000

z

Pz
−
3P0

zP00
z

P2
z

þ 2P03
z

P3
z
−
ρ000

ρ
þ 3ρ0ρ00

ρ2
−
2ρ03

ρ3
: ð199Þ

Now, we insert (198) into (187) and obtain, after some algebra,

�
4Pz

ρ − Pz

�
ρ0

ρ
−
P0
z

Pz

��
−
ρþ 2Pz

ρ − Pz

�
ρ0

ρ
−
P0
z

Pz

�
2

þ 3

�
ρ0

ρ
−
P0
z

Pz

�0�
− 2

�
ρ0

ρ
−
P0
z

Pz

�00��ρþ 4Pz

ρ − Pz

�
ρ0

ρ
−
P0
z

Pz

�
2

− 2

�
ρ0

ρ
−
P0
z

Pz

�0�
−
κ2ðρþ PzÞ2ðρ − PzÞ

ρ

�
2

�
ρ0

ρ
−
P0
z

Pz

�
ρ2 − 2ρPz − P2

z

ðρ − PzÞðρþ PzÞ
þ ρ0

ρ

�
¼ 0; ð200Þ

which is the constraint equation the fluid parameters must
satisfy so that the corresponding spacetime, besides being a
field equation solution, should also be purely magnetic.
This constraint equation rapid examination shows it can be
fulfilled by an infinite number of fρ; Pzg couples, one of
them being the Pz ¼ αρ eos ruled out in Appendix A.
However, nontrivial solutions do exist. As an existence
proof, we display the following fully integrated solution
class, leaving its property study and the search for other
solutions to future work. An eos form leading to integrable
physical parameters and metric functions is

Pz

ρ
¼ hðrÞ; ð201Þ

where hðrÞ is a radial coordinate function satisfying the

regularity condition (196) by verifying h0=h¼0 0. In this
case, Eq. (200) becomes the following first order ordinary
differential equation for ρ2:

ðρ2Þ0 − 4
ð1 − 2h − h2Þh0

ð1 − h2Þh ρ2 −
2

κ2ð1þ hÞ2ð1 − hÞ

×

�
4h0

1 − h

�ð1þ 2hÞh02
ð1 − hÞh2 þ 3

�
h0

h

�0�
þ 2

�
h0

h

�00�

×

�ð1þ 4hÞh02
ð1 − hÞh2 þ 2

�
h0

h

�0�
¼ 0; ð202Þ

from which ρ2 can be partially integrated as

ρ2 ¼ h4ð1 − hÞ4
ð1þ hÞ4

�
c9 þ

c10
κ2

Z
r

r1

ð1þ hÞ2
ð1 − hÞ5h4

×

�
4h0

1 − h

�ð1þ 2hÞh02
ð1 − hÞh2 þ 3

�
h0

h

�0�
þ 2

�
h0

h

�00�

×

�ð1þ 4hÞh02
ð1 − hÞh2 þ 2

�
h0

h

�0�
dv

�
; ð203Þ
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where c9 and c10 are integration constants. This expression
will be analytically or numerically fully integrated depend-
ing on the hðrÞ function pertaining to the considered
problem.
Now, exact metric function expressions for this eos class

proceed from (9), (178), (180), (181), (193), (194), and
(195) where (201) is inserted. They arise as fully integrated
h functions that read

eμ ¼ c11
h2

ð1 − hÞ2 ; ð204Þ

f ¼ c12
ð1 − hÞ2 ; ð205Þ

k ¼ 1

ð1 − hÞ2
�
c13 − c14

�
ln h − 4hþ 3h2 −

4

3
h3 þ h4

4

��
;

ð206Þ

l ¼ 1

ð1 − hÞ2
�
c15

h02

h2
−
�
c16 − c17

�
ln h − 4h

þ 3h2 −
4

3
h3 þ h4

4

��
2
�
; ð207Þ

where c11–c17 are integration constants and which con-
stitute an exact solution to Einstein’s field equations for a
purely magnetic interior spacetime exhibiting an eos form
as given by (201) and verifying, from the regularity and

junction conditions, h0=h¼0 0 and ρðr ¼ 0Þ ≠ 0. This result
does not preclude the existence of other eos classes
verifying constraint equation (200) and possibly exhibiting
other exact solutions to the here analyzed issue.
Hence, we have obtained, for the particular (139) eos,

two different solution classes for the five (140)–(144) field
equations and the two (111) and (138) purely magnetic
constraint equations. The first class implies Pz < 0 and the
second allows Pz > 0, which enables one to consider a
standard fluid as the gravitational source. We have derived,
for both solutions, fðrÞ, kðrÞ, eμðrÞ, lðrÞ, and DðrÞ as
explicit ρðrÞ, PzðrÞ, and derivative expressions. We have
also displayed in both cases one or two constraint equations
that have to be satisfied by ρðrÞ, PzðrÞ, and derivatives so
that the metric solutions are consistent with the whole
equation set. Hence, given a couple fρðrÞ; PzðrÞg fulfilling
such constraints, we have found exact solutions to the
problem of deriving the metric for an interior purely
magnetic spacetime sourced by a rigidly rotating stationary
cylindrical anisotropic fluid exhibiting a (201) eos.
Displaying a nontrivial fully integrated solution in

(201)–(207), we have explicitly shown that such purely
magnetic interior spacetimes do exist. We are thus led to
generalize this result to rigidly or nonrigidly rotating fluids
exhibiting eos with more degrees of freedom and therefore
able to fulfill more easily the constraints.

As an opposite example, we show in Appendix A that
too simple an eos, such as the one proposed in [9], even
though a solution to the field equations can be characterized
in this case, does not ensure obligatorily the corresponding
spacetime to be Weyl purely magnetic, at least when using
our J ¼ 0 and I < 0 somehow stringent (97) and (109)
conditions.

VI. CONCLUSIONS

We have displayed a whole set of mathematical equa-
tions and physical elements characterizing the stationary
cylindrically symmetric anisotropic fluid interior space-
times for both nonrigidly and rigidly rotating fluids,
therefore, in the last case, completing and improving results
displayed in [9].
We have first established the metric, the field equations,

the hydrodynamical scalars, vectors, and tensors, the
regularity and junction conditions, the stress-energy tensor
conservation equation and conducted a gravito-electromag-
netic analysis including the Weyl tensor and its three
complex invariants. Using a rule demonstrated in [33]
and taking exclusively these three invariants into account,
we have thus been led to characterize first nonrigidly
rotating fluid spacetime purely electric (magnetic) proper-
ties. In particular, we have proposed, as a strongly based
conjecture, that purely electric and purely magnetic Petrov
type IðM∞Þ stationary cylindrical anisotropic nonrigidly
rotating fluid interior spacetimes exist, and we have
displayed different simplified equation sets they can verify
in each case, purely electric (three subcases) and purely
magnetic (one subcase).
Then we have conducted an analogous analysis applied

to rigid rotation which had already been considered in [9].
We have corrected a typo in their Eq. (12) and an
inaccuracy appearing in their Sec. 5, and we have shown
that, while purely electric cylindrically symmetric space-
times are not necessarily static in the nonrigid rotation case,
this remains an open question for rigid rotation.
Moreover, we have displayed an existence proof of

purely magnetic Petrov type IðM∞Þ stationary cylindrical
anisotropic fluid spacetimes of which we have established
the determining equations. This result’s importance comes
from the fact that extremely few purely magnetic solutions
are known, while most of the known ones are Petrov type
D, less are Petrov type IðM∞Þ, and fewer are physically
consistent. Hence, our new existence proof of purely
magnetic stationary cylindrical anisotropic fluid interior
spacetimes is of the utmost importance for the progress in
understanding gravito-electromagnetism. We have shown
that, in this cylindrically symmetric case, even shear-free
fluid motion can source purely magnetic spacetimes,
provided rotation should be involved. This statement
obtains equally in the shearing nonrigid rotation case.
Finally, we have found two new classes of exact

solutions to Einstein’s equation featuring purely magnetic
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interior spacetimes sourced by a rigidly rotating stationary
cylindrical anisotropic fluid, characterized by a rather
simple but physically consistent equation of state.
Besides displaying new exact solutions to general rela-
tivity’s field equations, this work has allowed us to
characterize constraints to be fulfilled by the fluid param-
eter functions so that the new solutions actually correspond
to Weyl purely magnetic spacetimes. And, to provide an
existence proof for solutions to such constraint equations,
we have displayed a fully integrated metric corresponding
to a large class of eos exhibiting the best physical
motivations. Further study of these solution properties
and of other special cases is left to future work.
Therefore, although purely magnetic vacuum spacetimes

are widely thought not to exist, our results show that
nonvacuum physically motivated such spacetimes do and
might be of use for astrophysical purposes.

APPENDIX: A COUNTEREXAMPLE

As an example of spacetimes verifying the field equa-
tions but not our sufficient conditions for being purely
magnetic, we now address the particular eos of Debbasch
et al. [9] that we write in our notations as

Pz ¼ αρ; Pr ¼ Pϕ ¼ 0; ðA1Þ

which, inserted into (136), gives Eq. (46) of Ref. [9],
recalled here as

αμ0 ¼ f0

f
; ðA2Þ

which can be integrated as [9]

eαμ ¼ f: ðA3Þ

With (A1) inserted into the field equations (140)–(144),
while using (9), (38), (122), (135), and (A2), we obtain,
after integration and provided α ≠ 0 [9],

f ¼
�
1 −

2þ α

4αc2
f02

�ð1þαÞ=ð2þαÞ
: ðA4Þ

The above (A4) result is issued only from the field
equations written for the chosen (A1) eos. Now, we add
the (111) and (138) sufficient conditions to try and see
whether any purely magnetic property could be exhibited
by the corresponding spacetimes. First, we insert (A1) into
(138) and obtain

μ0eμ
�
f0

f
− 4

D0

D

�
¼ 2κð1þ αÞρ: ðA5Þ

Then, using (111), (A2), (A3), (A4), its derivative with
respect to r, and (A5), we obtain

ð3þ αÞð2þ αÞfð2þαÞ=ð1þαÞ

−
κ

2c2
ð2þ αÞð1þ αÞρf2−1=α þ 1 ¼ 0: ðA6Þ

However, we can also achieve, with the same equation
set, another very different equation supposed to determine
f, but inconsistent with (A6). We proceed as follows.
Inserting l0, obtained by differentiating l extracted from (9),
and using (122) and (A2) into (118), we obtain

2D0

D
¼ f02 − 4c2

ð1þ 1
αÞff0

: ðA7Þ

Now,D canmerely proceed from (A2) inserted into (111), as

D ¼ c5f0
�
1

α
− 1

�
; ðA8Þ

into which we insert f0 as given by (A4), which implies an
expression for D as a f function. We differentiate this
equation with respect to r and obtain D0 which we use to
compute

2D0

D
¼ 2þ α

1þ α

f0

ðf − f−1=ð1þαÞÞ : ðA9Þ

Then, we equalize (A7) with (A9) and obtain

fð2þαÞ=ð1þαÞ þ f−ð2þαÞ=ð1þαÞ − 2 ¼ 0: ðA10Þ

It is easy to see that (A6)and (A10)are inconsistent.Actually,
thereexist twosolutionsto(A10):α ¼ −2whichinsertedinto
(A6) gives the wrong equality 1 ¼ 0, ruling out this first
solution, and f ¼ 1, which implies k ¼ l ¼ 0 and eμ ¼ 1,
and therefore a 3D-Minkowski spacetime, ruling out this
second solution too. Another reasoning using hðrÞ ¼ α into
(204)–(207) can also lead to a Minkowski spacetime. This
implies that the two (111) and (138) constraint equations are
incompatible with the field equations of interior solutions
sourced by a rigidly rotating cylindrical fluid exhibiting such
an eos which cannot therefore be characterized as purely
magnetic with our method. The reason is that the degrees of
freedom allowed by the (A1) eos are too small to allow a
physically relevant solution to emerge out of such an over-
determined equation set. However, we cannot state such an
eos is actually ruled out as implying a purely magnetic
spacetime since the (111) and (138) constraint equations are
mere sufficient but not necessary conditions for imposing
purely magnetic features.
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