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A Newtonian uniform ball expanding in empty space constitutes a common heuristic analogy for FLRW
cosmology. We discuss possible implementations of the corresponding general-relativistic problem and a
variety of new cosmological analogies arising from them. We highlight essential ingredients of the
Newtonian analogy, including the fact that the Hawking-Hayward quasilocal mass that is always
“Newtonian” in the sense that the magnetic part of the Weyl tensor does not contribute to it. A symmetry
of the Einstein-Friedmann equations produces another one in the original Newtonian system.

DOI: 10.1103/PhysRevD.102.044020

I. INTRODUCTION

A Newtonian analogy is often used to introduce
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmol-
ogy to beginners and to provide physical intuition ( e.g.,
[1–4]—see [5] for a different version). The analogy is
based on a ball of uniform density expanding in empty
space and on the conservation of energy for a test particle
on the surface of this ball. The Newtonian energy con-
servation equation is formally analogous to the Friedmann
equation of relativistic cosmology for a universe filled with
a perfect fluid with zero pressure (a dust). Of course, this
analogy is not realistic, and the proper description of the
universe requires general relativity (GR). Moreover, the
analogy has limitations because the Newtonian ball can
only produce the analogue of a dust-filled universe, while
FLRW cosmology includes a much richer variety of matter
content (radiation, dark energy, scalar fields, etc.). Most
presentations in the literature and unpublished lecture notes
available on the internet do caution that this is only an
analogy. A posteriori, it is interesting to revisit this analogy
from the GR point of view. Does the corresponding GR
problem still lead to an analogy with FLRW cosmology?
Does a relativistic isolated ball still expand like a FLRW
universe, like a dust-dominated universe, or are there other
possibilities? A similar situation involves the black hole
concept, first introduced by Michell and Laplace in a naive
Newtonian context [6,7], and then rediscovered in the
Schwarzschild solution of the Einstein equations.
Here, we revisit the Newtonian analogy by considering

an expanding (or contracting) isolated ball of uniform
density in empty space in GR, and two possible ways to

extend the Newtonian analogy. The first, and easiest, way
consists of cheating the difficulties and looking at the radial
motion of a test particle just outside the surface of the ball,
i.e., using the radial timelike geodesic equation in the
vacuum, spherical geometry (which is necessarily
Schwarzschild). The radial timelike geodesic equation is
still formally analogous to the Friedmann equation for a
dust-filled universe. This “easy” way to derive an analogy
has significant limitations, which are discussed below.
However, it can be generalized to many static and spheri-
cally symmetric geometries, producing a host of new
cosmological analogies.
The second, and proper, way to address the problem

consists of looking for exact solutions of the Einstein
equation that are spherically symmetric, time-dependent,
and asymptotically flat and are sourced by a ball of perfect
fluid with uniform density and pressure, expanding or
contracting in vacuo. Due to the Birkhoff theorem, the
solution outside the ball is the Schwarzschild geometry,
while the interior solution, to be determined, must be
matched to it on the surface of the ball by imposing the
Darmois-Israel junction conditions [8–10]. The interior of
the ball will necessarily be described by a FLRW solution
(hence, this system would be useless to introduce FLRW
cosmology, but this is no longer the motivation).
The solution of this GR problem can be obtained as a

special case of exact solutions of the Einstein equations
describing spherical objects embedded in FLRW spaces or
external fluids. A well-known one corresponds to the
Oppenheimer-Snyder solution for dust collapse [11], in
which the ball interior is positively curved FLRW. This is,
however, only one possibility, and one would like to
consider expanding spheres, possibly with a range of
equations of state. The situation resembles that of an
expanding fireball or spherical explosion, and there are
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already in the literature analytical solutions of the Einstein
equations that can be used to solve our problem.
Assuming the FLRW line element,

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − Kr2
þ r2dΩ2

ð2Þ

�
; ð1:1Þ

in comoving coordinates ðt; r; ϑ;φÞ, where the constant K
is the curvature index and dΩ2

ð2Þ ¼ dϑ2 þ sin2 ϑdφ2 is the

line element on the unit two-sphere, the Einstein-
Friedmann equations for a universe sourced by a perfect
fluid with a stress-energy tensor Tab ¼ ðPþ ρÞuaub þ
Pgab (where ρ is the energy density, P is the pressure,
and uc is the 4-velocity of comoving observers) are1

H2 ≡
�
_a
a

�
2

¼ 8π

3
ρ −

K
a2

; ð1:2Þ

ä
a
¼ −

4π

3
ðρþ 3PÞ; ð1:3Þ

_ρþ 3HðPþ ρÞ ¼ 0; ð1:4Þ

where an overdot denotes differentiation with respect to the
comoving time t andH ≡ _a=a is the Hubble function. Only
two of these three equations are independent.
We proceed as follows: the next section recalls the

Newtonian analogy; Sec. III points out the analogy between
radial timelike geodesics of Schwarzschild and the
Friedmann equation and generalizes it to many spherical
static geometries. Section IV discusses the proper GR
problem, highlighting essential features of the Newtonian
analog, while Sec. V discusses the Newtonian character of
the quasilocal mass used. Section VI uses a little known
symmetry of the Einstein-Friedmann equations to generate
(only for zero energy/spatially flat universes) a new
symmetry of the Newtonian ball, while Sec. VII contains
the conclusions.

II. NEWTONIAN ANALOGY FOR FLRW
UNIVERSES

Consider, in Newtonian physics,2 a uniform expanding
sphere with a radius RðtÞ, homogeneous density ρðtÞ, and
total mass M ¼ 4πR3ρ=3, and a test particle of mass m on
its surface. The total mechanical energy of this particle is

E ¼ 1

2
m _R2 −

GMm
R

; ð2:1Þ

and is constant. Rearranging this energy integral, we write

_R2

R2
¼ 8πG

3
ρþ 2E

mR2
: ð2:2Þ

By introducing the quantities,

H ≡ _R
R
; K ≡ −

2E
mc2

; ð2:3Þ

where c is the speed of light, Eq. (2.2) becomes

H2 ¼ 8πG
3

ρ −
Kc2

R2
: ð2:4Þ

This equation is analogous to the Friedmann equation of
relativistic cosmology for a universe filled by nonrelativ-
istic matter.
If E > 0, which corresponds to K < 0 and to v > vescape,

where

vescape ¼
ffiffiffiffiffiffiffiffiffiffiffi
2GM
R

r
ð2:5Þ

is the escape velocity from the surface of the ball, then the
particle will escape to R ¼ þ∞with a residual velocity _R∞
given by the limit,

0 < E ¼ 1

2
m _R2 −

GMm
R

→
1

2
m _R2

∞: ð2:6Þ

If E ¼ 0, corresponding to K ¼ 0 and to v ¼ vescape, the
particle barely escapes to infinity with a zero velocity _R,
according to

0 ¼ 1

2
m _R2 −

GMm
R

→
1

2
m _R2

∞ ¼ 0: ð2:7Þ

If instead E < 0, corresponding to K > 0 and to
v < vescape, the particle reaches a maximum radius and
then falls back reversing its velocity. In this case, one
cannot take the limit R → þ∞. The maximum radius is
attained when _R ¼ 0 just before the particle reverses its
velocity,

E ¼ −
GMm
Rmax

; ð2:8Þ

which yields

1We follow the notation of Ref. [12] and use units in which the
speed of light and Newton’s constant G are unity.

2We restore Newton’s constant G and the speed of light c in
this section.
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Rmax ¼
GMm
jEj : ð2:9Þ

Analytical solutions of the energy integral (2.3) in
parametric form are well known. Define the new time
variable η by

dη ¼
ffiffiffiffiffiffiffiffiffi
2jEj
m

r
dt
RðtÞ ; ð2:10Þ

then the solutions are

R ¼ GMm
2jEj ð1 − cos ηÞ; ð2:11Þ

�ðt − t0Þ
ffiffiffiffiffiffiffiffiffi
2jEj
m

r
¼ GMm

2jEj ðη − sin ηÞ; ð2:12Þ

if E < 0, or

RðtÞ ∝ ðt − t0Þ2=3; ð2:13Þ

if E ¼ 0 (in this case, one can eliminate the parameter), or

R ¼ GMm
2jEj ðcosh η − 1Þ; ð2:14Þ

�ðt − t0Þ
ffiffiffiffiffiffi
2E
m

r
¼ GMm

2E
ðsinh η − ηÞ; ð2:15Þ

if E > 0.
Because the energy E is conserved, it is not possible for a

closed universe to become an open ( i.e., expanding
forever) one and vice versa, or for a closed or open universe
to become flat and vice versa.
In this Newtonian analogy for the universe, the solution

for E < 0 corresponds to an open universe that expands
forever, the case E > 0 to a universe that reaches a
maximum size and recollapses, and the E ¼ 0 case to a
critically open universe. This is only an analogy: in
relativistic cosmology, the meaning of the variables is
different, and there is no center of expansion for the
universe. Nevertheless, this analogy recurs frequently in
the literature and is even used as a toy model for quantum
cosmology [13,14].

III. TEST PARTICLE STARTING ABOVE THE
BALL SURFACE

Now let us promote the Newtonian problem to a general-
relativistic one. We must derive a new, relativistic equation
for the motion of the surface of a uniform ball of fluid,

which is a nontrivial task best postponed to the next section.
Here, we consider a simpler alternative: in the Newtonian
analogy, things proceed unchanged if the test particle is just
above the surface of the ball instead of being located on it,
and it shoots radially away from this surface. Things are
unchanged as long as the expanding ball does not overtake
the particle or the falling particle returning from a failed
escape hits the ball (whether this happens depends on how
the uniform ball expands, which in turn depends on the
nature of the fluid in it, the equation of motion it satisfies,
and the initial velocities of the test particle and ball
surface). That this does not happen is certainly not
warranted a priori and will be discussed in the following
sections. For now, let us proceed by assuming that the test
particle and ball do not meet, at least for a certain period
of time.
In GR, nobody is forbidden to consider a particle outside

the ball, that starts out radially close to it, as long as the
surface of the ball does not overtake the particle. For a
contracting ball, this does not happen at least until the
particle reaches its maximum height and comes back (if it
does). If it comes back, it would have to fall radially faster
than the ball contracts, which is possible if the matter in the
ball has pressure and the fluid does not follow geodesics.
Or, a falling particle could hit an expanding ball. It is also
possible that the surface of the expanding ball moves
outward faster than the massive test particle, overtaking it.
This will, again, happen if the fluid has pressure, or if its
initial velocity is higher than that of the particle, etc.
Separating the test particle from the surface of the ball
opens up these new possibilities.
Assuming, for the moment, that the test particle and the

ball surface do not collide, our massive test particle moves
along a radial timelike geodesic of the Schwarzschild
geometry,

ds2 ¼ −
�
1 −

2m
r̄

�
dt2 þ dr̄2

1 − 2m
r̄

þ r̄2dΩ2
ð2Þ: ð3:1Þ

The equation of radial geodesics is [12]

_̄r2 þ
�
1 −

2m
r̄

��
L2

r̄2
þ κ

�
¼ E2; ð3:2Þ

for r̄ > 2m, where an overdot now denotes differentiation
with respect to the proper time τ or the affine parameter
along the geodesic, and E and L are the conserved energy
and angular momentum per unit mass of the particle, which
are (apart from the sign) contractions of the particle 4-
velocity ua with the timelike and rotational Killing vector
fields, respectively. In Eq. (3.2), κ ¼ 1 for timelike geo-
desics, and κ ¼ 0 for null geodesics.
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A. Massive test particle

In the timelike case, the radial geodesic equation can be
written as

�
_̄r
r̄

�
2

¼ E2 − 1

r̄2
þ 2m

r̄3
: ð3:3Þ

This equation is analogous to the Friedmann equation (1.2)
for a FLRW universe, where K ¼ 1 − E2 plays the role of
the curvature index, ρ ¼ ρ0=a3 corresponds to a radiation
fluid with equation of state P ¼ ρ=3, and ρ0 ¼ 3m

4π .
Therefore, there is a straightforward analogy between
the motion of a test particle in the field of the ball and
the Friedmann equation, as in the Newtonian situation. All
three possible signs of the curvature K of the analogous
FLRW universe are possible, but only an analogous
universe containing a dust fluid can be obtained.

B. Generalization to any static spherical geometry

As a digression, we note that the cosmological analogy
for timelike geodesics can often be generalized to static and
spherically symmetric geometries. For such spacetimes, the
line element can always be written in the Abreu-Nielsen-
Visser gauge [15,16] as

ds2 ¼ −e−2ΦðRÞ
�
1 −

2MðRÞ
R

�
dt2 þ dR2

1 − 2MðRÞ
R

þ R2dΩ2
ð2Þ;

ð3:4Þ

where Ta ≡ ð∂=∂tÞa is the timelike Killing vector and
MðRÞ is the Misner-Sharp-Hernandez mass [17,18] (to
which the Hawking-Hayward quasilocal mass [19,20]
reduces in spherical symmetry [21]). Consider radial time-
like geodesics: the energy E of a particle of mass m and
four-momentum pc ¼ muc along such a geodesic is con-
served, pcTc ¼ −E, which yields

u0 ¼ dt
dτ

¼ Ēe2Φ

1 − 2M
R

; ð3:5Þ

where Ē ¼ E=m is the energy per unit mass. The normali-
zation ucuc ¼ −1 gives

g00

�
dt
dτ

�
2

þ g11

�
dR
dτ

�
2

¼ −1; ð3:6Þ

substituting Eq. (3.5) to obtain ðdR=dτÞ2 and dividing the
result by R2, one obtains

�
1

R
dR
dτ

�
2

¼ Ē2e2Φ

R2
−

1

R2
þ 2MðRÞ

R3
: ð3:7Þ

Many spherical spacetimes of interest in GR and
in alternative theories of gravity satisfy the condition

gttgRR ¼ −1 (or Φ≡ 0), which is associated to special
algebraic properties [22,23]; in this case, Eq. (3.7) reduces
to

�
1

R
dR
dτ

�
2

¼ ðĒ2 − 1Þ
R2

þ 2MðRÞ
R3

; ð3:8Þ

which can be analogous to the Friedmann equation (1.2) for
a universe with curvature index K ¼ 1 − Ē2 and energy

density ρ ¼ 3
4π

MðaÞ
a3 . To complete the analogy, the cosmic

fluid must satisfy the covariant conservation equation (1.4),
which yields

P ¼ −ρ −
a
3

dρ
da

¼ −ρ −
a
4π

�
M0

a3
−
3M
a4

�
¼ −

M0

4πa2
: ð3:9Þ

This effective equation of state can be written in the time-
dependent form,

P ¼ −
M0ðaÞ
4πa2

≡ wðaÞρ: ð3:10Þ

Examples of cosmic analogies derived from radial timelike
geodesics of static spherical geometries are listed in the
Appendix.

IV. EXACT GR SOLUTION FOR AN EXPANDING
RELATIVISTIC BALL

Now let the massive particle sit on the surface of the ball
and be a particle of the fluid composing the ball, which is
always larger than its Schwarzschild radius. For a general
fluid, this particle does not follow a timelike geodesic. In
fact, in the presence of pressure, the four-gradient ∇aP
moves fluid particles away from geodesics. Only dust
(P ¼ 0) is geodesic in the absence of external forces.
Since we cannot ignore the matter at radii below the

initial particle radius Rð0Þ, we must now find, and solve,
the equation of motion for the boundary of the relativis-
tic ball.
A static ball with uniform density is described by the

well-known Schwarzschild interior solution [24], but it is of
no use here. We want instead a ball of uniform density that
expands/contracts while remaining uniform. The metric
must be asymptotically flat (we assume a zero cosmologi-
cal constant). Due to Birkhoff’s theorem, an observer
outside the matter distribution (or on the ball surface) sees
the Schwarzschild vacuum. What is the equation of the
surface of the ball in this case? Is this motion geodesic or
does the normal to the ball surface deviate from a geodesic
vector? Moving on to time-dependent, asymptotically, flat
fluid spheres, some exact solutions were provided early on
by Vaidya [25]. They contain the Schwarzschild interior
solution [24] and the Oppenheimer-Snyder [11] solution as
special cases. The most useful geometries here are probably
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those of Smoller and Temple [26], which contain the
solution of the Einstein equations describing our situation
as a special case and reproduce results of previous
literature, that we briefly review here.
Mashhoon and Partovi [27] found that the unique

solution for the spherical and shear-free motion of an
uncharged perfect fluid obeying an equation of state is the
FLRWone. However, another hypothesis must be added for
the theorem to hold, namely that the energy density is
uniform, ∂ρ=∂r ¼ 0, which is one of our needed assump-
tions [28]. Therefore, the interior of the ball can only be
FLRW. A posteriori, this fact legitimates the use of a
uniform ball in the Newtonian analogy. A nonuniform ball
would lead to a spherically symmetric, but inhomogeneous,
universe. Contracting balls with pressure were considered
by Thompson and Whitrow [29,30] and Bondi [31,32],
mainly to study gravitational collapse to black holes.
The Newtonian analogy requires also that the particles

composing the ball, as well as the test particle on its
surface, have no pressure and are subject only to gravity:
the fluid composing the ball must be a dust for the interior
geometry to match the exterior Schwarzschild one.

A. A special case of the Smoller-Temple
shock wave solution

Smoller and Temple [26] consider exact solutions of the
Einstein equations representing a spherical shock wave
expanding into a gas, with interior and exterior matching on
a zero thickness shell with no material on it (no jump).
Because of uniformity, ρ ¼ ρðtÞ, P ¼ PðtÞ, the metric
inside the shock wave must be FLRW (all values of the
curvature index K are possible),

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − Kr2
þ r2dΩ2

ð2Þ

�
: ð4:1Þ

Outside the shock wave, the geometry is that of a static and
spherical Oppenheimer-Tolman solution (usually
employed to describe the interior of a relativistic star),

ds̄2 ¼ −Bðr̄Þdt2 þ dr̄2

1 − 2M=r̄
þ r̄2dΩ2

ð2Þ; ð4:2Þ

in coordinates3 ðt; r̄; ϑ;φÞ, where Mðr̄Þ is the mass con-
tained inside the sphere of radius r̄, or

dM
dr̄

¼ 4πr̄2ρðr̄Þ; ð4:3Þ

ρðr̄Þ is the energy density at radius r̄, and

B0ðr̄Þ
Bðr̄Þ ¼ −

2P̄0ðr̄Þ
ρ̄þ P̄

: ð4:4Þ

P̄ is the outside pressure, and a prime denotes differ-
entiation with respect to this radial coordinate. The mass
Mðr̄Þ coincides with the Misner-Sharp-Hernandez mass
[17,18] at a radius r̄, which is defined in any spherically
symmetric spacetime by

1 −
2MMSH

R
¼ ∇cR∇cR _¼gRR; ð4:5Þ

where R is the areal radius and the last equality holds if the
areal radius is employed as the radial coordinate [which is
the case for the line element (4.2)].
The interior and exterior solutions are matched on the

surface of a ball (the shock wave) by imposing the
Darmois-Israel junction conditions [8–10] so that there is
no jump in the first and second fundamental forms, and
there is no material layer on the shell. The junction
conditions for an outgoing shock wave give [26]

r _a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Θ

p
; ð4:6Þ

_ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Θ

p

γΘ − 1
; ð4:7Þ

where

Θ ¼ 1 − 2M=r
1 − Kr2

; ð4:8Þ

γ ¼ ρþ P̄
ρ̄þ P̄

: ð4:9Þ

A coordinate transformation between interior and exterior
coordinates is found in [26], with the simple result,

r̄ ¼ aðtÞr; ð4:10Þ

implying that the areas of two-spheres of symmetry change
smoothly across the shock wave [ i.e., the areal radius
R ¼ aðtÞr of the FLRW interior matches the areal radius r̄
of the Schwarzschild exterior] and that the surface of the
ball comoves with its FLRW interior. Now we impose that
the exterior is vacuum, ρ̄ ¼ P̄ ¼ 0, then the spherical and
asymptotically flat exterior metric necessarily reduces to
Schwarzschild. This situation is reported as a special case
of the outgoing shock wave in [26]. It requires that the
pressure P vanishes inside the entire ball in order to match
the vanishing pressure at the boundary: the interior FLRW

3The comoving coordinate r inside the ball is not the same as
the curvature coordinate r̄ outside.
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fluid can only be dust.4 In the Newtonian analogy, one
wants a particle on the ball surface subject only to gravity: a
pressure gradient would complicate the Newtonian descrip-
tion, requiring the specification of an equation of state and
could make the ball overtake a test particle placed on it
(these complications would ruin the simplicity of the
Newtonian analogy).
The vanishing of the outside pressure P̄ → 0 corresponds

to the limit γ → ∞ and implies [26]

r ¼ r0 ¼ const ð4:11Þ

at the surface of the ball. Then the density must scale as

ρðtÞ ¼ 3M
4πr30a

3
; ð4:12Þ

consistent with a dust, and the Friedmann equation at this
surface reduces to

_a2 ¼ 2M
r30a

− K: ð4:13Þ

Apparently unknown to Smoller and Temple, the conclu-
sion that only a uniform ball of dust can be matched to
Schwarzschild was reached already by McVittie [34],
Bondi [31], Mansouri [35], Mashhoon and Partovi [27],
and Glass [36]. The surface of the ball expands into the
surrounding Schwarzschild vacuum while comoving with
its interior. Further, since P ¼ 0, the fluid particles follow
radial geodesics because of spherical symmetry, and the
unit normal to the comoving ball surface is a timelike
geodesic vector (radial geodesic congruences are normal to
the surface of the ball because, due again to spherical
symmetry, there is no vorticity). The radial geodesics of the
interior geometry join smoothly the radial geodesics of the
Schwarzschild exterior, provided that the ball surface
comoves with its interior [26].
All possibilities for the spatial curvature of the FLRW

space inside the ball are studied in [26]: forK > 0, the well-
known Oppenheimer-Snyder solution describing the col-
lapse of a ball of dust [11] is recovered by considering an
ingoing shock wave [and changing the signs of the right-
hand sides of Eqs. (4.6), (4.7)] with the ball boundary
describing the cycloid,

aðηÞ ¼ 1

2
ð1þ cos ηÞ; ð4:14Þ

tðηÞ ¼ 1

2
ffiffiffiffi
K

p ðηþ sin ηÞ; ð4:15Þ

where the initial conditions að0Þ ¼ 1; _að0Þ ¼ 0 have been
imposed and the curvature index has been normalized to
K ¼ 2M=r30 [26]. For K < 0, one finds the solution [26],

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ a2

p
−
1

2
ln ½1þ 2ðaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ a2

p
Þ� ¼

ffiffiffiffiffiffiffi
jKj

p
t; ð4:16Þ

with the big bang initial condition að0Þ ¼ 0 while, for
K ¼ 0, the scale factor and the comoving surface follow the
Einstein-de Sitter scaling aðtÞ ¼ ð9πM=2Þ1=3t2=3.
The surface of the ball, as well as the scale factor of its

FLRW dust, satisfies the Newtonian energy equation (2.1).
Indeed Bondi [31] remarks the similarity between the
relativistic equation for the ball expansion RðtÞ and
Eq. (2.1), while Mashhoon and Partovi [27] refer explicitly
to the Newtonian analogy for FLRW universes (certain
errors in [27,35] were corrected in [28,36]).

V. RICCI AND WEYL TENSORS AND
QUASILOCAL ENERGY

In GR, gravity is curvature and is described by the
Riemann tensor Rabcd, which splits into a Ricci part
constructed with Rab and a Weyl part Cabcd [12],

Rabcd ¼ Cabcd þ ga½cRd�b − gb½cRd�a −
R
3
ga½cgd�b; ð5:1Þ

whereR≡ Rc
c is the Ricci scalar. Further, the Weyl tensor

is decomposed into an electric and a magnetic part with
respect to a chosen timelike observer. The electric part Eab
has a Newtonian analogue, while the magnetic part Hab
does not [37], and it contains the true (propagating) degrees
of freedom of the gravitational field.
Let the timelike vector ua be the four-velocity of an

observer: following the definition of [38] (which differs
from that of [37] in the magnetic part of the Weyl tensor,
correcting a sign [38], see also p. 87 of [39]) the electric and
magnetic parts of the Weyl tensor are [38,39]

EacðuÞ ¼ Cabcdubud; ð5:2Þ

HacðuÞ ¼
1

2
ηabpqCpq

ceubue; ð5:3Þ

respectively, where ηabcd ¼ ffiffiffiffiffiffi−gp
ϵabcd, ϵabcd is the Levi-

Civita symbol and g is the determinant of the metric tensor
gab, so that ηabcd ¼ η½abcd� and η0123 ¼ 1=

ffiffiffiffiffiffi−gp
. According

to the observer ua, Eab and Hab are purely spatial and
symmetric, trace-free tensors,

Eabua ¼ Eabub ¼ Habua ¼ Habub ¼ 0; ð5:4Þ

Eab ¼ EðabÞ; Hab ¼ HðabÞ; ð5:5Þ
4A similar situation is encountered in Swiss-cheese

models [33].
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Ea
a ¼ Ha

a ¼ 0: ð5:6Þ

The Weyl tensor is reconstructed from its electric and
magnetic parts according to [37–39]

Cabcd ¼ ðgabefgcdpq − ηabefηcdpqÞueupEfq

− ðηabefgcdpq þ gabefηcdpqÞueupHfq ð5:7Þ

with

gabef ≡ gaegbf − gafgbe; ð5:8Þ

giving

Cabcd ¼ uaucEbd − uaudEbc − ubucEad þ ubudEac

− ηabefηcdpqueupEfq − ηabefucueH
f
d

þ ηabefueudH
f
c − uaupηcdpqH

q
b þ ubupηcdpqH

q
a:

ð5:9Þ

By construction, in the GR extension of the uniform
Newtonian ball, the Riemann tensor is purely Ricci in the
interior and purely Weyl outside. In fact, all FLRW metrics
are conformally flat, and the Weyl tensor Cabc

d is con-
formally invariant [12]; therefore, it vanishes in FLRW,
leaving only the Ricci part of Rabcd inside the ball. In the
exterior vacuum region, the Ricci tensor Rab ¼
8πðTab − gabT=2Þ is identically zero, leaving only the
Weyl part of Rabcd. Therefore, Ricci and Weyl tensors
switch roles when crossing the ball boundary.
At the ball surface, both Ricci and Weyl are discontinu-

ous. Focusing on the respective scalars R≡ Ra
a and

CabcdCabcd, the Ricci scalar R ¼ −ρþ 3P ¼ −ρ jumps
discontinuously to zero at the ball surface, while the Weyl
scalar is identically zero inside and jumps to the
Schwarzschild value CabcdCabcd ¼ 48m2=r6.
Since our GR problem originates in Newtonian physics,

it is fit to discuss the Newtonian character of the (quasi-
local) mass used in the discussion.
The interior mass (4.3) matches the exterior

Schwarzschild mass m at the surface of the ball. For any
K, themassM at areal radiusR ≤ R0 in the FLRWinterior is

Mð−ÞðRÞ ¼ 4πρ

3
R3; ð5:10Þ

and, as noted, it coincides with theMisner-Sharp-Hernandez
quasilocal energy. In the limit R → aðtÞr0 to the surface of
the ball, which is comoving,Mð−Þ becomes constant, and this
is possible only because the energy density has the dust
scaling ρ ∼ 1=a3, which is necessary to match the constant
mass m of the Schwarzschild exterior. More generally, the
Misner-Sharp-Hernandez mass of a comoving sphere of
radius R in any FLRW space satisfies [40,41]

_MMSH þ 3H
P
ρ
MMSH ¼ 0; ð5:11Þ

and the constancy of MMSH goes hand in hand with the
vanishing of the pressure (it is a peculiarity of the Misner-
Sharp-Hernandez mass to depend on ρ but not on P, while
_MMSH depends on P but not on ρ).
In principle, a different dependence of the energy density

on the scale factor ρðaÞ ¼ ρ0=a3ðwþ1Þ, which occurs for a
fluid equation of state P ¼ wρ, w ¼ const, could be
compensated if the ball boundary expands in the non-
comoving way R0ðtÞ ≃ twþ1 to keep Mð−Þ constant. The
Misner-Sharp-Hernandez mass of a sphere of radius R0 (not
comoving in general) satisfies [40,41]

_MMSH þ 4πρR3
0

�
H

�
1þ P

ρ

�
−

_R0

R0

�
¼ 0; ð5:12Þ

andMMSH remains constant if _R0=R0 ¼ ðwþ 1ÞH for P ¼
wρ with w ¼ const. However, this choice would make the
pressure P discontinuous at the ball boundary, this surface
would no longer follow a timelike geodesic, and a test
particle initially placed on it would immediately detach
from it. This situation is unacceptable because then radial
timelike geodesics inside and outside, together with the
areal radii R and r̄, would not match, signaling a disconti-
nuity in the geometry. A discontinuity in P is associated
with a material layer at the ball surface, which becomes a
membrane with its own pressure foreign to the original
Newtonian situation.
As noted, the mass used in the Oppenheimer-Tolman

exterior is the Misner-Sharp-Hernandez mass common in
spherical fluid dynamics [17,18]. The more general
Hawking-Hayward quasilocal mass [19,20] reduces to it
in spherical symmetry [21] and to the Arnowitt-Deser-
Misner mass, if further spacetime is asymptotically flat.
Several other inequivalent quasilocal energy constructions
populate the literature (see [42] for a review). In our case,
when the exterior Oppenheimer-Tolman metric is reduced to
Schwarzschild, the Hawking-Hayward/Misner-Sharp-
Hernandez mass MðþÞ

MSH reduces to the Schwarzschild
mass, i.e., the constant m appearing in the Schwarzschild
metric (3.1).
In general, the Hawking-Hayward quasilocal mass splits

into a contribution from the matter stress-energy tensor Tab
and a “pure gravity” contribution from theWeyl tensor. The
latter arises solely from the electric part of the Weyl tensor,
while the magnetic part does not contribute [43].
Specifically, the Hawking-Hayward quasilocal mass

enclosed by a two-surface S is defined as follows
[19,20]. In a spacetime with metric gab, let S be a spacelike,
embedded, compact, and orientable two-surface. hab and
RðhÞ denote the two-metric and Ricci scalar induced on S
by gab. Let μ be the volume two-form on S and A the area
of S. The congruences of ingoing (−) and outgoing (þ) null
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geodesic emanate from S and have expansion scalars θð�Þ
and shear tensors σð�Þ

ab . Let ωa denote the projection onto S
of the commutator of the null normal vectors to S, i.e., the
anoholonomicity [20]. The Hawking-Hayward quasilocal
mass is [19,20]

MHH ≡ 1

8π

ffiffiffiffiffiffiffiffi
A
16π

r Z
S
μ

�
RðhÞ þ θðþÞθð−Þ −

1

2
σðþÞ
ab σabð−Þ

− 2ωaω
a

�
: ð5:13Þ

By splitting the Riemann tensor into Ricci and Weyl and,
further, the latter into its electric and magnetic parts with
respect to an observer with four-velocity parallel to the unit
normal to the two-sphere S, the Hawking-Hayward qua-
silocal mass splits as [43]

MHH ¼
ffiffiffiffiffiffiffiffi
A
16π

r Z
S
μ

�
habTab−

2T
3

�

−
1

8π

ffiffiffiffiffiffiffiffi
A
16π

r Z
S
μηabefηcdpqhachbdueupEfq; ð5:14Þ

where the “pure gravity” contribution to MHH [the second
integral in the right-hand side of Eq. (5.14)] comes only
from the electric part Eab of the Weyl tensor, while the
magnetic part Hab does not contribute. In this sense, the
Hawking-Hayward quasilocal mass is “Newtonian.”
In the spherical spacetime corresponding to the

Newtonian ball, the two-surface S is a sphere of radius
R or r̄ and Eq. (5.14) reduces to

MMSHðRÞ ¼
4πR3

3
ρθHðR0 − RÞ þmθHðr̄ − r̄0Þ; ð5:15Þ

where R stands for the areal radius [R ¼ aðtÞr inside and r̄
outside] and θHðxÞ is the Heaviside step function. In the
interior of the ball, MMSH is given entirely by the first term
on the right-hand side, while the second term vanishes. In
the exterior region, these two terms switch roles. The
matching between interior and exterior makes the two
terms equal on the ball boundary and guarantees the
continuity of MMSH. At all times, this quasilocal energy
remains “Newtonian.”5 Ultimately, the fact that a
Newtonian analogy exists for FLRW cosmology is made
possible by the fact that the corresponding GRmanifold has
vanishing magnetic part of the Weyl tensor everywhere
according to static observers.

VI. BACK TO NEWTONIAN GRAVITY FROM
FLRW: SYMMETRIES

Symmetries of the Einstein-Friedmann equations have
been explored in detail, mostly with the goal of generating
new exact solutions ( e.g., [45–52]). For FLRW universes
fueled by a perfect fluid, in general, one can rescale
appropriately the time and scale factor or Hubble param-
eter, while changing to a different barotropic fluid, leaving
the Einstein-Friedmann equations unchanged. Here we are
concerned, in particular, with the symmetry found in
Ref. [48] for spatially flat (K ¼ 0) FLRW universes,6

ρ → ρ̄ ¼ ρ̄ðρÞ; ð6:1Þ

H → H̄ ¼
ffiffiffī
ρ

ρ

r
H; ð6:2Þ

P → P̄ ¼ −ρ̄þ
ffiffiffi
ρ

ρ̄

r
ðPþ ρÞ dρ̄

dρ
; ð6:3Þ

[where ρ̄ðρÞ is a free but positive and differentiable
function], which leaves the Einstein-Friedmann equations
invariant. Since the relativistic analogue of the Newtonian
ball requires the interior FLRWmetric to match the exterior
Schwarzschild and, therefore, the pressure P to vanish
everywhere, in order for this transformation to be a
symmetry of the Newtonian analogue, it must be
P ¼ P̄ ¼ 0. In this case, Eq. (6.3) becomes, using the
new variable z≡ 1=

ffiffiffi
ρ

p
,

dz̄
dz

¼ ρ̄−3=2

ρ−3=2
dρ̄
dρ

¼ 1; ð6:4Þ

and is trivially integrated to z̄ðzÞ ¼ z − z0, or

ρ̄

ρ
¼ 1

1þ ρ
ρ0
− 2

ffiffiffiffi
ρ
ρ0

q ; ð6:5Þ

where ρ0 (or z0) is an integration constant. Therefore, the
particular transformation,

ρ → ρ̄ ¼ ρ

1þ ρ
ρ0
− 2

ffiffiffiffi
ρ
ρ0

q ; ð6:6Þ

H → H̄ ¼ H

1þ ρ
ρ0
− 2

ffiffiffiffi
ρ
ρ0

q ; ð6:7Þ

preserves the zero-pressure condition and does not change
the physics of the Newtonian ball [Eq. (2.1) with E ¼ 0]

5A Newtonian character for the Misner-Sharp-Hernandez
quasilocal mass is claimed also in Ref. [44] based on the study
of the timelike radial geodesics of Schwarzschild.

6The fact that this symmetry also relates de Sitter and anti–de
Sitter spaces apparently went unnoticed in the literature.
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used in the cosmological analogy. Since we have K ¼ 0

and a dust, RðtÞ ¼ R0t2=3, and one obtains

ρ̄ðtÞ ¼ 3M
4πR3

0

1

t2 − 2
ffiffiffiffiffiffiffiffiffiffiffi
3M

4πR2
0
ρ0

q
tþ 3M

4πR3
0
ρ0

; ð6:8Þ

�
_R
R

�
¼

�
_R
R

�
t2

t2 − 2
ffiffiffiffiffiffiffiffiffiffiffi
3M

4πR3
0
ρ0

q
tþ 3M

4πR2
0
ρ0

: ð6:9Þ

In spite of the fact that uniform balls are often used in
teaching Newtonian physics and in well-known problems
such as gravity tunnels [53–58] and the terrestrial brachis-
tochrone [54,56,59] (also discussed in view of futuristic
technological applications [60]), this symmetry seems to
have escaped attention.
Finally, another aspect of the Einstein-Friedmann equa-

tions that has been used extensively in FLRW cosmology is
the fact that, in the presence of a single barotropic fluidwith a
constant equation of state P ¼ wρ, the Friedmann equation
can be reduced to a Riccati equation by changing comoving
into conformal time ([61–63]). This means that applying the
change of variable for a dust-dominated FLRW universe to
the Newtonian equation of motion of a test particle, the same
reduction occurs. Indeed, the change,

r ¼ s2; ð6:10Þ

dt ¼ rdη ¼ s2dη; ð6:11Þ

(where the last equation is analogous to the change from
comoving to conformal timedt ¼ adηof FLRWcosmology)
reduces the Newtonian equation of motion,

d2r⃗
dt2

¼ −
GM
r3

r⃗; ð6:12Þ

to

d2s⃗
dη2

þ jEj
2

s⃗ ¼ 0; ð6:13Þ

where E ¼ 1
2
ðdr⃗=dtÞ2 − GM

r < 0 is the particle energy. The
change of variables (6.10), (6.11) reduces the Coulomb force
problem to that of two decoupled harmonic oscillators. This
change of variables for the Newtonian problem has been
known since Euler and has been discussed or rediscovered
many times through the years [64].

VII. DISCUSSION AND CONCLUSIONS

Abandoning the original pedagogical motivation for the
Newtonian analogy to FLRW universes, one turns it into a
rather interesting fully relativistic problem. It is natural,
with a slight deviation from the original theme, to consider
as the first model, the radial geodesic trajectories of

massive particles starting out just above the ball surface.
This is very easy to do, but it has the drawback that the ball
surface could meet and engulf the test particle. A formal
analogy between the radial timelike geodesic equation and
the Friedmann equation ensues, and the analogous FLRW
universe can only be dust dominated. More general static
and spherically symmetric spacetimes generate new cos-
mological analogies through their timelike radial geode-
sics: we have listed several of them in the Appendix.
Finally, the full general relativistic problem of a uniform

fluid ball expanding (or contracting) in a surrounding
Schwarzschild vacuum can be considered. This situation
is a special case of more general setups in the literature on
fluid spheres expanding in a (possibly cosmological) fluid.
One quickly learns that two assumptions of the Newtonian
analogy, usually not explained in the introductory literature,
are crucial: (i) uniform ball. A nonuniform ball leads to a
spherical inhomogeneous universe, which is not an analogy
for FLRW. (ii) test fluid. As a consequence of the Darmois-
Israel matching conditions, only a dust interior can match
the Schwarzschild exterior. Moreover, a test particle ini-
tially placed on the surface of a ball of fluid other than dust
would immediately detach from it, compromising the
analogy. For a massive test particle to remain on the
surface of the ball, the fluid in it must be dust.
The pressure must vanish at the surface of the ball to

avoid a matter layer on it, while it is accepted as a necessary
evil that the density is discontinuous there, as in the
Schwarzschild interior solution.
To summarize, it is only natural to wonder about the fully

relativistic counterpart of the Newtonian ball analogy. This
problem has been mentioned sporadically, but repeatedly,
in the literature on perfect fluid solutions of GR and/or fluid
collapse since the 1960s but, to the best of our knowledge,
this is the first time that it is approached systematically. The
cosmological analogy highlights certain Newtonian fea-
tures of the relativistic spaces used as examples, which do
not seem to be appreciated in the literature. A novel feature
is the role that the Hawking-Hayward quasilocal mass,
which has Newtonian character in the sense discussed,
plays in the exact solution analogous to the Newtonian ball.
Furthermore, thanks to the analogy with FLRW cosmology
and to relatively recent results on the symmetries of the
Einstein-Friedmann equations, we have pointed out a new
symmetry of the Newtonian problem.
To broaden the scope, one can, in principle, consider

other physical situations. For example, one can study a
discontinuous pressure associated with a spherical matter
layer enclosing a fluid with P ≠ 0. At this point, however,
there is no longer a need for the ball, and one can retain
only the spherical shell since, due to the Birkhoff theorem,
the exterior geometry is still Schwarzschild. Now the
problem bears little resemblance to an expanding universe
mimicked by a uniform ball.
Inhomogeneous universes analogous to nonuniform

balls with ρ ¼ ρðt; rÞ; P ¼ Pðt; rÞ [33] also do not
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resemble FLRWones. In principle, one could also consider
theories of gravity alternative to GR to evade the Birkhoff
theorem and match an interior ball solution to an exterior
geometry that is not Schwarzschild. All these options are
found wanting because of one crucial point: the
Schwarzschild solution is the unique solution of the
vacuum Einstein equations that are spherically symmetric
and asymptotically flat. In all the alternatives mentioned
above, instead, there is no unique solution to the field
equations; hence, these models are not as compelling.
Looking for such alternatives, one goes further and further
away from the simple Newtonian analogy, creating pro-
gressively more complicated and physically unjustified
situations. To conclude, extensions to GR of the heuristic
Newtonian ball problem have reasonably straightforward
solutions and do create new formal analogies with FLRW
universes and other GR solutions. These analogies high-
light Newtonian features of the relativistic spacetimes,
which provides a better understanding of the latter, as well
as a new symmetry of the purely Newtonian system.
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APPENDIX: EXAMPLES OF ANALOGIES FROM
RADIAL TIMELIKE GEODESICS OF STATIC

SPHERICAL GEOMETRIES

Here, we provide examples of cosmic analogies arising
from the radial timelike geodesics of well-known static and
spherically symmetric metrics, beginning with situations in
which Φ≡ 0 and gttgRR ¼ −1.

1. Reissner-Nordström metric

The first obvious candidate is the Reissner-Nordtröm
metric,

ds2¼−
�
1−

2m
R

þQ2

R2

�
dt2þ dR2

1−2m
RþQ2

R2

þR2dΩ2
ð2Þ; ðA1Þ

where the constants m and Q are the mass and charge
parameters. The Misner-Sharp-Hernandez mass isMðRÞ ¼
m −Q2=ð2RÞ, and the analogous energy density in the
Friedmann equation is

ρðaÞ ¼ 3

4π

m
a3

−
3

8π

Q2

a4
: ðA2Þ

The second term on the right-hand side corresponds to a
radiation fluid with an unphysical negative energy density,
which spoils the analogy. However, when Q ¼ 0, the
Reissner-Nordström metric reduces to Schwarzschild and
the energy density coincides with the first term, a positive

dust density ρ ¼ ρ0=a3 for a universe with any possible sign
of the curvature index. The fact that the analogy holds with a
completely nonrelativistic fluid (a dust) highlights the
closeness of the radial geodesic motion in Schwarzschild
spacetime to its Newtonian analogue, at least when the areal
radius (also called “curvature coordinate”) is used.

2. (Anti–)de Sitter space

The (anti–)de Sitter line element in locally static coor-
dinates is

ds2 ¼ −ð1 ∓ H2R2Þdt2 þ dR2

ð1 ∓ H2R2Þ þ R2dΩ2
ð2Þ; ðA3Þ

where the upper (respectively, lower) sign refers to de Sitter
(respectively, anti–de Sitter) space. The Misner-Sharp-
Hernandez mass is MðRÞ ¼ �H2R3=2, and the energy
density and pressure of the analogous FLRW universe are

ρðaÞ ¼ � 3H2

8π
; ðA4Þ

P ¼ −
M0

4πa2
¼∓ 3H2a2

8πa2
¼ −ρ; ðA5Þ

that is, the energy density and pressure of a cosmological
constant Λ ¼ �3H2. Thus, the timelike geodesics of
(anti–)de Sitter produce analogous universes with the same
cosmological constant and any value of the curvature index.
For K ¼ 0;−1, respectively, this procedure reproduces the
same (anti–)de Sitter space used as an analogue generator.
In retrospect, this is due to the fact that a cosmological
constant can be introduced in Newtonian theory through
the Newtonian potential ϕN ¼ H2R2 ¼ ΛR2=3, provided
that the curvature (areal) radius is used. Again, this analogy
highlights certain similarities between the relativistic space
and a Newtonian situation.

3. Schwarzschild-de Sitter/Kottler geometry

The Schwarzschild-de Sitter/Kottler line element,

ds2 ¼ −
�
1 −

2m
R

−H2R2

�
dt2 þ dR2

1 − 2m
R −H2R2

þ R2dΩ2
ð2Þ; ðA6Þ

has Misner-Sharp-Hernandez mass M ¼ mþH2R3=2,
generating the energy density of the FLRW analogue
cosmic fluid,

ρðaÞ ¼ 3m
4πa3

þ 3H2

8π
; ðA7Þ

corresponding to a cosmological constant plus a dust. This
was to be expected since the Schwarzschild black hole
generates a dust-dominated analogous FLRW universe,
while de Sitter space has itself as a Newtonian analogue.
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