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We find initial data for numerical relativity simulations of inhomogeneous cosmologies. This involves
treating an exceptional case of the general relativity constraint equations. We devise analytic and numerical
methods to treat this exceptional case. We apply the analytic method to the standard case of cosmology with
a single scalar field. The numerical method is applied to the two-field ekpyrotic cosmology.
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I. INTRODUCTION

Numerical relativity simulations of inhomogeneous cos-
mologies are performed for a variety of reasons: to explore
the inflationary scenario [1–6], or the ekpyrotic scenario
[7–10], or the nature of spacetime singularities [11–15], or
cosmological structure formation [16–18]. Any simulation
must start with initial data, which in general relativity
entails solving coupled nonlinear constraint equations [19].
This is very different from the usual treatments of

inhomogeneous cosmologies. There the inhomogeneities
are typically treated in first order perturbation theory. This
allows the perturbations to be separated into modes that
decouple and thus can each be treated independently. The
initial data can essentially be specified freely.
We would like to have numerical relativity initial data of

sufficient generality that they essentially correspond to the
sort of initial data used in cosmological perturbation theory.
This leads to difficulties, since that sort of data corresponds
to an exceptional case in the treatment of the relativity
constraint equations. However, we present a method to
overcome these difficulties.
In Sec. II we present the constraint equations of general

relativity. In Sec. III we specialize to the case relevant to
cosmology and show how to overcome the difficulties
associated with this exceptional case.
Section IV presents the application of our method to

finding numerical relativity initial data that are as close as
possible to standard one-field cosmological perturbations.
Section V presents a more challenging case associated with

the two-field ekpyrotic scenario. Our conclusions are given
in Sec. VI.

II. CONSTRAINT EQUATIONS

Initial data for a numerical relativity simulation consist
of three-dimensional manifold Σ on which there is a spatial
metric γij and an extrinsic curvature Kij. Here Σ represents
all of the space at the initial time at which the simulation
starts. In a phase space picture, γij is the configuration
variable andKij is the momentum variable. The data cannot
be freely specified, but instead must satisfy two equations
called the momentum constraint

DiKij −DjK ¼ −γijTiμnμ ð1Þ

and the Hamiltonian constraint

ð3ÞRþ K2 − KijKij ¼ 2Tμνnμnν: ð2Þ

Here nμ is the normal to the initial data surface, Di is the
spatial covariant derivative, and ð3ÞR is the spatial scalar
curvature. Tμν is the stress-energy tensor, and we have
chosen units where 8πG ¼ 1. Initial data must also be
specified for the matter fields that make up Tμν.
It is helpful to decompose the extrinsic curvature into its

trace K and a trace-free part Aij given by

Aij ¼ Kij −
1

3
Kγij: ð3Þ

Then the constraint equations become
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DiAij −
2

3
DjK ¼ −γijTiμnμ; ð4Þ

ð3ÞRþ 2

3
K2 − AijAij ¼ 2Tμνnμnν: ð5Þ

The constraint equations are usually solved by the York
method [19]. This method begins by introducing rescaled
quantities γ̃ij and Ãij given by

γ̃ij ¼ ψ−4γij ð6Þ

and Ãij ¼ ψ2Aij. The quantity Ãij is then expressed as

Ãij ¼ Xij þ D̃iWj þ D̃jWi −
2

3
γ̃ijγ̃

mnD̃mWn: ð7Þ

It seems odd to introduce these new quantities ψ and Wi.
However, as we will soon see, they are essentially “cor-
rection terms” to be used to convert an initial guess for a
solution of the constraint equations into an actual solution.
Using Eqs. (6) and (7) in Eqs. (4) and (5) we obtain

D̃i

�
D̃iWj þ D̃jWi −

2

3
γ̃ijD̃kWk

�
þ D̃iXij −

2

3
ψ6DjK

¼ −ψ6γijTiμnμ; ð8Þ

D̃iD̃iψ −
1

8
ðð3ÞR̃Þψ −

1

12
K2ψ5 þ 1

8
ÃijÃijψ

−7

¼ −
1

4
Tμνnμnνψ5: ð9Þ

Here spatial indices are raised and lowered with γ̃ij.
The derivative operator D̃i and scalar ð3ÞR̃ are, respectively,
the covariant derivative and scalar curvature associated
with γ̃ij.
For our purposes, it is helpful to think of the quantities

used in the York method as follows: K is to be freely
specified. γ̃ij and Xij are our initial guesses for γij and Aij.
That is, if we happened to have ðγij; AijÞ satisfying Eqs. (4)
and (5) then the choice ψ ¼ 1 and Wi ¼ 0 would solve
Eqs. (8) and (9). If our initial guess does not solve the
constraint equations, then Wi and ψ are correction terms
that turn our initial guess into a solution. That is, by solving
Eqs. (8) and (9) for Wi and ψ we obtain a solution of
Eqs. (4) and (5). So our task of solving the constraint
equations has reduced to the task of solving Eqs. (8) and (9)
for Wi and ψ .
As it stands, Eqs. (8) and (9) are coupled, nonlinear

differential equations. However, the standard procedure
decouples them as follows: first define the quantity J̃j by

J̃j ¼ ψ6γijTiμnμ: ð10Þ

For each choice of matter fields, we must choose a way of
specifying initial data so that J̃j does not depend on ψ . In

Sec. IV we will give an explicit example of how to perform
this sort of specification.
Second, choose K to be constant, so that D̃iK ¼ 0. This

choice ofK to be constant sounds like a loss of generality in
the choice of initial data, but it turns out that it is not, for the
following reason: the result of evolving the initial data in a
numerical relativity simulation will be a spacetime. But
spacetime can be divided up into space and time in many
different ways. One such way is to have the surfaces of
constant time be surfaces of constant K. So in choosing
constant K for our initial data surface, we are simply
making use of the coordinate invariance of general rela-
tivity. Or to put it another way: general relativity has gauge
freedom, and we are choosing a convenient gauge.
With these choices, Eq. (8) becomes

D̃i

�
D̃iWj þ D̃jWi −

2

3
γ̃ijD̃kWk

�
¼ −D̃iXij − J̃j: ð11Þ

This is a linear equation for Wi that does not depend on ψ .
So the idea is to first solve Eq. (11) forWi and then plug the
result into Eq. (9) which is to be solved for ψ. Equation (9)
is a somewhat complicated looking nonlinear equation. But
it is straightforward to solve it using standard numerical
methods for nonlinear elliptic equations. Therefore, for
the rest of the paper we will only concentrate on how to
solve Eq. (11).
Equation (11) is of the form operator acting onWi equals

source, so the first thing we want to know is, does the
operator have a kernel? That is, is there a vector Vi for
which

D̃i

�
D̃iVj þ D̃jVi −

2

3
γ̃ijD̃kVk

�
¼ 0? ð12Þ

If there is no kernel, then the operator can be inverted
and therefore there exists a unique solution of Eq. (11).
Multiplying Eq. (12) by Vj and integrating over Σ using
integration by parts we have

Z
Σ
ðD̃iVjÞ

�
D̃iVj þ D̃jVi −

2

3
γ̃ijD̃kVk

�
¼ 0: ð13Þ

But this can be the case only if at each point we have

D̃iVj þ D̃jVi −
2

3
γ̃ijD̃kVk ¼ 0: ð14Þ

Equation (14) is the conformal Killing equation. Its
solutions are conformal Killing vector fields. But spaces
with conformal Killing vectors are rare. Thus the con-
clusion for Eq. (11) is that there is a general case (no
conformal Killing vectors) in which there exists a unique
solution, and then there is an exceptional case in which
there is a conformal Killing vector.

DAVID GARFINKLE and LAWRENCE MEAD PHYS. REV. D 102, 044022 (2020)

044022-2



III. COSMOLOGICAL CASE

Unfortunately, the exceptional case, although in some
sense rare, is also the one of most relevance for cosmology.
Cosmological scalar perturbations have a conformally flat
spatial metric. A conformally flat metric has conformal
Killing vector fields. We are therefore led to investigate the
exceptional case, and in fact to further specialize to the case
where the conformally related metric γ̃ij is the flat metric δij
(i.e., the Kronecker delta). Equation (11) then becomes

∂i

�
∂iWj þ ∂jWi −

2

3
δij∂kWk

�
¼ −∂iXij − J̃j: ð15Þ

Here ∂i is the usual Cartesian coordinate derivative
operator.
For linear equations where there is a kernel, we have the

Fredholm alternative: any vector is expressed as the sum of
two pieces, one in the kernel and one in the space
orthogonal to the kernel (called the adjoint). If the source
is not in the adjoint, then the linear equation has no
solutions. If the source is in the adjoint, then the linear
equation has multiple solutions, where any two solutions
differ by something in the kernel.
Our task in solving Eq. (15) is therefore to first put

conditions on the matter field initial data that ensure that the
right-hand side of the equation is in the adjoint. We must
then find what is essentially the inverse of the operator on
the adjoint space, in order to find a solution of Eq. (15).
There will be multiple solutions. However, using the fact
that any two solutions differ by something in the kernel, an
examination of Eq. (7) shows that the two solutions give
rise to the same Ãij, so in fact we can pick any solution, and
it does not matter which one we pick.
A single mode in cosmological perturbation theory has

spatial dependence only in the direction of propagation. So
we now further specialize to the case where there is
dependence on only the x coordinate. We want initial
data for a simulation with periodic boundary conditions,
so we choose x to be a periodic coordinate with period 2π.
We choose Wy ¼ Wz ¼ 0. [That is, we consider only
choices of Xij for which the solution of Eq. (15) gives
Wy ¼ Wz ¼ 0.] Equation (15) then becomes

4

3

d2Wx

dx2
¼ −

dXxx

dx
− J̃x: ð16Þ

In some cases, the right-hand side ofEq. (16) is sufficiently
simple that the equation can be solved in closed form.
However, other cases require a numericalmethod. For similar
equations, but ones without a kernel, the standard numerical
method is to write the finite difference approximation of the
equation as a matrix equation and then to perform an LU
decomposition of the matrix [20]. However, Eq. (16) does
have a kernel, since a constantWx gives zero for the left-hand
side of the equation. And indeed, application of the formula

of [20] to this case results in division by zero. Instead, we use
a different type of LU decomposition method, described in
Appendix A, for the numerical solution of Eq. (16).
Whether solved analytically or numerically, a solution of

Eq. (16) for Wx gives rise to an expression for Ãij, which
can in turn be used to solve Eq. (9) for ψ. The expression is
Ãij ¼ Xij for i ≠ j and

Ãxx ¼ Xxx þ
4

3

dWx

dx
; ð17Þ

Ãyy ¼ Xyy −
2

3

dWx

dx
; ð18Þ

Ãzz ¼ Xzz −
2

3

dWx

dx
: ð19Þ

IV. STANDARD ONE-FIELD CASE

We now treat the case of cosmology with scalar field
matter. Here we will find that Eq. (16) can be solved in
closed form. We want to find initial data that are as close
as possible to a single mode of a cosmological scalar
perturbation. The stress energy of the scalar field ϕ with
potential VðϕÞ is

Tμν ¼ ∇μϕ∇νϕ − gμν

�
1

2
∇αϕ∇αϕþ V

�
: ð20Þ

Now using Eq. (20) in Eq. (10) we find

J̃j ¼ ψ6P∂jϕ; ð21Þ

where the quantity P is defined by P ¼ nμ∇μϕ. To make J̃j
independent of ψ we define the quantity Q by

Q ¼ ψ6P; ð22Þ

which leads to

J̃j ¼ Q∂jϕ: ð23Þ

So we specify Q, and it is only at the end, when we have
numerically solved for ψ, that we know the stress energy.
We will find the initial values for Q and ϕ of a

cosmological scalar perturbation, and use those in
Eqs. (16) and (23) to find the general relativity initial data.
The background Friedmann-Lemaitre-Robertson-Walker

(FLRW) spacetime has the line element

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ: ð24Þ

We will denote quantities in the background with a sub-
script zero and use an overdot for the derivative with respect
to t. The Hubble parameter H is given by H ¼ _a=a. Then
we have
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K0 ¼ −3H; ð25Þ

Q0 ¼ a3 _ϕ0: ð26Þ

A single mode of the scalar field is usually written as a
function of time multiplied by eiqx, with the notion that
since the equations are linear, we can do all our compu-
tations with the complex mode and at the end of the day
we will take the real part. However, J̃j is quadratic in the
scalar field, not linear, so we will write our modes as real
quantities from the start. Since we have chosen x to be a
periodic variable going from 0 to 2π, therefore q will be an
integer. The quantities ϕ and Q take the form

ϕ ¼ ϕ0 þ c1 cosðqxÞ þ c2 sinðqxÞ; ð27Þ

Q ¼ Q0 þ c3 cosðqxÞ þ c4 sinðqxÞ; ð28Þ

where c1, c2, c3, and c4 are constants.
Cosmological scalar perturbations have Xij ¼ 0, so

Eq. (16) becomes

4

3

d2Wx

dx2
¼ −J̃x: ð29Þ

Using Eqs. (27) and (28) in Eq.. (23) we obtain

− J̃x ¼ qðQ0 þ c3 cosðqxÞ þ c4 sinðqxÞÞ
× ðc1 sinðqxÞ − c2 cosðqxÞÞ ð30Þ

¼ Q0q½c1 sinðqxÞ − c2 cosðqxÞ�

þ 1

2
q½ðc1c4 − c2c3Þ − ðc1c4 þ c2c3Þ cosð2qxÞ

þ ðc1c3 − c2c4Þ sinð2qxÞ�: ð31Þ

The requirement that the source be in the adjoint means that
the constant term on the right-hand side of Eq. (31) must
vanish. That is, we must require

c1c4 ¼ c2c3: ð32Þ

This sort of constraint on the freedom to specify a
cosmological perturbation is known as an integral con-
straint [21].
Using Eq. (31) in Eq. (29) and integrating, we obtain

4

3

dWx

dx
¼ −Q0½c1 cosðqxÞ þ c2 sinðqxÞ�

−
1

4
½ðc1c4 þ c2c3Þ sinð2qxÞ

þ ðc1c3 − c2c4Þ cosð2qxÞ�: ð33Þ

This is our solution of the momentum constraint equation.

We will now express the parameters ðc1; c2; c3; c4Þ in
terms of the standard cosmological perturbation theory
[22,23] in Newtonian gauge.
The line element in Newtonian gauge takes the form

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΨÞδijdxidxj; ð34Þ

where Ψ is the cosmological Newtonian potential.
The scalar field in Newtonian gauge takes the form

ϕN ¼ ϕ0 þ αðtÞ cosðqxÞ þ βðtÞ sinðqxÞ: ð35Þ

From Eq. (34) we find that Q and K in Newtonian
gauge are

QN ¼ a3 _ϕ0ð1 − 4ΨÞ þ a3ð _α cosðqxÞ þ _β sinðqxÞÞ; ð36Þ

KN ¼ −3H þ 3ð _ΨþHΨÞ: ð37Þ

It is clear from Eq. (37) that KN has dependence on the
spatial coordinates, and therefore that Newtonian gauge is
not constant mean curvature (CMC) gauge. However, we
can transform to CMC gauge through the use of a gauge
transformation. In general relativistic perturbation theory,
for every vector field ξμ there is a gauge transformation that
consists of adding to each quantity Lie derivative with
respect to ξμ of the background quantity. We will choose
our vector field to have only a time component. The gauge
transformed K is then

K ¼ KN þ LξK0

¼ −3H þ 3ð _ΨþHΨÞ þ ξt∂tð−3HÞ
¼ 3ð−H þ _ΨþHΨ − ξt _HÞ: ð38Þ

Thus to make K spatially constant, we choose ξt to be

ξt ¼
_ΨþHΨ

_H
: ð39Þ

However, a standard result of cosmological perturbation
theory in Newtonian gauge is [23]

_ΨþHΨ ¼ 1

2
_ϕ0ðϕN − ϕ0Þ ð40Þ

so we find

ξt ¼
_ϕ0

2 _H
ðϕN − ϕ0Þ: ð41Þ

Applying the gauge transformation, we find that the scalar
field in CMC gauge is
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ϕ ¼ ϕN þ Lξϕ0 ¼ ϕN þ ξt _ϕ0

¼ ϕ0 þ
�
1þ

_ϕ2
0

2 _H

�
ðϕN − ϕ0Þ

¼ ϕ0 þ
�
1þ

_ϕ2
0

2 _H

�
ðα cosðqxÞ þ β sinðqxÞÞ: ð42Þ

Comparing Eqs. (27) and (42) we see that two of the
parameters of our momentum constraint solution are
given by

c1 ¼
�
1þ

_ϕ2
0

2 _H

�
α; c2 ¼

�
1þ

_ϕ2
0

2 _H

�
β; ð43Þ

where all quantities are evaluated at the time t0 of our
initial data.
We now find the quantity Q in CMC gauge. We have

Q ¼ QN þ LξQ0 ¼ QN −Q0

V 0ðϕ0Þ
_ϕ0

ξt

¼ QN −Q0

V 0ðϕ0Þ
2 _H

ðϕ − ϕNÞ; ð44Þ

where we have used the equation of motion for the
background scalar field.
To evaluate the term proportional to Ψ in the expression

of Eq. (28) for QN, we use the following result of
cosmological perturbation theory in Newtonian gauge [23]:

ð _H þ q2=a2ÞΨ ¼ 1

2
ϕ̈0ðϕN − ϕ0Þ −

1

2
_ϕ0ð _ϕN − _ϕ0Þ: ð45Þ

Combining Eqs. (28), (44), and (45) we obtain

Q¼Q0þa3
�
1þ 2 _ϕ2

0

_Hþq2=a2

�
ð _αcosðqxÞþ _β sinðqxÞÞ

−a3 _ϕ0

�
V 0ðϕ0Þ
2 _H

þ 2ϕ̈0

_Hþq2=a2

�
ðαcosðqxÞþβ sinðqxÞÞ:

ð46Þ

Comparing Eqs. (28) and (46) we find that the remaining
two parameters of our momentum constraint solution are
given by

c3¼a3
�
1þ 2 _ϕ2

0

_Hþq2=a2

�
_α−a3 _ϕ0

�
V 0ðϕ0Þ
2 _H

þ 2ϕ̈0

_Hþq2=a2

�
α;

c4¼a3
�
1þ 2 _ϕ2

0

_Hþq2=a2

�
_β−a3 _ϕ0

�
V 0ðϕ0Þ
2 _H

þ 2ϕ̈0

_Hþq2=a2

�
β;

ð47Þ

where all quantities are evaluated at the time t0 of our
initial data.

Using Eqs. (43) and (47), we see that the constraint on
the parameters c1c4 ¼ c2c3 becomes

α _β ¼ β _α: ð48Þ

V. EKPYROTIC TWO-FIELD CASE

We now treat the case of the ekpyrotic two-field model
[24]. In this model there is a scalar field ϕ with a potential
VðϕÞ and thus the same stress energy as in Eq. (20).
However, there is also a second scalar field χ whose kinetic
term is coupled to the first scalar field through a function
κðϕÞ. In the ekpyrotic scenario, ϕ causes the smoothing
during a contracting phase prior to the bounce into the
big bang, while ϕ and χ together ensure the appropriate
spectrum of perturbations. The combined stress energy of
the two fields is

Tμν ¼ ∇μϕ∇νϕ − gμν

�
1

2
∇αϕ∇αϕþ V

�

þ κðϕÞ
�
∇μχ∇νχ −

1

2
gμν∇αχ∇αχ

�
: ð49Þ

As before, we define P and Q by P ¼ nμ∇μϕ and
Q ¼ ψ6P. However, we also define Pχ and Qχ by Pχ ¼
nμ∇μχ andQχ ¼ ψ6Pχ . Since we are concerned with scalar
modes, we will choose Xij ¼ 0. Then the momentum
constraint once again takes the form

4

3

d2Wx

dx2
¼ −J̃x: ð50Þ

But now with J̃x taking the form

J̃x ¼ Q∂xϕþ κðϕÞQχ∂xχ: ð51Þ

In this case, we are not so much concerned with
matching a particular perturbative mode, but rather with
coming up with a class of initial data, not necessarily small,
of sufficient generality to allow a thorough numerical
exploration of the two-field ekpyrotic scenario. The con-
dition needed for a solution of Eq. (50), namely that J̃x be
in the adjoint, becomes

Z
2π

0

dx J̃x ¼ 0: ð52Þ

One simple way to satisfy this condition is to make ϕ, χ,Q,
and Qχ functions of cos x. In this way, both Q∂xϕ and
κðϕÞQχ∂xχ become odd functions of x, whose integral over
one period therefore vanishes. We will take the usual choice
for κðϕÞ of

κðϕÞ ¼ e−cϕ; ð53Þ
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where c is a constant. For nonperturbative initial data, we
cannot solve Eq. (50) in closed form. Therefore instead we
use the numerical method presented in Appendix A. If we
were doing a perturbative treatment, we would replace e−cϕ

with 1 − cϕ and solve Eq. (50) using the analytic methods
of the previous section. Figures 1 and 2 show the results
of such a numerical solution. Here we have used ϕ, χ, Q,
and Qχ of the form ϕ ¼ c0 cosðqxÞ, Q ¼ c1 cosðqxÞ,
χ ¼ d0 cosðqxÞ, Qχ ¼ d1 cosðqxÞ. We plot the results of
the numerical treatment in a solid line and the results of the
corresponding perturbative-analytic treatment in a dashed
line. In Fig. 1 we pick parameters c ¼ 5, q ¼ 1, c0 ¼ 0.1,
c1 ¼ 0.2, d0 ¼ 0.2, d1 ¼ 0.3, which correspond to weak
initial data. Note that in this case the perturbative result is
quite close to the numerical result. In contrast, in Fig. 2
we pick parameters c ¼ 5, q ¼ 1, c0 ¼ 1.0, c1 ¼ 1.4,
d0 ¼ 2.0, d1 ¼ 1.6 corresponding to much stronger initial
data. Here the perturbative result is not at all a good

approximation for the full numerical treatment, and so the
numerical method is definitely needed.

VI. CONCLUSION

We have provided methods to generate more extensive
sets of initial data for numerical relativity simulations of
inhomogeneous cosmologies. The sort of data needed for
inhomogeneous cosmologies constitute an exceptional case
within the York method for finding general relativity initial
data. Because it is exceptional, this case cannot be treated
using the standard numerical methods. Nonetheless, we
have found some situations where the problem can be
solved in closed form. And for the situations that cannot be
treated in closed form, we have found a numerical method,
a subtle modification of the standard LU decomposition
method, that works.
Typically the goal of numerical relativity simulations of

inhomogeneous cosmologies is to make assertions about
what outcomes result from “generic” initial conditions. But
this means that the wider the class of initial data used for the
simulations, the more confidently one can assert that the
simulations give the generic outcome. It would be interest-
ing to repeat some of the simulations of inhomogeneous
cosmologies (e.g., some of the ones given in the references
of this paper) with our more general initial data to see if the
conclusions about outcomes remain the same.
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APPENDIX: NUMERICAL METHOD

We need to numerically solve an equation of the form

d2f
dx2

¼ g ðA1Þ

on a grid with periodic boundary conditions. We pick N
grid points with spacing Δ and denote with a subscript i the
value of the function at grid point i. Using centered
differences, Eq. (A1) becomes

fiþ1 þ fi−1 − 2fi
Δ2

¼ gi: ðA2Þ

This equation can be used at all grid points except grid
points 1 andN. To evaluate Eq. (A1) at these points, we add
two ghost zones, grid points 0 and N þ 1 that implement
the periodic boundary conditions: f0 ¼ fN and fNþ1 ¼ f1.
We then find
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FIG. 1. ð4=3ÞWx vs x for the numerical method (solid line) and
perturbative method (dashed line) for weak initial data.
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FIG. 2. ð4=3ÞWx vs x for the numerical method (solid line) and
perturbative method (dashed line) for strong initial data.
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Δ2g1 ¼ f2 þ f0 − 2f1 ¼ f2 þ fN − 2f1; ðA3Þ

Δ2gN ¼ fNþ1 þ fN−1 − 2fN ¼ f1 þ fN−1 − 2fN: ðA4Þ

Using the notation jfi for the column vector of fi and
similarly for jgi we find that Eq. (A2) with periodic
boundary conditions applied can be written as the matrix
equation Ajfi ¼ Δ2jgi where for definiteness we display
the matrix A for the case N ¼ 4:

A ¼

0
BBB@

−2 1 0 1

1 −2 1 0

0 1 −2 1

1 0 1 −2

1
CCCA: ðA5Þ

If A were invertible, we could solve for jfi by multi-
plying both sides of the equation Ajfi ¼ Δ2jgi by A−1.
However, it is easy to see that A is not invertible, since it
annihilates the vector jfi where all the fi are equal to the
same constant. This is just the finite difference version of
the statement that the operator d2=dx2 annihilates the
function f that is a constant.
For an invertible matrix, there is a standard decompo-

sition of the matrix into lower and upper triangular matrices
(called LU decomposition) that allows a convenient algo-
rithm [20] for solving the system of linear equations
associated with the matrix. The matrix A is not invertible,
but, nonetheless, we have an analog of the LU decom-
position, which we display for the N ¼ 4 case: A ¼ LU
where

L ¼

0
BBB@

−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1

1
CCCA; ðA6Þ

U ¼

0
BBB@

1 −1 0 0

0 1 −1 0

0 0 1 −1
−1 0 0 1

1
CCCA: ðA7Þ

Note that despite their names, the matrix L is not lower
triangular because of the entry in the upper right-hand
corner, and the matrix U is not upper triangular because of
the entry in the lower left-hand corner.
As with standard LU decomposition, the idea is that to

solve the equation LUjxi ¼ jri for jxi, we first solve
Ljyi ¼ jri for jyi and then solve Ujxi ¼ jyi for jxi. We
will work out this problem explicitly for the N ¼ 4 case
illustrated in Eqs. (A5)–(A7). Then we will describe

the corresponding algorithm for general N. The equation
Ljyi ¼ jri becomes the following set of linear equations:

−y1 þ y4 ¼ r1; ðA8Þ

y1 − y2 ¼ r2; ðA9Þ

y2 − y3 ¼ r3; ðA10Þ

y3 − y4 ¼ r4: ðA11Þ

Adding Eqs. (A8)–(A11) we obtain r1 þ r2 þ r3 þ r4 ¼ 0.
In other words jri must be in the adjoint, which is what the
Fredholm alternative tells us needs to be true anyway if
there is to be a solution to the original problem Ajxi ¼ jri.
Notice that the left-hand sides of Eqs. (A8)–(A11) are

each differences of two yi. This means that if we have a
solution of these equations, then we can obtain another
solution simply by adding the same constant to each yi. We
will exploit this freedom to choose y4 ¼ 0. Note that
Eq. (A8) then yields y1 ¼ −r1. But knowing y1 now allows
us to solve Eq. (A9) for y2, which in turn allows us to solve
Eq. (A10) for y3. This solution for the yi is then

jyi ¼

0
BBB@

−r1
−ðr1 þ r2Þ

−ðr1 þ r2 þ r3Þ
0

1
CCCA: ðA12Þ

Note that the average value of the yi is then ȳ ¼
ð−1=4Þð3r1 þ 2r2 þ r3Þ. We will produce a new solution
by subtracting this average from each yi and thus have a
solution where the sum of the yi vanishes. (As we will soon
see, we will need this solution in order to solve the equation
Ujxi ¼ jyi.) The new solution is

jyi ¼ 1

4

0
BBB@

−r1 þ 2r2 þ r3
−r1 − 2r2 þ r3
−r1 − 2r2 − 3r3
3r1 þ 2r2 þ r3

1
CCCA: ðA13Þ

The equation Ujxi ¼ jyi becomes the following set of
linear equations:

x1 − x2 ¼ y1; ðA14Þ

x2 − x3 ¼ y2; ðA15Þ

x3 − x4 ¼ y3; ðA16Þ

−x1 þ x4 ¼ y4: ðA17Þ
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Adding Eqs. (A14)–(A17) we obtain y1þy2þy3þy4¼0.
In other words, we did need to impose the condition that jyi
is in the adjoint on the previous solution.
Since the left-hand sides of Eqs. (A14)–(A17) are each

differences of two xi, we can obtain from any solution
another solution simply by adding the same constant to
each xi. We will exploit this freedom to choose x1 ¼ 0.
Note that Eq. (A17) then yields x4 ¼ y4. But knowing x4
now allows us to solve Eq. (A16) for x3, which in turn
allows us to solve Eq. (A15) for x2. This solution for the xi
is then

jxi ¼

0
BBB@

0

y2 þ y3 þ y4
y3 þ y4

y4

1
CCCA: ðA18Þ

Note that the average value of the xi is then x̄ ¼
ð1=4Þðy2 þ 2y3 þ 3y4Þ. Though not strictly necessary, we
will proceed in analogy to our previous method for finding
jyi and produce a new solution for jxi by subtracting this
average from each xi and thus have a solutionwhere the sum
of the xi vanishes. The new solution is

jxi ¼ 1

4

0
BBB@

−y2 − 2y3 − 3y4
3y2 þ 2y3 þ y4
−y2 þ 2y3 þ y4
−y2 − 2y3 þ y4

1
CCCA: ðA19Þ

Finally, using Eq. (A13) in Eq. (A19) we obtain the
solution to the original problem LUjxi ¼ jri:

jxi ¼ 1

8

0
BBB@

−3r1 þ r3
−r1 − 4r2 − r3

r1 − 3r3
3r1 þ 4r2 þ 3r3

1
CCCA: ðA20Þ

This solution can also be expressed in a slightly more
natural looking way using r1 þ r2 þ r3 þ r4 ¼ 0 as

jxi ¼ 1

8

0
BBB@

r3 − 3r1
r4 − 3r2
r1 − 3r3
r2 − 3r4

1
CCCA: ðA21Þ

We now describe the general form of the algorithm to
obtain this solution (i.e., for general N, not restricted to
N ¼ 4). The kernel of A consists of all jfi where the fi all
have the same values. The adjoint of A consists of all jfi
where

P
N
i¼1 fi ¼ 0. This kernel of A is also the kernel of L

and U, and the adjoint of A is also the adjoint of L and U.
The vector jri must be in the adjoint, or there is no solution
of Ljyi ¼ jri. But if jri is in the adjoint, then there are
multiple solutions for jyi each differing by something in the
kernel. We make use of this freedom to choose yN ¼ 0. It
then follows that y1 ¼ −r1 and that yiþ1 ¼ yi − riþ1, which
we iteratively solve in succession for y2; y3;…; yN−1. This
jyi is generally not in the adjoint, which would make it
impossible to solve Ujxi ¼ jyi. However, we turn it into a
solution in the adjoint by subtracting the appropriate vector
in the kernel. That is, we find the average ȳ of the yi and
then subtract ȳ from each yi to make our new vector jyi.
Now we use the same sort of procedure to solve
Ujxi ¼ jyi. We use the freedom to add something in
the kernel to choose x1 ¼ 0. We then have xN ¼ yN , as
well as xi−1 ¼ xi þ yi−1 which we solve iteratively for
xN−1; xN−2;…; x2. This jxi is a solution of the equation
Ajxi ¼ jri but we go ahead and produce a solution in the
adjoint by subtracting x̄ from each xi.
This algorithm may sound a bit complicated, but it is

straightforward to program and the resulting code is about
the same length as the general description given above of
the algorithm.
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