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We consider test particle motion in a gravitational field generated by a homogeneous circular ring placed
in n-dimensional Euclidean space. We observe that there exist no stable stationary orbits in n ¼ 6; 7;…; 10
but exist in n ¼ 3, 4, 5 and clarify the regions in which they appear. In n ¼ 3, we show that the separation
of variables of the Hamilton-Jacobi equation does not occur though we find no signs of chaos for stable
bound orbits. Since the system is integrable in n ¼ 4, no chaos appears. In n ¼ 5, we find some chaotic
stable bound orbits. Therefore, this system is nonintegrable at least in n ¼ 5 and suggests that the timelike
geodesic system in the corresponding black ring spacetimes is nonintegrable.
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I. INTRODUCTION

Circular ring structure appears in many areas of physics,
from elementary particles to the universe. For example,
planetary rings in astronomy are Newtonian gravitational
phenomena in which ring shape appears clearly. In a strong
gravity regime, the ring structure appears in an accretion
disk of a compact object, and therefore, such system is
modeled by a relativistic solution with a ring source [1–3].
In a regime where gravity is extreme, there exist ring-
shaped singularities at the center of the Kerr black hole [4].
Even in higher-dimensional spacetimes, which are actively
studied in relativity and particle physics [5], a ring appears
as a black hole or a fundamental object such as a closed
string. A typical example in relativity is a black ring
spacetime, an exact solution to the 5D vacuum Einstein
equation, of which the horizon topology and the central
singularities are ring-shaped [6].
In the gravitational fields of these rings, particle dynam-

ics is basic for understanding the phenomena occurring in
the system. The dynamics of particles in a gravitational
field generated by a homogeneous circular ring source in
3D space was numerically analyzed in detail in Ref. [7]; in
particular, they focused on periodic orbits and classified
them. Since particle motion constrained to the 2D plane on
which the ring lies is integrable because of the conservation
of energy and angular momentum, the complexity of
periodic orbits is relatively low. On the other hand, periodic
orbits that deviate from the symmetric plane are relatively
complicated, which leads the authors to speculate that such
nature comes from nonintegrability of the system. Note that
the integrability of this system is nontrivial and has not yet
been concluded. Certainly, separation of variables of the

equation of motion is unlikely to occur because the
Newtonian potential includes the complete elliptic integral
of the first kind. However, since the separability of an
equation of motion is a sufficient condition for its integra-
bility [8], we cannot conclude that it is nonintegrable just
because it does not occur. Answering the question of
whether this system is integrable or not is one of the
motivations for this study.
Now let us recall why the integrability of a test particle

system is so significant. We call a system integrable if there
are as many Poisson commutable conserved quantities as or
more than the system’s degrees of freedom. This nature
relates to the predictability of a system because if it is
nonintegrable, trajectories may exhibit chaotic behavior.
Such trajectories are generally complicated and sensitive to
changes of initial conditions. On the other hand, the
predictability is preserved if a system is integrable. Then
we can also use constants of motion to learn about the
symmetry of systems and backgrounds. In fact, the so-
called hidden symmetry of the Kerr black hole spacetime
was discovered using a nontrivial constant found in the
proof of the integrability of the geodesic equation [9–11].
This is known today to be the fundamental quantity that
characterizes the Kerr geometry. In other words, clarifying
the integrability is an effective way to discover the system’s
hidden symmetry.
The Newtonian potential sourced by a homogeneous

circular ring in 4D space appears naturally in the
Newtonian limit of the black ring solution. The equation
of motion with this potential is separable and, therefore,
integrable [12]. This property must be due to the simplicity
of the potential form compared to the 3D case. It is
noteworthy that a massive particle system (i.e., timelike
geodesic system) on the singly rotating black ring space-
time [13–17], which restores the Newtonian potential in the*igata@post.kek.jp
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weak gravity limit, exhibits chaos, i.e., the geodesic
equation is nonintegrable [18]. As suggested in this
example, the integrability of particle systems tends to be
recovered in the Newtonian limit. Other known examples
are that the timelike geodesic system in the Schwarzschild
spacetime is integrable while its Newtonian limit, the
Kepler problem, is superintegrable, and that in a static
dihole spacetime is chaotic [19,20] while its Newtonian
limit, the Euler’s 3-body problem, is integrable [21]. Thus,
it is quite natural to speculate that if a particle system is
chaotic in the corresponding Newtonian gravitational field,
the chaotic nature will also appear in a geodesic system on a
relativistic gravitational field.
The Newtonian potential due to a ring source is known to

have a parity of spatial dimension; it contains complete
elliptic integrals when n is odd but has a simpler structure
when n is even [22–24]. Based on this property and the
above observations, let us make the following conjecture: A
particle system moving in a potential sourced by a
homogeneous circular ring in n-dimensional Euclidean
space is nonintegrable if n is odd and is integrable if n is
even. If it is true, we can predict that timelike geodesics in
black ring spacetimes with an even number of spatial
dimension behave chaotically.
The purpose of this paper is to verify the above

conjecture. We use the Poincaré map as an indicator of
chaos. Therefore, we first identify a region where there are
stable stationary orbits for each spatial dimension. These
orbits are so fundamental as to be comparable to stable
circular orbits and are important regardless of its integra-
bility. Increasing an energy from the level of a stable
stationary orbit, we inevitably find stable bound orbits in its
vicinity. We consider the emergence of chaotic nature by
evaluating the Poincaré section for the stable bound orbits.
This paper is organized as follows. In Sec. II, after

presenting the explicit form of the Newtonian gravitational
potential sourced by a homogeneous circular ring, we
derive conditions for the existence of stationary orbits in
terms of an effective potential of particle dynamics and
clarify criteria for determining whether a stationary orbit is
stable or unstable. In Sec. III, we show the regions where
stable stationary orbits exist in each dimension according to
the prescriptions developed in Sec. II. We apply the
Poincaré map method to stable bound orbits that appear
associated with stable stationary orbits and attempt to
determine the chaotic nature of particle dynamics.
Section IV is devoted to a summary and discussions.

II. FORMULATION

We consider the dynamics of a particle moving in a
Newtonian gravitational potential sourced by a homo-
geneous circular ring in n-dimensional Euclidean space
En (n ≥ 3). Let gij be the Euclidean metric, which is
given by

gijdxidxj ¼ dζ2 þ ζ2dψ2 þ dρ2 þ ρ2dΩ2
n−3; ð1Þ

where i, j are 1; 2;…; n, and ðζ;ψÞ are polar coordinates
in 2D plane, and ðρ;ϕ1;…;ϕn−3Þ are spherical coordinates
in the remaining (n − 2)-dimensional space, and dΩ2

n−3 is
the metric on the unit (n − 3)-sphere. Note that 0 ≤ ρ < ∞
for n ≥ 4 but −∞ < ρ < ∞ for n ¼ 3. Let R be the radius
of a homogeneous circular ring and M be the total mass.
Then the Newtonian potential sourced by the ring is given
by [24]

ΦnðrÞ ¼ −
GM

ðn − 2Þrn−2þ
F

�
1

2
;
n − 2

2
; 1; z

�
; ð2Þ

where G is the gravitational constant, and F is the
hypergeometric function, and z and r� are defined by

z ¼ 1 −
r2−
r2þ

; ð3Þ

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ � RÞ2 þ ρ2

q
; ð4Þ

respectively. The range of z is restricted in 0 ≤ z < 1.
Some specific forms of Φn for relatively small values of n
can be written as follows:

Φ3ðrÞ ¼ −
2GM
π

KðzÞ
rþ

; ð5Þ

Φ4ðrÞ ¼ −
GM
2rþr−

; ð6Þ

Φ5ðrÞ ¼ −
2GM
3π

EðzÞ
rþr2−

; ð7Þ

Φ6ðrÞ ¼ −
GM

8ðrþr−Þ2
�
rþ
r−

þ r−
rþ

�
; ð8Þ

Φ7ðrÞ ¼ −
2GM
15πr5−

�
−
r3−
r3þ

KðzÞ þ 2
r−
rþ

�
1þ r2−

r2þ

�
EðzÞ

�
;

ð9Þ

Φ8ðrÞ ¼ −
GM

16ðrþr−Þ3
�
r2þ
r2−

þ 2

3
þ r2−
r2þ

�
; ð10Þ

Φ9ðrÞ ¼ −
2GM
105πr7−

��
8
r−
rþ

þ 7
r3−
r3þ

þ 8
r5−
r5þ

�
EðzÞ

− 4
r3−
r3þ

�
1þ r2−

r2þ

�
KðzÞ

�
; ð11Þ

Φ10ðrÞ ¼ −
5GM

128ðrþr−Þ4
�
r3þ
r3−

þ 3

5

rþ
r−

þ 3

5

r−
rþ

þ r3−
r3þ

�
; ð12Þ
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where KðzÞ is the complete elliptic integrals of the first
kind, and EðzÞ is the complete elliptic integrals of
the second kind.1 Whether n is even or odd makes
considerable difference to the shape of Φn [22–24].
We consider the dynamics of a particle moving in Φn.

Let m be mass of a particle and pi be canonical momenta.
The Hamiltonian is given in the form

Hn ¼
1

2m
ðp2

ζ þ p2
ρÞ þ Vn; ð14Þ

Vn ¼
L2

2mζ2
þ Q2

2mρ2
þmΦn; ð15Þ

where L ¼ pψ , and Q2 ¼ γabpapa (for n ≥ 4), and γab is
the inverse of the metric on the unit (n − 3)-sphere, and the
indices a, b label ðϕ1;…;ϕnÞ. Both L and Q are constants
of motion associated with axial symmetry in the ðζ;ψÞ-
plane and spherical symmetry in the remaining (n − 2)-
dimensional space, respectively. Note that in n ¼ 3, the
term Q2=ð2mρ2Þ in V3 disappears. We call Vn the effective
potential in what follows. Since Hn does not depend on
time explicitly, it is also constant, which coincides with the
conserved energy E, i.e.,

Hn ¼ E: ð16Þ

Now we focus on stationary orbits, i.e., particle orbits in
which ζ and ρ coordinates remain constant. These orbits
appear when initial conditions are given to stay at an
extremum point of Vn. From the equations of motion and
the energy conservation law (16), we obtain the conditions
for the existence of stationary orbits

∂ζVn ¼ 0; ð17Þ

∂ρVn ¼ 0; ð18Þ

Vn ¼ E: ð19Þ

In the remainder of this section, we analyze these con-
ditions for n ≥ 4 and further provide a systematic pro-
cedure for determining the stability of stationary orbits; the
case of n ¼ 3, which is formulated differently from these
cases, will be analyzed separately in Sec. III A. Solving
Eq. (17) for L2 and Eq. (18) for Q2, we obtain

L2 ¼ L2
0 ≔ −

GMm2ζ3

rnþ2
þ

�
RðR2 þ ρ2 − ζ2ÞF

�
3

2
;
n
2
; 2; z

�

− ðζ þ RÞr2þF
�
1

2
;
n − 2

2
; 1; z

��
; ð20Þ

Q2 ¼ Q2
0 ≔

GMm2ρ4

rnþ2
þ

�
2RζF

�
3

2
;
n
2
; 2; z

�

þ r2þF
�
1

2
;
n − 2

2
; 1; z

��
: ð21Þ

Note that stationary orbits exist only in the region where
these squared angular momenta do not take negative values.
The energy of a particle in a stationary orbit is given by

E0 ¼ VnjL¼L0;Q¼Q0
: ð22Þ

Next, let us consider conditions for stability of stationary
orbits. A stable stationary orbit is a state in which a particle
on the orbit can remain in its vicinity even if a small
perturbation is applied. In this state, a particle stays at a
local minimum point of Vn. To determine that the
extremum point of Vn is a local minimum or not, we
use the determinant and the trace of the Hessian of Vn,

hðζ; ρ;L2; Q2Þ ¼ det

" ∂2
ζVn ∂ζ∂ρVn

∂ρ∂ζVn ∂2
ρVn

#
; ð23Þ

kðζ; ρ;L2; Q2Þ ¼ tr

" ∂2
ζVn ∂ζ∂ρVn

∂ρ∂ζVn ∂2
ρVn

#
: ð24Þ

Using these quantities, we define a region Dn in the ζ-ρ
plane by

Dn ¼ fðζ; ρÞjL2
0 ≥ 0; Q2

0 ≥ 0; h0 > 0; k0 > 0g; ð25Þ

where h0 and k0 are h and k evaluated at a stationary point,
respectively, i.e.,

h0 ¼ hðζ; ρ;L2
0; Q

2
0Þ; ð26Þ

k0 ¼ kðζ; ρ;L2
0; Q

2
0Þ: ð27Þ

This gives the region where stable stationary orbits exist.

III. STABLE STATIONARY ORBITS AND
CHAOTIC ORBITS

A. n= 3

We consider stable stationary orbits of a particle moving
in the Newtonian potential Φ3. The explicit form of the
effective potential V3 is given by

1The convention of the complete elliptic integrals of the first
and second kind is

KðzÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − zsin2θ

p ; EðzÞ ¼
Z

π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − zsin2θ

p
dθ:

ð13Þ
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V3ðrÞ ¼
L2

2mζ2
−
2GMm

π

KðzÞ
rþ

; ð28Þ

where the term proportional to Q2 in Eq. (15) does not
exist. In this case, the condition (18) takes the form

∂ρV3 ¼
2GMm

π

ρEðzÞ
r2−rþ

¼ 0: ð29Þ

Since EðzÞ > 0 for 0 ≤ z < 1, this holds only on the
symmetric plane, ρ ¼ 0. The condition (17) restricted on
ρ ¼ 0 yields

L2 ¼ L2
0 ¼

GMm2ζ2

π

�
KðzÞ
ζ þ R

þ EðzÞ
ζ − R

�
; ð30Þ

where z ¼ 4Rζ=ðζ þ RÞ2. The squared angular momentum
L2
0 is not negative in the range

R < ζ < ∞: ð31Þ

Therefore, the stationary orbits in Φ3 exist only on ρ ¼ 0
within the range (31). Note that all of such stationary orbits
are circular orbits.
Let us further restrict the inequality (31) to the range

where stable circular orbits are allowed to exist. We intro-
duce the determinant hðζ; ρ;L2Þ and the trace kðζ; ρ;L2Þ of
the Hessian of V3 [see Eqs. (23) and (24)] and define h0 and
k0 by

h0 ≔ hðζ; 0;L2
0Þ

¼ 4G2M2m2EðzÞ
π2ζ2ðζ2 − R2Þ2

�
KðzÞ − R2

ðζ − RÞ2 EðzÞ
�
; ð32Þ

k0 ≔ kðζ; 0;L2
0Þ ¼

2GMm
πζ2

�
KðzÞ
ζ þ R

þ EðzÞ
ζ − R

�
; ð33Þ

respectively. Both of these are positive in the range

ζISCO < ζ < ∞; ð34Þ

where ζISCO=R ¼ 1.6095 � � � and is determined by solving
h0 ¼ 0 [24,25]. After all, the stable stationary orbits in
n ¼ 3 exist in the region

D3 ¼ fðζ; ρÞjρ ¼ 0; ζISCO < ζ < ∞g; ð35Þ

and all of them are stable circular orbits. We refer to ζISCO
as the radius of the innermost stable circular orbit (ISCO),
as in the case of black hole spacetimes.
We use these results to consider the integrability of this

system. In general, when a particle in a stable stationary
orbit gains some positive energy, it moves away from the
local minimum of the effective potential. However, if a

potential contour at an acquired energy level has still closed
shape, then the particle remains confined in a finite region
of the vicinity of the local minimum point. We call such
orbits stable bound orbits. They provide information about
chaotic nature of particle motion through the method of the
Poincaré map. In Fig. 1, we show typical stable bound
orbits in V3 (upper panels) and the Poincaré sections (lower
panels), where L is chosen so that the local minimum point
of V3 coincides with the point ðζ; ρÞ ¼ ðζ0; 0Þ, and E is
chosen so that the contour of V3 ¼ E (red solid curves) is
closed and almost a separatrix. The black solid curves show
the contours of V3. The blue solid curves show particle
trajectories with energy E, which are confined inside each
red closed curve. Though we have chosen three different
parameter sets in Fig. 1(a)–1(c), all of these trajectories
appear to be some sort of Lissajous figures, which is a sign
when stable bound orbits are not chaotic. In fact, the
corresponding Poincaré sections for various initial con-
ditions with fixing L and E draw closed curves, as seen in
the lower panels of Fig. 1, where the section is placed at
constant-ζ plane, and phase space coordinates ðρ; pρÞ are
recorded when a particle passes through the section with
pζ > 0. Therefore, within the present analysis, we do not
find any chaotic nature.
In nonintegrable systems, as is known in, e.g., the Hénon-

Heiles system [26], the degree of chaos often increases if a
particle in a stable bound orbit approaches a separatrix. It is
worth noting that in our case, although particles approach
separatrices, no chaos has emerged. However, the visuali-
zation of chaotic nature in this way may be hindered because
the existence of the ISCO prevents stable bound orbits from
being close enough to the ring.
The fact that signs of chaos are hard to capture may mean

that this system is integrable. Let us discuss this possibility
below. One of the powerful methods for analyzing the
integrability of equations of particle motion is the
Hamilton-Jacobi method because a sufficient condition
for the integrability is the separation of variables of the
Hamilton-Jacobi equation. It is known that the separability
is closely related to the existence of the rank-2 Killing
tensors [8]. Therefore, even in our present case, clarifying
the existence of nontrivial constants of motion associated
with rank-2 Killing tensors is a useful way to learn about
the integrability. As a starting point of our discussion, we
adopt a rank-2 reducible Killing tensor, i.e., a linear
combination of the flat metric tensor and the symmetric
tensor products of Killing vectors,

Kij ¼ α0gij þ
X6
A¼1

X6
B¼1

αABξ
ði
Aξ

jÞ
B ; ð36Þ

where α0 and αAB are constants, and

ξi1 ¼ ð∂=∂xÞi; ξi2 ¼ ð∂=∂yÞi; ξi3 ¼ ð∂=∂zÞi; ð37Þ
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ξi4 ¼ yð∂=∂zÞi − zð∂=∂yÞi; ξi5 ¼ zð∂=∂xÞi − xð∂=∂zÞi;
ξi6 ¼ xð∂=∂yÞi − yð∂=∂xÞi ð38Þ

are the Killing vector in E3, which are represented by
the standard Cartesian coordinates ðx; y; zÞ ¼ ðζ cosψ ;
ζ sinψ ; ρÞ. We assume αAB ¼ αðABÞ because the antisym-
metric part of αAB does not contribute to Kij. Let us focus
on a quadratic quantity in pi written by Kij as

C ¼ Kijpipj þ K; ð39Þ

where K is a scalar function, and without loss of generality,
we have assumed that C does not contain the first-order
term of pi because, even assuming that it is included, it
eventually disappears in the following analysis. In the
remainder of this section, we use units in whichm ¼ 1. If C
is a constant of motion, then the pair of Kij and K must
satisfy the Killing hierarchy equations [27,28]

gij∂iKkl − Kij∂igkl ¼ 0; ð40Þ

∂iK ¼ 2Ki
j∂jΦ3; ð41Þ

where Ki
j ¼ gikKkj (see a brief review in Appendix A).

Our Killing tensor (36) is a solution to the first equa-
tion (40), which is the rank-2 Killing tensor equation in E3.
Our next task is to clarify whether there is a nontrivial
solution to the second equation (41) for K with Kij in
Eq. (36) as a source. From the conditions for K to be
integrable, ∂ ½i∂j�K ¼ 0, both Φ3 and Kij must satisfy the
following relation:

∂ ½iðKj�k∂kΦ3Þ ¼ 0; ð42Þ
which leads to the restriction of the components of αAB as

αAB ¼

2
666666664

α11 0 0 α14 0 0

0 α11 0 0 α14 0

0 0 α11 0 0 α14

α14 0 0 0 0 0

0 α14 0 0 0 0

0 0 α14 0 0 α66

3
777777775
: ð43Þ

Therefore, the integrability condition for K restricts the
form of Kij as

(a) (b) (c)

FIG. 1. Typical shapes of stable bound orbits in Φ3 (upper panels) and Poincaré sections with the same energy and angular momenta
but different initial positions and velocities (lower panels). Units in which R ¼ 1, m ¼ 1, and GM ¼ 1 are used. The local minimum
point of V3 is located at ðζ; ρÞ ¼ ðζ0; 0Þ in each case. In the upper panels, the black and the red solid curves show contours of V3;
in particular, the red corresponds to V3 ¼ E. Each blue solid curve shows a stable bound orbits with energy E. Each point in the
lower panels show a value (ρ, pρ) of a particle that passes through a constant-ζ surface with pζ > 0. Thirty orbits with different
initial conditions are superposed in each plot. (a) ðζ0; 0Þ ¼ 1.8; E ¼ −0.23698, (b) ðζ0; 0Þ ¼ 2.0; E ¼ −0.21130 and (c)
ðζ0; 0Þ ¼ 2.2; E ¼ −0.17415.
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Kij ¼ α0gij þ α66ξ
i
6ξ

j
6; ð44Þ

where we have assume α11 ¼ 0 because we can rescale α0.
Using the restricted form (44) as the source of Eq. (41), we
obtain

K ¼ 2α0Φ3; ð45Þ

where we have removed a constant term. Finally, we find
that C consists of the sum of the known conserved
quantities,

C ¼ 2α0H þ α66L2; ð46Þ

which is not independent from H and L2. From these
results, we conclude that the separation of variables of the
equation of motion does not occur. Note that, however, this
result does not necessarily mean that the system is non-
integrable. For example, there may exist a constant of
motion that is higher-order in pi more than rank-2 [29] or
nonpolynomial form [30]. We need further analysis to
clarify the integrability of this system, which is an
important task for the future.

B. n= 4

We consider stable stationary orbits in the Newtonian
potential Φ4. The explicit form of the effective potential V4

is given by

V4 ¼
L2

2mζ2
þ Q2

2mρ2
−
GMm
2rþr−

: ð47Þ

As formulated in Eqs. (20) and (21), the two squared
angular momenta for stationary orbits are given by

L2
0 ¼ GMm2

ζ4ðζ2 þ ρ2 − R2Þ
r3þr3−

; ð48Þ

Q2
0 ¼ GMm2

ρ4ðζ2 þ ρ2 þ R2Þ
r3þr3−

: ð49Þ

The squared angular momentum Q2
0 does not take a

negative value everywhere, while L2
0 is not negative in

the range of ζ2 þ ρ2 ≥ R2 or ζ ¼ 0, and hence only in
which the stationary orbits exist. At the points where L2

0

vanishes, the gravitational force in the ζ direction is just
balanced. From Eq. (22), the energy in stationary orbits is
given by

E0 ¼ −
GMmR2ðR2 þ ρ2 − ζ2Þ

2r3þr3−
: ð50Þ

Furthermore, h0 and k0 in Eqs. (26) and (27) reduces to

h0 ¼
16G2M2m2R2

r8þr8−
½ðζ2 þ ρ2Þ2ðR2 − ζ2 þ ρ2Þ

− R2ðR2 − ζ2ÞðR2 þ ρ2Þ�; ð51Þ

k0 ¼
4GMmðζ2 þ ρ2Þ

r3þr3−
; ð52Þ

respectively. The positivity of k0 does not make any
restriction to D4 because it is not negative everywhere,
while the positivity of h0 restricts D4. Figure 2 shows the
numerical plot ofD4, which is drawn by the shaded region.
The solid blue curve denotes the boundary of D4 deter-
mined by L0 ¼ 0, i.e., ζ2 þ ρ2 ¼ R2, and the dashed blue
curve the boundary of D4 determined by h0 ¼ 0. The
region D4 coincides with the region of stable stationary
orbits allowed in the asymptotically far from the thin black
ring in 5D spacetime; on the other hand, a difference
appears in their vicinity [15]. We find that a stable
stationary orbit exists arbitrary close to the Newtonian
ring, but in the black ring, the last stable orbit appears,
which does not reach the horizon.
As was shown in Ref. [12], the Hamilton-Jacobi equa-

tion of this system causes the separation of variables in the
spheroidal coordinate system, and hence this system is
integrable. In relation to the recent work on the Newtonian
analogue of the Kerr black hole [31], our potential Φ4 is
consistent with the time-time metric component of the 5D
singly rotating Myers-Perry black hole (see Appendix B).
This implies that the integrability of the particle system in
Φ4 is closely related to the integrable property of the

0 1 2 3 4
0

1

2

3

4

FIG. 2. Region D4, the allowed region for stable stationary
orbits in Φ4. Units in which R ¼ 1 are used. The circular ring
source is located at ðζ; ρÞ ¼ ð1; 0Þ. The shaded region denotes
D4. The blue solid and dashed curve are the boundaries ofD4 and
are determined by L0 ¼ 0 and h0 ¼ 0, respectively. The region
D4 is colored in blue when E0 < 0 and orange when E0 > 0.
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timelike geodesic equation in the 5D black hole. Whether
or not there is a further correspondence in particle dynam-
ics, etc., other than the integrability remains an open
question.

C. n= 5

We consider stable stationary orbits in the Newtonian
potential Φ5. The effective potential in n ¼ 5 is given by

V5 ¼
L2

2mζ2
þ Q2

2mρ2
−
2GMm
3π

EðzÞ
rþr2−

: ð53Þ

At an extremum point of V5, squared angular momenta L2

and Q2 take the form

L2
0 ¼

GMm2ζ2

3πr4þr3−
½r2−ðR2 − ζ2 þ ρ2ÞKðzÞ

− ½r2þr2− þ 8ζ2ðR2 − ζ2 − ρ2Þ�EðzÞ�; ð54Þ

Q2
0 ¼

2GMm2ρ4

3πr3þr4−
½2ðr2þ þ r2−ÞEðzÞ − r2−KðzÞ�; ð55Þ

respectively, and the energy E is

E0 ¼ −
GMm
6πr4−r3þ

½5R4 þ 2R2ðρ2 − ζ2Þ − 3ðζ2 þ ρ2Þ2EðzÞ

þ r2−ðζ2 þ ρ2 − R2ÞKðzÞ�: ð56Þ

Using Eqs. (54)–(56) and h0 and k0 defined in Eqs. (26) and
(27), we obtain D5, where stable stationary orbits exist, as
shown in Fig. 3. The region D5 is drawn by the shaded
region, where the energy E0 is negative in blue shaded
region and is positive in orange shaded region. The inner
boundary ofD5 denoted by a solid blue curve is determined
by L0 ¼ 0. Here corresponds to a balance point of the
gravitational force in the ζ direction. The outer boundary of
D5 denoted by a dashed blue curve is determined by
h0 ¼ 0. In contrast to D3 and D4, which indicate
unbounded regions, D5 is distributed in a bounded region
near the source.
Now, we investigate the chaotic nature of this system

by using stable bound orbits as in Sec. III A. Each upper
panel in Fig. 4 draws a certain stable bound orbit (blue
curve) with initial conditions at E ¼ 0, where angular
momenta L and Q are chosen so that V5 takes a local
minimum point at ðζ; ρÞ ¼ ðζ0; ρ0Þ. Black and red solid
curves are contours of V5, and the red is V5 ¼ 0. Each of
the lower panels in Fig. 4 depicts Poincaré sections for
stable bound orbits of particles with the same E, Q, and L
but different initial positions and velocities. Each section is
placed in a plane where ζ is constant, and phase space
coordinates ðρ; pρÞ are recorded when a particle passes
through the section with pζ > 0. In Fig. 4(a), we find a
stable bound orbit in the vicinity of the axis of symmetry,
which shows a Lissajous-like pattern. However, the corre-
sponding Poincaré sections show that although some of
plotted points lie on closed curves on the ρ-pρ plane, some
of these structures are broken. As the contour of V5 ¼ 0
approaches the ring such as in Fig. 4(b), a stable bound
orbit no longer shows a pattern like the Lissajous figure,
and the structure of closed curves in Poincaré sections is
broken for many initial conditions. Their properties are
more pronounced for stable bound orbits in the vicinity of
the ring, such as in Fig. 4(c). These results indicate chaotic
nature, and therefore, we conclude that this system is a
nonintegrable system.

D. n ≥ 6

We consider stable stationary orbits in Φn of the case
n ≥ 6. According to the prescription in Sec. II, some
numerical searches for n ¼ 6; 7;…; 10 show that the region
Dn does not exist in the ζ-ρ plane,

Dn ¼ ∅ for n ¼ 6; 7;…; 10: ð57Þ

With this result, there are inevitably no stable bound orbits
for n ¼ 6; 7;…; 10. Since we cannot use the method of the
Poincaré map without stable bound orbits, we need to use
other criteria for determining chaos to conclude the
integrability in these cases. The result (57) leads us to
expect the absence of stable stationary orbits for particles in
Φn for n ≥ 6.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

FIG. 3. Region D5, the allowed region for stable stationary
orbits in Φ5. Units in which R ¼ 1 are used. The circular ring
source is located at ðζ; ρÞ ¼ ð1; 0Þ. The shaded region denotes
D5. The blue solid and dashed curves are the boundaries of D5

and are determined by L0 ¼ 0 and h0 ¼ 0, respectively. The
region D5 is colored in blue when E0 < 0 and in orange when
E0 > 0.
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IV. SUMMARY AND DISCUSSIONS

We have considered the dynamics of particles moving
in a gravitational potential sourced by a homogeneous
circular ring in n-dimensional Euclidean space. In each
dimension below n ¼ 11, we have clarified the regions
where stable stationary orbits exist. In n ¼ 3, all of such
orbits are stable circular orbits and exist only on the
symmetric plane outside the ISCO radius, which is larger
than the ring radius. In n ¼ 4, there are no stable stationary
orbits on the symmetric plane, but rather in an unbounded
region connected to the axis of symmetry. In n ¼ 5, stable
stationary orbits exist in an bounded region connected
to the axis of symmetry and do not exist at infinity. In
n ¼ 6; 7;…; 10, no stable stationary orbits exist in whole
region. These results would predict a region of stable
stationary/bound orbits of massive particles in the far
region from thin black rings in n ≥ 4. At least in n ¼ 4,
the region of the existence of stable stationary orbits
revealed in the Newtonian mechanics are consistent with
those in the asymptotic region of the known black ring
solution.
Furthermore, using stable bound orbits that appear

associated with stable stationary orbits, we have analyzed
chaotic nature of particle dynamics in n ¼ 3 and 5, in

which cases system’s integrability is unknown so far. We
have not found any chaotic nature in n ¼ 3 by means of the
Poincaré map. It should be noted that this result does not
guarantee the integrability of the system. However, by
showing that there are no nontrivial constants of motion
associated with any rank-2 Killing tensors in E3, at least we
have clarified that the separation of variables of the
Hamilton-Jacobi equation does not occur. If this system
is integrable, the proof of integrability must be achieved not
by the separation of variable but by finding a constant of
motion more than second-order in momentum or a non-
polynomial constant. On the other hand, in n ¼ 5, the
Poincaré sections show a sign of chaos, indicating that the
system is nonintegrable.
Our results suggest that the system of a freely falling

particle (i.e., timelike geodesic) in 6D black ring space-
times is nonintegrable. At the same time, they strongly
suggest that there are no hidden symmetries, such as the
Killing tensors. Therefore, finding 6D black ring solutions
based on the ansatz that assumes a hidden symmetry would
not work well.
Our conjecture in the introduction holds so far for n ¼ 4

and 5. We should further discuss the appearance of chaos
for odd dimensions (i.e., n ¼ 3; 7; 9;…) and should reveal

(a) (b) (c)

FIG. 4. Typical shapes of stable bound orbits in Φ5 (upper panels) and Poincaré sections with the same energy and angular momenta
but different initial positions and velocities (lower panels). Units in which R ¼ 1, m ¼ 1, and GM ¼ 1 are used. The values ðζ0; ρ0Þ
denote the location of the local minimum point of V5 in each case. The black and red solid curves of each upper panel are contours of the
effective potential V5, which take 1, 10−1, 10−2 (black), and 0 (red). The blue curves show stable bound orbits with E ¼ 0. The plot in the
ρ-pρ plane in each lower panel show the Poincaré sections. Thirty orbits with different initial conditions are superposed in each plot.
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integrability for even dimensions (i.e., n ¼ 6; 8; 10;…).
Since there are various characterizations of chaos, it is
important to check the chaos in several different indicators,
not only in the Poincaré map. For example, in the current
system with periodic motions, it may be useful to evaluate
homoclinic trajectories and chaos analytically using the
Melnikov method (see, e.g., Ref. [32]). This is an interest-
ing issue for the future.
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APPENDIX A: INTEGRABILITY CONDITION OF
THE KILLING HIERARCHY EQUATION

We review the condition for the existence of a constant of
particle motion that is quadratic in a momentum [27,28].
Let us focus on particle motion under some scalar potential
force. We use units in which particle massm is unity in this
section. Then the Hamiltonian generally takes the form

H ¼ 1

2
gijpipj þΦðrÞ; ðA1Þ

where gij is the inverse metric of the background space, and
pi are canonical momenta, and ΦðrÞ is a potential. We
introduce a dynamical quantity C in the form of a second-
order polynomial of momenta,

C ¼ Kijpipj þ K; ðA2Þ

where, without loss of generality, we have assumed that C
does not contain a first-order term of momentum. Even
assuming that it is included, that term eventually disappears
in the discussion below.
If C is a constant of motion, then the Poisson bracket of

H and C must disappear:

fH;Cg ¼ ∂H
∂pi

∂C
∂xi −

∂H
∂xi

∂C
∂pi

ðA3Þ

¼ ðgij∂iKkl − Kij∂igklÞpjpkpl þ ðgij∂iK − 2Kij∂iΦÞpj

ðA4Þ

¼ 0: ðA5Þ

Since pi in Eq. (A4) can be any value of the on-shell, the
coefficients for each order of momenta must disappear. As a
result, we obtain the Killing hierarchy equation as shown in
Eqs. (40) and (41).

APPENDIX B: NEWTONIAN ANALOGUE
OF A SINGLY ROTATING MYERS-PERRY

BLACK HOLE

The metric of the Myers-Perry black hole that rotates in a
single plane is given in the Boyer-Lindquist coordinates by

gμνdxμdxν ¼ −dt2 þ μ

rD−5Σ
ðdt − asin2θdϕÞ2

þ Σ
Δ
dr2 þ Σdθ2 þ ðr2 þ a2Þsin2θdϕ2

þ r2cos2θdΩ2
D−4; ðB1Þ

where μ and a are mass and spin parameters, respectively,
and

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 þ a2 −
μ

rD−5 ; ðB2Þ

where we use units in which G ¼ 1 and c ¼ 1 (see, e.g.,
Ref. [5]). We define a Newtonian potentialΨ from the time-
time component of the metric (B1) as

Ψ ¼ −
1þ gtt

2
¼ −

μ

2rD−5Σ
: ðB3Þ

In the oblate spheroidal coordinates,

r ¼ aξ; ðB4Þ

θ ¼ cos−1η; ðB5Þ

we obtain Ψ as

Ψ ¼ −
μ

2aD−3ξD−5ðξ2 þ η2Þ : ðB6Þ

In making the further coordinate transformation,2

z ¼ aξη; ðB8Þ

ρ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ξ2Þð1 − η2Þ

q
; ðB9Þ

where ξ ∈ ½0;∞Þ and η ∈ ½−1; 1�, or equivalently,

ξ2 ¼ R2 þ ρ2 þ z2 − a2

2a2
; ðB10Þ

η2 ¼ R2 − ρ2 − z2 þ a2

2a2
; ðB11Þ

2The new coordinates are related to the Boyer-Lindquist
coordinates as

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ; z ¼ r cos θ: ðB7Þ
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where

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 þ z2 − a2Þ2 þ 4a2z2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðρ − aÞ2 þ z2�½ðρþ aÞ2 þ z2�

q
; ðB12Þ

finally we obtain the following form of Ψ:

Ψ ¼ −
2ðD−7Þ=2μ

R2ðR2 þ ρ2 þ z2 − a2ÞðD−5Þ=2 : ðB13Þ

In D ¼ 4, i.e., in the case of the Kerr black hole, under
the complex π=2-rotation of the parameter, a → ia, the
potential Ψ corresponds to that of the Euler’s 3-body
problem with equal mass m1 ¼ m2 ¼ M=2 [21]

ΨjD¼4 ¼ −
GM=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðzþ aÞ2 þ ρ2
p −

GM=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − aÞ2 þ ρ2

p ; ðB14Þ

where μ ¼ 2GM. In the viewpoint of the separability of the
equations of particle motion, the Euler’s 3-body problem is
closely related to the particle system of the Kerr spacetime
(see recent progress in Ref. [31]). In D ¼ 5, we can find
that the potential Ψ reduces to the form

ΨjD¼5 ¼ −
μ

2R2
: ðB15Þ

This corresponds to the Newtonian potential of a homo-
geneous circular ring with radius a placed in the 4D
Euclidean space (see, e.g., Ref. [24]) without any complex
transformation of the parameter. As known in Ref. [12], the
equation of motion of a particle moving in this potential is
integrable. This fact seems to be closely related to the
integrability of the timelike geodesic equation of the 5D
singly rotating Myers-Perry black hole spacetime. For
D ≥ 6, the source that generatesΨ is still an open question.
In addition, the potential of the Myers-Perry black holes
with general rotations remains unresolved.
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