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The condensate cosmology program of group field theory has produced several interesting results.
The key idea is in the suggestion that a macroscopic homogeneous spacetime can be approximated
by a dynamical condensate phase of the underlying microscopic system of an arbitrarily large number
of candidate quanta of geometry. In this work, we extend the standard treatments in two ways: by
using a class of thermal condensates, the coherent thermal states, which encode statistical fluctuations
in quantum geometry; and by introducing a suitable class of smearing functions as nonsingular,
well-behaved generalizations for relational clock frames in group field theory. In particular, we
investigate an effective relational cosmological dynamics for homogeneous and isotropic spacetimes,
extracted from a class of free group field theory models, and subsequently investigate aspects of its
late and early times evolution. We find the correct classical limit of Friedmann equations at late times,
with a bounce and an accelerated expansion at early times. Specifically, we find additional correction
terms in the evolution equations corresponding to the statistical contribution of the new thermal
condensates in general, and a higher upper bound on the number of e-folds, even without including any
interactions.
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I. INTRODUCTION

The ultimate goal of any theory of quantum gravity is to
describe the known physics, while also providing novel
falsifiable physical predictions on a measurable scale. One
of the most important arenas in this respect is cosmology,
with features such as singularity resolution and inflation
representing crucial checkpoints for any viable model
based on an underlying theory of quantum gravity. It is
thus important for any candidate theory to find a suitable
continuum and semiclassical regime within the full theory,
in which standard cosmology can be approximated, up to
effective corrections of quantum gravitational origin. In
fact, in the group field theory (GFT) approach, such a
regime has been suggested via a class of condensate phases
of the system [1–3].
Group field theory is a statistical field theory defined

formally by a partition function,

ZGFT ¼
Z

½DφDφ̄�e−Sðφ;φ̄Þ; ð1:1Þ

where the fields φ and φ̄ are defined over a Lie group base
manifold G,

φ∶G → C∶g ↦ φðgÞ; ð1:2Þ

and S is a generically nonlocal function of the fields
dictating the system’s dynamics. The choice of the base
manifold we are interested in is SUð2Þd ×R, with d ≥ 3.
This choice is understood as considering a model of
discrete gravity associated with SUð2Þd [4–9], coupled
to a scalar matter field taking values in R providing, for
instance, the possibility of using the matter field ϕ to define
a relational frame of reference [1–3,10,11]. The group field
is invariant under a diagonal right action of SUð2Þ on
SUð2Þd,

φðg⃗;ϕÞ ¼ φðgih;ϕÞ; ∀ h ∈ SUð2Þ; ð1:3Þ

where g⃗ ¼ ðgiÞ ∈ SUð2Þdwith i ¼ 1;…; d, andϕ ∈ R. This
symmetry encodes the geometric condition of closure of
polyhedrawithd faces labeled bySUð2Þ data, associatedwith
thegroup fields. These polyhedra are thediscrete fundamental
quanta of geometry building up spacetime, which can then be
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modeled as a peculiar, background independent1 quantum
many-body system [12–17]. In fact, the GFT partition
function (1.1) dynamically generates discrete quantum
spacetimes that are labeled 2-complexes (spin foams),
with boundary states given by labeled graphs (spin networks)
[4–9,18]. Bulk processes and boundary states of group
field theories are thus dual to polyhedral complexes, in
most commonly studied models based on loopless combi-
natorics [15].
Such a many-body perspective, with the polyhedral

quanta of geometry being excitations of the field φ, has
been very useful. It has allowed for tangible explorations of
connections of group field theory (which in turn is strictly
related to several other approaches, including loop quantum
gravity [19–22], spin foams [23,24], causal dynamical
triangulations [25], tensor models [26], and lattice quantum
gravity [27]) with quantum information theory [28–32],
and also with quantum statistical mechanics and thermal
physics [14,33–37]. It has further allowed for importing
ideas and tools from condensed matter theory, which has
been crucial, for instance, in the development of quantum
condensate cosmology [1–3].
The present work concerns the incorporation of statistical

fluctuations in GFT condensate cosmology, directly build-
ing onworks in [11,33,38], and evaluating the consequences
of the presence of such fluctuations in the effective cos-
mological evolution equations. To this end, we use the
framework of thermal representations for GFT and thermal
condensates, i.e., coherent thermal states, introduced in [33].
In general, the notion of thermality in a background
independent system is a particularly subtle issue, mainly
due to the absence of an absolute notion of time (see, for
instance, Ref. [14], and references therein). Nevertheless,
thermal condensates [33] can be defined in the present
quantum gravitational system using a generalized notion of
Gibbs statistical equilibrium and certain quantum many-
body techniques [14,34,36]. These condensates are con-
structed to mathematically include statistical fluctuations in
a given (set of) observable(s), not necessarily energy, and
without relying on specific geometric interpretations of the
associated quantities, e.g., generalized temperature, free
energy, entropy [14,33,34,36]. As will be discussed below,
the observable of interest here is spatial volume. The
resulting state encodes fluctuations in the underlying
quantum geometry, with its corresponding generalized
temperature being (by construction) a statistical parameter
controlling the strength of these fluctuations [33,36]. We
understand the ensuing system as describing a phase of the

universe in which not all quanta of geometry have
condensed.
In the context of cosmology, a thermal phase seems

likely in any reasonable geometrogenesis scenario, in
which the universe transitions from a primordial pregeo-
metric hot thermal phase, to a phase with an approximate
notion of continuum and macroscopic geometry (here,
encoded in the notion of a condensate [2]), and in general
with a leftover thermal cloud of quanta that have not
condensed. In other words, here, we understand a pure,
zero temperature GFT condensate that has been used
extensively in previous works [1,3,11,38], as describing
a suitable macroscopic phase only at very late times of the
system’s evolution and not throughout. What we are
working with instead is an intermediary phase that would
be expected to arise in a transition between a hot pregeo-
metric phase and a pure condensate. Thus, in this work we
present a tentative picture of a universe being modeled as a
quantum gravitational condensate of elementary quanta of
geometry along with a thermal cloud of the same quanta
over it, and in which an early time phase dominated by the
thermal cloud and a late time phase dominated by the
condensate are generated dynamically.
We work with a free GFT model and thermal conden-

sates with a static (nondynamical) thermal cloud, to derive
effective generalized evolution equations for homogeneous
and isotropic cosmology, which include correction terms
originating in the underlying quantum gravitational and
statistical properties of the system. At late times we recover
the correct general relativistic limit, while at early times we
get a bounce between contracting and expanding phases,
along with a phase of accelerated expansion characterized
by an increased number of e-folds compared with pre-
viously reported numbers for the same class of free models.
The article is organized as follows. In Sec. II we present a

summary of the construction of thermal representations in
GFT associated with generalized Gibbs states, and define
coherent thermal states as candidates for thermal quantum
gravitational condensates for applying in condensate cos-
mology. In Sec. III we analyze a free GFT model for
effective cosmology in the presence of thermal fluctuations
introduced via coherent thermal states. We start with
explicating the choice of the state in Sec. III A, based on
which we derive the GFT effective equations of motion in
Sec. III B. In Secs. III C and III D, we reformulate the
effective dynamics in terms of relational “clock” functions,
implemented as smearing functions along the ϕ direction of
the base manifold G. As we will discuss, this provides a
suitable nonsingular generalization of a relational frame
used in previous works in terms of the coordinate ϕ.
We further derive the effective generalized Friedmann
equations for flat homogeneous and isotropic cosmology
in Sec. III E, recover the correct classical general relativistic
limit in a late time regime in Sec. III E 1, and characterize
the early time evolution through an assessment of

1Background independence in nonperturbative discrete quan-
tum gravity approaches, such as group field theory, is in the
radical sense of having no spacetime (and related continuum
geometric) structures a priori. General relativistic spacetime
(modulo effective quantum gravitational corrections) must then
emerge from an underlying nonspatiotemporal, thus manifestly
background independent, theory of quantum gravity.
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singularity resolution and inflation in Sec. III E 2. Finally,
we close with a discussion of various aspects surrounding
the inclusion of statistical fluctuations, interactions, and its
implications at the level of the effective GFT models, and
suggest further extensions of this work in Sec. IV.

II. THERMAL QUANTUM GRAVITY
CONDENSATES

A. Bosonic group field theory

The quantum operator group field theory for bosonic2

quanta is based on the commutation algebra,

½φðg⃗;ϕÞ;φ†ðg⃗0;ϕ0Þ� ¼ Iðg⃗; g⃗0Þδðϕ − ϕ0Þ ð2:1Þ

with ½φðg⃗;ϕÞ;φðg⃗0;ϕ0Þ� ¼ ½φ†ðg⃗;ϕÞ;φ†ðg⃗0;ϕ0Þ� ¼ 0. Here,
δ is a delta distribution for functions on R, I is a delta
distribution for gauge-invariant functions on SUð2Þd, and
we have dropped the hats over operators to simplify our
notation. The Hilbert space for a single gauge-invariant
quantum is

H ¼ L2ðSUð2Þd=SUð2ÞÞ ⊗ L2ðRÞ; ð2:2Þ

where the quotient by SUð2Þ ensures the gauge invariance
of Eq. (1.3). This is the state space of a single quantum
d-polyhedron labeled with a real number ϕ.
In order to work with formally well-defined quantities,

we smear the operator-valued distributions φðg⃗;ϕÞ with a
suitable basis of functions in H,

fJαðg⃗;ϕÞ ¼ DJðg⃗Þ ⊗ TαðϕÞ; ð2:3Þ

where fTαðϕÞgα is any orthonormal basis of complex-
valued smooth functions in L2ðRÞ for the scalar
field, labeled by a discrete index α, and fDJðg⃗ÞgJ is
the complete set of orthonormal Wigner functions for
gauge-invariant functions on SUð2Þd, given by DJðg⃗Þ ¼P

n⃗ C
j⃗
ι;n⃗

Q
d
i¼1D

ji
miniðgiÞ. The basis elements are labeled by

J ≡ ðj⃗; m⃗; ιÞ, with irreducible representations of SUð2Þ
indexed by ji ∈ N=2, internal representation index mi ∈
ð−ji;…; jiÞ for each ji, and intertwiners Cj⃗

ι;n⃗ [i.e., SUð2Þ
gauge-invariant tensors] indexed by ι. Then the ladder
operators in this new basis (labeled by J, α) are given by
smearing the operators in the original basis (labeled by
g⃗;ϕ), that is,

aJα ≔ φðfJαÞ ¼
Z
SUð2Þd×R

dg⃗dϕ D̄Jðg⃗ÞT̄αðϕÞφðg⃗;ϕÞ; ð2:4Þ

a†Jα ≔ φ†ðfJαÞ ¼
Z
SUð2Þd×R

dg⃗dϕDJðg⃗ÞTαðϕÞφ†ðg⃗;ϕÞ;

ð2:5Þ

where D̄Jðg⃗Þ denotes the adjoint matrix to DJðg⃗Þ. Being
simply a change of basis, the algebra is unchanged, now
taking the form

½aJα; a†J0α0 � ¼ δJJ0δαα0 ð2:6Þ

and ½aJα; aJ0α0 � ¼ ½a†Jα; a†J0α0 � ¼ 0. The vacuum state j0i,
which is specified by the annihilation operators,

aJαj0i ¼ 0 ∀ J; α ð2:7Þ

generates a Fock spaceHF (for symmetric, bosonic states),
via cyclic actions of the algebra generators faJα; a†Jα; 1g,
given by

HF ¼ ⨁
N≥0

symðH⊗NÞ: ð2:8Þ

Last, we recall that a useful class of states in HF are the
coherent states, defined by

jσi ≔ DaðσÞj0i; ð2:9Þ

where Da is the displacement operator,

DaðσÞ ¼ ea
†ðσÞ−aðσÞ; ð2:10Þ

and

aðσÞ ¼
X
J;α

σ̄JαaJα ¼
Z

dg⃗dϕ σ̄ðg⃗;ϕÞφðg⃗;ϕÞ; ð2:11Þ

a†ðσÞ ¼
X
J;α

σJαa
†
Jα ¼

Z
dg⃗dϕσðg⃗;ϕÞφ†ðg⃗;ϕÞ ð2:12Þ

are the smeared operators, for any single-particle wave
function σ ∈ H.

B. Thermal representations

The operator setup summarized above has been used to
show that effective cosmological dynamics, featuring
various aspects such as early time bounces, inflation, cyclic
phases etc. [1–3], can be supported by GFT coherent
condensates of the form (2.9) above (with varying details
depending on the dynamical model, of course). Particularly
in the context of this article, it has been shown that an
effective Friedmann dynamics [11,38–41] can be extracted

2Bosonic statistics corresponds to an invariance under particle
exchanges in a generic many-body wave function. In the present
context, this corresponds to a graph automorphism under node
exchanges, since a generic many-body wave function here
describes the state of a labeled graph.
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from an underlying GFT dynamics for coherent states (2.9),
thus exhibiting the viability of such condensates as suitable
quantum gravitational phases for the cosmological sec-
tor [2].
However, as is evident from Eq. (2.9), this phase is built

over a degenerate and unentangled vacuum (2.7), charac-
terized by uncorrelated quanta. Furthermore, it does not
incorporate statistical fluctuations in the underlying degrees
of freedom. Now from a physical point of view, one would
expect that thermal fluctuations play a role in the dynamical
evolution of physical observables describing any macro-
scopic system, including a spacetime built from a large
number of elementary quanta of geometry. In other words,
studying statistical, thermal properties of quantum space-
times would be valuable [14,33–36], especially in strong
gravity regimes such as for the early-time Planck-scale era
in the context of quantum cosmology models. Along these
lines, thermal condensates of the form (2.25) have recently
been suggested to be a suitable class of states to con-
sider [33].
In general, thermal effects are encoded in statistical

mixed states, represented by density operators defined on a
representation Hilbert space (here, HF), and of particular
interest are statistical equilibrium states. In the present
background independent context of GFT, these are given by
generalized Gibbs states of the form

ρfβlg ¼
1

Zfβlg
e−

P
l
βlOl ; ð2:13Þ

where fOlg is a finite set of observables of interest and
fβlg is a multivariable generalized inverse temperature
[14,34,36]. One can extend this formalism for generalized
Gibbs states even further in order to address the question of
including thermal fluctuations in condensates, by con-
structing thermal representations as is done for standard
finite-temperature quantum field theories. Such an exten-
sion of the GFT formalism to include thermal representa-
tions was introduced in [33], by using tools from
thermofield dynamics [42–46]. Below we review the main
details of this construction.
A simple class of generalized Gibbs states that are

properly normalizable,3 and are of interest to us particularly
in the present context of cosmology, is

ρβ ¼
1

Z
e−βP ; ð2:14Þ

where P is a positive, extensive operator on HF, and
β ∈ Rþ. In the context of gravity, for instance, P could be
chosen to be a spatial volume operator [14,36], as will be

done later in Sec. III. For now, we leave it as this more
general class of states, along the lines in [33].
We first define the zero temperature phase (β ¼ ∞),

which is given in terms of the Hilbert space,

H∞ ¼ HF ⊗ H̃F: ð2:15Þ

Here, the Hilbert space H̃F is conjugate to HF under the
action of an antiunitary (modular conjugation or tilde
conjugation) operator [43,46–49] and is the Hilbert space
of the tilde degrees of freedom. For a detailed discussion on
the tilde and nontilde degrees of freedom, their relations,
and possible meanings, we refer to [33] and references
therein. For now, we note that the zero temperature Hilbert
space H∞ can be understood as describing a bipartite
system, with the nontilde degrees of freedom residing in
HF, and its associated algebra generated by fa; a†; 1g,
being our original system of interest. Thus also, the
observables of interest here are those that belong to the
algebra of nontilde a (or equivalently, φ) operators.
The space H∞ is a Fock space on the cyclic vacuum

j0∞i ¼ j0i ⊗ j0̃i ð2:16Þ

with ladder operators faJ;α; a†J;α; ãJ;α; ã†J;αgβ¼∞ that satisfy

½aJα; a†J0α0 � ¼ ½ãJα; ã†J0α0 � ¼ δJJ0δαα0 ð2:17Þ

and all other commutators, including those between tilde
and nontilde operators, vanish. The vacuum j0∞i satisfies

aJαj0∞i ¼ ãJαj0∞i ¼ 0 ∀ J; α: ð2:18Þ

The thermal algebra fbJα; b†Jα; b̃Jα; b̃†Jαg0<β<∞ is then
introduced via thermal Bogoliubov transformations of the
generators (2.17), given by

bJα ≔ cosh ½θJαðβÞ�aJα − sinh ½θJαðβÞ�ã†Jα; ð2:19Þ

b̃Jα ≔ cosh ½θJαðβÞ�ãJα − sinh ½θJαðβÞ�a†Jα; ð2:20Þ

and analogous expressions for their adjoints b†Jα and b̃†Jα.
The parameters θJαðβÞ encode complete information about
the statistical state, being functions of β and eigenvalues of
the observables characterizing the state. The temperature-
dependent annihilation operators define a new vacuum,

bJαj0βi ¼ b̃Jαj0βi ¼ 0 ∀ J; α; ð2:21Þ

called a thermal vacuum, at inverse temperature β. It is
cyclic, in turn generating a thermal Hilbert spaceHβ via the
action of the β-ladder operators, which create and annihi-
late b quanta over j0βi. It is, in fact, inequivalent to all the
different vacua at different temperatures, including the zero

3We refer to [33,36] for the details of proof of normalization
for this class of states.
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temperature j0∞i vacuum [33]. Thus also their correspond-
ing thermal representations labeled by the parameter β are
all inequivalent, each representing a distinct statistical
phase of the system. Notice that j0βi is an entangled state
with quantum correlations between pairs of a and ã quanta.
In the present case, the functions θJαðβÞ are uniquely

associated with the Gibbs states ρβ of Eq. (2.14). In
practice, they are usually determined by the following
condition for the number operator4:

TrHF
ðρβa†JαaJαÞ ¼ h0βja†JαaJαj0βiHβ

; ð2:22Þ

where evaluating the right-hand side (using inverse
Bogoliubov transformations) gives

TrHF
ðρβa†JαaJαÞ ¼ sinh2 ½θJαðβÞ� ð2:23Þ

for all J, α. Last, Bogoliubov transformations are canonical.
Thus, the β-ladder operators satisfy the same bosonic
commutation algebra as before, i.e.,

½bJα; b†J0α0 � ¼ ½b̃Jα; b̃†J0α0 � ¼ δJJ0δαα0 ; ð2:24Þ

and all other commutators vanish.

C. Coherent thermal states

Coherent thermal states are the canonical coherent states
over a thermal vacuum j0βi which are invariant under the
tilde conjugation [33,46,50–52]. They are elements of the
thermal Hilbert space Hβ, obtained through the action of
displacement operators of the form (2.10), and are defined
as

jσ; σ̄; βi ≔ DaðσÞDãðσ̄Þj0βi; ð2:25Þ

where Dã is a displacement operator of the same form as
(2.10) but for the ã ladder operators. Coherent thermal
states are eigenstates of β-annihilation operators with
temperature-dependent eigenfunctions,

bJαjσ; σ̄; βi ¼ ðcosh½θJα� − sinh½θJα�ÞσJαjσ; σ̄; βi; ð2:26Þ

b̃Jαjσ; σ̄; βi ¼ ðcosh½θJα� − sinh½θJα�Þσ̄Jαjσ; σ̄; βi; ð2:27Þ

where σJα ¼ ðfJα; σÞH. They are not, however, the eigen-
states of the original annihilation operators aJα, belonging
to our system of interest. This fact induces the emergence of
nontrivial thermal contributions, along with coherence
properties, in the expectation values of operators originally
defined on H∞, or its relevant subspace HF. For example,

the average number density of the mode Jα in a coherent
thermal state is

hσ; σ̄; βja†JαaJαjσ; σ̄; βi ¼ jσJαj2 þ sinh2½θJα�; ð2:28Þ

which contains both the usual coherent number density and
an additional thermal contribution.
It is important to remark here that our use of the basis

fJα, in particular of the countable basis fTαgα∈N for L2ðRÞ,
in order to develop the finite-temperature GFT formalism in
terms of the ladder operators [Eqs. (2.4), (2.5), (2.19),
and (2.20)], was crucial. The observables that one
might consider in a chosen model must admit domains
of definition which contain the sector of Hilbert space
that one is interested in, here coherent thermal states.
Otherwise, no calculation could be carried out without
running into divergences and ill-defined expressions. This,
in particular, applies to ϕ-dependent operators, not smeared
with Tα. For instance, if one considers the number density
operator as a function of ϕ,

NJðϕÞ ¼
Z

dg⃗dg⃗0D̄Jðg⃗0ÞDJðg⃗Þφ†ðg⃗;ϕÞφðg⃗0;ϕÞ

¼ a†JðϕÞaJðϕÞ; ð2:29Þ

then the calculation of the expectation value in a coherent
thermal state would give

hNJðϕÞiσ;σ̄;β ¼ jσJðϕÞj2 þ sinh2½θJðϕÞ�δðϕ − ϕÞ; ð2:30Þ

which is clearly ill-defined due to the presence of the Dirac
delta distribution δð0Þ in the thermal part evaluated at the
singular point. We thus need to consider smeared observ-
ables such as the operator a†JαaJα in (2.28), where now the
thermal contribution contains a well-defined Kronecker
delta δαα coefficient instead.
At this point, we have introduced the necessary kin-

ematical aspects of the theory in order to discuss an
effective cosmological model incorporating statistical fluc-
tuations of quantum geometry, which is the subject of the
rest of the paper.

III. THERMAL CONDENSATE COSMOLOGY

We start by presenting the effective free GFT dynamics
in a condensate phase with fluctuating geometric volume.
We then introduce the notion of a reference clock function
and reformulate the setup, including the effective dynamics
in terms of functional quantities and equations of motion,
with respect to a generic class of these clock functions.
Based on this, we present an effective, relational, homo-
geneous and isotropic cosmological model, and discuss the
late and early times evolution it describes.

4In principle, the condition (2.22) of identifying observable
averages in the two representations, must be satisfied by the full
algebra [33,42–46].

THERMAL QUANTUM GRAVITY CONDENSATES IN GROUP … PHYS. REV. D 102, 044024 (2020)

044024-5



A. Condensates with volume fluctuations

Since we are interested in the homogeneous and isotropic
cosmological sector, the main observable of interest is the
volume operator, in particular, the volume associated with a
(spatial) submanifold given by a foliation parametrized by a
clock function (see Sec. III C). Recall that the GFT volume
operator associated with a generic many-body state inHF is

V ≔
X
J;α

vJa
†
JαaJα; ð3:1Þ

where vJ ∈ R≥0 is the volume assigned to a single quantum
with a configuration J ¼ ðj⃗; m⃗; ιÞ. This is an extensive
positive operator onHF, and its action on any multiparticle
state gives the total volume by summing up the volume
contribution vJ from each quantum.
Further, we select a statistical state of the form (2.14)

such that the generator P is the above volume operator, that
is, a volume Gibbs state [14,36] of the form

ρβ ¼
1

Zβ
e−βV; ð3:2Þ

which encodes a statistically fluctuating volume of quan-
tum spacetime.
The quantum gravity condensate that we are interested in

is thus a coherent thermal state of the form (2.25), but
associated specifically with the volume Gibbs state in
Eq. (3.2). In other words, we are interested in using a
state jσ; σ̄; βi, specified by two functions, the condensate
wave function σ ∈ H, and the Bogoliubov parameter
θJαðβÞ that is identified by the Bose number distribution
of the state (3.2),

sinh2 ½θJαðβÞ� ¼
1

eβvJ − 1
: ð3:3Þ

Notice that since the spectrum of V is independent of the
modes Tα, the functions θJα are also independent of them.
Thus θJα ¼ θJ, and we will drop the labels α in quantities
associated with θ from here on. Also, notice the following
important property of our chosen state,

lim
β→∞

jσ; σ̄; βi ¼ jσ; σ̄i ¼ DaðσÞDãðσ̄Þj0; 0̃i; ð3:4Þ

thanks to which all results of the previous works in GFT
cosmology are reproduced when the fluctuations are turned
off completely.
In the present context of extracting effective cosmologi-

cal models from a candidate background independent
theory of quantum gravity, the use of relational observables
is of utmost importance. As mentioned previously, past
works in GFT cosmology have interpreted and used the
base manifold coordinate ϕ as a relational matter clock,
and considered quantities such as NðϕÞ as relational

observables. However, we have also noticed above that
in the present setting such quantities (see equation (2.30))
contain UV divergences related to occurrences of the ill-
defined δðϕ ¼ 0Þ distributions, which had in turn prompted
us to change the basis5 to Tα, as a first step in the inclusion
of thermal fluctuations in the context of GFT condensates.
It follows that in this basis, we are interested in α-dependent
quantities defined by a partial sum over J, such as

Vα ¼
X
J

vJa
†
JαaJα; ð3:5Þ

and its statistical average in the thermal condensate (which
itself now includes statistical fluctuations in volume),

hVαiσ;σ̄;β ¼
X
J

vJðjσJαj2 þ sinh2 ½θJðβÞ�Þ: ð3:6Þ

Finally, in the context of the relational dynamics dis-
cussed later in Sec. III C, we are essentially considering the
case of a nondynamical thermal cloud, with only the
condensate part of the full system being dynamical. This
is understood as a first approximation of the more general
case with dynamical thermal fluctuations. We will return to
this point later in Secs. III E 2 and IV.

B. Effective group field theory dynamics

A generic GFT action with a local kinetic term and a
nonlocal interaction term (higher than quadratic order in the
fields) takes the form

S ¼
Z

dg⃗dϕφ̄ðg⃗;ϕÞKðg⃗;ϕÞφðg⃗;ϕÞ þ Sint½φ; φ̄� ð3:7Þ

and gives the following classical equation of motion:

Kðg⃗;ϕÞφðg⃗;ϕÞ þ δSint½φ; φ̄�
δφ̄ðg⃗;ϕÞ ¼ 0: ð3:8Þ

In the corresponding quantum theory on HF, the equation
of motion is

Kðg⃗;ϕÞφ̂ðg⃗;ϕÞ þ
dδSint½φ; φ̄�

δφ̄ðg⃗;ϕÞ ¼ 0 ð3:9Þ

with some choice of operator ordering (and the hat notation
reinstated temporarily). An effective equation of motion
can then be derived from the above operator equation by
taking its expectation value in a special class of quantum
states implementing a notion of semiclassical and

5Further details about this aspect and the definition of a basis-
independent clock are discussed in Sec. III C.
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continuum approximations.6 Here, we take the coherent
thermal states introduced above as this class of states. We
thus consider

hσ; σ̄; βjKðg⃗;ϕÞφ̂ðg⃗;ϕÞ þ
dδSint½φ; φ̄�

δφ̄ðg⃗;ϕÞ jσ; σ̄; βi ¼ 0: ð3:10Þ

As a first step to investigate the role of statistical
fluctuations of quantum geometry in condensate cosmol-
ogy, we focus here only on the free part. This would allow
us to display clearly the impact of nonzero thermal
fluctuations. In other words, any difference in results that
we find, as compared to previous zero temperature free
theory studies, could then be attributed directly to the
presence of these statistical fluctuations. Therefore, restrict-
ing to the free kinetic term, we obtain

hσ; σ̄; βjKðg⃗;ϕÞφðg⃗;ϕÞjσ; σ̄; βi ¼ Kðg⃗;ϕÞσðg⃗;ϕÞ: ð3:11Þ

Further using the Peter-Weyl decomposition for σ,

σðg⃗;ϕÞ ¼
X
J

DJðg⃗ÞσJðϕÞ; ð3:12Þ

and considering the following kinetic term (which is a
standard choice; see, for instance, Ref. [53] and references
therein):

K ¼ K0ðg⃗Þ þK1ðg⃗Þ∂2
ϕ; ð3:13Þ

such that

K0ðg⃗ÞðDJðg⃗ÞσJðϕÞÞ ¼ BJDJðg⃗ÞσJðϕÞ; ð3:14Þ

K1ðg⃗Þ∂2
ϕðDJðg⃗ÞσJðϕÞÞ ¼ AJDJðg⃗Þ∂2

ϕσJðϕÞ; ð3:15Þ

we obtain the following equations of motion:

∂2
ϕσJðϕÞ −MJσJðϕÞ ¼ 0; ∀ J; ð3:16Þ

where MJ ≔ − BJ
AJ
.

Thus, we see that the free GFT dynamical equation of
motion in a coherent thermal state is identical to the case
where one considers a simple coherent state (2.9) in HF,
with no thermal cloud. But as we can already anticipate,
observable averages (such as volume) will have thermal
contributions in general, consequently modifying their
evolution equations.

This concludes the derivation of the effective GFT equ-
ation of motion using a thermal coherent state. However, as
we have mentioned earlier, calculations with observables in
a ðg⃗;ϕÞ basis leads to singularities in the ϕ-dependent
quantities. This brings us to the following section where we
address the question of defining and applying a suitable
time reference frame (a clock), and offer a preliminary
interpretation of the resultant quantities.

C. Smearing functions and reference clocks

As we have emphasized before, the use of ϕ as a
reference clock is not possible here since the quantities
of interest, such as hVðϕÞi, are mathematically ill-defined,
which prompted us to define quantities such as hVαi
instead. Below, we generalize this even further and intro-
duce generic7 square-integrable, complex-valued smooth
functions,

tðϕÞ ¼
X
α

tαTαðϕÞ; ð3:17Þ

in order to define observables and their dynamics as
functionals of tðϕÞ (which will later be interpreted as
relational). This brings us to the aspect of smearing.
In the quantum operator setup summarized in Secs. II A

and II B, instead of smearing the operators with a set
of basis functions fJαðg⃗;ϕÞ, we could instead smear
the algebra generators with a complete set of more general
smearing functions Fðg⃗;ϕÞ (usually also satisfying
additional analyticity and sufficient decay properties).
In particular, for the ϕ variable, this would amount to
smearing with smooth functions, say tðϕÞ. This would
result in an equivalent, but basis-independent algebraic
setup, as commonly encountered in Weyl C*-algebraic
theory associated with bosonic quanta.8 For our actual
purposes, we retain the use of the Wigner basis DJðg⃗Þ, in
order to retain also the associated geometric interpretation
of (functions of) the spin labels J as it is standard in both
GFT and loop quantum gravity, while in the ϕ direction we
smear with a function tðϕÞ. In other words, we are
interested in smeared operators of the form

aJðtÞ ≔
Z

dg⃗dϕD̄Jðg⃗Þt̄ðϕÞφðg⃗;ϕÞ; ð3:18Þ

a†JðtÞ ≔
Z

dg⃗dϕDJðg⃗ÞtðϕÞφ†ðg⃗;ϕÞ; ð3:19Þ

which are now understood as functional (relational) ladder
operators, with respect to the function tðϕÞ. By extension,
the observable of interest is the volume operator, which
now takes the form

6In line with previous works, we understand the implementa-
tion of semiclassical and continuum approximations in the
specific sense of using the class of coherent states (which are
well-known to be the most classical quantum states, with a peak
on a pair of classical conjugate variables), and a condensate phase
(described by a collective condensate variable, and with a
nonzero order parameter), respectively.

7While satisfying certain boundary conditions, see Eqs. (3.29).
8See [36,37] for details of a Weyl algebraic formulation in

group field theory.
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Vt ≔
X
J

vJa
†
JðtÞaJðtÞ; ð3:20Þ

which is interpreted as the operator associated with a spatial
slice labeled by the function t.
Notice that in general, t-relational operators, and

their expectation values, are nonlocal functions of their
ϕ-relational counterparts. For instance, the average volume
in a thermal condensate state is

hVtiσ;σ̄;β ¼
X
J

vJðjσJðtÞj2 þ sinh2½θJ�ktk2Þ; ð3:21Þ

where ktk2 ¼ ðt; tÞL2ðRÞ and

σJðtÞ ≔
Z
R
dϕt̄ðϕÞσJðϕÞ ¼ ðt; σJÞL2ðRÞ: ð3:22Þ

One can show that the quantity hVtiσ;σ̄;β can be expressed in
terms of a nonlocal function of ϕ, namely,

hVtiσ;σ̄;β ¼
X
J

vJ

Z
R2

dϕdϕ0tðϕÞt̄ðϕ0ÞhNJðϕ;ϕ0Þiσ;σ̄;β;

ð3:23Þ

where

NJðϕ;ϕ0Þ ≔ a†JðϕÞaJðϕ0Þ ð3:24Þ

is the off-diagonal number density (2-point) operator with
expectation value

hNJðϕ;ϕ0Þiσ;σ̄;β ¼ σ̄JðϕÞσJðϕ0Þ þ sinh2½θJ�δðϕ − ϕ0Þ:
ð3:25Þ

This generic nonlocality of t-relational quantities with
respect to ϕ, for instance in (3.23), is reasonable to expect
simply as a technical feature that is characteristic of
changing reference frames in general.
Lastly, the smearing functions tðϕÞ are understood as

defining reference clock frames, the reasons for which will
be made more clear in the next section. For now, we note
that such a treatment is compatible with GFTs technically
being background independent field theories. Unlike in
standard quantum field theory and particle physics, in any
background independent field theory, a relational clock
variable is expected to be defined as a genuine function,
such as tðϕÞ, rather than a coordinate on the base manifold,
such as ϕ. One common way to tackle this is to introduce an
additional dynamical field into the system, deparametrize
the full dynamics with respect to it, and use it as a clock,
e.g., the Brown-Kuchar dust model in general relativity. In
this case then, we notice that relational clocks are fields
over the spacetime base manifold. Hence, in GFTs one
expects a relational clock to also be defined as a field over

the base (Lie group) manifold. This is what we partially
achieve in this work, by the use of functions tðϕÞ. Having
said that, we strictly refrain from assigning any further
physical interpretation to the function t, especially from the
spacetime point of view, unlike the coordinate ϕ which has
been motivated as a minimally coupled scalar matter field
in previous works (see, for instance, Ref. [10]).

D. Relational functional dynamics

At this point, we come to the important task of
expressing the effective GFT equations of motion in terms
of the smearing functions. The goal is to arrive at a
consistent dynamical description of the present system in
a t-relational reference frame. Let us first reiterate our main
line of reasoning. Smearing functions tðϕÞ are used in order
to avoid divergences in the ϕ-frame, e.g., in relational
quantities such as hVðϕÞiσ;σ̄;β. This leads to observables
such as hVtiσ;σ̄;β. The condensate functional σJðtÞ defined
in (3.22) then naturally takes on the role of the dynamical
collective variable, instead of σJðϕÞ. Therefore, the equa-
tions of motion (3.16) in terms of the variable ϕ must be
rewritten suitably in terms of functions t, as follows.
We are seeking a differential equation of motion for

σJðtÞ, encoding the same dynamics as (3.16). We begin by
noticing that the mass term in (3.16) can be written in terms
of σJðtÞ simply as

MJσJðtÞ ¼
Z
R
dϕMJt̄ðϕÞσJðϕÞ ð3:26Þ

using the smearing. Therefore, as before, we see that
smearing might offer us a way forward. We then smear
Eqs. (3.16) with an arbitrary square-integrable complex-
valued smooth function tðϕÞ, obtainingZ

R
dϕt̄ðϕÞ∂2

ϕσJðϕÞ −MJσJðtÞ ¼ 0; ∀ J: ð3:27Þ

Now, in order to get a description completely in the t-frame,
we require a suitable derivative operator with a well-
defined action on functionals of t. For this, notice thatZ
R
dϕt̄ðϕÞ∂2

ϕσJðϕÞ ¼
�
−
Z
R
dϕ∂ϕ t̄

δ

δt̄ðϕÞ
�

2

σJðtÞ

≕d2
t σJðtÞ; ð3:28Þ

where we have used integration by parts, and the following
boundary conditions for the smearing functions:

lim
ϕ→�∞

tðϕÞ ¼ 0; lim
ϕ→�∞

∂ϕtðϕÞ ¼ 0: ð3:29Þ

The operator dt might seem to be a good choice for the
functional derivative [54,55] that we are looking for.
However, recall that we are working with complex-valued
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smearing functions. Thus, in our context, generic func-
tionals of them depend on both t and t̄, which are
considered to be independent variables; e.g., the norm
jσJðtÞj2 ¼ σJðtÞσJðtÞ depends on two variables, t and t̄.
The operator dt must thus be extended by the conjugate
term to obtain the Hermitian differential operator

∇t ≔ −
Z
R
dϕ

�
∂ϕ t̄

δ

δt̄ðϕÞ þ ∂ϕt
δ

δtðϕÞ
�
: ð3:30Þ

Notice that, as required, we get an equation in terms of ∇t
that is analogous to (3.28) above, i.e.,

∇2
t σJðtÞ ¼

Z
R
dϕt̄ðϕÞ∂2

ϕσJðϕÞ: ð3:31Þ

Therefore, the equations of motion (3.16) can be equiv-
alently expressed as

∇2
t σJðtÞ −MJσJðtÞ ¼ 0; ∀ J ð3:32Þ

for all square-integrable smooth functions tðϕÞ satisfying
the boundary conditions (3.29).
Note that if one is working with a dynamical model

based on higher (than 2) order derivatives in ϕ or in general
is interested in extending this setup to include arbitrary
higher order generalizations of Eq. (3.31) above, then the
boundary conditions (3.29) must be supplemented by
vanishing of all higher order derivatives of t in the limit
ϕ → �∞. In such a case then one could work with the
space of Schwartz functions, for instance, as the relevant set
of smearing functions. However, in the present analysis, we
do not need to restrict to this special subspace of smooth
functions, and the conditions (3.29) are sufficient.
Few remarks are in order concerning the operator ∇t and

the associated t-relational setup. The operator ∇t is a
functional differential operator, consisting of functional
derivatives with respect to t̄ and t [54,55]. The flow induced
by it is not on the GFT base manifold (in contrast with ϕ),
nor on a given spacetime, but rather on the space of
smearing functions. Recalling that functional derivatives
can be understood as generalizations of directional deriv-
atives, then ∇t essentially defines a flow with components
along the directions of ð−∂ϕt̄Þ and ð−∂ϕtÞ. Further, by
construction this operator satisfies

∇tlðtÞ ¼
Z
R
dϕt̄ðϕÞ∂ϕlðϕÞ ð3:33Þ

for any function lðϕÞ ∈ L2ðRÞ, where lðϕÞ satisfies (3.29),
and lðtÞ ≔ ðt;lÞL2ðRÞ. Notice that Eq. (3.33) straightfor-
wardly gives Eq. (3.31) used above. The property in (3.33) is
important because it motivates the use of smearing functions
as relational clock fields. As we have shown above, the t-
relational dynamical quantities and equations are derived

from an appropriate smearing of their (possibly nonlocal)ϕ-
relational counterparts. In particular, the t-functional equa-
tions of motion (3.32) are simply the smearing of the ϕ-
dependent equations (3.16). The interpretation of the smear-
ing can then be clarified, as a first step, by considering a
limiting casewhere the t-relational setup reduces to the usual
ϕ-relational one. Namely, if one takes a delta distribution9

peaked on ϕ, that is, tðϕ0Þ ¼ δðϕ0 − ϕÞ, then the full t-
relational setup introduced above naturally reduces to theϕ-
relational one that is used in all previous works in GFT
cosmology. For instance, all the smeared quantities take
their usual forms as functions of ϕ, e.g., σJðtÞ ¼ σðϕÞ,
aJðtÞ ¼ aJðϕÞ, hNJðtÞiσ;σ̄;β ¼ hNJðϕÞiσ;σ̄;β.
Along these lines, one can motivate specific choices of

smooth clock functions peaked around points of the base
manifold, namely values of ϕ, for instance, Gaussian
functions. Such choices could then be interpreted as the
implementation of a deparametrization procedure at the
level of the background independent quantum theory. One
could further understand the selection of a relational clock
as a restriction to a special sector of physical states in the
full (nondeparametrized) quantum theory, as was suggested
in [36]. However, in general, one would expect to be able to
realize such mechanisms in possibly different ways. For
instance, in the present setting, this would correspond to a
special choice of smearing functions t; while a different
possibility is explored in [56], in the context of zero
temperature (β ¼ ∞) GFT condensate cosmology. The
complete details of mechanisms for deparametrization,
how they relate to each other, and if there could be
preferred choices, are interesting queries that are left for
future investigations. In this article, however, we proceed
without any further restriction to a specific class of t
functions and work with the general case. We note that the
added generality may also allow for potential switching
between relational reference frames in GFT, which is an
expected feature of any background independent system
devoid of an absolute notion of time or space (see, for
instance, Ref. [57], and references therein).
Furthermore, we notice that the t-relational setup pre-

sented here is constructed from the full nondeparametrized
operator formulation of GFT, with the algebra satisfying
(2.1), and the deparametrization with respect to a relational
clock field is implemented via introduction of smearing
functions tðϕÞ, as discussed above. Specifically, the kin-
ematic description of the system is fully covariant, i.e., no
preferred clock parameter ϕ (from possibly several
ones [36]) or function tðϕÞ is chosen as the clock. The
dynamical description [Eqs. (3.8)–(3.10)] is derived using

9Note that a distribution would not satisfy the boundary
conditions (3.29), and also the operator ∇t would not be well-
defined. However, this peculiar case is to be understood only as a
limit, for instance, by considering the limit of vanishing width for
a family of Gaussian functions.
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the principle of least action, without the use of any
relational Hamiltonian. This setup is then technically
different from the one used in some recent works such
as [58,59]. The relational frame used in these other studies,
as in all previous works in GFT cosmology [1–3], is
defined with respect to the parameter ϕ, which as discussed
above (see also [33]) may lead to divergences. Also, the
studies in [58,59] are based on a canonical quantization of
already deparametrized classical GFT models. Specifically,
the kinematic description is canonical with respect to a
chosen clock variable ϕ, with the algebra based on equal
ϕ-time commutation relations. Subsequently, the dynami-
cal description is derived from a clock Hamiltonian. Having
said that, the descriptions based on these two, a priori
technically different, setups could eventually be related,
since they encode the physics of a given system before and
after deparametrization. This question is, however, tightly
connected to the open issue of time in quantum gravity.
The investigation of this possible relation may help in
addressing the question of how physical time emerges in
the present background independent theory of quantum
gravity.
Returning to the equations of motion (3.32), let us use

the standard polar decomposition

σJðtÞ ¼ ζtJe
iηtJ ; ð3:34Þ

where ζtJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σJðtÞσJðtÞ

q
is the modulus and ηtJ ¼

tan−1ðImσJðtÞ
ReσJðtÞÞ is the phase of the condensate functional

σJðtÞ ∈ C. Note that the quantities ζtJ and ηtJ do not
correspond to the smearing of the modulus ζJðϕÞ and
the phase ηJðϕÞ of the condensate function σJðϕÞ, which
were used in the context of GFT cosmology in previous
works [11]. Separating the real and imaginary parts of
Eqs. (3.32), we obtain

∇2
t ζ

t
J − ζtJð∇tη

t
JÞ2 −MJζ

t
J ¼ 0; ð3:35Þ

2∇tζ
t
J∇tη

t
J þ ζtJ∇2

t η
t
J ¼ 0 ð3:36Þ

for all J. These two equations imply the existence of two
constants of motion, as in the case of β ¼ ∞ free theory
[11], given by

EJ ¼ ð∇tζ
t
JÞ2 þ ðζtJÞ2ð∇tη

t
JÞ2 −MJðζtJÞ2; ð3:37Þ

QJ ¼ ðζtJÞ2∇tη
t
J; ð3:38Þ

satisfying ∇tEJ ¼ 0 and ∇tQJ ¼ 0.

E. Effective dynamics for homogeneous
and isotropic cosmology

Now, our investigation is based on four ingredients: the
choice of quantum states in the full theory (here, the class of

coherent thermal states based on the chosen Gibbs state),
the choice of dynamics, the choice of relational observ-
ables, and finally the choice of a subclass of condensate
wave functions. We have addressed the first three points in
Secs. III A–III D, which brings us to the last one, which we
address as follows. A notion of homogeneity in the present
nonspatiotemporal background independent setting resides
in the following: (i) the use of a coherent condensate as the
relevant phase for studying the effective cosmology
extracted from a GFT model, and (ii) having an additional
left diagonal symmetry on the condensate wave function
σðhgi;ϕÞ ¼ σðgi;ϕÞ; ∀ h ∈ SUð2Þ. In other words, it
resides in the facts that the collective dynamics is encoded
in a left- and right-invariant single-particle wave function σ,
which is also the order parameter of the condensate
haJðtÞiσ;σ̄;β ¼ σJðtÞ, where now J ≡ ðj⃗; ιL; ιRÞ, and that
each a-quantum in the condensate is being described by
the same wave function σ. Further, a notion of isotropy is
implemented by fixing the spins at each vertex to be equal,
fixing the two intertwiners to be equal (the geometric
interpretation of which remains to be understood), and
choosing a special class of intertwiners, namely the
eigenvectors of the volume operator with the highest
eigenvalue. We refer to past works for detailed discussions
on these aspects, for instance, [1,2,11,60–62].
These restrictions imply that the condensate function is

entirely determined by the value of a single spin j. It
follows that the equations of motion (3.32) reduce to one
equation for each value of the SUð2Þ spin label j,

∇2
t σjðtÞ −MjσjðtÞ ¼ 0; ∀ j ∈ N=2: ð3:39Þ

Consequently we have, ∀ j ∈ N=2

∇2
t ζ

t
j − ζtjð∇tη

t
jÞ2 −Mjζ

t
j ¼ 0; ð3:40Þ

2∇tζ
t
j∇tη

t
j þ ζtj∇2

t η
t
j ¼ 0 ð3:41Þ

with the same conserved charges (3.37) and (3.38), now
labeled by the spin j.
Having set all the ingredients for a dynamical analysis,

we can now proceed with the derivation of the effective
dynamical equations for the average volume hVti in a
coherent thermal state of the form (2.25), which include
geometric volume fluctuations as discussed in Sec. III A.
For simplicity of notation, we will drop the label t on
relational quantities (such as ζ, η, and volume averages) in
the following. Relational volume average is given by

V ≔ hVti ¼
X
j

vjðζ2j þ s2jktk2Þ; ð3:42Þ

where sj ≔ sinh ½θjðβÞ�. Using the effective equations of
motion (3.40) and (3.41), and the expressions for the
constants of motion (3.37) and (3.38), we obtain

MEHDI ASSANIOUSSI and ISHA KOTECHA PHYS. REV. D 102, 044024 (2020)

044024-10



V0 ≔ ∇tV

¼ 2
X
j

vjζj∇tζj

¼ 2
X
j

vjζjsgnðζ0jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ej −

Q2
j

ζ2j
þMjζ

2
j

s
; ð3:43Þ

V00 ≔ ∇2
tV ¼ 2

X
j

vjðEj þ 2Mjζ
2
jÞ; ð3:44Þ

where we have used ∇tktk2 ¼ 0. From here on we shall
assume ktk2 ¼ 1 for convenience.
Then, the effective generalized Friedmann equations,

including both quantum gravitational and statistical volume
corrections are

�
V0

3V

�
2

¼4

9

0BB@
P

jvjζjsgnðζ0jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ej−

Q2
j

ζ2j
þMjζ

2
j

r
P

jvjζ
2
j þ

P
jvjs

2
j

1CCA
2

; ð3:45Þ

V00

V
¼ 2

P
jvjðEj þ 2Mjζ

2
jÞP

jvjζ
2
j þ

P
jvjs

2
j

: ð3:46Þ

These equations represent the relational evolution for the
volume associated with a foliation labeled by the function t.
Compared to the analogous equations obtained in [11], the
main difference arises due to the expression (3.42) for the
average volume where there appears an additional statis-
tical contribution s2j , which as we have described above
originates directly from the quantum statistical mechanics
of the underlying quantum gravity theory.

1. Late times evolution

In the following, we will make use of the quantities
below that are formally defined as number densities
corresponding to the different parameters characterizing
the different phases of the system:

ncoðjÞ ¼ ζ2j ; nEðjÞ ¼
Ej

Mj
; ð3:47Þ

nthðjÞ ¼ s2j ; nQðjÞ ¼
Qjffiffiffiffiffiffi
Mj

p ; ð3:48Þ

where nco and nth [equal to (3.3)] are the actual number
densities (thus are non-negative) of the condensate and
thermal parts of the full system. Different physical regimes
can then be described in terms of relative strengths of these
parameters.
The domain nEðjÞ, nQðjÞ ≪ ncoðjÞ is understood as a

classical limit where the volume is large but curvature is
small [11]. In this regime, we have

V0 ≈ 2
X
j

sgnðζ0jÞvj
ffiffiffiffiffiffi
Mj

p
ζ2j ; ð3:49Þ

V00 ≈ 4
X
j

vjMjζ
2
j ; ð3:50Þ

giving the corresponding generalized evolution equations,�
V0

3V

�
2

¼ 4

9

�P
jsgnðζ0jÞvj

ffiffiffiffiffiffi
Mj

p
ζ2jP

jvjζ
2
j þ

P
jvjs

2
j

�2

; ð3:51Þ

V00

V
¼ 4

P
jvjMjζ

2
jP

jvjζ
2
j þ

P
jvjs

2
j
: ð3:52Þ

Note that the thermal contribution Vth ≔
P

j vjnthðjÞ is
invariant under variations in the time function t, that is,
∇tVth ¼ 0. Hence, if the full system evolves such that the
condensate number density ncoðjÞ increases monotonously
in time, then eventually we will reach the domain where the
condensate part, Vco ≔

P
j vjncoðjÞ, dominates the ther-

mal cloud, that is, Vco ≫ Vth. Thus considering

nco ≫ nQ; nE; nth ð3:53Þ

and

∀ j; sgnðζ0jÞ ¼ �1; Mj ≡M ¼ 3πG; ð3:54Þ

where G is Newton’s gravitational constant, we obtain�
V0

3V

�
2

¼ 4πG
3

; ð3:55Þ

V00

V
¼ 12πG; ð3:56Þ

which are known to be the relational Friedmann equations
in general relativity, for spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime with a minimally
coupled massless scalar field [11]. These are the equations
of motion of the quantum gravity system in a thermal
condensate phase where both (3.53) and (3.54) are valid.
Physically, this regime where the condition (3.53) is
satisfied, i.e., the contribution coming from the condensate
is dominant while the statistical fluctuations are subdomi-
nant, corresponds to a phase that effectively mimics a
system in a zero temperature condensate.10 Consequently,
as shown above, in this regime we simply get the zero

10Note that there could also be a classical regime where the
statistical fluctuations are not subdominant. In other words,
statistical fluctuations may be important even in regimes where
quantum fluctuations are negligible. In the present setting, this
could correspond to the case when nco ≫ nE, nQ holds true, while
the interplay between nco and nth is still relevant.
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temperature condensate cosmology obtained in previous
works [11,39]. In this sense, the use of zero temperature
condensates such as jσi can be understood more generally
as a thermal quantum gravity condensate being in a
dynamical regime where the condensate dominates,
nco ≫ nth.

2. Early times evolution

We can also look at the evolution equations (3.45) and
(3.46) in a different phase, in particular where the thermal
contributions and the quantum corrections become rel-
evant. For consistency, the choice (3.54), which recovers
the classical limit giving the correct late time behavior, is
assumed.
Observe that the expression (3.43) for V0 admits roots.

Namely, there exist solutions fζojgj such that

V0 ¼ 0: ð3:57Þ

The solution is given explicitly in terms of M and the
constants of motion Ej, Qj as

nocoðjÞ¼−
1

2
nEðjÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
nEðjÞ2þnQðjÞ2

r
; ∀ j; ð3:58Þ

where we have ignored the negative solutions, since nco is
the number density of the condensate and must be non-
negative in general. At this stationary point, the total
volume is

Vo ¼
X
j

vjðnocoðjÞ þ nthðjÞÞ; ð3:59Þ

which is clearly nonzero due to the nonvanishing thermal
contribution in the present finite β case, even if the
condensate part were to vanish. However, as it happens,
even noco does not vanish as long as E ≠ 0. In particular,
noco ≠ 0 even if Q ¼ 0. To see this, notice that if Q ¼ 0,
then E < 0, which is evident from their expressions in
Eqs. (3.37) and (3.38), assuming a positive M as required
by the correct classical limit (3.54). In this case then,
noco ¼ jnEj. In the more general case with Q ≠ 0, both
positive and negative E are allowed in principle, but in each
case we again have noco > 0. Thus, the expectation value V
does not vanish when V0 ¼ 0, implying the existence of a
nonvanishing minimum11 Vo of V throughout the evolu-
tion. Physically, in the context of homogeneous and
isotropic cosmology, this means that the singularity has
been resolved, and that the effective evolution displays a
bounce, with a nonzero minimum of the spatial volume.
Further, this ensures a transition between two phases of

the universe characterized by the sign sgnðζ0jÞ, describing a

contracting universe [sgnðζ0jÞ < 0] and an expanding one
[sgnðζ0jÞ > 0]. Each of these phases behaves according to
the general relativistic FLRWevolution in the classical and
nonthermal limits (3.53), that is, when ζj (equivalently the
condensate contribution to the volume) becomes very large
with respect to all the constants of motion and the thermal
contributions. However, as expected, these two phases
display a nonstandard evolution in general, especially
when close to the bounce. This is the regime where ζj is
comparable in magnitude to the other quantities present in
the model. This leads to the particularly important question
about the presence of a phase of accelerated expansion and
its magnitude.
To address this question, we proceed with a simplified

analysis, where we make the approximation of selecting
one spin mode [11,38], thus dropping the sum over all spins
in the various expressions. In this case, the generalized
equations of motion (3.45) and (3.46) reduce to�
V0

V

�
2

¼4Mþ4

�
Ejζ

2
j −Q2

j −2Mζ2js
2
j −Ms4j

ðζ2j þs2jÞ2
�
; ð3:60Þ

V00

V
¼ 4M þ 2

�
Ej − 2Ms2j
ζ2j þ s2j

�
: ð3:61Þ

Now, the magnitude of a phase of accelerated expansion
can be estimated in terms of the number of e-folds [38]
given by

N ≔
1

3
ln

�
Vend

Vbeg

�
¼ 1

3
ln

�
nendco þ nth
nbegco þ nth

�
; ð3:62Þ

where Vbeg and Vend are the average total volumes at the
beginning and end of the phase of accelerated expansion,
respectively, and in terms of an acceleration [38] given by

a ≔
V00

V
−
5

3

�
V0

V

�
2

: ð3:63Þ

Using Eqs. (3.60) and (3.61) above, we get

a ¼ −
8

3
M þ 2M

�
nE − 2nth
nco þ nth

��
1 −

10

3

nco
nco þ nth

�
þ 20

3
M

�
n2Q þ n2th

ðnco þ nthÞ2
�
: ð3:64Þ

Assuming that the bounce is the starting point of inflation,
we have

nbegco ¼ noco ð3:65Þ

for any j. It can be checked straightforwardly that accel-
eration is positive at the beginning, i.e., ajbeg > 0 as

11It can be verified that this is indeed a minimum since
V00jnoco > 0.
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required. Now, the end of accelerated expansion is char-
acterized by ajend ¼ 0, which gives

nendco ¼ 3

4
nth −

7

8
nE

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49

64
n2E þ 5

2
n2Q þ 9

16
ðn2th − nEnthÞ

r
ð3:66Þ

assuming an expanding phase of the universe, i.e.,
Vend > Vbeg, and non-negativity of nendco even when nth is
negligible. The number of e-folds can thus be estimated by

e3N ¼
7
4
ðnth − 1

2
nEÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49
64
n2E þ 5

2
n2Q þ 9

16
ðn2th − nEnthÞ

q
ðnth − 1

2
nEÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
n2E þ n2Q

q :

ð3:67Þ

Since the quantities nE, nQ, and nth are all independent,
we can observe three interesting regimes, giving approxi-
mate numerical values for N :

nth; nQ ≪ nE∶ N ≈
1

3
ln

�
7

4

�
≈ 0.186; ð3:68Þ

nth; nE ≪ nQ∶ N ≈
1

6
ln

�
5

2

�
≈ 0.152; ð3:69Þ

nE; nQ ≪ nth∶ N ≈
1

3
ln

�
5

2

�
≈ 0.305: ð3:70Þ

The upper bound on N in the previous zero temperature
free theory analysis [38] is 0.186, while here for finite β
free theory it is 0.305, achieved in an early time limit. This
difference is attributed to the only new aspect that we have
introduced in the model, the thermal cloud of quanta of
geometry. This shows that the number of e-folds can be
increased, even without a nonlinear dynamics. This fact is
in contrast with the previous conclusions [38] that non-
linear interaction terms in the GFT action are necessary to
increase N (in which case, the interaction terms are
naturally accompanied by their corresponding coupling
constants, which are free parameters that can be fine-tuned
to essentially give the desired value for N ). However, it
remains that the increase in N in our case is very minimal
and still not sufficient to match the physical observations,
estimated atN ∼ 60. Nevertheless, this may be overcome if
one goes beyond a static thermal cloud. In other words, a
dynamical thermal cloud, which would be expected to be
left over from a geometrogenesis phase transition (of an
originally unbroken, pregeometric phase), could have the
potential to provide a viable mechanism for an extended
phase of geometric inflation. The implementation of
dynamical statistical fluctuations would require special
care in order to avoid pathological behaviors with regards

to the use of relational clock functions tðϕÞ, in addition to
the standard requirement of having stability via sufficiently
subdominant or even decaying fluctuations in the relevant
observables of the system, throughout the effective evolu-
tion of the universe. We do not treat this case in the present
article and leave it for future works.
Finally, we note that the approximation of restricting to a

single spin mode in the calculation above, does not alter the
qualitative conclusion that a static thermal cloud is not
sufficient to generate a satisfactory number of e-folds to
match the observational estimate. However, a relaxation of
the condition (3.54) for sgnðζ0jÞ, by considering a nonho-
mogeneous distribution of the sign with respect to the
modes j while preserving the classical limit manifest in the
emergence of Friedmann equations at large volumes, might
give rise to a larger ratio between the volumes at the end
and at the beginning of inflation and consequently a larger
number of e-folds.

IV. DISCUSSION AND OUTLOOK

In this work we have studied some implications of the
presence of statistical fluctuations in the context of group
field theory by using coherent thermal states for condensate
cosmology. We have modeled the quantum gravitational
phase of the universe as a thermal condensate consisting of
a condensate part representing an effective macroscopic
homogeneous spacetime, and a static thermal cloud repre-
senting quantum geometric statistical fluctuations over it.
This work provides the first steps toward building a GFT
thermal condensate cosmology.
The model that we have presented recovers the expected

cosmological dynamics at late times (when the thermal part
is dominated by the condensate), but displays differences,
with respect to earlier works with pure nonthermal con-
densates, at early times, when the thermal cloud dominates
the condensate, and in the presence of quantum correc-
tions. In particular, we have shown that the singularity is
generically resolved with a bounce between a contracting
and an expanding phase of the universe, and that there
exists an early phase of accelerated expansion with an
increased number of e-folds compared to those achieved in
previous zero temperature analysis of free GFTs. This
increase in the number of e-folds, obtained in the absence
of interactions, is attributed to the presence of the ther-
mal cloud.
For our analysis, we have introduced an appropriate

generalization of the relational clock frame in GFT, by
considering clock functions tðϕÞ, implemented as smearing
functions. Consequently, we have formulated the effective
equations of motion and dynamical quantities as func-
tionals of t. A more complete understanding of such
relational frames in GFT and their precise relation to the
concept of deparametrization is left to future work.
Since the thermal cloud that we have considered in our

study is static, considering a dynamical thermal cloud
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would be an important extension of this work, and would
allow one to investigate further the dynamical implications
of the presence of a thermal cloud. Another valuable
extension would be to consider an interacting GFT model
in the presence of thermal fluctuations, even with a static
cloud. In fact, these aspects of having a dynamical thermal
cloud and an overall interacting theory are intimately
related, as would be expected. We discuss some of these
issues below, and suggest further lines of investigations.
There are three main features motivating our specific

choice of state, namely a coherent thermal state of the form
(2.25) at inverse temperature β. First, β is assumed to be
constant. Second, the state is such that the average number
of quanta split neatly into a condensate and a nonconden-
sate part, such that the zero temperature limit gives a pure
β-independent condensate [see also Eq. (3.4)]. That is,

ha†aiβ ¼ nco þ nnon−co; ð4:1Þ

lim
β→∞

ha†aiβ ¼ nco; ð4:2Þ

where in the present work the noncondensate part is taken
to be thermal and at β-equilibrium. Having such a split is
not only convenient in doing computations but also adds
clarity to expressions in the subsequent analyses when
considering the interplays between the two. Third, the
expectation value of the field operator in a coherent thermal
state is temperature independent, i.e.,

haJαiσ ¼ σJα ¼ haJαiσ;σ̄;β; ð4:3Þ

thus being identical to the zero temperature case. Now at
first sight this may seem contrary to our expectation that the
condensate would be affected by the presence of a thermal
cloud in general. But, in fact, this choice of state, satisfying
the three properties noticed above, is entirely compatible
with our approximation of neglecting interactions and
using free dynamics. When temperature is switched on,
quanta from the condensate are depleted into the thermal
cloud. In a generally interacting case, both the thermal
cloud and the condensate are interacting and dynamical by
themselves, while also interacting with each other.
However, in the present case of free dynamics, the thermal
cloud will not interact with the condensate part, in addition
to the quanta being free also within each part separately.
Thus even though our state includes a thermal cloud, the
coherent condensate part (described fully by its order
parameter σ) will be unaffected by it, as depicted in
Eq. (4.3) above. This is further reasonable in light of
constant β. If temperature were to change, say to increase,
then we would expect more quanta to be depleted into the
thermal cloud, and thus expect the state of the condensate to
change. Since the condensate is characterized completely
by the order parameter, it would also need to change.

So overall, considering the class of states in which the
order parameter is temperature independent is a reasonable
approximation when the temperature is constant and
interactions are neglected. Excluding interactions ensures
that the thermal cloud does not affect the condensate, while
constant β ensures that the amount of depletion is also
constant, so together the condensate can indeed be approxi-
mated by a β-independent order parameter. In such a case
we may be missing out on some interesting physics;
however, we take our case as a first step toward more
advanced investigations in the future.
From our discussion above, a physically important and

interesting extension concerns the case of a dynamically
changing β. In this case, the expected dominance of the
condensate part over the thermal cloud at late times would
not only be determined by a dynamically increasing
condensate (as is the case in the present work), but also
by what would be a dynamically decreasing temperature as
the universe expands.
Furthermore, one could extend the previous studies in

GFT condensate cosmology [1–3] to the present setting
with thermal fluctuations, and investigate various aspects
including the dynamical analysis of quantum fluctuations,
perturbations, anistropies, and inhomogeneities.
Finally, from a physical point of view, we presently

understand β as a statistical parameter that controls the
extent of depletion of the condensate into the thermal cloud,
and overall the strength of statistical fluctuations of observ-
ables in the system. The question remains whether it also
admits a geometrical interpretation. Taking guidance from
classical general relativity, we know that spatial volume
generates a dynamical evolution in constant mean curvature
foliations, wherein the temporal evolution is given by the so-
called York time parameter. Constant York time slices are
thus constant extrinsic curvature scalar (mean curvature)
slices, and the twoquantities are proportional to each other. In
this case, one could attempt to understand β as the periodicity
in York time, equivalently in scalar extrinsic curvature (both
of which are conjugates to the spatial volume). In particular
for homogeneous and isotropic spacetimes, York time is
further proportional to the Hubble parameter. A detailed
investigation of such aspects and their implications would be
interesting and is left for future work.
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