
 

Horizon induces instability locally and creates quantum thermality
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The classical Hamiltonian for a chargeless and massless particle in a very near-horizon region is shown
to be of the form H ∼ xp as long as radial motion is concerned. This is demonstrated explicitly for static
spherically symmetric black hole and also found to be applicable for specific choice of radial trajectories in
the Kerr case. Such feature of horizon leads to unavoidable “local instability” in the particle’s radial motion
as long as near-horizon regime is concerned. We show that at the quantum level this provides thermality in
the system. The temperature is found to be given by the Hawking expression. Finally, we conjecture that the
automatic instability created by the horizon is responsible for its own temperature and consequently can be
a possible physical mechanism for horizon temperature.
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I. INTRODUCTION

Over the past few years, there has been an upsurge of
interest in the study of the close relationship between the
geometrical properties of horizons and the dynamics of
particle motion near it. Recently, people have observed
that horizons have some fascinating characteristics, one
of which is its influence on integrable systems and
sometimes turns it into a chaotic one, depending upon
the values of available parameters (like energy of the
particle, mass of the black hole, etc.). This has been
established classically [1–8]. Its quantum consequence
has also been studied to some extent. Usually, the
quantum chaos can be diagnosed by the exponential
increasing behavior of the out-of-order time correlation
function (OTOC) of some quantum operators [9,10] and
the size of them [11,12]. In fact, one can relate the
growth of the operator with the acceleration of the
particle when it falls towards the black hole (BH).
In all these analyses, it is found that the Lyapunov

exponent (LE), which characterizes the chaos in the system,
has an upper bound as predicted by the Sachdev-Ye-Kitaev
(SYK) model [9]. For BHs, it is predicted by the expo-
nential growth of the radial motion of the particle [2,4,8].
Interestingly, it has been noticed that such behavior persists
for the static (e.g., Schwarzschild spacetime) as well as for
the stationary (e.g., Kerr spacetime) BHs. In all cases, the
upper bound on the LE is determined by the surface gravity
of them [4,8]. This universality is not so obvious and, as far
as we know, the reason behind it has not been discussed
anywhere.

On the other hand, BH thermodynamics [13–15] is a
long-standing concept which originates through an analogy
between the laws of BH and those of usual thermodynam-
ical system, and it remains same till date. In fact, the
underlying physical mechanism which provides temper-
ature is not illuminated till now. More precisely, how and
why horizon get temperature is not known to us. For
instance, the source of temperature of a gas, contained in a
cylinder, is due to the kinetic energy of the gas molecules.
Similar mechanism in the case of horizon is not known.
Since maximum value of the LE is given by the surface
gravity of black hole [9] and also the horizon temperature is
determined by this one [15], the aforesaid instability due to
horizon might give a deep insight of understanding the
mechanism of origination of temperature. Here we aim to
enlighten all these issues which leads to a new concept.
Sometimes, the local features of a system, although may

be absent in a global sense, can give the possible explan-
ation of the phenomenological behavior of the system.
Taking up this idea here we investigate the behavior
of a massless, chargeless particle in the vicinity of the
black hole horizon which moves only radially outward
direction very near to the horizon. We find that near-
horizon Hamiltonian of the particle, at the leading order in
radial distance from the horizon, is H ∼ xp, where p is the
conjugate momentum of position variable x. We show
this explicitly for any static spherically black hole.
Moreover, the same can be achieved for Kerr case as well
for a particular trajectory. This form of near-horizon
Hamiltonian is very universal in the sense that it also
appears for any static, spherically symmetric BH as well as
a particle in an accelerated frame. Therefore, such a
universality may help us to answer the very basic and
fundamental as well as long-standing questions. In fact, this
Hamiltonian is shown to be that of an inverted harmonic
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oscillator (IHO) in a new set of canonical variables and,
therefore, providing instability in the system. Note that this
exists only very near to horizon and hence we call it as
“local instability.”We argue that such instability may be the
cause for the chaotic dynamics in a system, which has been
shown earlier in numerical calculations [4,8].
Quantum consequences of this instability are also

investigated. We observe that the density of states in this
case is thermal in nature and the temperature is given by the
Hawking expression T ¼ ℏκ=2π, where κ is the surface
gravity [15]. It is indeed the quantum response to the
classical instability triggered by the horizon. Therefore, we
feel that the unavoidable instability created by the horizon
itself in its nearby region may not only create chaos in a
system at the classical level, but also keeps its imprint by
making the system thermal at the quantum level. Finally,
we conjecture that this local instability can be the source of
the horizon temperature and hence may be regarded as a
possible mechanism for feeling horizon as hot object.
Interestingly, since results are related to IHO, these are
equally valid for the systems with this Hamiltonian in
different branches of physics.

II. HAMILTONIAN

Consider a static spherically symmetric BH. Since we are
interested in physics near the horizon, in order to remove
the coordinate singularity at the horizon, we shall express
the metric in Painleve coordinates [16].1 Note that we are
interested in the near-horizon physics. Here we consider
only the radial motion of the particle. The same has already
been used in several occasions to study the near-horizon
physics, like in the investigation of Hawking effect using
gravitational anomalies [18–23] as well as tunneling
formalism [23–26] (see also [27,28] for some recent
works). In this case considering only the radial motion
of the particle, we can obtain the form of the Hamiltonian as

H ¼ pr½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2κðr − rHÞ

p
�; ð1Þ

where κ is the surface gravity of the black hole and pr is
radial momentum corresponding to radial coordinate r. rH
is the location of horizon. Details can be seen in [4]. Just to
mention, the same can also be obtained for Kerr case by
considering only θ ¼ 0 and ϕ fixed trajectories, with

κ ¼ ðr2H − a2Þ=ð2rHðr2H þ a2ÞÞ; ð2Þ

where a is the angular momentum per unit mass. For Kerr
case, at this point, the outer region of ergosphere and event
horizon coincides and hence no ambiguity will arise.

Details are given in [4]; particularly see Eq. (A11). So,
for stationary black hole, the above argument is very
restrictive. Since we are interested near to the horizon,
expanding (1) up to the first order, one obtains

H ≃ κxp; ð3Þ

where x≡ ðr − rHÞ and pr ≡ p. The same Hamiltonian
can also be obtained for the particle motion in the near to
Killing horizon regime in a Rindler frame [8]. It shows a
possible inherent property of the horizon, as long as near-
horizon dynamics of the massless particle is concerned
[29]. Note that, this one is of the Berry-Keating type
H ∼ xp [31], which provides instability into the motion of
the particle dynamics.

III. CLASSICAL REGIME

We immediately see that the system, represented by (3),
has a hyperbolic point at x ¼ 0 and at p ¼ 0 which induces
the instability into the particle’s motion in the radial
direction. This is of course there only in the vicinity of
horizon. In particular, the solutions of the equations of
motion

_x ¼ κx; _p ¼ −κp; ð4Þ

where the dot refers to the derivative with respect to the
affine parameter, say λ, which parametrizes the path, are

xðλÞ ¼ xð0Þeκλ; pðλÞ ¼ pð0Þe−κλ: ð5Þ

The above Eq. (5) shows that the radial motion is always
unstable.
In order to see the time (λ here) evolution of the

neighboring trajectories, consider a trajectory (say lth)
which starts at phase space position ðxA; pAÞ at λA and
ends at ðxB; pBÞ after one period Tl ¼ λB − λA. We are
interested to examine the effect when one changes the
initial position and momentum slightly, say ðδxA; δpAÞ.
Use of (5) leads to the relation between the separations for
Tl > 0 as

�
δxB
δpB

�
¼

�
eκTl 0

0 e−κTl

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

MBA

�
δxA
δpA

�
: ð6Þ

The above matrixMBA is known as the monodromy matrix
[32]. We mention that only the classical periodic trajecto-
ries are important here, and they contribute to the density of
states at the quantum level [32]. However, for H ∼ xp, the
trajectories are unbounded in nature. In addition, here x is
always positive (as the particle is moving outside the
horizon), while p can be both positive and negative.
To satisfy periodicity condition, Berry-Keating used a

1In principle, near-horizon physics can be studied in any well-
behaved coordinates around the horizon, like those found in [17].
But here we adopted Painleve coordinates as it is being extensi-
vely used from very early days to study horizon properties.
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particular type of boundary condition on x and p [31],
which was later generalized by considering a phase space
having fixed boundaries [33]. But till now the most
convincing existing prescription is to use a complexified
version ofH in a new set of canonical variables which leads
to a harmonic oscillator (HO) [34]. This later prescription
will be used explicitly in the next stage where the semi-
classical quantization of H will be done. Consequently, (6)
yields the homogeneous instability, represented by calcu-
lating the largest instability factor (IF) [35],

λL;max ¼ lim
Tl→∞

1

Tl
ln

�
δxB
δxA

�
¼ κ > 0: ð7Þ

Usually, the positive instability factor is associated with
chaos in the system.
We saw that the near-horizon trajectories are the one

which diverge exponentially. It explains why any integrable
system must be affected when it reaches very near to the
horizon. In particular, this local instability may influence
chaotic dynamics to a system when it comes very near to
the horizon for some particular values of available para-
meters. Such an event is consistent with the Kolmogorov-
Arnold-Moser theory [36]. This can be a probable
explanation for getting chaotic behavior in the earlier
numerical analysis [4] where a particle trapped in poten-
tial-like harmonic one is kept under the BH background.
Moreover, such a thing is happening irrespective of the
consideration of spacetime. The universal property of the
spacetimes is that all of them should contain a horizon. In
addition, the presence of any intrinsic curvature of the
spacetime is not crucial; only the existence of horizon alone
is enough to make the motion of the particle chaotic. As for
example, particle dynamics on Rindler metric in harmonic
trap also exhibits chaotic behavior [8]. This feature of
horizons is due to the fact that the leading order particle
Hamiltonian, near horizon, is inherently H ∼ xp, which
provides the local unstable trajectories in the particle
motion.

IV. QUANTUM CONSEQUENCES

Apart from the classical perspective, the unique structure
of the Hamiltonian xp kind has a great consequence if we
turn our attention to the quantum mechanics level.
Particularly, we are interested in finding the response of
the local instability at the quantum level. As this can
manufacture instability, the usual quantization rule is
normally not applicable. In this regard, Gutzwiller’s trace
formula [32,37] will be important one.
The density of states ρðEÞ for a particular energy E is

expressed in terms of Green function Gðq; q0; tÞ as [32,37]

ρðEÞ ¼ −
1

π
ImðTrðGÞÞ

¼ −
1

π
Im

�Z
Gðq; q; EÞdq

�
; ð8Þ

where q is the coordinate. The trace of the Green function
can be evaluated by the Gutzwiller’s trace formula [32],

gðEÞ¼
Z

dqGðq;q;EÞ

¼−
i
ℏ

X
l

Tl

kMBA;l−1k1
2

×exp
�
i
ℏ
SlðEÞ− i

μlπ

2

�
; ð9Þ

where the summation is over all the classically allowed
trajectories. In the above, μl is Maslov index for the lth
trajectory and SlðEÞ is the Jacobi action,

SlðqA; qB; EÞ ¼
Z

qB

qA

pdq; ð10Þ

calculated between two points qA and qB. Tl is the period
for the primitive orbit, which means the time needed for one
passage and in terms of SlðEÞ, it can be expressed as

Tl ¼
∂SlðEÞ
∂E : ð11Þ

MBA in the denominator of (9) is our monodromy matrix
(6). k…k stands for modulus of the determinant. The
formula (9) is derived in path integral approach with
the assumption that Hamiltonian can be expressed as
H ¼ p2=ð2mÞ þ VðxÞ, where m is the mass of the particle
with momentum p, moving under the potential VðxÞ.
In our present analysis, H is given by (3). This can be

casted in the required form by changing the variables from
one canonical set to another [31],

x ¼ 1ffiffiffi
2

p ðP − XÞ; p ¼ 1ffiffiffi
2

p ðPþ XÞ; ð12Þ

so that one can use (9) in our case as well. In these new
variables, (3) becomes

H ¼ κ

2
ðP2 − X2Þ: ð13Þ

This implies that (3) is simply a canonically rotated IHO.
Comparing this with the usual form of Hamiltonian for a
IHO∶HIHO ¼ P2

2m − 1
2
mω2X2, we found that for our system

m≡ 1
κ and ω≡ κ.

In order to calculate SlðEÞ in (9) from (10), we will use
the following procedure. A direct evaluation shows that
the energy eigenvalues are that of HO with a naive
substitution of the frequency ω → iω0 [38–40]. There
after this substitution has been appeared to be very fruitful
in the quantum description of the IHO. Since we are
also interested to the quantum regime, the same prescrip-
tion will be followed here. Under ω → iω0, we have
HIHO → HHO ¼ P2

2m þ 1
2
mω2

0X
2, which gives periodic

motion in phase space. Now, with this for a full periodic

HORIZON INDUCES INSTABILITY LOCALLY AND CREATES … PHYS. REV. D 102, 044006 (2020)

044006-3



motion along the lth orbit, (10) yields the area in phase
space under the curve with energy El. This is given by
Sl ¼ ð2πElÞ=ω0. Therefore, the analytic continued action
for our system turns out to be

SðElÞ ¼ −
2πEl

iκ
; ð14Þ

where we have used ω0 → −iω ¼ −iκ. Consequently, (11)
yields Tl ¼ 2iπ=κ.
It is well known that the path integration can be

interpreted as the partition function when the time coor-
dinate is complexified. The periodicity of complex time is
identified as the inverse temperature. Using this idea,
Hawking showed that by Euclideanising the black hole
metric the calculation of the partition function gives us
correct expression for the entropy of the horizon. Here the
periodicity of complexified time around horizon is iden-
tified as the inverse of the Hawking temperature [41]. In our
calculation, by complexifying the frequency, we obtained
Tl ¼ 2iπ=κ. Interestingly, this value exactly matches with
time period what Hawking found by Euclideanising the
spacetime. Therefore, we feel that there may be a close
connection between Hawking’s argument with our com-
plexification of the frequency.
Therefore, substitution of this and (14) in (9) with

Tl → iTl, we find the expression for the density of
states as

ρðEÞ ¼ 1

ℏκ

X
l

1

sinh π
e−

2πEl
ℏκ cos

μlπ

2
: ð15Þ

Here in the denominator, we substituted kMBA;l − 1k1
2 ¼

2 sinhðκTl=2Þ → 2 sinhðiκTl=2Þ [see Eq. (6)]. The above
one is thermal in nature and the temperature can be
identified as

T ¼ ℏκ
2π

: ð16Þ

Note that the particular form (15) is the characteristic
feature of IHO which is an unstable system. Interestingly,
this is identical to the Hawking’s expression [15] for
horizon temperature. It may be pointed that IHO leads
to thermal nature at the quantum level which has also been
reported in [42–44].
The Gutzwiller trace formula for finding the total density

of states (DOS) for an unstable system has two parts. One is
the mean part, calculated for the action (SlðXA; XB; EÞ)
of vanishing path length; i.e., jXB − XAj → 0 and another
part corresponds to jXB − XAj ≠ 0 (see Secs. 7.3 and 8.1 of
[32] for details), known as the oscillatory part. Berry and
Keating [31] showed that in case of xp kind Hamiltonian,
the mean part of the counting function hN i can be
calculated for a truncated case and from which the mean

part of the DOS can be obtained using hρðEÞi ¼ dhN i=dE.
The asymptotic expression for this comes out to be positive.
Our expression (15) is oscillatory in nature as it has been
obtained for jXB − XAj ≠ 0. This can be both positive and
negative, depending on the value of cosðμlπ=2Þ. We would
like to mention here that negative DOS is not at all
surprising for near equilibrium systems. For instance, in
literature [45], the negative value of DOS has been reported
for quantum system. In [46], it has been explained that
DOS can have negative values when one has quasiprob-
ability distribution, like Wigner distribution function, at the
quantum level. This is mainly related to the situation when
the system is little away from the equilibrium. DOS has a
close relation with the Wigner function (see Sec. 8.1.3 of
[32]), and it has negative values for states which are
classically not allowed. However, these negative values
must vanish at the classical limit ℏ → 0. One can check that
this is exactly happening for (15) as well. It is a pure
quantum contribution and vanishes for ℏ → 0, whereas the
mean value is always positive. This fact is related to the
unstable behavior of the Hamiltonian. The significance of
this, till date, is not well understood.
Now, earlier in the classical analysis, we found that the

IF has an upper bound λL ≤ κ. Therefore, (16) yields
λL ≤ 2πT

ℏ , which was conjectured earlier in SYK model
[9]. Consequently, one finds that the temperature of the
system is bounded from lower as

T ≥
ℏ
2π

λL: ð17Þ

In [3,4,8], the above inequality is obtained by using the
classical prediction of the upper bound on LE with the
assumption that the horizon has Hawking temperature. This
temperature concept was taken as external information.
But, in the present analysis, we systematically derived this
temperature, and so the above relation is now certain rather
than prediction. This can also be predicted from the OTOC
calculation which for large time t yields CðtÞ ∼ e2κt [47].
This is the signature of quantum property of chaos which
also identifies λL;max ¼ κ and provides another way of
defining largest IF.
This analysis implies that the local instability, created by

the horizon, may not only induce chaos in a system at the
classical level, but also makes the system thermal at the
quantum level by a minimum temperature. The unavoid-
able unstable environment in the near-horizon region puts
its automatic signature by making a system quantum
mechanically thermal. Here, one must be careful that the
aforesaid near-horizon instability does not mean the par-
ticle plus horizon system is chaotic one. Rather, we are
saying that this instability may lead to chaos in a system
(e.g., particle trapped in a harmonic potential) under
some certain circumstances. Interestingly, the quantum
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implication of this hyperbolic point is always emergence of
temperature at the quantum level.

V. COMMENTS AND OUTLOOK

In this paper, we successfully explored the possible
causes of inducing chaotic dynamics by the horizon under
certain circumstances. Here the static spherically symmet-
ric black hole, Rindler case, and very restrictive trajectories
for Kerr black hole have been explored. It is observed that
such is due to the appearance of xp type Hamiltonian for a
near-horizon motion of a particle. Moreover, the conse-
quences at the quantum level are found to be the automatic
appearance of thermality in the system. The temperature
has minimum nonzero value as long as there exists a
horizon in the spacetime and λL > 0.
So, it is evident that the presence of the horizon provides

inherent local instability in the near-horizon region of
spacetime. In other words, a very small spacetime region
in the vicinity of the horizon, at the classical level, is always
unstable as far as particle motion is concerned. This, at the
quantum level, provides automatic thermality to the system.
The temperature, here we found, is exactly given by the
Hawking expression. Now, if the collective system consists
of the horizon and the particle is closed and both of them
are at thermal equilibrium, then this temperature can be
associated as the horizon temperature. Therefore, we feel
that the present discussion may unfold the deeper reason for

having the temperature of the horizon at the quantum level.
The local unstable trajectory, provided by the existence of
the horizon, is the main source of quantum temperature in
the system. Hence, we claim that horizon itself always
creates an unstable environment in its vicinity and when
any object enters here feels temperature at the quantum
regime. Thus, we conjecture that the automatic instability
created by the horizon provides its own temperature.
Therefore, we feel that the present analysis can illuminate
several near-horizon physics both at the classical and
quantum levels. In fact, this instability can be a possible
physical mechanism for creation of horizon thermality,
which is, as far as we are aware of, not addressed anywhere.
Thus, the present analysis not only leads to a completely
new avenue to understand black hole but also may provide
a new paradigm in this area. Moreover, several features of
IHO, which are mentioned here, is also equally well
applicable to systems where the basic Hamiltonian is of
this kind. Therefore, we feel that our present investigation
has wide applicability in various branches of physics.
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