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We investigate the cosmological dynamics of an up to cubic curvature correction to general relativity
(GR) known as cosmological Einsteinian cubic gravity, whose vacuum spectrum consists of the graviton
exclusively. Its cosmology is well posed as an initial value problem. We are able to uncover the global
asymptotic structure of the phase space of this theory. It is revealed that an inflationary, matter-dominated
big bang is the global past attractor, which means that inflation is the starting point of any physically
meaningful cosmic history. Given that higher-order curvature corrections to GR are assumed to influence
the cosmological dynamics at early times—the high energy/large curvature limit—late-time inflation is
possible only if one considers a nonvanishing cosmological constant term.
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I. INTRODUCTION

Higher curvature corrections to general relativity have
now become popular, at a time when we are looking for a
“compass” to point us in the right direction to find answers
to the many unsolved puzzles of contemporary physics.
Higher-order corrections to general relativity (GR) are
required for a renormalization procedure to work [1–6].
Generalizations of general relativity are considered gravi-
tational alternatives for unified description of the early time
inflation with late-time cosmic acceleration in [7]. Among
the modified theories considered are FðRÞ and Horava-
Lifshitz FðRÞ gravity, scalar-tensor theory, string-inspired
and Gauss-Bonnet theory, nonlocal gravity, nonminimally
coupled models, and power-counting renormalizable covar-
iant gravity. It was shown in that Ref. [7] that some versions
of the theories mentioned may be consistent with local tests
and may provide a qualitatively reasonable unified descrip-
tion of inflation with a dark energy epoch.
The higher curvature modifications of GR are charac-

terized by the high complexity of their mathematical

structure. In this case only through given approximations
may one retrieve some useful analytic information on the
cosmological dynamics. Otherwise one either has to
perform a numeric investigation or apply the tools of
dynamical systems theory. By means of the dynamical
systems tools one obtains very useful information on the
asymptotic dynamics of the above-mentioned cosmological
models. The asymptotic dynamics is characterized by
(i) attractor solutions into which the system evolves for
a wide range of initial conditions, (ii) saddle equilibrium
configurations that attract the phase space orbits in one
direction but repel them in another direction, (iii) source
critical points which may be pictured as past attractors, or
(iv) limit circles, among others.
Although the use of dynamical systems is especially

useful when one deals with scalar-field cosmological
models—see Refs. [8–14] for a very small but represen-
tative sample of related research—their usefulness in other
contexts has been explored as well [15–18]. In [15] by
means of a combined use of the type Ia supernovae and
HðzÞ data tests, together with the study of the asymptotic
properties in the equivalent phase space, Avelino et al.
demonstrated that the bulk viscous matter-dominated sce-
nario is not a good model for explaining the accepted
cosmological paradigm. Meanwhile, in [16] García-
Salcedo et al. explored the entire phase space of the
so-called Veneziano/QCD ghost dark energy models,
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where the dynamics of the inner trapping horizon is
ignored, and also the more realistic models where the time
dependence of the horizon was taken into consideration.
In a similar way, in [17], through exploration of the
asymptotic properties of the corresponding cosmological
model in the phase space, it was investigated to which
extent noncommutativity—a property of quantum nature—
may influence the cosmological dynamics at late times/
large scales. The dynamical systems tools were also applied
in [18] to study the asymptotic properties of a cosmological
model based on a nonlinear modification of general
relativity in which the standard Einstein-Hilbert action is
replaced by one of Dirac-Born-Infeld type containing
higher-order curvature terms.
In a recent paper [19] an up to cubic curvature correction

to GR was proposed, with the following features: (i) its
vacuum spectrum consists of a transverse massless graviton
exclusively, just as in GR, (ii) it possesses well-behaved
black hole solutions which coincide with those of Einstein
cubic gravity (ECG) [20–22], (iii) its cosmology is well
posed as an initial value problem, and (iv) it entails a
geometric mechanism triggering an inflationary period in
the early Universe (driven by radiation) with a graceful exit
to a late-time cosmology arbitrarily close to Λ cold dark
matter (ΛCDM).
In this paper we shall look for the global asymptotic

dynamics of the cosmological Einsteinian cubic gravity
(CECG) model proposed in [19] as a further generalization
of the ECG. Our aim is to correlate the generic solutions of
the model with past and future attractors as well as with
saddle equilibrium configurations in some state space. This
will give a solid mathematical basis to several statements
made in [19]. It will be confirmed, in particular, that
nonstandard matter-dominated inflationary Friedmann evo-
lution is the global past attractor of any phase space orbits
that represent viable cosmic histories. Our results will show
that the graceful exit to a late-time ΛCDM cosmology in
the CECG model is a consequence not of the proposed
curvature modification of GR but of the presence of a
nonvanishing cosmological constant term. The existence of
a phase of decelerated expansion in the model, allowing for
the correct amount of cosmic structure to form, depends on
the initial conditions. A similar study of so-called fðPÞ
cubic gravity was presented in [23].
We have organized the paper as follows. In Sec. II we

expose the basic elements of the CECG model, including
the cosmological equations of motion. In Sec. III we trade
the second-order cosmological field equations for a set of
autonomous ordinary differential equations on some phase
space variables, which we identify with the dynamical
system of the model. In that section we find the critical
points of the resulting dynamical system and study their
existence and stability properties. To illustrate our study
with numeric computations a phase portrait of the model is
drawn. The particular case of the CECG model without the
cosmological constant is explored in Sec. IV to elucidate
the role of vacuum energy in global asymptotic dynamics.
In Sec. V we discuss the most important physical aspects

resulting from the dynamical system investigation, and in
Sec. VI brief conclusions are drawn.

II. THE FORMALISM

The ECG formalism [20–22] is the outcome of an
approach based on a D-dimensional theory involving
arbitrary contractions of the Riemann tensor and the metric
given by the action

S ¼
Z

dDx
ffiffiffiffiffi
jgj

p
Lðgμν; RμνσλÞ; ð1Þ

with equations of motion

Eμν ¼ PμσρλR
σρλ
ν −

1

2
gμνL − 2∇λ∇σPμλσν ¼ 0; ð2Þ

where Eμν is the Euler-Lagrange tensor and

Pμνσλ ≡ ∂L
∂Rμνσλ

����
gαβ

contains derivatives of the metric up to fourth order. The
linearization of Eq. (2) around maximally symmetric
backgrounds with Riemann tensor

Rð0Þ
μνσλ ¼ Λ½gð0Þμσ g

ð0Þ
λν − gð0Þμλ g

ð0Þ
σν �;

where the metric gets small perturbations of the type

gμν ¼ gð0Þμν þ hμν (here g
ð0Þ
μν is the background metric, while

hμν ≪ 1 are the small perturbations). This yields a gravi-
tational spectrum consisting of1 (i) a massless graviton,
(ii) a massive (ghost) graviton with mass squared,

m2
g ¼

2ðD − 3ÞΛa − e
2aþ c

;

and (iii) a massive scalar mode with mass squared,

m2
s ¼

ðD − 2Þe − 4Λ½aþ ðD − 1ÞðDbþ cÞ�
2aþDcþ 4ðD − 1Þb ;

where a, b, c, and e are constants.
Let us apply the above-mentioned linearization pro-

cedure to a general D-dimensional cubic Lagrangian of
the form

L ¼ 1

2
R − Λ0 þ

X3
i¼1

αiL
ð2Þ
i þ

X8
i¼1

βiL
ð3Þ
i ; ð3Þ

where

1For full details of the linearization procedure, see [20].
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Lð2Þ
1 ¼ R2; Lð2Þ

2 ¼ RμνRμν; Lð2Þ
3 ¼ RμνσλRμνσλ;

Lð3Þ
1 ¼ Rμ

σ
ν
λRσ

ρ
λ
δRρ

μ
δ
ν; Lð3Þ

2 ¼ Rμν
σλRσλ

ρδRρδ
μν;

Lð3Þ
3 ¼ RμνσλRμνσ

ρRλρ; Lð3Þ
4 ¼ RμνσλRμνσλR;

Lð3Þ
5 ¼ RμνσλRμσRνλ; Lð3Þ

6 ¼ Rμ
νRν

σRσ
μ;

Lð3Þ
7 ¼ Rμ

νRν
μR; Lð3Þ

8 ¼ R3:

The constant coefficients αi and βi are related to the
constants D, Λ, a, b, c, and e (see [20]). Then let us
consider the limit jmgj → ∞, jmsj → ∞ of the cubic theory,
which means that 2aþ c ¼ 4bþ c ¼ 0 ⇒ 4α1 ¼ 4α3 ¼
−α2. In this case the massive vacuum modes become
infinitely heavy and decouple from the spectrum of the
theory, leaving the massless graviton as the only propagating
vacuum degree of freedom, as in general relativity.
Additionally, it is necessary that the coefficients βi’s be
independent of the dimension D of the space. It was
demonstrated in [20] that the most general theory with
the same form as Eq. (3), possessing dimension-independent
couplings, and sharing the same spectrum as GR reads

L ¼ 1

2
R − Λ0 þ αX4 þ βX6 þ λP; ð4Þ

where, in four dimensions (D ¼ 4), the quadratic Lovelock
term X4 is topological, while the cubic Lovelock term X6

vanishes identically. The cubic term P,

P ¼ 12Rμ
ν
λ
σRν

τ
σ
ρRτ

μ
ρ
λ þ Rμλ

νσRνσ
τρRτρ

μλ

− 12RμλνσRμνRλσ þ 8Rμ
λRλ

νRν
μ; ð5Þ

is neither trivial nor topological in four dimensions.

A. The CECG model

In [19] a cubic modification of Einstein’s GR was
proposed which generalizes the ECG (4). It is known as
CECG and is based on the following action2:

S ¼ 1

2

Z
d4x

ffiffiffiffiffi
jgj

p
½R − 2Λþ 2βðP − 8CÞ þ 2Lm�; ð6Þ

where Λ is the (non-negative) cosmological constant, β is a
non-negative free parameter,3 Lm is the Lagrangian of the
matter degrees of freedom, and

C ¼ RμλνσRμλν
τRστ −

1

4
RRμλνσRμλνσ

− 2RμλνσRμνRλσ þ 1

2
RRμνRμν; ð7Þ

is another cubic invariant. Although this invariant was
previously found in [22], in that reference Hennigar et al.
were interested in static spherically symmetric spaces
where C vanishes. The equations of motion that follow
from (6) read

2Eμν ¼ Gμν þ gμνΛþ 2β

�� ∂Rð3Þ
∂Rμαβσ

�
Rν

αβσ

−
1

2
gμνRð3Þ − 2∇α∇β

� ∂Rð3Þ
∂Rμαβν

��
¼ 0; ð8Þ

whereRð3Þ ≡ P − 8C. In general Eq. (8) is fourth order, so
the Lovelock theorem [26], which requires second-order
differential equations on any background [27], is not
violated by the CECG theory.4 As is clearly stated in
[19], the limit jmgj → ∞, jmsj → ∞means that the massive
modes do not propagate in vacuum. However, the theory
may develop instabilities beyond the linearized regime or
around other backgrounds.
In a Friedmann-Robertson-Walker (FRW) space,

ds2 ¼ −dt2 þ a2ðtÞδikdxidxk;

the field equation (8) is second order [19],

3H2ð1þ 16βH4Þ ¼ ρm þ Λ;

2 _Hð1þ 48βH4Þ ¼ −ðpm þ ρmÞ; ð9Þ

together with the continuity equation _ρm¼−3HðρmþpmÞ.
In what follows, for simplicity, we assume the following
equation of state: pm ¼ ωmρm, where the constant ωm is the
equation of state parameter. That the equations of motion
are second order entails a well-posed initial value problem,
i.e., that the resulting FRW cosmology is well behaved.5

2In [24] it was shown that the combination of cubic invariants
defining five-dimensional quasitopological gravity, when written
in four dimensions, reduces to CECG. It also introduced a quartic
version of the CECG and a combination of quintic invariants with
the properties of the above-mentioned theory. Meanwhile, in [25]
it was shown how to construct invariants up to eighth order in the
curvature.

3As we shall see in Sec. V the Hubble rate H is a real quantity
only if β ≥ 0.

4Take, for instance, the plane-symmetric Bianchi I spacetime
with line element

ds2BI ¼ −dt2 þ a2dx2 þ b2δabdyadyb; a; b ¼ 2; 3;

where a ¼ aðtÞ and b ¼ bðtÞ are the scale factors. As shown in
Appendix A of [28], the CECG equations of motion for vacuum
in this case contain up to fourth-order time derivatives of the scale
factors: ⃛a, ¨b̈.

5See, however, Ref. [28], where the well posedness of the
CECG cosmological model is challenged.
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III. DYNAMICAL SYSTEM

We introduce the following bounded variables of a given
phase space:

x≡ 16βH4

1þ 16βH4
; y≡ Λ

3H2 þ Λ
; ð10Þ

where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The modified Friedmann
constraint—the first equation in Eq. (9)—can be written as
follows:

Ωm ≡ ρm
3H3

¼ 1 − ð2 − xÞy
ð1 − xÞð1 − yÞ : ð11Þ

Meanwhile,

_H
H2

¼ −
3ðωm þ 1Þð1 − xÞ

2ð1þ 2xÞ Ωm: ð12Þ

In terms of the phase space variables x, y, the second-
order cosmological equations (9) may be traded for the
following two-dimensional autonomous dynamical system:

dx
dv

¼ 6ðωm þ 1Þxð1 − xÞ½ð2 − xÞy − 1�
1þ 2x

;

dy
dv

¼ −
3ðωm þ 1Þyð1 − yÞ½ð2 − xÞy − 1�

1þ 2x
; ð13Þ

where we have introduced the time variable
v ¼ R ð1þ Λ=3H2ÞHdt.

The phase space in which to look for critical points of the
dynamical system in Eq. (13) is given by the following
region of the ðx; yÞ plane:

Ψ ¼ fðx; yÞ∶0 ≤ x ≤ 1; 0 ≤ y ≤ ð2 − xÞ−1g: ð14Þ

The boundary

∂Ψ ¼ fðx; yÞ∶0 ≤ x ≤ 1; y ¼ ð2 − xÞ−1g ð15Þ

separates the physically meaningful region of the phase
space where Ωm ≥ 0 from the unphysical region where
Ωm < 0 (the gray region in the left panel of Fig. 1).
Another curve of physical interest is the one related to

the change of sign of the deceleration parameter:

q≡ −1 − _H=H2; ð16Þ

i.e., the curve that follows from the condition q ¼ 0,

y ¼ 3ðωm þ 1Þ − 2ð1þ 2xÞ
3ðωm þ 1Þð2 − xÞ − 2ð1þ 2xÞ : ð17Þ

This curve separates regions with accelerated expansion
from regions with decelerated expansion (the magenta
regions in Fig. 1).

A. Critical points and their properties

The critical points Pi∶ðxi; yiÞ of the dynamical system in
Eq. (13) in the phase space Ψ, as well as their stability
properties, are listed and briefly discussed below.

FIG. 1. Phase portrait (left panel) of the dynamical system in Eq. (13) for radiation, ωm ¼ 1=3, and (right panel) of the dynamical
system in Eq. (21), where Λ ¼ 0. The physically meaningful region of the phase space Ψ [Eqs. (14) and (25)] lies below the boundary
∂Ψ (black solid curve). The gray region in the drawings does not represent physically meaningful cosmological evolution. The magenta
region which is bounded by the curve [(left panel) Eq. (17), (right panel) Eq. (24)] is the subspace where the expansion is decelerated.
The critical points of the dynamical systems appear to be enclosed by the small circles. The de Sitter attractor manifoldMdS in Eq. (15),
which exists only for the dynamical system in Eq. (13), is represented by the thick dash-dotted curve that coincides with the upper
boundary ∂Ψ in the left panel.
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(1) Inflationary big bang solution, Pinfl
bb ∶ð1; 0Þ. The

eigenvalues of the linearization matrix evaluated at
this point are

λ1 ¼ ωm þ 1; λ2 ¼ 2ðωm þ 1Þ:

Hence, this is the source point (global past attractor),
and it is characterized by

x ¼ 1 ⇒ H4 ≫ ð16βÞ−1; y ¼ 0 ⇒ 3H2 ≫ Λ;

which leads to the following modified Friedmann
equation:

48βH6 ¼ ρm: ð18Þ

In this case Ωm is undefined while

_H=H2 ¼ −ðωm þ 1Þ=2;

so for the deceleration parameter (16) we get
q ¼ ðωm − 1Þ=2. Since, for physically meaningful
matter, 0 ≤ ωm ≤ 1 ⇒ −1=2 ≤ q ≤ 0, this means
that the critical point Pinfl

bb is to be associated with
accelerated expansion. This is why we call it the
“inflationary big bang” to differentiate it from the
standard big bang.

(2) Matter domination, Pmat∶ð0; 0Þ. Given that the
eigenvalues of the linearization matrix at Pmat,

λ1 ¼ −6ðωm þ 1Þ; λ2 ¼ 3ðωm þ 1Þ;

are of different signs, this means that the matter-
dominated solution is a saddle critical point. At this
solution Ωm ¼ 1 ⇒ 3H2 ¼ ρm and

_H
H2

¼ −
3

2
ðωm þ 1Þ ⇒ q ¼ 3ωm þ 1

2
:

(3) de Sitter attractor manifold:

MdS∶
�
x;

1

2 − x

�
; 0 ≤ x ≤ 1:

For points in MdS we obtain the following eigen-
values of the corresponding linearization matrix:

λ1 ¼ 0; λ2 ¼ 3ðωm þ 1Þ
�
x − 1

2 − x

�
:

The vanishing eigenvalue is associated with an
eigenvector that is tangent to the manifold at each
point. The second eigenvalue is always a nonpositive
quantity. This means that, as seen in Fig. 1, each one
of the critical points in MdS is a local attractor, i.e.,

the manifold itself is a global attractor of orbits in Ψ.
For each point in the de Sitter attractor manifold,
_H ¼ 0, Ωm ¼ 0 ⇒ q ¼ −1.

Notice that all three of the above critical points
always exist.
In the left panel of Fig. 1 the phase portrait of the

dynamical system in Eq. (13) is shown. The critical points
Pinf
bb and Pmat appear to be enclosed by the small circles,

while the de Sitter attractorMdS is represented by the dash-
dotted curve, which coincides with the upper boundary ∂Ψ
of the physically meaningful phase space (black solid
curve). The gray region above the boundary is unphysical
since Ωm < 0. The magenta region of the phase space,
which is bounded by the curve [Eq. (17)], represents the
subspace where the expansion of the Universe is decel-
erated. Hence, given that decelerated expansion is required
for the formation of the amount of observed cosmic
structure to happen, only those orbits that go across the
latter region represent viable cosmic histories. These orbits
cross the boundary represented by Eq. (17) twice, and the
corresponding cosmic histories show two periods of
accelerated expansion separated by a period of decelerated
expansion when the cosmic structure forms. As seen, the
natural exit from early time inflation to a decelerated
expansion period where the cosmic structure forms
depends on the initial conditions.

IV. CECG MODEL WITHOUT THE
COSMOLOGICAL CONSTANT

Let us investigate the role of the cosmological constant in
the global asymptotic dynamics of the CECG model. For
this purpose we shall study the model with a mix of two
fluids, dust and radiation, without the cosmological con-
stant. In this case the cosmological equations of the CECG
model read

3H2ð1þ 16βH4Þ ¼ ρd þ ρr;

2 _Hð1þ 48βH4Þ ¼ −ρd −
4

3
ρr;

_ρd ¼ −3Hρd; _ρr ¼ −4Hρr; ð19Þ

where ρd and ρr represent the energy densities of the dust
and the radiation, respectively.
We shall trade the above system of second-order differ-

ential equations for a two-dimensional dynamical system.
For this purpose we choose the phase space coordinate x
defined in Eq. (10) and the new y coordinate:

y ¼ Ωr

1þ Ωr
; Ωr ≡ ρr

3H2
: ð20Þ

Then Eq. (19) is equivalent to the dynamical system
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dx
dv

¼ −
2xð1 − xÞ½3 − ð2þ xÞy�

1þ 2x
;

dy
dv

¼ −2yð1 − yÞ
�
2 − 2y −

3 − ð2þ xÞy
2ð1þ 2xÞ

�
; ð21Þ

where we have introduced the following time variable,
v ¼ R ð1þ ρr=3H2ÞHdt and, to eliminate the Ωd terms, we
have used the following relationship:

Ωd ¼
1

1 − x
−

y
1 − y

: ð22Þ

Other useful equations are

_H
H2

¼ ðxþ 2Þy − 3

2ð1þ 2xÞð1 − yÞ ; ð23Þ

and the equation that follows from requiring that the
deceleration parameter vanishes:

y ¼ ð4x − 1Þ=3x: ð24Þ

As above, this curve separates the region where the
expansion is accelerated from the region where it is
decelerated.

A. Equilibrium states

The critical points Pi∶ðxi; yiÞ of the dynamical system in
Eq. (21) are found in the region of the phase space

Ψ ¼ fðx; yÞ∶0 ≤ x ≤ 1; 0 ≤ y ≤ ð2 − xÞ−1g; ð25Þ

where Ωd ≥ 0. Here we list the existing critical points
and briefly comment on their properties, including their
stability.
(1) Inflationary radiation-dominated big bang,

Pinfl
rad∶ð1; 1Þ. This solution is the global past attractor

to which every orbit of the phase space converges to
the past (this is confirmed numerically). In this case
the cosmic dynamics is governed by a modified
Friedmann equation,

48βH6 ¼ ρr ⇒ aðtÞ ∝ t3=2;

where we have taken into account that ρr ∝ a−4.
(2) Radiation-dominated Friedmann expansion solu-

tion, Prad∶ð0; 1=2Þ. In this case the eigenvalues of
the linearization matrix are λ1 ¼ 1=2 and λ2 ¼ −4,
so this is a saddle equilibrium point. We have that the
cosmic dynamics is governed by the standard
Friedmann equation 3H2 ¼ ρr.

(3) Inflationary nonstandard dust-dominated solution,
Pinfl
dust∶ð1; 0Þ. It is a saddle critical point since the

eigenvalues of the corresponding linearization

matrix, λ1 ¼ 2 and λ ¼ −3, are of opposite signs.
According to this solution the cosmic dynamics is
governed by the modified Friedmann equation

48βH6 ¼ ρd ⇒ aðtÞ ∝ t2;

where we have taken into account that ρd ∝ a−3.
(4) Dust-dominated solution, Pdust∶ð0; 0Þ. The eigen-

values of the linearization matrix, λ1 ¼ −1, λ2 ¼ −6,
are both negative quantities, so the dust-dominated
solution, 3H2 ¼ ρd, is the global attractor.

In the right panel of Fig. 1 the phase portrait of the
dynamical system in Eq. (21) is drawn. The critical points
are enclosed in the small circles. The black solid curve
divides the phase space into a physically meaningful region
Ψ [Eq. (25)] (below the curve) and a region that does not
represent physically meaningful cosmic behavior (the gray
region above the boundary). The magenta region represents
the subspace where the expansion is decelerating.
As can be seen in the phase portraits in Fig. 1, there are

two types of cosmic evolution. To the first type belong
those orbits that, after emerging from the inflationary
radiation-dominated past attractor, approach the (also infla-
tionary) nonstandard dust-dominated solution to finally end
up at the global attractor: the standard decelerated expan-
sion matter-dominated solution. The second type consists
of orbits that, after emerging from the global past attractor,
approach the standard decelerated expansion radiation-
dominated solution and then are attracted by the standard
matter-dominated solution (the global future attractor). The
first type of orbits lead to a not as well motivated kind of
cosmic evolution as that in the second type since there is
not a period of standard radiation-dominated decelerated
expansion.

V. DISCUSSION

One of the most interesting consequences of the present
scenario is the existence of a matter-dominated inflationary
big bang—critical point Pinfl

bb ∶ð1; 0Þ—which is the global
past attractor. Hence, all of the orbits emerge from this
unstable equilibrium inflationary state. Given the modified
Friedmann equation (18) and that ρm ∝ a−3ðωmþ1Þ, it
follows that the scale factor evolves with the cosmic time

as aðtÞ ∝ t
2

ωmþ1 so that

ä
a
¼ 2ð1 − ωmÞ

ð1þ ωmÞ2
t−2; HðtÞ ¼ 2

ωm þ 1
t−1: ð26Þ

Our results confirm in rigorous mathematical terms the
conclusion of [19]: that in the CECG scenario primordial
inflation is a natural stage from which any plausible cosmic
history—depicted by given orbits in the phase space—
starts. This is to be expected since higher curvature
corrections, such as cubic ones, are expected to modify
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the dynamics at early times, i.e., at very high energy/
curvature. However, the late-time acceleration in the model
is due to the cosmological constant term and has nothing to
do with the geometric properties of the CECG setup. In this
regard in Sec. IV we studied the CECGmodel with a mix of
two fluids, radiation and dust, and with the vanishing
cosmological constant Λ ¼ 0. It is confirmed that, as stated
in [19], the inflationary radiation-dominated stage driven
by the nonstandard Friedmann equation,

48βH6 ¼ ρr;

is the global past attractor, i.e., it is the starting point of any
orbit in the phase space. However, the global future
attractor is the standard dust-dominated decelerated expan-
sion driven by the Friedmann equation 3H2 ¼ ρd. This
means that the late-time de Sitter solution in the CECG
model is possible only if we consider a nonvanishing
cosmological constant Λ ≠ 0, so it is not a curvature effect.
The latter result can be understood in an analytical way.

Let us start with the following equation—Eq. (9) of [19]:

ä
a
¼ H2 −

ðωm þ 1Þρm
2ð1þ 48βH4Þ ; ð27Þ

which is obtained by combining ä=a ¼ H2 þ _H with
Eq. (9). Then we substitute H2 from Eq. (9) into
Eq. (27) to get

ä
a
¼ ρm þ Λ

3ð1þ 16βH4Þ −
ðωm þ 1Þρm
2ð1þ 48βH4Þ : ð28Þ

From Eq. (28) it follows that at early times/high curvature
when H4 ≫ 1=48β,

ä
a
≈
ð1 − ωmÞρm þ 2Λ

96βH4
;

so ä=a ≥ 0 and the expansion is accelerated. At late times,
when the density of matter has diluted enough with the
course of the cosmic expansion, ρm ∝ a−3ðωmþ1Þ, i.e., in the
limit ρm → 0, from Eq. (28) it follows that

ä
a
→

Λ
3ð1þ 16βH4Þ ;

so the expansion is accelerated only for nonvanishing
Λ > 0. The same conclusion is obtained if we solve the
algebraic Friedmann equation—the first equation in Eq. (9)
—in terms of the Hubble rate:

H ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 ffiffiffiffiffi

3β
p

αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12βα2

p
Þ2=3 − 1

4
ffiffiffiffiffi
3β

p ð2 ffiffiffiffiffi
3β

p
αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12βα2

p
Þ1=3

vuut ; ð29Þ

where for simplicity we have introduced the notation
α≡ ρm þ Λ. It is seen from Eq. (29) that at early times,
i.e., in the formal limit when ρm → ∞ ⇒ α ≫ 1=

ffiffiffi
β

p
, we

get that

H ¼ � α1=6

ð4 ffiffiffiffiffi
3β

p Þ1=3 ⇒ 48βH6 ¼ α;

FIG. 2. Left panel: types of cosmic evolution. (1) Nonstandard (inflationary) Friedmann radiation-dominated evolution (dashed
curve). (2) Nonstandard (inflationary) dust-dominated expansion (solid curve). (3) Standard (decelerated) radiation-dominated
expansion (dash-dotted curve). (4) Standard dust-dominated evolution (dotted curve). Right panel: drawing of the Hubble rate H
vs the scale factor a—according to Eq. (29)—shown for the cases in which the cosmological constant Λ vanishes (solid curves) and
when it is a nonvanishing quantity (dash-dotted curves). We consider expanding cosmology only so that in Eq. (29) we take the positive
sign. The darker curves are for dust (ρd ∝ a−3), while the remaining ones are for radiation (ρr ∝ a−4). It is seen that for vanishing Λ ¼ 0
the Hubble rate asymptotically vanishes, i.e., the end point of the expansion in this case is the static Universe.
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as expected. Meanwhile, at late times, i.e., in the formal
limit ρm → 0 ⇒ α ¼ Λ, the Hubble rate is nonvanishing
only if Λ ≠ 0. Actually, if we take Λ ¼ 0, i.e., α ¼ 0 in
Eq. (29), we obtain H ¼ 0 (static Universe). This is
illustrated in the right panel of Fig. 2, where the drawing
of the Hubble rate H vs the scale factor a, according to
Eq. (29), is shown for the cases in which the cosmological
constant vanishes and in which it is a nonvanishing
quantity.

VI. CONCLUSION

In this paper we have put on solid mathematical ground
the result of previous works [19,25] showing that primor-
dial inflation is the natural starting point of any plausible
cosmic history within the framework of the CECG sce-
nario. We have done this on the basis of the dynamical
systems analysis of the CECG model. Dynamical systems
offer unique robust information on the generic solutions of
the cosmological equations of motion, i.e., those that are
preferred by the differential equations according to their
structural stability properties.
In the same rigorous manner we have shown that the late-

time accelerated de Sitter expansion in the CECG model is
a result of considering a nonvanishing cosmological con-
stant and is not related in any way to the effects of the
higher curvature contribution ∝ P − 8C. Our result is
natural in the sense that the higher curvature modifications
of GR are supposed to have impact in the high energy, large
curvature regime exclusively, i.e., at early times in the
cosmic evolution.

As discussed in [28], certain instabilities may be present
in this purely cubic model. In this regard it could be very
interesting to explore how the results of this study are
modified when all orders of curvature are included,
particularly because such a configuration could avoid the
kind of instabilities found in [28] in the CECG model. This
was the subject of the companion paper [29].
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