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We present a practical method for evaluating the scattering amplitude fsðθ;ϕÞ that arises in the context
of the scattering of scalar, electromagnetic, and gravitational planar waves by a rotating black hole. The
partial-wave representation of fs is a divergent series, but fs itself diverges only at a single point on the
sphere. Here we show that fs can be expressed as the product of a reduced series and a prefactor that
diverges only at this point. The coefficients of the reduced series are found iteratively as linear
combinations of those in the original series, and the reduced series is shown to have amenable convergence
properties. This series-reduction method has its origins in an approach originally used in electron scattering
calculations in the 1950s, which we have extended to the axisymmetric context for all bosonic fields.

DOI: 10.1103/PhysRevD.102.044025

I. INTRODUCTION

The scattering of fundamental fields by the strongly
curved spacetime of a black hole (BH) is of foundational
interest. The topic of time-independent scattering has been
studied in detail since the 1960s [1–3], and now there exists
a substantial literature [4–27]. Nevertheless, as yet there are
no accurate calculations of scattering amplitudes for
electromagnetic (s ¼ 1) or gravitational (s ¼ 2) waves
impinging on a rotating BH at an arbitrary angle of
incidence γ (though see Ref. [13] for the scalar field
s¼0 case). A key obstacle to progress is the lack of
convergence of the partial-wave series representation of the
scattering amplitude fsðθ;ϕÞ. In this work, we show that
this obstacle may be overcome by applying a series-
reduction technique with its roots in the 1950s [28].
This work clears the way for accurate numerical calcu-
lations of scattering amplitudes in a work to follow.
The scenario we consider here is that of a monochro-

matic planar wave propagating in vacuum, of spin s and
circular frequency ω, which impinges upon a gravitating
body of mass M, such that γ is the angle between the
direction of incidence and the symmetry/rotation axis of the
body (see Fig. 1). The gravitational field is long-ranged,
with a Newtonian-type 1=r potential in the far field. The
long-range nature of the field has three key effects. First, far
from the object (r ≫ rg with rg ≡ GM=c2), the planar
wave fronts are distorted by a logarithmic phase term.

Second, regardless of the composition of the body, rays in
the weak field (r ≫ rg) are deflected through an angle θ
which is inversely proportional to the impact parameter b
(cf. the Einstein deflection angle). Third, due to scattering
in the weak field, the scattering amplitude fs has a physical
divergence in the forward direction, that is, at the point on
the sphere which is antipodal to the incident direction. A
consequence of the physical divergence in fs is that its
representation as an infinite sum over partial waves is not
convergent. This is the issue we address herein.
In the scalar field case (s ¼ 0), Glampedakis and

Andersson [13] overcame the convergence issue by split-
ting the amplitude f0 into a “Newtonian” amplitude fðNÞ

0

and diffraction amplitude fðDÞ
0 , with the former encapsulat-

ing the divergence due to the long-ranged nature of the field
and the latter the main diffraction effects arising from the
lower-l partial waves. The Newtonian amplitude was
written in closed form and shown to diverge at the expected
angle, and the diffraction amplitude was calculated from a
mode sum with amenable convergence properties. In
principle, this method could be extended to higher spin
s, but here we prefer to develop an alternative method based
on that introduced in 1954 in Ref. [28], and first applied in
the BH context in Ref. [14] (see also Ref. [16]), known as
the series reduction method.
The rest of the paper is arranged as follows. In Sec. II, we

review the theory of time-independent scattering in the
axisymmetric case. In Sec. III, we present the series
reduction method. After reviewing the lack of convergence
in the partial-wave series (III A) and its physical origin
(III B), we introduce the key idea (III C), describe how to
decompose the spheroidal harmonics into their spherical
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counterparts (III D), and how to regulate the series in
principle (III E). In Secs. III F–III H, we obtain the key
formulas for the scalar field (s ¼ 0), electromagnetic field
(s ¼ 1), and gravitational-wave cases (s ¼ 2), respectively.
In Sec. IV, we examine the results of applying the series
reduction method in practice, on the convergence of the
series (IVA), as well as on computing scalar (IV B) and
electromagnetic (IV C) cross sections. We conclude with a
discussion in Sec. V.

II. SCATTERING AMPLITUDES
AND CROSS SECTIONS

The differential scattering cross section for a spin-s wave
incident on a Kerr BH can be expressed as [11]

dσs
dΩ

¼ jfsðθ;ϕÞj2 þ jgsðθ;ϕÞj2; ð1Þ

where the helicity-conserving and helicity-reversing ampli-
tudes, fs and gs, respectively, are given by the partial-wave
series [11]

fsðθ;ϕÞ≡ π

iω

X
P¼�1

X∞
l¼s

Xl
m¼−l

−sSaωlmðγÞ−sSaωlmðθÞ

× eimðϕ−ϕ0ÞðSP
lmωs − 1Þδ̂s; ð2Þ

gsðθ;ϕÞ≡ π

iω

X
P¼�1

X∞
l¼s

Xl
m¼−l

−sSaωlmðγÞ−sSaωlmðπ − θÞ

× eimðϕ−ϕ0ÞPð−1Þlþmþ2ðSP
lmωs − 1Þ; ð3Þ

where δ̂s ¼ 2 for s ¼ 0, 1; and δ̂s ¼ 1 for s ¼ 2. Here,
−sSaωlmðθÞ is a spin-weighted spheroidal harmonic (see
below), S�

lmωs is the scattering coefficient [13,29],

S�
lmωs ≡ e2iδ

�
lmωs ; ð4Þ

and δ�lmωs is the phase shift, determined from a radial
equation. In the case s ¼ 0, there is no odd-parity part, and
in the case s ¼ 1, the phase shift is independent of the
parity P, and thus the helicity-reversing amplitudes g0 and
g1 are identically zero; note the sum over parity in Eq. (3).
In the gravitational-wave case s ¼ 2, the phase depends on
parity according to

Sþ
lmωs

S−
lmωs

¼ ReC þ 12iMω

ReC − 12iMω
; ð5Þ

where C is the Teukolsky-Starobinskii constant.
Consequently, the helicity-reversing amplitude g2 is non-
zero. The partial-wave sum (3) for g2 is convergent, as
ReC ¼ Oðl4Þ in the large-l limit. By contrast, the partial-
wave sum for fs is not convergent. In the next section, we
show this and present a practical remedy.

III. THE SERIES REDUCTION METHOD

A. Series convergence

The lack of convergence of the partial-wave series is
most straightforward to demonstrate in the base case of a
scalar wave on Schwarzschild spacetime (s ¼ 0, a ¼ 0),
for which the scattering amplitude f0 has the representation

f0ðθÞ ¼
1

2iω

X∞
l¼0

ð2lþ 1Þðe2iδl − 1ÞPlðcos θÞ; ð6Þ

where Plð·Þ is a Legendre polynomial. In the large-l
regime, the phase is approximately [11,13]

e2iδl ≈
Γðlþ 1 − 2iMωÞ
Γðlþ 1þ 2iMωÞ

≈ expð−4iMω lnLÞ × ð1þOðL−2ÞÞ; ð7Þ

where L ¼ lþ 1=2. In the large-l regime, we may use
a uniform asymptotic approximation for the Legendre
polynomial,

Plðcos θÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

πL sin θ

r
sin

�
π

4
þ Lθ

�
: ð8Þ

Inserting Eqs. (7) and (8) into the series (6) yields

f0ðθÞ ≈
1

iω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π sin θ

r X
l

L1=2ðe−4iMω lnL − 1Þ sin
�
π

4
þ Lθ

�
:

ð9Þ

The coefficients of the series on the right-hand side do not
approach zero in the limit L → 0, and thus, this series is not

FIG. 1. In this setup, a planarwave impinges upona rotatingblack
hole in the direction specified by the angles θ0 ¼ γ;ϕ0 ¼ π=2.
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convergent, i.e., it is divergent. Heuristically, one can
see that this happens because the scattering coefficient
S�
lmωs − 1, defined in Eq. (4), remains of order unity even

in the large-l limit.
Similarly, in the Kerr context, the series representations

of fs are also found to be divergent and thus impractical for
use without modification.

B. The physical origin of the divergence

Heuristically, the poor convergence of the partial-wave
series (2) is due to the fact that the scattering amplitude
fsðθ;ϕÞ diverges at the antipode of the point on the
celestial sphere which corresponds to the “center” of the
incident wave (see Fig. 1). The divergence in jfsðθ;ϕÞj
scales as Θ−2 close to this antipodal point, where Θ is the
angle on the sphere between the scattering direction ðθ;ϕÞ
and the antipode at ðγ;ϕ0Þ. Thus, dσ=dΩ diverges as Θ−4,
in the same manner as the Rutherford cross section in
quantum-mechanical scattering. Ultimately, this divergence
is due to the fact that gravity, like electromagnetism, is a
long-ranged force with a potential that falls off as 1=r in the
Newtonian limit.
In the geometric-optics limit (Mω ≫ 1), the divergence

in dσ=dΩ can be understood as follows: (i) rays passing
through an annulus of radius b ≫ M and width db on the
incident wave front (with area 2πbdb) are deflected
through the Einstein scattering angle Θ ¼ 4M=b; (ii) these
rays are scattered into a solid angle dΩ ¼ 2π sinΘdΘ;
(iii) the classical scattering cross section, defined as the area
on the wave front divided by solid angle on the sphere,
is then

dσ
dΩ

����
cl
¼ b

sinΘj dΘdb j
; ð10Þ

and (iv) inserting Θ ¼ 4M=b ≪ 1 leads to

dσ
dΩ

����
cl
≈
16M2

Θ4
: ð11Þ

The issue facing a practical calculation is that the partial-
wave sum representation of fs [Eq. (2)] is not convergent
for any value of θ. This is not unexpected, as such behavior
is typical in Fourier series expansions of singular functions.
Here, we shall overcome this practical limitation by
adapting a method that originates in a 1950s work on
electron scattering [28].

C. Series reduction

As discussed above, a physical divergence in the
amplitude fs is expected at the antipodal point on the
sphere at ðγ;ϕ0Þ in spherical polars. Taking ϕ0 ¼ π=2 by
convention [13], the angle Θ ¼ Θðθ;ϕÞ on the minor arc

connecting the point ðθ;ϕÞ to the antipodal point is
defined by

cosΘ≡ cos γ cos θ þ sin γ sinϕ sin θ: ð12Þ

Our aim is to “reduce” the divergence in the series at
cosΘ ¼ 1, by defining the kth-reduced series as

fðkÞs ≡ ð1 − cosΘÞkfs: ð13Þ
We show below that (i) the series coefficients for fðkÞs are
found from certain linear combinations of the coefficients
for fs, and (ii) the series for f

ðkÞ
s has improved convergence

properties, allowing a practical numerical calculation of
fðkÞs . The amplitude fs is then calculated from

fsðθ;ϕÞ ¼
fðkÞs

ð1 − cosΘÞk : ð14Þ

D. From spheroidal to spherical harmonics

The spin-weighted spheroidal harmonics −sSaωlmðθÞ fea-
turing in Eqs. (2) and (3) satisfy the angular Teukolsky
equation [30], namely,

1

sinθ
d
dθ

�
sinθ

d−sSaωlm
dθ

�
þ
�
a2ω2cos2θ−

m2

sin2θ
−
2mscosθ
sin2θ

−2aωscosθ−s2cot2θþsþAlm

�
−sSaωlm¼0: ð15Þ

In the limit aω ¼ 0, the functions −sSaωlmðθÞeimϕ reduce to
spin-weighted spherical harmonics, −sYlmðθÞeimϕ [31].
Any spin-weighted spheroidal harmonic (indeed any

well-behaved function on the sphere [32]) may be
expanded in the basis of spherical harmonics of the same
spin weight [13,16,33], viz.,

−sSaωlmðθÞ ¼
X∞

j¼maxfjmj;jsjg
bsjml−sYjmðθÞ; ð16Þ

where bsjml are series coefficients. In practice, only a few
coefficients bsjml are typically required, as they exhibit an
exponential falloff for jj − lj ≫ 1 [13].
We now define

fslm ≡ 2π

iω −sSaωlmðγÞe−iϕ0 Ŝlmωs; jmj ≤ l; ð17Þ

where Ŝlmωs ¼ 1
2
ðSþ

lmωs þ S−
lmωsÞ and

Fs
jm ≡ X∞

l¼jmj
fslmb

s
jml; ð18Þ
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so that the scattering amplitude (2) can be written in the
form

fsðθ;ϕÞ ¼
X∞
j¼s

Xj

m¼−j
Fs
jm−sYjmðθÞeimϕ: ð19Þ

E. Regulating the series

Here, and in the following sections, it will be necessary
to move a factor inside infinite series in j. Strictly, such a
step is invalid for divergent infinite series. However, we
may evade this issue by taking as our starting point a
regulated sum fðϵÞs that is convergent for ϵ > 0, i.e.,

fðϵÞs ðθ;ϕÞ ¼
X∞
j¼s

Xj

m¼−j
Fs
jm−sYjmðθÞeimϕΞϵðjÞ; ð20Þ

where here Ξϵð·Þ is a regulating function introduced to
smoothly cut off the infinite sum, such that (for ϵ > 0)
ΞϵðxÞ → 0 sufficiently rapidly that the series (20) is
convergent. The family of functions ΞϵðxÞ should be such
that

fsðθ;ϕÞ ¼ lim
ϵ→0

fðϵÞs ðθ;ϕÞ; ð21Þ

and we take this limit at the end of the process. An example
of a regulating factor is ΞϵðxÞ ¼ 1

2
ðtanhð1=ϵ − xÞ þ 1Þ.

The physical motivation underpinning the above is that,
in practice, a divergent series (2) is a consequence of
starting with a planar wave of infinite extent; and by
introducing a smooth cutoff to the sum, we can limit the
extent of the initial wave front in a controlled manner. For
clarity, we shall not include the regulating factor in any of
the steps below, and we implicitly take the limit ϵ → 0 at
the end of the process.

F. Scalar field case

We start with the scalar field case s ¼ 0. Let us define
Gjm ≡ AjmF0

jm, where Ajm is given in Eq. (A2) of
Appendix A, so that

f0ðx;ϕÞ ¼
X
j;m

GjmPm
j ðxÞeimϕ; ð22Þ

where

x ¼ cos θ; ð23Þ

and
P

j;m is a shorthand for
P∞

j¼s

Pj
m¼−j. Here, we have

used Eq. (A1) to rewrite the (scalar) spherical harmonics in
terms of associated Legendre polynomials Pm

j ð·Þ. Now, we
define the kth-reduced series fðkÞ0 and its coefficientsGðkÞ

jm in
accordance with Eq. (13), that is,

fðkÞ0 ðx;ϕÞ≡ ð1 − cosðΘÞÞkf0ðx;ϕÞ ð24Þ

¼
X
j;m

GðkÞ
jmP

m
j ðxÞeimϕ; ð25Þ

recalling that Θðθ;ϕÞ, defined in Eq. (12), is the angle to
the antipodal point. It is useful at this point to express cosΘ
in terms of x≡ cos θ and ϕ as

cosΘ ¼ x cos γ þ 1

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sinðγÞðeiϕ − e−iϕÞ: ð26Þ

To find the recursion relation for GðkÞ
jm, we make the

argument

fðkþ1Þ
0 ðx;ϕÞ ¼ ð1 − cosΘÞ

X
j;m

GðkÞ
jmP

m
j ðxÞeimϕ ð27aÞ

¼
X
j;m

ð1 − cosΘÞGðkÞ
jmP

m
j ðxÞeimϕ ð27bÞ

¼
X
j;m

�
1 − x cos γ −

1

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sinðγÞðeiϕ − e−iϕÞ

�

×GðkÞ
jmP

m
j ðxÞeimϕ: ð27cÞ

We now set GðkÞ
jm ¼ 0, for j < jmj and j < 0, in order to

write the sums below in a compact fashion. Using the
recursion relations for associated Legendre polynomials
given in Eqs. (B1) and (B2) of Appendix B, we estab-
lish that

X
j;m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
eþiϕGðkÞ

jmP
m
j ðxÞeimϕ ¼

X
j;m

GðkÞ
ðjþ1Þðm−1Þ
2jþ 3

Pm
j ðxÞeimϕ −

GðkÞ
ðj−1Þðm−1Þ
2j − 1

Pm
j ðxÞeimϕ; ð28aÞ

X
j;m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
e−iϕGðkÞ

jmP
m
j ðxÞeimϕ ¼

X
j;m

GðkÞ
ðj−1Þðmþ1Þ

ðj −m − 1Þðj −mÞ
2j − 1

Pm
j ðxÞeimϕ

−GðkÞ
ðjþ1Þðmþ1Þ

ðjþmþ 1Þðjþmþ 2Þ
2jþ 3

Pm
j ðxÞeimϕ; ð28bÞ
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X
j;m

xGðkÞ
jmP

m
j ðxÞeimϕ ¼

X
j;m

�
j −m
2j − 1

GðkÞ
ðj−1Þm þ jþmþ 1

2jþ 3
GðkÞ

ðjþ1Þm

�
Pm
j e

imϕ: ð28cÞ

Substituting Eqs. (28) to (28a) into Eq. (28c) gives the
recursion relation

Gðkþ1Þ
jm ¼GðkÞ

jm −cosγ

�
j−m
2j−1

GðkÞ
ðj−1Þmþ

jþmþ1

2jþ3
GðkÞ

ðjþ1Þm

�

−
1

2i
sinγ

�
−
ðj−m−1Þðj−mÞ

2j−1
GðkÞ

ðj−1Þðmþ1Þ

−
1

2j−1
GðkÞ

ðj−1Þðm−1Þ þ
1

2jþ3
GðkÞ

ðjþ1Þðm−1Þ

þðjþmþ1Þðjþmþ2Þ
2jþ3

GðkÞ
ðjþ1Þðmþ1Þ

�
: ð29Þ

The scattering amplitude f0 is then computed using

f0ðθ;ϕÞ ¼
1

ð1 − cosΘÞk
X
j;m

GðkÞ
jm

Ajm
YjmðθÞeimϕ: ð30Þ

G. Electromagnetic case

We now proceed to the electromagnetic case (s ¼ 1).
Define G1

jm ≡ −AjmF1
jm=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp Þ, where F1

jm and
Ajm are defined in Eq. (18) and Eq. (A2), respectively,
so that

f1ðx;ϕÞ ¼ δ̌0f̂1ðx;ϕÞ; ð31Þ

where

f̂1ðx;ϕÞ ¼
X
j;m

G1
jmPjmðxÞeimϕ; ð32Þ

and δ̌0 is the spin-lowering operator defined in

Eq. (A3). Next, we define the kth-reduced series f̂ðkÞ1

and its coefficients G1ðkÞ
jm , in accordance with Eq. (13),

that is,

f̂ðkÞ1 ðx;ϕÞ≡ ð1 − cosΘÞkf̂1ðx;ϕÞ ð33Þ

¼
X
j;m

G1ðkÞ
jm PjmðxÞeimϕ: ð34Þ

Here, we have moved the spin operator outside the
summation in the second line. Proceeding recursively, it

is now clear that for k ≥ 1, G1ðkÞ
jm can be calculated with

exactly the same recursion relation as in the s ¼ 0 case, that

is, Eq. (29) withGðkÞ
jm replaced byG1ðkÞ

jm . The amplitude f1 is
then calculated with the expression

f1ðθ;ϕÞ ¼
X
j;m

��
δ̌0

�
1

ð1 − cosΘÞk
��

YjmðθÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

ð1 − cosΘÞk −1YjmðθÞ
�
G1ðkÞ

jm

Ajm
eimϕ: ð35Þ

H. Gravitational-wave case

Define G2
jm ≡ −AjmF2

jm=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðj − 1Þjðjþ 1Þðjþ 2Þp Þ, so

that

f2ðx;ϕÞ ¼ δ̌−1δ̌0f̂2ðx;ϕÞ; ð36Þ

where

f̂2ðx;ϕÞ≡
X
j;m

G2
jmPjmðxÞeimϕ ð37Þ

and δ̌s are the spin-lowering operators [see Eq. (A3)].

Define the kth-reduced series, and coefficients G2ðkÞ
jm , by

f̂ðkÞ2 ðθ;ϕÞ≡ ð1 − cosΘÞkf̂2ðθ;ϕÞ ð38Þ

¼
X
j;m

G2ðkÞ
jm PjmðxÞeimϕ: ð39Þ

Proceeding recursively, it is now clear that for k ≥ 1, G2ðkÞ
jm

can be calculated with exactly the same recursion relation

as in the s ¼ 0 case, that is, Eq. (29) with GðkÞ
jm replaced by

G2ðkÞ
jm . The amplitude f2 is then calculated with the

expression

f2ðθ;ϕÞ¼
X
j;m

��
δ̌−1δ̌0

�
1

ð1−cosΘÞk
��

YjmðθÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðj−1Þjðjþ1Þðjþ2Þp

ð1−cosΘÞk −2YjmðθÞ
�
G2ðkÞ

jm

Ajm
eimϕ:

ð40Þ

The process outlined above could be generalized to all
integer values of s by using further spin-lowering (or
raising) operators.
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IV. RESULTS AND DISCUSSION

Here, we present some results for scalar off-axis scatter-
ing to verify our method.

A. Estimating the error of truncation

In this section, we address the question of how we can be
confident that the above method does indeed result in a
convergent sum. It is possible to show analytically, that for
the comparison Newtonian problem on a Schwarzschild
BH (aω ¼ 0), the reduced summations for k ≥ 1 are
convergent at all angles, except the antipodal point (see
Appendix C). The general problem is of course more
difficult, since we have a summation over m as well as l.
However, in the large-l regime, we could expect the spin of
the BH to have a small effect on the phase shifts and thus
would expect similar convergence properties for the
reduced series. Here, we will investigate the effects of
series reduction for a few examples to test this assertion.
The addition theorem for spin-weight spherical harmon-

ics implies

Xj

m¼−j
j−sYjmðθ;ϕÞj2 ¼ ð−1Þs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

4π

r
Y−s
js ð0; 0Þ: ð41Þ

(This is a special case of the theorem given by [34]). From
Eq. (3.1) in [31], and since Y−s

jmðθ;ϕÞ ¼ Ys
jmðπ − θ; π − ϕÞ,

it follows that Y−s
js ð0; 0Þ ¼ ð−1Þs ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jþ 1Þ=4πp

, and hence

Xj

m¼−j
j−sYjmðθ;ϕÞj2 ¼

ð2jþ 1Þ
4π

: ð42Þ

It is interesting that the rhs of Eq. (42) is independent of the
spin. Now, define

FsðkÞ
jm ≡GsðkÞ

jm =Ajm; ð43Þ

FsðkÞ
j ¼ MaxfjFsðkÞ

jm jgjmj<j: ð44Þ

Then, it follows from the triangle and Cauchy-Schwarz
inequalities that

����XN
j¼n

Xj

m¼−j
FsðkÞ
jm Yjmðθ;ϕÞ

���� ≤ XN
j¼n

αsðkÞj ; ð45Þ

where

αsðkÞj ¼
���� ð2jþ 1Þ2ffiffiffiffiffiffi

4π
p FsðkÞ

j

����: ð46Þ

If we truncate the summation for calculating f̂ðkÞs in
Eq. (25), (34), or (39) at some j ¼ J, then the absolute

error is bounded by the rhs of Eq. (45). If the sequence

(αsðkÞj ) is decreasing for j > J, then αsðkÞJþ1 gives us a
reasonable estimate of the error. We present plots of

α0ðkÞj against j for ωM ¼ 1 and a ¼ 0.9M in Fig. 2. The
numerical evidence suggests that

α0ðkþ1Þ
j ¼ Oðα0ðkÞj =j2Þ; as l → ∞: ð47Þ

This might be expected as the original reduction process,
which we have based our method on, showed the equivalent
property (Eq. (50) in [28]). In Appendix C, we show how
this improvement in the summation convergence can be
proven explicitly for the special case of no rotation and
s ¼ 0 (and assumption that the phase shift tends to the
comparison Coulomb value).
In Fig. 2, we see that the error bound α0ð3Þj is negligible

for j ≳ 50 (when ωM ¼ 1 and a ¼ 0.9M). More terms in
the series are needed to reduce the error to a desired level if
we increase ωM or a=M. The numerical evidence and proof
of convergence for the comparison Newtonian problem
(Appendix C) are, we think, sufficient evidence to be
confident in our final scattering cross section calculations.

B. Differential scattering cross sections: Scalar case

Here, we present a selection of our results for the scalar
case, computed using the series reduction method. The
numerical method we use for calculating phase shifts can
be found in Ref. [11] (see also Ref. [13] for a method based
on the Prüfer transformation).
Figure 3 exhibits the differential scattering cross sections

as functions of ϕ (−90° < ϕ < 270°) for fixed values of θ
(θ ¼ 22.5°, 45°, 67.5°, and 90°). The incidence direction
of the scalar waves (with ωM ¼ 1.0) lies on the equatorial
plane (γ ¼ 90°, ϕ0 ¼ 90°) of the rotating Kerr
BH (a ¼ 0.9M).

k=0
k=1
k=2
k=3

k=0
k=1
k=2
k=3

1 5 10 50

10–6

10–4

0.01

1

100

104

j

|
j( k

) |

FIG. 2. Absolute value of the kth-reduced series terms αsðkÞj
against (integer) j. Here, we have chosen the parameters s ¼ 0,
a ¼ 0.9M, ωM ¼ 1, θ0 ¼ γ ¼ π=2, and ϕ0 ¼ π=2. For compari-
son, we also plot lines ∝ ðjþ 1=2Þ2−2k for k ∈ f0; 1; 2; 3g.
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We compare our results, computed via the series reduc-
tion method [with the scattering amplitude given by
Eq. (30)], with those presented in the top panel of Fig. 9
of Ref. [13], computed by splitting the scattering amplitude
into Newtonian and diffraction amplitudes. A good agree-
ment can be observed among the results obtained via the
series reduction with those shown in Ref. [13]. For the plots
exhibited in Fig. 3, we have terminated the summation
[Eq. (30)] at lmax ¼ 30, jmax ¼ 18, and used k ¼ 3 appli-
cations of the reduction algorithm.
The main features in the cross sections shown in Fig. 3

are a forward Coulomb divergence (at θ ¼ ϕ ¼ 90°, see

bottom right panel), an asymmetry with respect to the
direction of incidence (indicated by the vertical lines), a
nontrivial dependence on the polar and azimuthal angles of
observation, and a glory maximum for the equatorial plane
cross section (θ ¼ 90°;ϕ ≈ −42°, bottom right panel). For a
more detailed discussion of the cross section features and
their interpretation, we refer the reader to Ref. [13].

C. Differential scattering cross sections:
Electromagnetic case

As preliminary sample results, in Fig. 4, we exhibit our
numerical plots for the differential scattering cross section
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FIG. 4. Off-axis differential scattering cross section for electromagnetic plane waves with jωjM ¼ 1.0, impinging upon a Kerr BH
with a ¼ 0.9M, for θ ¼ 30° (left panel) and θ ¼ 90° (right panel). The vertical line represents the forward direction (γ ¼ ϕ0 ¼ 90°).
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FIG. 3. Off-axis differential scattering cross section for scalar plane waves with ωM ¼ 1.0, impinging upon a Kerr BH with a ¼ 0.9M.
The vertical line represents the forward direction (γ ¼ ϕ0 ¼ 90°). The results of Glampedakis and Andersson (G&A) from Ref. [13] are
shown in dashed red for comparison.
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for circularly polarized electromagnetic plane waves
impinging on a Kerr black hole in a direction normal to
the axis of rotation (γ ¼ 90°, ϕ0 ¼ 90°). We show the
scattering cross sections at fixed angles θ ¼ 30° and 90°.
Again, we can see that the scattering cross sections present
some features similar to those of scalar waves: a forward
Coulomb divergence (at θ ¼ ϕ ¼ 90°, cf. right panel of
Fig. 4), an asymmetry with respect to the direction of
incidence (indicated by the vertical lines), and a nontrivial
dependence on the polar and azimuthal angles of obser-
vation. Moreover, due to the coupling between the rotation
of the BH and the polarization of the incident waves, co-
and counterrotating circular polarizations are scattered in a
different way (cf. left panel of Fig. 4). However, this
difference disappears for electromagnetic plane waves
scattered at θ ¼ 90° as expected.

V. DISCUSSION

In this work, we have devised a method to overcome a
significant obstacle in computing scattering cross sections
for bosonic plane waves impinging on a Kerr BH with an
arbitrary angle of incidence. Namely, the divergence of the
partial-wave scattering-amplitude sum in its standard for-
mulation has been ameliorated by extending the series
reduction method devised by Yennie et al. (and extended to
BH scattering in Refs. [14,16]).
We have demonstrated the validity of the series reduction

method for scalar plane waves, when applied to scattering
scenarios with ωM ∼ 1 (where diffraction effects are most
prominent) and where the BH may be rapidly spinning
(a ¼ 0.9M). We have compared our results with those
obtained by Glampedakis and Andersson using an alter-
native “Newtonian splitting”method [13]. The results show
good agreement except for scattering angles ðθ;ϕÞ near to
the forward direction ðγ;ϕ0Þ, where the cross section
diverges and numerical errors become hard to control.
This can be overcome by including more terms in the
partial-wave expansions. For all other angles in the plots
exhibited, our method shows good convergence of the
scattering-amplitude reduced series (see Fig. 2) and agrees
well with the Newtonian splitting method. We have also
presented preliminary sample results for electromagnetic
plane waves, showing that the series reduction method is
also valid for higher spin waves (s > 0).
In addition, we have given a proof of convergence for the

reduced series for a scalar wave incident on a
Schwarzschild BH (Appendix C). Whether this proof
generalizes to a Kerr BH and arbitrary angle of incidence
is an open question. Intuitively, we expect it too, since the
rotation of the BH has a negligible effect on partial waves
of a sufficiently large mode number. In practice, proving
this would be difficult. However, given the preliminary
results, we believe the method can provide accurate results
for general off-axis scattering of bosonic fields.

In related work, Folacci and Ould El Hadj have shown
that Schwarzschild BH scattering cross sections can be
accurately calculated using complex angular momentum
techniques, as opposed to partial-wave series expansions
[24,27]. They plan to consider Kerr BHs in the future. This
will be a particularly interesting challenge, since the
introduction of rotation both promotes the role of angular
momentum in any physical processes and obscures the path
to developing useful complex analysis tools to under-
stand them.
Here, we have given little in the way of physical

interpretation (see however [13]), instead focusing on the
computational method. In a more detailed work to follow,
we aim to remedy this. For example, it is known that
perturbations incident on a Kerr BH may exhibit super-
radiance—an amplification due to extraction of the BHs
rotational energy. This is spin dependent and can be
particularly strong in the GW case: Teukolsky and Press
found a maximum superradiant amplification of 138% for
the l ¼ m ¼ 2 mode when a ¼ 0.99999M and ω ¼ 2ωþ
(where ωþ ≡ a=ð2MrþÞ is the “angular velocity of the
horizon”) [35]. The implications of superradiance for
monochromatic off-axis scattering are yet to be fully
explored [9,13]. This is of foundational interest to provide
a full understanding of the BH superradiance phenomenon,
which may have observational consequences [36].
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APPENDIX A: SPHERICAL HARMONICS AND
THE SPIN-LOWERING OPERATOR

Spherical harmonics can be defined in terms of asso-
ciated Legendre polynomials

Ylmðθ;ϕÞ≡ AlmPm
l ðcos θÞeimϕ; ðA1Þ

where
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Alm ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
: ðA2Þ

The operator δ̌s lowers the spin of a harmonic [31,32]

δ̌sYs
lm ¼ −ðsin θÞ−s

� ∂
∂θ −

i
sin θ

∂
∂ϕ

�
ðsin θÞsYs

lm ðA3Þ

¼ −½ðlþ sÞðl − sþ 1Þ�1=2Ys−1
lm ; ðA4Þ

thus

Y−1
lm ¼ −½ðlÞðlþ 1Þ�−1=2δ̌0Ylm; ðA5aÞ

Y−2
lm ¼ ½ðl − 1Þlðlþ 1Þðlþ 2Þ�−1=2δ̌1δ̌0Ylm: ðA5bÞ

In turn, the associated Legendre polynomials are

Pm
l ðcosθÞ≡ð−1Þmð1−cos2θÞm=2 dm

dðcosθÞm ½PlðcosθÞ�;

ðA6Þ

and they satisfy

ð1 − x2Þ d
2Pm

l

dx2
− 2x

dPm
l

dx
þ
�
lðlþ 1Þ − m2

1 − x2

�
Pm
l ¼ 0:

ðA7Þ

APPENDIX B: RECURSION RELATIONS FOR
ASSOCIATED LEGENDRE POLYNOMIALS

Some useful recursion relations for associate Legendre
polynomials are

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Pm
l ¼ 1

2lþ 1
ð−Pmþ1

lþ1 þ Pmþ1
l−1 Þ; ðB1aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Pm
l ¼ 1

2lþ 1
ððl −mþ 1Þðl −mþ 2ÞPm−1

lþ1

− ðl −mþ 1ÞðlþmÞPm−1
l−1 Þ; ðB1bÞ

xPm
l ¼ 1

2lþ 1
ððl −mþ 1ÞPm

lþ1 þ ðlþmÞPm
l−1Þ: ðB1cÞ

Initial values for the first recursions of Eq. (B1) are as
follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Pl
l ¼ −

1

2lþ 1
Plþ1
lþ1; ðB2aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Pl−1
l ¼ −

1

2lþ 1
Pl
lþ1: ðB2bÞ

For the first derivative, we make use of

ð1 − x2Þ dP
m
l

dx
¼ 1

2lþ 1
ððlþ 1ÞðlþmÞPm

l−1

− lðl −mþ 1ÞPm
lþ1Þ: ðB3Þ

APPENDIX C: CONVERGENCE OF THE
SCHWARZSCHILD SCATTERING-AMPLITUDE

SERIES

Without loss of generality, we can choose γ ¼ 0,
ϕ0 ¼ π=2, which implies

Glm ¼ δm0ð2lþ 1Þðe2iδl − 1Þ=ð2iωÞ; ðC1Þ

and thus recovers Eq. (6) from Eq. (22). In this case, we
only need to deal with a sum over l. It is convenient to
switch variable from l to λ≡ lþ 1=2. Defining bðkÞλ ≡ GðkÞ

l0 ,
we see from Eq. (29) that

bðkþ1Þ
λ ¼ bðkÞλ −

1

2
½bðkÞλþ1 þ bðkÞλ−1� þ

1

4
½ðλþ 1Þ−1bðkÞλþ1

− ðλ − 1Þ−1bðkÞλ−1�: ðC2Þ

Suppose that in the large-l (λ) limit

bðkÞλ ∼ λp
X∞
n¼0

αnλ
−n; ðC3Þ

then it follows from Eq. (29) that

bðkþ1Þ
λ ∼−λp

X∞
n¼0

αnλ
−n
X∞
j¼1

��
p−n

2j

�
þ1

2

�
p−n−1

2j

��
λ−2j

ðC4Þ

∼ λp
�
1

2
ðp − 1Þ2α0λ−2 þOðλ−3Þ

�
: ðC5Þ

If p ≠ 1, then this implies

����G
ðkþ1Þ
l0

GðkÞ
l0

���� ¼ l−2; ðC6Þ

so the series needs to be reduced at least k > Refpg=2
times (assuming Refpg > 0) in order for it to converge
for θ ≠ 0 (this can be seen by noting that jPlðcos θÞj < 1
for θ ≠ 0; π and Plð−1Þ ¼ ð−1Þl, then applying the
ratio test and alternating series test for convergence,
respectively). One can split the rhs of Eq. (C1) into
two terms,
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Glm ¼ δm0ð2lþ1Þe2iδl=ð2iωÞ−δm0ð2lþ1Þ=ð2iωÞ: ðC7Þ

Setting bðkÞλ ≡ ð2lþ 1Þe2iδl=ð2iωÞ, and using Eq. (7), we

find p ¼ 1–4iMω. Choosing bðkÞλ ≡ ð2lþ 1Þ=ð2iωÞ gives

p ¼ 1, and the series reduction method applied to this term
will accelerate convergence even faster (in fact, this sum is
zero for θ ≠ 0). For convergence then, we must reduce the
series at least twice (this is confirmedwith numerical results).
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