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We study exact impulsive gravitational waves propagating in anti–de Sitter spacetime in the context of
the ghost-free infinite derivative gravity. We show that the source-free theory does not admit any anti–de
Sitter wave solutions other than that of Einstein’s general relativity. The situation is significantly different in
the presence of sources. We construct impulsive-wave solutions of the infinite derivative gravity generated
by massless particles and linear sources in four and three dimensions. The singularities corresponding to
distributional curvature at the locations of the sources get smeared by the nonlocalities. The obtained
solutions are regular everywhere. They reduce to the corresponding solutions of general relativity in the
infrared regime and in the local limit.
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I. INTRODUCTION

Einstein’s general relativity (GR) has surpassed all
observations from Solar System tests to gravitational waves
so far [1]. However, it is not well constrained at short
distances, i.e., in the ultraviolet regime (UV). Newton’s
1=r-potential was experimentally tested up to approxi-
mately 5 μm [2], which corresponds to 0.001 eV. Beyond
these scales, gravitational interaction has not been con-
strained by direct experiments. Furthermore, as one
approaches the short distances, GR has several problems.
From the classical point of view, it suffers from the
presence of spacetime singularities [3]; at the quantum
level, it fails to be perturbatively renormalizable.
It has been known for a while that nonlocal terms actions

can improve UV behavior. Nonlocal theories containing
form factors with an infinite number of derivatives have
brought considerable interest in the context of quantum
field theories [4–11] and quantum gravity [12–16]. In
particular, it was shown that infinite derivative gravity
(IDG) may resolve cosmological [17] and black-hole
singularities [18]. In order to avoid introducing ghostlike
instabilities, the form factors are chosen as analytic
functions with no roots in the complex plane (i.e., expo-
nential of entire functions); see [12,13,18]. Moreover, the
form factor of such a nonlocal action emerges from the
world line approximation of one-loop amplitude in string

theory [19,20]. There were also first attempts in studying
initial value problemof IDGusingdiffusion equationmethod
[21,22] and constructingperturbativeHamiltonian [23] using
nonlocal Hamiltonian formalism of [24,25].
Recently, there has been further progress in finding

solutions of linearized IDG. It was shown that IDG may
avoid not only black-hole type singularities [26–33], but
also topological defects such as p branes [34], cosmic
strings [35], and NUT-like singularities [36]. The exact
pp-wave solutions have been studied in [37].
In this paper, we study the nonexpanding gravitational

waves of the Siklos type in anti–de Sitter universe, the anti–
de Sitter (AdS) waves, which are generalizations of the so-
called pp waves in flat space in the context of the ghost-free
infinite derivative gravity presented in [38,39]. The main
focus of this work are the impulsive waves, which have
been studied extensively in GR with a cosmological
constant [40–46]. These solutions are generated by null
sources with Dirac-delta stress-energy tensor and belong to
the class of almost universal spacetimes [47,48]. The
impulsive-wave solution of IDG corresponding to a mass-
less point particle was obtained in [37]. Here, we follow-up
by extending the analysis to the AdS spacetime in four and
three dimensions. We illustrate how the nonlocality affects
the gravitational waves in AdS if the sources are absent or
present.
The layout of the paper is as follows: In Sec. II, we

briefly review the ghost-free infinite derivative gravity. In
Sec. III, we study the AdS wave solutions in the source-free
case. Sections IVand Vare dedicated to the constructions of
the impulsive gravitational waves of IDG in 3þ 1 and
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2þ 1 dimensions, respectively. In Sec. VI, we conclude
with a brief discussion of our results. The Supplemental
Material is attached to the Appendixes.

II. INFINITE DERIVATIVE GRAVITY

The most general quadratic in curvature (parity-invariant
and torsion-free) theory of IDG in four dimensions with a
cosmological constant Λ [17,18,38,39] is given by the
Lagrangian density1

L ¼
ffiffiffiffiffiffi−gp

16πG
½R − 2Λþ αcðRF 1ð□sÞRþ RμνF 2ð□sÞRμν

þ CμνρσF 3ð□sÞCμνρσÞ�; ð2:1Þ
where G ¼ M−2

p is Newton’s gravitational constant,
□s ≡□=M2

s , and αc ¼ 1=M2
s . The dimensionful constant

Ms is the scale of nonlocality at which nonlocal interactions
become manifest. In the local limit, Ms → ∞, the theory
reproduces Einstein’s general relativity. The form factors
F ið□sÞ are analytic functions of d’Alembert operator
□≡ gμν∇μ∇ν,

F ið□sÞ≡
X∞
n¼0

fi;n
□

n

M2n
s
; ð2:2Þ

where fi;n are dimensionless coefficients. The form factors
give rise to nonlocal gravitational interactions. They are
crucial to make the theory ghost-free, and the analyticity is
required for obtaining the low energy limit similar to that of
GR. The equations of motion for the action (2.1) are given
in Appendix A.

III. ADS WAVE SPACETIMES IN IDG

The field equations of the infinite derivative gravity are
very complicated [49], so a mere attempt of finding exact
solutions to the theory is an extremely daunting task. To
handle the situation, we focus on the AdS wave metric
ansatz, which can be written in the Kerr-Schild form,2

gμν ¼ gμν þ 2Hλμλν; ð3:1Þ

where gμν denotes the AdS background metric, and H is a
scalar function that satisfies λμ∂μH ¼ 0. Here, λμ is a
nonexpanding, nontwisting, and shear-free null vector
satisfying

λμλμ ¼ 0; ∇μλν ¼ ξðμλνÞ; ξμλ
μ ¼ 0; ð3:2Þ

where ξμ is a vector in the transverse direction. Due to the
fact that the curvature scalar R is constant, there is no

contribution from the nonlocal form factor RF 1ð□sÞR to
the field equations except a constant term. In addition, the
Ricci tensor becomes [53–55]

Rμν ¼ −
3

l2
gμν þ λμλνOH; ð3:3Þ

where l is the AdS radius and O denotes the operator

O≡ −
�
□þ 2ξμ∂μ þ

1

2
ξμξμ −

4

l2

�
: ð3:4Þ

Furthermore, one should note that the traceless Ricci tensor
takes the form

Sμν ¼ λμλνOH; ð3:5Þ

which is of the type N in the aspect of null alignment
classification [56,57]. Moreover, one can derive the follow-
ing formulas for the (repeated) action of the d’Alembert
operator [54]:

□ðλμλνHÞ ¼ □ðλμλνHÞ ¼ −λμλν
�
Oþ 2

l2

�
H

□
nSμν ¼ □

nSμν ¼ ð−1Þnλμλν
�
Oþ 2

l2

�
n
OH; ð3:6Þ

where □ ¼ gμν∇μ∇ν is the AdS background d’Alembert
operator. Throughout the calculations, one needs to use the
following identity of higher-order derivative of the Weyl
tensor:

∇μ∇ν□
nCμανβ ¼ 1

2

�
□þ R

3

�
n
�
□ −

R
3

�
Sαβ: ð3:7Þ

By using the recursive relations above, one can easily
convert the field equations of the IDG for the AdS wave
metric to a rather simple form,

�
Λþ 3

l2

�
gμν þ

�
1þ αc

��
2f1;0 þ

f2;0
2

�
R

þ
�
□þ 2

l2

�
F 2ð□sÞ

þ 2F 3

�
□s −

4

M2
sl2

��
□þ 4

l2

���
Sμν ¼ 0: ð3:8Þ

The trace part of the equation determines the cosmological
constant in terms of the AdS radius,

Λ ¼ −
3

l2
: ð3:9Þ

Note that (3.8) reduces to the field equations for pp waves
on Minkowski background [37] in the limit l → ∞

1We use mostly positive metric signature, ð−;þ;þ;þÞ.
2For detailed properties of AdS waves and the Kerr-Schild

metrics, we refer the reader to [50–53].
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(i.e.,Λ → 0). The traceless part of the field equations yields
nonlocal equations,

�
1þ αc

�
−
12

l2

�
2f1;0 þ

f2;0
2

�
þ
�
□þ 2

l2

�
F 2ð□sÞ

þ 2F 3

�
□s −

4

M2
sl2

��
□þ 4

l2

���

×

�
□þ 2

l2

�
λμλνH ¼ 0: ð3:10Þ

It is important to stress here that the full equations for AdS
waves (3.10) are equivalent to the linearized field equations
for theKerr-Schild perturbationshμν ¼ gμν − gμν ¼ 2Hλμλν.
Therefore, the solutions of the full equations that we obtain
below are also solutions of the linearized equations for the
transverse-traceless fluctuations around AdS background.
To ensure that the theory has no extra degrees of freedom

and no ghosts on the AdS background, we choose the form
factors3 [39],

F 1ð□sÞ ¼ F 2ð□sÞ ¼ 0;

F 3ð□sÞ ¼
1

2

e
−ð□sþ 6

l2M2
s
Þ
− 1

□s þ 8
l2M2

s

: ð3:11Þ

The AdS wave equation (3.10) then turns into

e
−ð□sþ 2

M2
sl

2Þ
�
□þ 2

l2

�
λμλνH ¼ 0: ð3:12Þ

Let us write AdS wave metric [59] using the null coor-
dinates, u ¼ ðx − tÞ= ffiffiffi

2
p

and v ¼ ðxþ tÞ= ffiffiffi
2

p
,

ds2 ¼ l2

z2
ð2dudvþ dy2 þ dz2Þ þ 2Hðu; y; zÞdu2; ð3:13Þ

where z ¼ 0 corresponds to the conformal infinity of AdS
spacetime [60]. In these coordinates, ξμ ¼ 2z−1δzμ, and,
thus,

O¼−
�
□þ 4z

l2
∂z −

2

l2

�
; □¼ z2

l2
∂2−

2z
l2

∂z−
4z2

l2
∂u∂v;

ð3:14Þ

where we introduced ∂2 ≡ ∂2
y þ ∂2

z .
Employing the first formula of (3.6), the field equa-

tions (3.12) reduce to

e
−z2∂2þ2z∂z−2

M2
sl

2 ðz2∂2 þ 2z∂z − 2ÞH ¼ 0: ð3:15Þ

This equation can be solved using the eigenvalue method
described in [61]. Let us consider the eigenvalue problem
of the operator in the round brackets,

ðz2∂2 þ 2z∂z − 2ÞHw ¼ −w2Hw; ð3:16Þ

where Hw are eigenfunctions and w are the corresponding
eigenvalues. By acting with the full nonlocal operator on
Hw, we obtain

e
−z2∂2þ2z∂z−2

M2
sl

2 ðz2∂2 þ 2z∂z − 2ÞHw ¼ −e
w2

M2
sl

2w2Hw: ð3:17Þ

The general solution H of the linear equation (3.15) is a
superposition of such functions Hw for which
ew

2=M2
sl2w2 ¼ 0. Since the exponential has no roots in

the complex plane, the only solution is the function H0

(the eigenvalue w ¼ 0). Therefore, the original equation
effectively reduces just to the equation

ðz2∂2 þ 2z∂z − 2ÞH ¼ 0: ð3:18Þ

In other words, the only AdS wave solutions of the source-
free theory are those of the Einstein’s general relativity.4

The solutions of (3.18) are well known [52,62],

Hðu;y;zÞ¼ z−
1
2½c1I3

2
ðζzÞþc2K3

2
ðζzÞ�sinðζyþc3Þ; ð3:19Þ

where ζ and ci are functions of the null coordinate u. The
functions I3=2 andK3=2 are modified Bessel functions of the
first and second kinds, respectively.
In fact, this result is expected since the source-free theory

is not affected by nonlocalities if the equations of motion are
linear, which is exactly the case of the field equationswith the
AdS wave metric ansatz. In order to see the nonlocal effects,
we need to consider the field equations with a nonzero
source. The equations derived above remain intact in the
presence of nonzero null sources Tμνdxμdxν ¼ Tuudu2.

5

IV. IMPULSIVE WAVES IN 3 + 1 DIMENSIONS

In this section, we will search for impulsive gravitational
waves6 that are generated by massless sources in IDG.
Since we put a nonzero stress energy on the right-hand side
of equations of motion, we can expect that the resulting

3Let us remark that this choice of F 3ð▫sÞ is non-analytic. An
alternative analytic choice F 3ð▫sÞ ¼ 1

2
ðe−ð▫sþ

8

l2M2
s
Þ
− 1Þ=ð▫s þ

8
l2M2

s
Þ (discussed in [58]) would only affect the overall constant

L and L4 by the factor e2=l
2M2

s without changing our conclusions.

4This is true also in the Minkowski background, which was
studied in [37]. The source-free solution presented in [37] is
incorrect because of a mistake in the Fourier transform.

5A feasible way of such a source is to consider a nonminimally
coupled scalar field with a certain potential [63,64].

6For the details on the impulsive gravitational waves in GR
with a cosmological constant, see [40–46].
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solutions will be affected by the presence of nonlocal form
factors with infinite derivatives.

A. Massless pointlike source

Let us begin with the impulsive AdS wave metric,

ds2 ¼ l2

z2
ð2dudvþ dy2 þ dz2Þ þ 2δðuÞHðy; zÞdu2; ð4:1Þ

and consider a massless point particle traveling in the
positive x direction with momentum pμ ¼ Eðδμt þ δμxÞ.
Such a particle is described by a source with stress-energy
tensor Tuu ¼ Ez20l

−2δðuÞδðyÞδðz − z0Þ. The AdS wave
equation then reads

e
−z2∂2þ2z∂z−2

M2
sl

2 ðz2∂2 þ 2z∂z − 2ÞHðy; zÞ ¼ −LδðyÞδðz − z0Þ;
ð4:2Þ

where we introduced the constant L ¼ 16πGEz20. Let us
recall that the homogeneous solution is given by (3.19).
Since it is the same for the local as well as nonlocal theory,
we will focus on finding a particular solution only.
In order to solve (4.2), we first take the Fourier transform

in coordinate y,7

e
−
z2∂2zþ2z∂z−k2z2−2

M2
sl

2 ðz2∂2
z þ 2z∂z − k2z2 − 2ÞĤðk; zÞ

¼ −
Lffiffiffiffiffiffi
2π

p δðz − z0Þ: ð4:3Þ

Using the substitution Ĥðk; zÞ ¼ Vðk; zÞ= ffiffiffi
z

p
, we can

rewrite this equation as

e−AðkÞ=M2
sl2AðkÞVðk; zÞ ¼ −

L
ffiffiffiffiffi
z0

p
ffiffiffiffiffiffi
2π

p δðz − z0Þ; ð4:4Þ

where we introduced the k-dependent operator

AðkÞ≡ z2∂2
z þ 2z∂z − k2z2 − 2: ð4:5Þ

Similar to the homogeneous case, we will first study the
eigenvalue problem for this operator. Assuming k > 0, one
can show that

AðkÞKiβðkzÞ ¼ −ðβ2 þ 9=4ÞKiβðkzÞ; ð4:6Þ

where Kiβ are modified Bessel functions of imaginary
order. In order to make further progress, it is essential to

express the right-hand side of (4.4) in terms of the
eigenfunctions KiβðkzÞ. Fortunately, this is possible thanks
to the identity presented in [65],

δðz − z0Þ ¼
2

π2z0

Z
∞

0

dβ β shðπβÞKiβðkz0ÞKiβðkzÞ; ð4:7Þ

for arbitrary k > 0. Thus, we can write

Vðk; zÞ ¼ −
L

ffiffiffiffiffi
z0

p
ffiffiffiffiffiffi
2π

p eAðkÞ=M2
sl2

AðkÞ δðz − z0Þ

¼
ffiffiffi
2

p
L

π
5
2

ffiffiffiffiffi
z0

p
Z

∞

0

dβ
e−ðβ2þ9=4Þ=M2

sl2

β2 þ 9=4
β shðπβÞ

× Kiβðkz0ÞKiβðkzÞ: ð4:8Þ

After taking the inverse Fourier transform, the particular
solution of (4.2) takes the form of the integral

Hðy; zÞ ¼ 16GEz
3
2

0

π2
ffiffiffi
z

p
Z
R
dk

Z
∞

0

dβ
e−ðβ2þ9=4Þ=M2

sl2

β2 þ 9=4
β shðπβÞ

× Kiβðjkjz0ÞKiβðjkjzÞeiky; ð4:9Þ

where we also employed the fact that Hðy; zÞ ¼ Hð−y; zÞ,
as it follows from (4.2). This integral does not seem to have
a closed form, but we can evaluate it numerically as shown
in Fig. 1.

FIG. 1. The function Hðy; zÞ for z0 ¼ 1, G ¼ 1, E ¼ 1, l ¼ 1,
and Ms ¼ 4. The meshed red surface represents the solution of
IDG, and the gray surface depicts the corresponding solution
of GR.

7Our convention for the Fourier transform is

f̂ðkÞ ¼ 1ffiffiffiffiffi
2π

p
Z
R
dx fðyÞe−iky; fðyÞ ¼ 1ffiffiffiffiffi

2π
p

Z
R
dk f̂ðkÞeiky:
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The GR solution can be obtained by taking the local limit
Ms → ∞ of the integrand in (4.9). Using the identity [66],

Z
∞

0

dβ
β shðπβÞ
β2 þ 9=4

Kiβðjkjz0ÞKiβ ¼
8<
:

π2

2
I3
2
ðjkjzÞK3

2
ðjkjz0Þ;

π2

2
I3
2
ðjkjz0ÞK3

2
ðjkjzÞ;
ð4:10Þ

which holds for z < z0 and z > z0, respectively, we arrive
at the function

HGR¼
2GE
z2

�
ðy2þz2þz20Þlog

�
1þ 4zz0

y2þðz−z0Þ2
�
−4zz0

�
:

ð4:11Þ

This GR solution represents an impulsive gravitational
wave that is generated by a massless particle; see, for
example, [40,42,67].
It is clear that the impulsive-wave solution of GR

diverges at the location of the particle, where it has
distributional curvature. On the other hand, the nonlocal
impulsive-wave solution of IDG is regular everywhere due
to the improved behavior of the propagator in the UV scale.
Let us remark that we could replace δðuÞ by a more realistic
smooth regularization of Dirac-delta δϵðuÞ thanks to the
linearity of equations and the independence of the coor-
dinate v [derivative ∂u in (3.14) never applies]. In this
sense, all curvature tensors can be considered as regular.
Near the conformal infinity z ¼ 0, the nonlocal solution
approaches GR.

B. Massless linear source

Let us consider a specific example of a null matter
distribution, Tuu ¼ Ez0l−2δðuÞδðz − z0Þ, for which one
can find an impulsive-wave solution in a closed form.
This particular stress-energy tensor describes a linear null
source that moves in x direction with momentum pμ ¼
Eðδμt þ δμxÞ and extends to infinity in y direction. The
trajectory of this surface is visualized in the Poincaré
spherical model of Lobachevsky space in Fig. 2. Details
of this representation are reviewed in Appendix B.
This choice of the source allows the profile functionH to

be independent of y. Thus, the field equation takes a
simpler form

e
−
z2∂2zþ2z∂z−2

M2
sl

2 ðz2∂2
z þ2z∂z−2ÞHðzÞ¼−L4δðz− z0Þ; ð4:12Þ

where L4 ¼ 16πGEz0. Thanks to the absence of ∂y, this
equation can be solved directly using the heat-kernel
method [26]. After transforming the equation to the
coordinate w ¼ log z and defining H̃ðwÞ ¼ HðewÞ, we
can write

H̃ðwÞ¼−L4e−w0
eð∂2wþ∂w−2Þ=M2

sl2

∂2
wþ∂w−2

δðw−w0Þ

¼L4e−w0

Z
∞

1=M2
sl2

dsesð∂2wþ∂w−2Þδðw−w0Þ

¼L4e−w0

Z
∞

1=M2
sl2

dse−2ses∂2wδðw−w0þ sÞ

¼L4e−w0

Z
∞

1=M2
sl2

dse−2s
Z
R
dw̃

e−
ðw−w̃Þ2

4sffiffiffiffiffiffiffiffi
4πs

p δðw̃−w0þ sÞ;

ð4:13Þ

wherewe applied the shift operator es∂w on the third line and
expressed the action of es∂2w using the heat kernel on the
fourth line. This integral can be easily found. Returning back
to the variable z, we obtain the particular solution of (4.12),

HðzÞ ¼ 8πGE
3z2z0

�
z30 erfc

�
3

2Msl
−
Msl
2

log

�
z
z0

��

þ z3 erfc

�
3

2Msl
þMsl

2
log

�
z
z0

���
; ð4:14Þ

which is plotted in Fig. 3.
By taking the local limit Ms → ∞, we can recover the

GR solution,

HGR ¼ 8πGEz
3z0

�
1þ z30

z3
−
����1 − z30

z3

����
�
: ð4:15Þ

As can be easily seen, this GR solution has a discontinuity
and distributional curvature at the location of the source

FIG. 2. The trajectory of the source at z ¼ z0 represented in
Poincaré spherical model of the Lobachevsky space. The solid
lines correspond to the location of the source at a given time t.
They extend from y ¼ 0 (at the dashed line) toward y ¼ �∞ (at
the conformal infinity).
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z ¼ z0, while the IDG solution is completely smooth
everywhere. This is again caused by the fact that the form
factor with infinite number of derivatives effectively smears
the delta-like distributions in the stress-energy tensor. As
before, the non-local solution approaches the GR solution
near the conformal infinity z ¼ 0.

V. IMPULSIVE WAVES IN 2+ 1 DIMENSIONS

Now that we have discussed gravitational waves in 3þ 1
dimensions, let us study the solutions in 2þ 1 dimensions.
In this section, we will not repeat details that remain almost
the same, but focus on the important differences from the
four-dimensional case.
Since the Weyl tensor is identically zero in 2þ 1

dimensions, the IDG action contains only the form factors
of F 1ð□sÞ and F 2ð□sÞ. Traceless part of the source-free
field equations in three dimensions is reduced to

�
1þ αc

�
−
12

l2

�
f1;0 þ

f2;0
3

�
þ
�
□þ 2

l2

�
F 2ð□sÞ

��

×

�
□þ 2

l2

�
λμλνH ¼ 0: ð5:1Þ

Furthermore, one needs to set the form factor F 2ð□sÞ to be
in the following form in order to avoid ghostlike degrees of
freedom [68]:

F 2ð□sÞ ¼ C
e
−ð□sþ 2

M2
sl

2Þ − 1

□s þ 2
M2

sl2
; ð5:2Þ

where we denoted C ¼ 1þ thðM−2
s l−2Þ. It is also impor-

tant to note that the field equation is independent of the
form factor F 1ð□sÞ. We refer the reader to [68] for the
explicit form of F 1ð□sÞ.

The AdS wave metric in 2þ 1 dimensions is

ds2 ¼ l2

z2
ð2dudvþ dz2Þ þ 2Hðu; zÞdu2: ð5:3Þ

A similar arguments to those in Sec. III could be used to
show that there are no new solutions of the homogeneous
equation. In the next section, we focus on particular
solutions in the presence of the nonzero source.

A. Massless pointlike source

Consider a pointlike particle moving in the positive x
direction with the momentum pμ ¼ Eðδμt þ δμxÞ with the
stress-energy tensor Tuu ¼ Ez20l

−2δðuÞδðz − z0Þ. This
source together with the impulsive-wave profile H ¼
δðuÞHðzÞ leads to the equation

e
−
z2∂2zþ3z∂z

M2
sl

2 ðz2∂2
z þ 3z∂zÞHðzÞ ¼ −L3δðz − z0Þ; ð5:4Þ

where L3 ¼ 16πG3Ez20=C.
By introducing w ¼ log z, H̃ðwÞ ¼ HðewÞ, and employ-

ing the heat-kernel method, we find

H̃ðwÞ ¼ −L3e−w0
eð∂2wþ2∂wÞ=M2

sl2

∂2
w þ 2∂w

δðw − w0Þ

¼ L3e−w0

Z
∞

1=M2
sl2

ds
Z
R
dw̃

e−
ðw−w̃Þ2

4sffiffiffiffiffiffiffiffi
4πs

p δðw̃ − w0 þ 2sÞ;

ð5:5Þ

which can be easily calculated. The resulting particular
solution of (5.4) is

HðzÞ ¼ 4πG3Ez0
Cz2

�
z20 erfc

�
1

Msl
−
Msl
2

log

�
z
z0

��

þ z2 erfc

�
1

Msl
þMsl

2
log

�
z
z0

���
: ð5:6Þ

This function is depicted in Fig. 4.
By calculating the local limit Ms → ∞, we can arrive at

the GR solution,

HGR ¼ 4πG3Ez0

�
1þ z20

z2
−
����1 − z20

z2

����
�
: ð5:7Þ

Unlike the four-dimensional GR solution of a pointlike
massless particle, which diverges, this three-dimensional
GR solution is regular but has a discontinuity at z ¼ z0
[46]. This discontinuity is again cured by infinite deriva-
tives. The IDG impulsive-wave solution is smooth every-
where. The full solution (with the homogeneous part
c1=z2 þ c2) approaches the GR solution at the conformal
infinity z ¼ 0. Note that the metric of the GR solution is
actually just the AdS metric. This is a consequence of the

local

non–local

0.5 1.0 1.5 2.0
z

�5

5

10

15

20
H(z)

FIG. 3. The function HðzÞ for z0 ¼ 1, G ¼ 1, E ¼ 1, l ¼ 1,
and Ms ¼ 4. The dashed red curve denotes the solution of IDG,
and the solid black curve represents the corresponding
solution of GR.
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fact that the three-dimensional GR has no local degrees of
freedom [69,70]. The spacetime, however, differs from an
empty AdS by the presence of nontrivial (global) topo-
logical defects that causes distributional curvature, which is
not present in the nonlocal case.

VI. CONCLUSIONS

In this paper, we studied the nonexpanding gravitational
waves of the Siklos type solutions of the ghost-free infinite
derivative gravity in anti–de Sitter spacetime with the main
focus on the impulsive waves which are generated by
Dirac-delta source. We argued that the source-free infinite
derivative gravity does not admit any new AdS wave

solutions other than that of Einstein’s general relativity.
It was demonstrated that the nonlocality described by form
factors with the infinite number of derivatives plays a role
only in the presence of a nonzero source.
We found the exact impulsive waves corresponding to

massless pointlike and linear sources propagating in four-
and three-dimensional anti–deSitter spacetimes. It turnedout
that the nonlocalities smear all the divergences and disconti-
nuities (corresponding to distributional curvature) that are
present in the local impulsive-wave solutions. The obtained
solutions of the infinite derivative gravity are regular every-
where. They reduce to the impulsive-waves solutions of
general relativity in the local limit Ms → ∞ and in the
infrared regime (near the conformal infinity of AdS). Simply
put, the solutions get modified due to the nonlocal effects
only in the ultraviolet regime, but not in the infrared regime.
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APPENDIX A: EQUATIONS OF MOTION OF IDG

The equations of motion following from the action given
(2.1) were found in [49]. Using a common notation for a
power of d’Alembert operator, □nXα…

β… ≡ Xα…
β…

ðnÞ, they can
be written as

GαβþΛgαβþαc
2
½4GαβF 1ð□ÞRþgαβRF 1ð□ÞR−4ð∇α∇β−gαβ□ÞF 1ð□ÞR−2Ωαβ

1 þgαβðΩ1
ρ
ρþΩ1Þþ4Rα

νF 2ð□ÞRνβ

−gαβRν
μF 2ð□ÞRμ

ν−4∇ν∇βðF 2ð□ÞRναÞþ2□ðF 2ð□ÞRαβÞþ2gαβ∇μ∇νðF 2ð□ÞRμνÞ−2Ωαβ
2 þgαβðΩ2

ρ
ρþΩ2Þ−4Δαβ

2

−gαβCμνρσF 3ð□ÞCμνρσþ4Cα
μνσF 3ð□ÞCβμνσ−4ðRμνþ2∇μ∇νÞðF 3ð□ÞCβμναÞ−2Ωαβ

3 þgαβðΩ3
γ
γþΩ3Þ−8Δαβ

3 �¼0; ðA1Þ
where the symmetric tensors are

Ωαβ
1 ¼

X∞
n¼1

f1;n
Xn−1
l¼0

∇αRðlÞ∇βRðn−l−1Þ; Ω1 ¼
X∞
n¼1

f1;n
Xn−1
l¼0

RðlÞRðn−lÞ;

Ωαβ
2 ¼

X∞
n¼1

f2;n
Xn−1
l¼0

Rν
μ;αðlÞRμ

ν;βðn−l−1Þ; Ω2 ¼
X∞
n¼1

f2;n
Xn−1
l¼0

Rν
μðlÞRμ

νðn−lÞ;

Ωαβ
3 ¼

X∞
n¼1

f3;n
Xn−1
l¼0

Cμ;αðlÞ
νρσ Cμ

νρσ;βðn−l−1Þ; Ω3 ¼
X∞
n¼1

f3;n
Xn−1
l¼0

CμðlÞ
νρσCμ

νρσðn−lÞ;

Δαβ
2 ¼ 1

2

X∞
n¼1

f2;n
Xn−1
l¼0

½Rσ
νðlÞRðβjσj;αÞðn−l−1Þ − Rσ

ν;ðαðlÞRβÞσðn−l−1Þ�;ν;

Δαβ
3 ¼ 1

2

X∞
n¼1

f3;n
Xn−1
l¼0

½CρνðlÞ
σμCρ

ðβjσμj;αÞðn−l−1Þ − Cρν
σμ

;ðαðlÞCρ
βÞσμðn−l−1Þ�;ν: ðA2Þ
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FIG. 4. The function HðzÞ for z0 ¼ 1, G3 ¼ 1, E ¼ 1, l ¼ 1,
andMs ¼ 4. The dashed red curve represents the solution of IDG,
and the solid black curve depicts the corresponding solution of GR.
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APPENDIX B: POINCARÉ SPHERICAL MODEL

Poincaré spherical model is a compactified representa-
tion of the Lobachevsky space,

ds2 ¼ l2

z2
ðdx2 þ dy2 þ dz2Þ; ðB1Þ

which is a spatial part of the AdS metric. The surface of the
sphere is the conformal infinity. The standard conformally
flat coordinates x, y, and z are visualized in Fig. 5.
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