
 

Do black hole shadows merge?

Kazumasa Okabayashi ,1,* Nobuyuki Asaka,1,† and Ken-ichi Nakao1,2,‡
1Department of Mathematics and Physics, Graduate School of Science,

Osaka City University, Sumiyoshi, Osaka City 558-8585, Japan
2Nambu Yoichiro Institute of Theoretical and Experimental Physics,
Osaka City University, Sumiyoshi, Osaka City 558-8585, Japan

(Received 23 March 2020; accepted 13 July 2020; published 6 August 2020)

The so-called black hole shadow is not a silhouette of a black hole but an image of a collapsing object or
a white hole. Hence it is nontrivial whether black hole shadows merge with each other when black holes
coalesce with each other. In this paper, by analyzing the null geodesic generators of the event horizon in
Kastor-Traschen spacetime which describes a coalescence of black boles, we see that observers who will
never see a merger of black hole shadows exist.
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I. INTRODUCTION

The black hole is one of the most fascinating predictions
of general relativity. It is defined as a complement of the
causal past of future null infinity. This definition implies
that any observers outside a black hole cannot receive any
physical influences caused in the black hole. General
relativity predicts that black holes will form through
gravitational collapse of massive objects, but in view of
any observers outside black holes, those massive objects
will continue to collapse forever and no black hole forms.
No black hole has ever formed in our view, although there
will be many black holes in our Universe.
The so-called black hole shadow taken by Event Horizon

Telescope Collaboration [1] is, exactly speaking, not a
silhouette of a black hole but will be unresolved images of
collapsing objects or possibly an image of a black hole
mimicker. (In this paper, hereafter, we will not consider the
possibility of black hole mimickers in order to make
discussions simple.) What we have ever observed will
be collapsing objects and their neighboring exterior
domains. By virtue of the no-hair nature of black holes,
the spacetime geometry of the neighboring exterior
domains of collapsing objects will asymptotically approach
Kerr-Newman family. Even before the collapsing objects
form black holes, we will observe the same phenomena as
those occurring around black holes. However, we cannot
rule out the possibility that the collapsing object will stop
collapsing after we stop observing it [2]. If it is a black hole,
we cannot confirm the fact that it is a black hole by its
definition. On the other hand, a black hole model to explain

observational data is, in principle, falsifiable. The black
hole model can be scientific in Popper’s sense.
In theoretical calculation, a black hole shadow is defined

as an image made of null geodesics emanating from events
on a sphere with the horizon radius (see Ref. [2] and also
Appendix A). Here note that the sphere with the horizon
radius is not an event horizon but a white hole horizon,
since there is no future-directed null geodesic emanating
from the event horizon to observers outside the black hole.
Following this definition, the black hole shadows in
multiblack hole systems have been theoretically studied
in the case for the static solution in [3], the stationary
solution in [4], and the colliding black holes in [5]. In static
or stationary cases, it is known that black hole shadows do
not merge with each other. By contrast, in the case for
colliding black holes, it has been claimed that the shadows
collide with each other. However, since black hole shadows
found in our Universe will be images of collapsing objects
and a black hole shadow obtained by theoretical calculation
is an image of a white hole, it is a nontrivial question
whether black hole shadows merge with each other even if
black holes will merge.
There are several exact solutions describing colliding

black holes [6–8]. Among these solutions, Kastor-Traschen
(KT) solution is one of the simplest solution describing
colliding black holes [6]. The global structure of the KT
solution was studied in [9–12] but has not been seriously
considered from an observational point of view. We revisit
this issue and reconsider what the global structure implies
observationally.
In this paper, we focus on the KT solution with two

“particles” with identical mass in order to show that black
hole shadows do not necessarily merge. The behavior of
black hole shadows in this system was numerically ana-
lyzed in detail by Yumoto et al. [3], and their results,
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especially Fig. 9 in their paper, indicate that black hole
shadows do not merge, but they expect that the black hole
shadows eventually merge with each other. In this paper, we
analyze behavior of null geodesic generators of the event
horizon and would like to claim opposite of their expect-
ation, i.e., that there are observers who will not see the
coalescence of black hole shadows even if the black holes
will coalesce into one. In Sec. II, we briefly review the KT
solution. In Sec. III, the case of one particle is reviewed
since it is useful to understand the global structure in the
case of two particles of our interest. Then, in Sec. IV, we
study the case of two particles, especially the global
structure of a timelike hypersurface that extends through
just the middle of the two particles. Finally, Sec. V is
devoted to concluding remarks. Throughout this paper, we
use the geometrical units of c ¼ G ¼ 1 and follow [13] for
the notations.

II. KASTOR-TRASCHEN SOLUTION

The KT solution, or equivalently, the KT spacetime is an
exact solution of the Einstein-Maxwell system with pos-
itive cosmological constant Λ, which describes the motion
of extremely charged “particles”. Mi denotes the mass of
the ith particle located at ðx; y; zÞ ¼ ðxi; yi; ziÞ in comoving
cosmological Cartesian coordinates, and its electric charge
is equal to Mi. In this paper, we assume Mi > 0. There are
two classes: one is represented in the contracting cosmo-
logical time coordinate τ−, and the other is given in the
expanding cosmological time coordinate τþ. The metric
and the gauge field Aμ are given in the form

ds2 ¼ −U−2dτ2� þ U2ðdx2 þ dy2 þ dz2Þ; ð2:1Þ
and

Aμ ¼ ðU−1; 0; 0; 0Þ; ð2:2Þ

where H ¼ ffiffiffiffiffiffiffiffiffi
Λ=3

p
, and

U ¼ �Hτ� þ
XN
i¼1

Mi

ri
ð2:3Þ

with

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ ðy − yiÞ2 þ ðz − ziÞ2

q
: ð2:4Þ

It is a remarkable property of the multiparticle solution with
the contracting time coordinate that if the total mass is less
than 1=4H, particles are black holes and will coalesce with
each other to form one black hole.
Kretschmann curvature invariant diverges at U ¼ 0 in

the domain of jrij < ∞ and that means U ¼ 0 gives
curvature singularity in this domain [10]. Hence, the
covered domains by τ� are restricted by the condition
U > 0 which leads to

−∞ < τ− <
XN
i¼1

Mi

Hri
; ð2:5Þ

−
XN
i¼1

Mi

Hri
< τþ < ∞: ð2:6Þ

III. CASE OF ONE PARTICLE

The KT spacetime with one particle is equivalent to the
extreme Reissner-Norström-de Sitter (RNdS) spacetime
which has been well studied by Brill and Hayward [14].
Since the RNdS spacetime is useful in understanding the
global structure of multiparticle cases, we will review it in a
bit detail here.
We adopt the spherical polar coordinate system ðr; θ;ϕÞ

in which the particle is located at the origin, i.e., r ¼ r1.
Then we have

ds2 ¼ −U−2dτ2� þ U2ðdr2 þ r2dΩ2Þ; ð3:1Þ
where

U ¼ �Hτ� þM
r
: ð3:2Þ

The familiar form of the metric of the RNdS spacetime is
given in the static and spherical polar coordinate system
ðT; R; θ;ϕÞ related with the cosmological coordinates
ðτ�; r; θ;ϕÞ through

�Hτ� ¼ exp
�
�HT −

Z
H2R2

ðR −MÞVðRÞ dR
�
; ð3:3Þ

�Hτ�r ¼ R −M: ð3:4Þ

Then the metric in the static coordinates is given as

ds2 ¼ −VðRÞdT2 þ V−1ðRÞdR2 þ R2dΩ2; ð3:5Þ

where

VðRÞ ¼
�
1 −

M
R

�
2

−H2R2: ð3:6Þ

In the case of 1 − 4HM > 0, there are three positive real
roots of VðRÞ ¼ 0:

Rin ¼ −
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4HM

p

2H
; ð3:7Þ

Rout ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4HM

p

2H
; ð3:8Þ

Rcos ¼
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4HM
p

2H
: ð3:9Þ
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Rin, Rout, and Rcos are called the inner horizon, the outer
horizon, and the cosmological horizon, respectively. This
solution describes the asymptotic de Sitter spacetime with a
black hole if and only if 1 − 4HM > 0 holds, and in this
case, the event horizon is located at R ¼ Rout.
The maximally extended conformal diagram of the

extreme RNdS with 1 − 4HM > 0 is given in Fig. 1.
The contracting cosmological coordinates ðτ−; rÞ cover a
domain shaded by light gray. In this diagram, the world line
of a static observer κ located in Rout < R < Rcos is depicted.
The causal past J−ðPÞ of an event P on the world line of κ is
also depicted by the shaded domain also by light gray. The
intersection of the domain covered by the cosmological
coordinate and J−ðPÞ is shaded by dark gray. Note that
there is a white hole in J−ðPÞ, and hence the observer κ can
take a picture of a black hole shadow at the event P.

IV. CASE OF TWO PARTICLES

In this paper, our main interest is in the case of two
particles with identical mass M1 ¼ M2 ¼ M=2 < 1=8H in
the contracting cosmological coordinates. This solution
describes the coalescence of two black holes to one black

hole [9,10,12]. As for space coordinates, we adopt the
cylindrical coordinates ðρ;ϕ; zÞ, since the spacetime has
axisymmetry. The metric function U is given as

U¼−Hτ−þ
M

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðz− lÞ2

p þ M

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðzþ lÞ2

p ; ð4:1Þ

where l is a positive constant. In order to see whether the
black hole shadows merge with each other, we study the
global structure of the hypersurface specified by z ¼ 0
which extends through just the middle of two particles.
Hereafter this hypersurface is denoted by Σ. The intrinsic
metric of Σ is given in the form

ds2Σ ¼ −W−2dτ2− þW2ðdρ2 þ ρ2dϕ2Þ; ð4:2Þ

where

Wðτ−; ρÞ ¼ −Hτ− þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ l2

p : ð4:3Þ

The hypersurface Σ is totally geodesic, i.e., its extrinsic
curvature vanishes.

A. Asymptotic behavior

The purpose in this section is to draw the conformal
diagram of the domain in Σ covered by the coordinates
ðτ−; ρ;ϕÞ, i.e.,

−∞ < τ− <
M

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ l2

p and 0 ≤ ρ < ∞; ð4:4Þ

and 0 ≤ ϕ < 2π.
From Eqs. (4.2) and (4.3), the lower bound of ρ, i.e.,

ρ ¼ 0 is a timelike curve along which ds2 ¼ −W−2dτ2− < 0
with W ¼ −Hτ− þM=l.
In the domain of ρ ≫ l, the metric function W approx-

imately behaves as the extreme RNdS spacetime in the
manner,

W ¼ −Hτ− þM
ρ

�
1þO

�
l2

ρ2

��
: ð4:5Þ

Hence, Σ asymptotically approaches to the extreme RNdS
spacetime with mass M in the limit of ρ → ∞ with τ−
negative and constant. This limit corresponds to an infinity
which is a point denoted by i0 in the conformal diagram.
The limit ðτ−; ρÞ → ð0;∞Þ is classified into two categories
in accordance with the quantity

Rþ
lim ≡ lim

τ→0;ρ→∞
ð−Hτ−ρÞ þM: ð4:6Þ

The limit of Rþ
lim ¼ Rcos is not an infinity but the cosmo-

logical horizon across which C2 extension is possible [9].

τ =

i+

P

κ
J  (P)

(W
=

0 )

R = R
out

R =
 R

in

R = R
cos

R = R
in

R =
 R

co
s

+

R =
 R

ou
t

R =
 R

co
s R = R

cos

R = R
out

i+

i

(         )τ = 0

τ

=

r = 0 ) (          ,  r = +   )

τ

= 0

R =
 R

inR = R
in

R =
 R

ou
t

J  (P)
i0

(         )
τ

< 0

(     
    )τ > 0

FIG. 1. The conformal diagram of the maximally extended
RNdS spacetime is depicted. Each point in this diagram is a
sphere of constant R. The domain covered by the contracting
cosmological coordinates is shaded by light gray. The world line
of a static observer κ located in Rout < R < Rcos is depicted by a
bit thick curve. The causal past J−ðPÞ of the observer κ at the
event P is the shaded domain also by light gray. The intersection
of the domain covered by the contracting cosmological coor-
dinates and J−ðPÞ is shaded by dark gray. There is a white hole in
the causal past of the observer κ. Dashed curves are spacelike
hypersurfaces of τ− ¼ constant.

DO BLACK HOLE SHADOWS MERGE? PHYS. REV. D 102, 044011 (2020)

044011-3



By contrast, the limit of Rout < Rþ
lim < Rcos is an infinity

which is a point denoted by iþ in the conformal diagram.
In the domain of −Hτ− ≫ M=l, the metric function W

behaves as

W ¼ −Hτ−

�
1þO

�
M

lHτ−

��
: ð4:7Þ

Thus, the metric function asymptotically approaches to the
de Sitter one in the limit of τ− → −∞. Also in this case, this
limit is classified in accordance with the quantity

R−
lim ¼ lim

τ−→−∞
ð−Hτ−ρÞ þM: ð4:8Þ

In the case that the limit is taken with ρ constant, R−
lim

positively diverges. This limit corresponds to an infinity
which extends over a spacelike direction as in the case of de
Sitter spacetime. By contrast, in the case that the limit is
taken with ρ → 0 so that R−

lim is positive and finite or
vanishes, the limit is an infinity which is a point denoted by
i− in the conformal diagram.
At the upper bound of τ− in Eq. (4.4), i.e.,

τ− ¼ M

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ l2

p ; ð4:9Þ

there is a scalar polynomial curvature singularity [15] at
which W vanishes. Equation (4.9) implies that the singu-
larity exists in τ− > 0 and has endpoints at ðτ−; ρÞ ¼
ðM=Hl; 0Þ and ð0;∞Þ. In order to see the causal property
of this singularity, we introduce a conformal metric defined
as

ds̃2 ¼ H2W2ds2Σ; ð4:10Þ

and adopt W as a coordinate instead of τ−. Note that the
causal structure of the (2þ 1)-dimensional spacetime with
ds̃2 is the same as that with ds2Σ, since the null structure of
both spacetimes are the same as each other. From Eq. (4.3),
we have

dτ− ¼ −
1

H
dW −

Mρ

Hðρ2 þ l2Þ3=2 dρ; ð4:11Þ

and substituting this equation into Eq. (4.2), we obtain

ds̃2 ¼ −
�
dW þ Mρ

ðρ2 þ l2Þ3=2 dρ
�

2

þH2W4ðdρ2 þ ρ2dϕ2Þ:

ð4:12Þ

The induced conformal metric on the singularity at which
W vanishes is then given by

ds̃sng ¼ −
M2ρ2

ðρ2 þ l2Þ3 dρ
2 < 0: ð4:13Þ

This equation implies that the singularity W ¼ 0 is time-
like. Note that the singularityW ¼ 0 is not an infinity since
null geodesics can reach there at finite affine parameter.
(See Appendix B.)
To summarize, the boundary of the domain on Σ covered

by the coordinates ðτ−; ρ;ϕÞ in the conformal diagram is
classified into the following seven categories:

(i) ρ ¼ 0: timelike coordinate boundary.
(ii) ρ → ∞ with τ− negative and constant: an infinity

which is a point denoted by i0.
(iii) ρ → ∞ and τ− → 0 with Rþ

lim ¼ Rcos: the cosmo-
logical horizon which extends over a null direction
as in the case of the RNdS spacetime.

(iv) ρ → ∞ and τ− → 0 with Rout < Rþ
lim < Rcos: an

infinity which is a point denoted by iþ.
(v) τ− → −∞ with R−

lim ¼ ∞: an infinity which extends
over a spacelike direction as in the case of the de
Sitter spacetime.

(vi) τ− → −∞ with R−
lim finite: an infinity which is a

point denoted by i−.
(vii) W ¼ 0: timelike scalar polynomial curvature

singularity.

B. Event horizon

In order to draw the event horizon in the conformal
diagram of Σ, we consider the intersection between the
event horizon and Σ, which is a circle with temporally
varying radius ρ ¼ ρðτ−Þ. Since the spacetime has reflec-
tion symmetry with respect to Σ and furthermore Σ is totally
geodesic, the intersection between the event horizon and Σ
is generated by null geodesics.
The event horizon of the KT spacetimewith two particles

was studied by one of the present authors and his
collaborators [12]. The numerical result given in this paper
implies that the endpoint of the null geodesic generators of
the event horizon on Σ is located at ρ ¼ 0 and at finite
negative τ−. This result can be verified analytically as
follows.
The event horizon of the RNdS spacetime with mass M

in the contracting cosmological coordinate is located on

r ¼ Rout −M
−Hτ−

: ð4:14Þ

We can easily verify that this is a solution of the future-
directed outgoing radial null condition

dτ−
dr

¼
�
−Hτ− þM

r

�
2

: ð4:15Þ

By contrast, the outgoing radial null condition on Σ is
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dτ−
dρ

¼
�
−Hτ− þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ l2
p

�
2

: ð4:16Þ

The null geodesic generators of the event horizon on Σ
satisfy Eq. (4.16). Since, as shown in Sec. IVA, Σ
approaches to the RNdS in the limit of ρ → ∞, the null
geodesic generators behave as Eq. (4.14);

ρ →
Rout −M
−Hτ−

for τ− → 0 − : ð4:17Þ

The null geodesic generators of the event horizon are then
in the domain τ− < 0. If the null geodesic generators
intersect ρ ¼ 0, then it is the endpoint of them by the
axisymmetry.
Here note that

dτ−
dρ

<

�
−Hτ− þM

ρ

�
2

ð4:18Þ

holds for the null geodesic generators. Since the asymptotic
solution (4.17) exactly satisfies the equation obtained by
replacing the sign of inequality by an equal sign in
Eq. (4.18), Eq. (4.18) implies that the null geodesic
generators should satisfy

τ− >
Rout −M
−Hρ

or equivalently ρ <
Rout −M
−Hτ−

: ð4:19Þ

Note that this inequality does not imply the existence of a
lower bound on τ− at ρ ¼ 0, and hence we need further
consideration.
The following inequality also holds on the null geodesic

generators:

dτ−
dρ

<

�
−Hτ− þM

l

�
2

: ð4:20Þ

Let ðτ−; ρÞ ¼ ðτe; ρeÞ denote an event on a null geodesic
generator. Here note that τe is negative, whereas ρe is
positive. Then, it is easy to obtain a solution of the
differential equation obtained by replacing the sign of
inequality by an equal sign in Eq. (4.20), which intersects a
null geodesic generator at ðτ−; ρÞ ¼ ðτe; ρeÞ:

τ− ¼ M
Hl

−
1

H2

�
ρ − ρe þ

1

Hð−Hτe þ M
l Þ
�
−1
: ð4:21Þ

Equation (4.20) implies that the null geodesic generators
satisfy, for ρ < ρe,

τ− >
M
Hl

−
1

H2

�
ρ − ρe þ

1

Hð−Hτe þ M
l Þ
�
−1
: ð4:22Þ

If the following inequality

ρe −
1

Hð−Hτe þ M
l Þ

< 0 ð4:23Þ

holds, Eq. (4.22) gives a lower bound of τ− of null geodesic
generators on Σ at ρ ¼ 0 as

τ−jρ¼0 >
M
Hl

�
ρe −

1

Hð−Hτe þ M
l Þ
�
−1

×

�
ρe þ

l
HM

−
1

Hð−Hτe þ M
l Þ
�
: ð4:24Þ

We can easily see that if Eq. (4.22) is satisfied, the right-
hand side of this inequality is negative and finite.
A remaining task is to show that there is an event ðτe; ρeÞ

that satisfies Eq. (4.23). We consider following two curves
in the spacetime diagram ðτ−; ρÞ;

ρ ¼ 1

Hð−Hτ− þ M
l Þ
; ð4:25Þ

ρ ¼ Rout −M
−Hτ−

: ð4:26Þ

An intersection of these two curves is easily obtained as

τ− ¼ τi ≡ −
HMR2

out

lð1 −H2R2
outÞ

; ð4:27Þ

ρ ¼ ρi ≡ lð1 −H2R2
outÞ

HM
: ð4:28Þ

It is not difficult to see 1 −H2R2
out > 0, and hence two

curves (4.25) and (4.26) intersect with each other in the
domain of τ− < 0 and ρ > 0. We can see that the following
equations hold:

d
dτ−

1

Hð−Hτ− þ M
l Þ
����
τ−¼τi

¼
�
lð1 −H2R2

outÞ
M

�
2

; ð4:29Þ

d
dτ−

Rout −M
−Hτ−

����
τ−¼τi

¼
�
lð1 −H2R2

outÞ
HMRout

�
2

ð4:30Þ

Because of HRout < 1=2, we have

d
dτ−

Rout −M
−Hτ−

����
τ−¼τi

>
d
dτ−

1

Hð−Hτ− þ M
l Þ
����
τ−¼τi

; ð4:31Þ

and hence we obtain

Rout −M
−Hτ−

<
1

Hð−Hτ− þ M
l Þ

ð4:32Þ
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for τ < τi or equivalently ρ < ρi. By virtue of Eq. (4.19),
Eq. (4.23) holds if τe < τi holds. This means that there is an
endpoint of null geodesic generators on Σ.

C. Conformal diagram

The conformal diagram of Σ is depicted in Fig. 2. The
domain covered by the contracting cosmological coor-
dinates ðτ−; ρ;ϕÞ is shaded by light gray. Each point
except on the boundary in this diagram corresponds to a
circle 0 ≤ ϕ < 2π. The event horizon is represented by a
thin line and the endpoint of its null geodesic generators
is the event E. The world line of an observer κ who
keeps the distance from the middle of two black holes
constant is depicted as a bit thick curve. The intersection
of the domain covered by the contracting cosmological
coordinates and the causal past of the observer κ at the
event P is shaded by dark gray, and there is no white
hole in it. Since a black hole shadow is an image of a
white hole, there is no null geodesic which makes black
hole shadow on Σ. Here again note that Σ is the
hypersurface going through just the middle of the two
black holes. This fact implies that black hole shadows
taken by observers on Σ do not merge with each other in
the KT spacetime with two identical black holes.

V. CONCLUDING REMARKS

By analyzing the null geodesic generators of the event
horizon in the KT spacetime with two particles, we obtain
the conformal diagram of the hypersurface Σ which passes
just in the middle of the two particles with identical mass in
Sec. IV. We showed analytically that there is the endpoint
of null geodesic generators of the event horizon on Σ and
there is no intersection between a white hole and Σ. These
facts imply that any observer restricted on Σ can never see
the merger of black hole shadows.
Here it is worthwhile to notice that the number of black

holes in their merger process is coordinate dependent
notion [12]; we can adopt a time slicing in which three
black holes merge into two and eventually into one black
hole even in the case of the KT spacetime with two particles
investigated in Sec. IV. By contrast, the number of black
hole shadows is observable and thus should not depend on
the choice of coordinates. In addition, it might be conserved
for any observers. However, in order to show that this
conjecture is true, we need to investigate whether black hole
shadows taken by any observers do not merge. This issue is
out of the scope of the present paper and future subject.
As shown by Yumoto et al. [3], an interval between two

black hole shadows becomes indefinitely narrower as time
elapses, and hence those will eventually look like one
merged black hole shadow due to the limitation of the
observational sensitivity. Furthermore, the redshift effects
on the photons coming through the space between the black
hole shadows become larger as time elapsed, or equiv-
alently, as the shadows becomes closer to each other. (See
Appendix B).
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APPENDIX A: WHAT IS BLACK
HOLE SHADOW?

Some confusion about the black hole shadow might
exist. In order to avoid it, we reconsider what is the black
hole shadow here. In accordance with Gralla, Holz and
Wald [16], we consider the case that the black holes are
illuminated by a distant, uniform, isotropically emitting
spherical screen surrounding both of an observer and the
black holes. In this situation, the observer will find dark
domains on the celestial sphere, which are called black hole
shadows. In the case of the Kerr spacetime, the shape of the
black hole shadow was given by Bardeen [17].
For simplicity, first we consider the case that an observer

detects photons at the event O in the Schwarzschild
spacetime with massM. The bright domain on the celestial
sphere is generated by the direction cosines of photons
moving along null geodesics from the bright spherical

ρ
=

0

τ =

i+

P

κ

J  (P)

(W
=

0)

E (         ,            )

τ

= 0 ρ

= +

i

+

i 0

(          )= 0τ

(          )> 0τ

(          )< 0τ

FIG. 2. The conformal diagram of Σ is depicted. The domain
covered by the contracting cosmological coordinate ðτ−; ρ;ϕÞ is
shaded by light gray. The event horizon is represented by a thin line
and the endpoint of its null geodesic generators is the eventE. The
world line of an observer κwho keeps the distance from themiddle
of two black holes constant is depicted by a bit thick curve. The
intersection of the domain covered by the contracting cosmologi-
cal coordinates and the causal past of the observer κ at the event P
is shaded by dark gray. Dashed curves are spacelike hypersurfaces
of τ− ¼ constant. There is no white hole in intersection of Σ and
the causal past of any observer outside the black hole.
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screen to the event O. By contrast, the dark domain on the
celestial sphere, i.e., black hole shadow is generated by
direction cosines of null geodesics that do not intersect with
the bright spherical screen in the causal past of O, which is
usually denoted by J−ðOÞ. Figures 3 and 4 depict the
situations explained above. Figure 3 depicts the case that
the eventO is located outside the black hole, whereas Fig. 4
shows the same but the event O is inside the black hole. In
these figures, the world lines of the bright spherical screen
is represented by a thick blue curve. The null geodesics
represented by green curves do not intersect with the bright
spherical screen in J−ðOÞ, and hence generate the black
hole shadow. By contrast, the null geodesics represented by
red curves generate the bright domain on the celestial
sphere since they intersect with the bright spherical screen
in J−ðOÞ. We can see from Fig. 4 that the observer falling
from the right-hand side asymptotically flat domain with

the bright spherical screen can take a picture of the black
hole shadow even after entering the black hole [18]. It is not
so difficult to see, by investigating null geodesics with the
critical impact parameter 3

ffiffiffi
3

p
M, that the angular radius of

the black hole shadow seen by a marginally bound freely
falling observer is equal to arctanð12 ffiffiffi

3
p

=23Þ ≃ 0.23π at the
moment when the observer arrives at the event horizon
[19]. This fact definitely implies that the black hole shadow
does not come from the absorption of photons by the
black hole.
In order to get the black hole shadow theoretically, the

so-called ray tracing method is efficient; we trace the null
geodesics from the event O in the past direction and
investigate whether they intersect with the bright spherical
screen. Usually, we assume that the observer like us is
located outside the black hole as in Fig. 3. In this case, in
the ray-tracing method, we stop tracing a null geodesic in
the past direction from the event O and regard its direction
cosine as an element of the black hole shadow if they reach
a sphere of r ¼ 2M. As can be seen from Fig. 3, the sphere
of r ¼ 2M is not the event horizon but the white hole
horizon. Thus, we may say that the black hole shadow is an
image of a white hole horizon [2].

3

 Bright spherical screen 

2

2

2

2

0

0

 Black Hole

 White Hole

i+

+

i

i0

i

i+

i0

+

FIG. 3. Null geodesics arriving at the event O outside the black
hole are depicted in the conformal diagram of the Schwarzschild
spacetime. The bright spherical screen is represented by a thick
blue curve. Red curves are null geodesics which intersect with the
bright spherical screen, whereas green curves are null geodesics
which do not intersect with the bright spherical screen. Hence, the
direction cosines of null geodesics represented by red curves are
in a bright domain on the celestial sphere of the observer, whereas
those represented by the green curves are in a dark domain.

2

2

2

0

0

 Black Hole

 White Hole

 Bright spherical screen 
i+

i

i0

i

i+

i0

+ +

FIG. 4. The same as Fig. 3 but the event O is inside the black
hole. Even in this case, the observer see a black hole shadow at
the event O.

3

 Bright spherical screen 

2

0

 Black Hole

i+

i
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+

FIG. 5. The conformal diagram of the spacetime in which a
spherically symmetric black hole forms by the gravitational
collapse of matter represented by a grayed domain. All null
geodesics arriving at the event O intersect with the bright
spherical screen. The null geodesics represented by green curves
go through the collapsing object, whereas those represented by
red curves do not. Even in this case, the observer can see a dark
image similar to that observed in the Schwarzschild spacetime,
since the green null geodesics suffers the kinematical and
gravitational redshift.
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Black holes in our Universe will form through gravita-
tional collapse of massive objects, and hence there will be
no white hole horizon. However, even in these cases, the
dark images will appear. We consider the case that a black
hole forms by the gravitational collapse of matter in
spherically symmetric asymptotically flat spacetime as
depicted in Fig. 5. We can see from this figure that all
null geodesics passing through the event O intersect with
the bright spherical screen in J−ðOÞ. Here we should note
the fact that there are null geodesics represented by green
curves which hit the collapsing object after they leave the
bright spherical screen. If the collapsing object is not
transparent to the photons, the observer detects no photon
moving along such null geodesics from the bright spherical
screen. Hence the direction cosines of such null geodesics
generate a dark image on the celestial sphere, if the
collapsing object emits nothing. Even if the collapsing
object emit photons with finite energy, those photons suffer
strong kinematical and gravitational redshift and hence
cannot be detected due to the limitation of the detectability
at sufficiently late stage of the gravitational collapse. As a
result, a dark image will eventually appear, even if the
collapsing object emits radiation [20]. If the collapsing
object is transparent to photons, what happens? Also, in
this case, a dark image will appear, since photons going
through the collapsing object suffer very strong redshift due
to a kind of the so-called Rees-Sciama effects [21] at the
late stage of the gravitational collapse (see, for example,
Appendix A of Ref. [2]). The shape of the dark image is
also determined by null geodesics with the critical impact
parameter 3

ffiffiffi
3

p
M. Also in this case, even if the event O is

inside the black hole, the dark image will appear [19]. In
our Universe, the black hole shadow will be a silhouette of
a collapsing object.
A black hole shadow is not a silhouette of a black hole.

APPENDIX B: NULL GEODESICS TO THE
SINGULARITY W = 0 IN THE CASE OF TWO

PARTICLES OF THE KT SPACETIME

The proper time tsngðρÞ from τ− ¼ 0 to the singularity
along a timelike curve of ρ ¼ constant is

tsngðρÞ ¼
Z

τsng

0

�
−Hτ− þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ l2
p

�
−1
dτ− ¼ þ∞; ðB1Þ

where

τsng ¼
M

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ l2

p : ðB2Þ

Thus, the singularity seems to be located at infinity.
However, it is not true. In order to see this fact, we
consider the null geodesics on Σ and along ρ ¼ 0 normal

to Σ. Since Σ is totally geodesic, the geodesics on Σ are also
geodesics in the spacetime.
The Lagrangian of a geodesic is given as

L ¼ −
1

U2

�
dτ
dλ

�
2

þU2

��
dρ
dλ

�
2

þ ρ2
�
dϕ
dλ

�
2

þ
�
dz
dλ

�
2
�
;

where λ is the affine parameter. The variation of ϕ leads to

d
dλ

�
U2ρ2

dϕ
dλ

�
¼ 0: ðB3Þ

Then we have

dϕ
dλ

¼ L
U2ρ2

; ðB4Þ

where L is an integration constant which corresponds to the
angular momentum. Hereafter, we focus on the case
of L ¼ 0.
First we consider null geodesics on Σ. The geodesic

equations are given as

d2τ−
dλ2

−
∂ lnW2

∂ρ
dρ
dλ

dτ−
dλ

¼ 0; ðB5Þ

d2ρ
dλ2

þ ∂ lnW2

∂τ−
dτ−
dλ

dρ
dλ

¼ 0; ðB6Þ

where we have used the null condition L ¼ 0. Since we
consider null geodesics which hit singularity, the null
condition is given as

dτ−
dλ

¼ W2
dρ
dλ

: ðB7Þ

Then using this null condition, we rewrite Eq. (B6) in the
form

d2λ
dρ2

þ 2HW
dλ
dρ

¼ 0: ðB8Þ

From the null condition, we have

dτ−
dρ

¼ W2: ðB9Þ

We numerically solve Eqs. (B8) and (B9) and depict the
result in Fig. 6. The numerical results imply that there are
null geodesics that reach the singularity W ¼ 0 except at
ðτ−; ρÞ ¼ ðM=Hl; 0Þ on Σ with finite affine length.
In order to see whether ðτ−; ρÞ ¼ ðM=Hl; 0Þ on Σ, or

equivalently, ðτ−; ρ; zÞ ¼ ðM=Hl; 0; 0Þ is infinity, we study
null geodesics along ρ ¼ 0 from a point in −l < z < 0 to
z ¼ 0. The geodesic equation is given as
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d2τ−
dλ2

−
∂ lnX2

∂z
dz
dλ

dτ−
dλ

¼ 0; ðB10Þ

d2z
dλ2

þ ∂ lnX2

∂τ−
dτ−
dλ

dz
dλ

¼ 0; ðB11Þ

where we have used the null condition L ¼ 0, and

X ¼ −Hτ− þ M
2ðl − zÞ þ

M
2ðlþ zÞ : ðB12Þ

The null condition becomes

dτ−
dλ

¼ X2
dz
dλ

: ðB13Þ

Using this equation, we rewrite Eq. (B11) in the form

d2λ
dz2

þ 2HX
dλ
dz

¼ 0: ðB14Þ

From the null condition, we have

dτ−
dz

¼ X2: ðB15Þ

Since we are interested in the null geodesic which hits z ¼
0 at τ− ¼ M=Hd, we assume

τ− ¼ M
Hl

þ
X∞
n¼1

τðnÞzn: ðB16Þ

Then we have the left-hand side of Eq. (B15) as

dτ−
dz

¼
X∞
n¼0

ðnþ 1Þτðnþ1Þzn: ðB17Þ

By contrast, the right-hand side is rewritten in the form

X2 ¼
�
−
M
l
−H

X∞
n¼1

τðnÞzn þ
M
l

X∞
n¼0

�
z
l

�
2n
�
2

¼
�X∞
n¼1

ð−HτðnÞzn þMl−ð2nþ1Þz2nÞ
�
2

: ðB18Þ

Then the solution for jzj ≪ l is written in the form

τ− ¼ M
Hl

þM2

5l

�
z
l

�
5
�
1þ 10

7

�
z
l

�
2

−
HM
4

�
z
l

�
3

þO
��

z
l

�
4
��

: ðB19Þ

Substituting this result into Eq. (B14) and integrating once,
we obtain

dλ
dz

¼ exp

�
−2H

Z
z
Xdz

�

¼ C exp

�
−
2HM
3

�
z
l

�
3

þO
��

z
l

�
5
��

¼ C

�
1 −

2HM
3

�
z
l

�
3

þO
��

z
l

�
5
��

; ðB20Þ

where C is an integration constant. By integrating this
equation, we have

λ ¼ Cz

�
1 −

HM
6

�
z
l

�
3

þO
��

z
l

�
5
��

þ const: ðB21Þ

This result implies that there is a null geodesic that reaches
the event ðτ−; ρ; zÞ ¼ ðM=Hl; 0; 0Þ on the singularity with
finite affine length.
The singularity W ¼ 0 on Σ is not infinity.

APPENDIX C: REDSHIFT

Here, we numerically verify that a photon propagating
through the neighborhood of the event horizon on the
hypersurface Σ is strongly gravitationally redshifted in the
KT spacetime. The redshift is also caused by the kinemati-
cal effect due to the motion of the emitter and the detector
of the photon. Hence, in order to see the gravitational
redshift, we usually assume that both the emitter and the

FIG. 6. On Σ, null geodesics with L ¼ 0 inside the event
horizon are depicted as solid lines while the singularity W ¼ 0 is
represented by a dashed curve. We set M ¼ 1, H ¼ 10−1,
l ¼ 1=2, and choose ðτ−; ρÞ ¼ ð16; 0Þ; ð12; 0Þ; ð8; 0Þ; ð4; 0Þ;
ð0; 0Þ as an initial condition in order from the top curve. Each
null geodesic reaches the singularity with finite affine length.
Hence, the singularity except at ðτ−; ρÞ ¼ ðM=Hl; 0Þ on Σ is
actually not infinity.
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detector are at rest. Such an assumption is possible only
when the spacetime is static or stationary. However, the KT
spacetime with two particles is neither static nor stationary.
In order to estimate gravitational contribution to redshift,
we need to appropriately introduce an emitter and a
detector which are approximately at rest. This is possible
if Rout is much less than Rcos, or equivalently, HM ≪ 1.
The domain of Rout ≪ −Hτ−ρþM < Rcos is well approxi-
mated by the RNdS spacetime, and hence we may define an
emitter and a detector which are approximately at rest in
this almost RNdS domain.
The radial coordinates of the detector ρd and the emitter

of photons ρe are respectively given by

ρd ¼
Rd −M
−Hτ−

; ρe ¼ −
Re −M
−Hτ−

;

with Rd and Re constant, where we assume that both Rd and
Re are much larger than Rout and less than Rcos. The four
velocities of the detector uμd and the emitter uμe are

uμd ¼ Ndð−τ−; ρd; 0; 0Þ; ðC1Þ
uμe ¼ Neð−τ−; ρe; 0; 0Þ; ðC2Þ

where

Nd ¼
Wðτ−; ρdÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2− −W4ðτ−; ρdÞρ2d
p ; ðC3Þ

Ne ¼
Wðτ−; ρeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2− −W4ðτ−; ρeÞρ2d
p : ðC4Þ

We focus on the photons moving along null geodesics
through ρ ¼ 0, i.e., with L ¼ 0. In order to find the world
lines of photons, we numerically solve Eqs. (B5) and (B6)
from the emitter ρ ¼ ρe to the detector ρ ¼ ρd. The null
condition is imposed on the initial conditions. The tangent
vector kμ of the null geodesic is then

kμ ¼
�
dτ−
dλ

;
dρ
dλ

; 0; 0

�
: ðC5Þ

The angular frequency of a photon is estimated as ωe ≡
−kμu

μ
e at the emitter and ωd ≡ −kμu

μ
d at the detector. Then

the redshift zred is defined as

1þ zred ¼
ωe

ωd
: ðC6Þ

We show the numerical results for the case of M ¼ 1,
H ¼ 10−5, and l ¼ 1. In this case, we have Rout ≈ 1 and
Rcos ≈ 105, respectively, and set both Rd and Re to be 102.
In Fig. 7, zred is depicted as a function of τ− at which the
detector receives the photon. The photons emanate from the
emitter for the time interval, −13.16 ≤ τ− ≤ −3.16. We can
see from this figure that the gravitational redshift of the
photon going through ρ ¼ 0 becomes indefinitely stronger
as time elapses. This is similar to the Rees-Sciama effect
[21], since the “gravitational potential” in the neighborhood
of ρ ¼ 0 depends on time.
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