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Black holes found in binaries move at very high velocities relative to our own reference frame and can
accelerate due to the emission of gravitational radiation. Here, we investigate the numerical stability and
late-time behavior of linear scalar perturbations in accelerating black holes described by the C-metric.
We identify a family of quasinormal modes associated with the photon surface and a brand new family of
purely imaginary modes associated with the boost parameter of the accelerating black hole spacetime.
When the accelerating black hole is charged, we find a third family of modes which dominates the
ringdown waveform near extremality. Our frequency- and time-domain analysis indicates that such
spacetimes are stable under scalar fluctuations, while the late-time behavior follows an exponential decay
law, dominated by quasinormal modes. This result is in contrast with the common belief that such
perturbations, for black holes without a cosmological constant, always have a power-law cutoff. In this
sense, our results suggest that the asymptotic structure of black hole backgrounds does not always dictate
how radiative fields behave at late times.
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I. INTRODUCTION

A direct consequence of the existence of binaries of
black holes (BHs) [1] is the emission of gravitational
waves, as the objects inspiral and merge to form a final
compact object. During this process, an immense amount
of energy is released with a distinctive waveform that
can be calculated using general relativity (GR). Such
waveforms have recently been detected by LIGO and
Virgo detectors [2–6], leading the way to a new realm of
observational astronomy.
The gravitational waveform produced by BH binaries

has three distinct stages, namely, the inspiral, merger, and
ringdown stages. At the inspiral stage, the BHs orbit around
a common center of mass. As they lose energy through the
emission of gravitational waves, their orbits accelerate and
the individual objects appear to move at very high
velocities with respect to our own reference frame.
Moreover, the anisotropic nature of gravitational wave

emission from BH binaries leads to the emission of linear
momentum. This can result in a recoil of the final remnant,

known as a BH kick, which may be strong enough to eject a
supermassive BH from its host galaxy [7,8], leading to BH
remnants traveling through intergalactic space. This effect
has been studied in detail using various numerical techniques
[9,10], including its potential imprint on the gravitational
waveform [11,12]. In fact, some key findings indicate that
the merger of nonrotating BHs can produce kicks of
∼170 km s−1 [13], while mergers of rapidly rotating BHs
can lead to kick velocities as high as ∼5000 km s−1 (even
∼15000 km s−1 in ultrarelativistic encounters) [14–17].
Therefore, an understanding of moving and accelerating

BHs, as well as the interaction with their astrophysical
environment, is a paramount ingredient to explore the
enormous possibilities of such sources of radiation [18,19].
An important question, both from the mathematical and

physical points of view, is whether BH solutions are stable
against small perturbations. Indeed, the response of BHs to
external perturbations has a long-lasting history (see e.g.,
[20]). When a BH is perturbed slightly, it exhibits damped
oscillations, which may potentially be described by qua-
sinormal modes (QNMs) [21–23]. It turns out that QNMs
are crucial at the ringdown stage of a waveform, where the
remnant object oscillates until it relaxes to a final stable*kyriakos.destounis@uni-tuebingen.de
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object. Thus, QNMs not only describe the oscillatory
frequency and decay rate of the perturbed BH, but also
carry key information about the externally observable
parameters characterizing the final stable object.
In this paper, we investigate, for the first time, the

response of neutral and charged accelerating black holes
to scalar perturbations. We use the C-metric originally
found by Weyl in 1917 [24]. This spacetime is an axially
symmetric exact solution to the Einstein-Maxwell equa-
tions. Its physical interpretation and causal properties were
first discussed in [25], where it was shown that theC-metric,
and its charged version, describe a pair of causally separated
BHs which accelerate uniformly in opposite directions
under the influence of a cosmic string, represented by a
conical singularity. Later on, it was shown [26,27] that the
conical singularity can be removed by appending an external
electromagnetic field, leading to the Ernst spacetime. The
geometrical and radiative properties of the C-metric were
investigated in [28–32], while its asymptotic propertieswere
analyzed in [33], revealing that this metric is asymptotically
flat but not asymptotically Euclidean (in the sense that
conformal infinity is global i.e., admits spherical sections,
though its generators are not complete [33]).
The C-metric has been generalized to include rotation,

cosmological constant, and a Newman-Unti-Tamburino
(NUT) parameter in [34] and was further analyzed in
many different contexts (see e.g., [35–48]). For example, in
the context of quantum gravity, charged C-metrics have
been used to describe the production of BH pairs in strong
background fields [49].
In particular, the C-metric has been seen as a reasonable

candidate to describe boosted BHs, by considering the fact
that the oppositely accelerating BHs are causally discon-
nected and the metric can be expressed in appropriate
coordinates to only cover one of the “moving” BHs (see
e.g., [50]).
We take advantage of this property and study, numeri-

cally, neutral massless scalar field perturbations, which
propagate on the fixed background. We calculate the
corresponding QNMs and conclude that accelerating black
holes are modally stable against such perturbations.
We also demonstrate that the charged C-metric entails a

broader spectrum of QNMs, that is, three distinct families
of modes coexist. The first family is associated with the
photon surface where null particles are trapped in unstable
orbits. The decay time scales of those QNMs exhibit an
anomalous behavior depending on the boost parameter of
the accelerating spacetime. In fact, their time scale
increases or decreases with increasing magnetic quantum
numbers, depending on whether the spacetime boost is
small or large. The second family consists of purely
imaginary modes, governed by the boost parameter of
the BH and the existence of an acceleration horizon. This
family has never been observed before, as far as we know.
The charged C-metric possesses a third family of modes,

which are also purely imaginary, and become dominant
when the event and Cauchy horizons approach each other
and the BH tends to extremality.
Due to the asymptotically flat nature of such metric, one

might expect that a power-law cutoff will suppress the
quasinormal ringing phase [51]. We show that this is not the
case here, as the late-time behavior of perturbations
involves an exponential-law decay, dominated by the
QNMs of the scalar field. This can be understood from
the fact that the presence of the acceleration horizon leads
to initial data for the scalar field wave equation which do
not intersect infinity, and thus, the asymptotically flat
region is causally disconnected from the region between
the event and acceleration horizon considered here.
In what follows, we will use geometrized units such

as c ¼ G ¼ 1.

II. THE CHARGED C-METRIC

The C-metric describes a pair of causally separated BHs
accelerating away from each other in opposite directions
[52]. This metric is a generalization of the Schwarzschild
solution which, besides the BH mass, includes an addi-
tional parameter related to the BHs acceleration. The
charged version of the C-metric includes an electric charge
parameter, related to an electromagnetic field, and the
metric that covers one of the charged BHs can be written in
spherical-type coordinates as [52,53]

ds2 ¼ 1

ð1 − αr cos θÞ2
�
−fðrÞdt2 þ dr2

fðrÞ

þ r2dθ2

PðθÞ þ PðθÞr2sin2θdφ2

�
; ð1Þ

where

fðrÞ ¼
�
1 −

2M
r

þQ2

r2

�
ð1 − α2r2Þ; ð2Þ

PðθÞ ¼ 1 − 2αM cos θ þ α2Q2cos2θ: ð3Þ

The metric is of Petrov type D and has two Killing vectors
(the rotational ∂φ and the boost ∂t Killing vectors). The
parametersM,Q, and α are related to the BH mass, charge,
and acceleration, respectively. The vector potential asso-
ciated with the electromagnetic field is given by

A ¼ −
Q
r
dt: ð4Þ

The metric (1) asymptotes to the Reissner-Nordström (RN)
solution as α → 0 and to the C-metric as Q → 0. There is a
curvature singularity at r ¼ 0, while the roots of fðrÞ
determine the causal structure of the spacetime (see Fig. 1).
There exist three null hypersurfaces at
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r ¼ rα ≔ α−1; ð5Þ

r ¼ r� ≔ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; ð6Þ

called the acceleration horizon rα, event horizon rþ, and
Cauchy horizon r−, which must satisfy

r− ≤ rþ ≤ rα:

We note that the additional feature of accelerating BHs
possessing an acceleration horizon is due to the fact that a
uniformly accelerating observer asymptotically approaches
the speed of light and, hence, can never observe events
beyond that asymptotic light cone. Thus, we limit our
attention to the range rþ < r < rα, in which fðrÞ is
positive, and the metric has fixed signature, implying that
PðθÞ > 0 for all θ ∈ ½0; π�.
For rþ ≤ rα to hold, then

α ≤ 1=rþ;

where at the equality the BH is extremal (known as the
Nariai limit). Additionally, when M ¼ Q, the event and
Cauchy horizons coincide and the BH is, again, extremal.
Conical singularities generally occur on the axis at θ ¼ 0

and θ ¼ π, due to the fact that the ratio of the circumference

over the radius of the object is not exactly 2π there,
designating the existence of deficit angles. However, by
specifying the range of φ accordingly, the deficit or excess
angle of one of these two conical singularities can be
removed. Specifically, if we assume that φ ∈ ½0; 2πCÞ and
consider the regularity of the half-axis of symmetry θ ¼ 0,
with t and r constant, then

Circumference
Radius

¼ lim
θ→0

2πCPðθÞ sin θ
θ

¼ 2πCPð0Þ; ð7Þ

where Pð0Þ ¼ 1 − 2αM þ α2Q2. Equivalently, by consid-
ering the regularity at θ ¼ π, then

Circumference
Radius

¼ lim
θ→π

2πCPðθÞ sin θ
π − θ

¼ 2πCPðπÞ; ð8Þ

where PðπÞ ¼ 1þ 2αM þ α2Q2. Equations (7) and (8)
imply the existence of conical singularities with different
conicities. The deficit or excess angles of either of these
two conical singularities can be removed by appropriately
choosing C, but not both simultaneously. In general, C can
thus be thought of as determining the balance between the
deficit/excess angles on the two parts of the axis. A natural
choice would be to require C ¼ 1=PðπÞ. The deficit angles
at the poles θ ¼ 0; π are, then,

δπ ¼ 0; δ0 ¼ 2π

�
1 −

Pð0Þ
PðπÞ

�
; ð9Þ

which correspond to the removal of the conical singularity
at θ ¼ π and the existence of a deficit angle at θ ¼ 0. The
metric (1) can, therefore, be understood as representing a
RN-like BH that is being accelerated along the axis θ ¼ 0
by the action of a force which corresponds to the tension of
a cosmic string [53]. One can, equivalently, remove the
conical singularity at θ ¼ 0 and obtain an excess angle at
θ ¼ π by setting C ¼ 1=Pð0Þ. In general, there is no need
to specify which conical singularity is removed, although
for the rest of our discussion we will choose

C ¼ 1

PðπÞ :

In the case of the C-metric (with Q ¼ 0), conformal
infinity is spacelike for θ ∈ ð0; πÞ, and each black hole has
an internal structure which is qualitatively similar to the
Schwarzschild BH. The subtleties of the global properties
and causal structure of this spacetime are explained in detail
in [53].
In turn, in a maximal analytic extension of the charged

C-metric, the curvature singularity is timelike and further
extensions beyond the Cauchy horizon will, generally,
occur. Therefore, the internal structure of such BHs
resemble the RN BH [54]. Since the charged C-metric is
asymptotically flat (in the sense of [33]), a well-defined

FIG. 1. The Penrose diagram, adapted from [50], of the charged
C-metric, neglecting the axis θ ¼ 0. The dashed lines are
identified, while the wiggled lines correspond to curvature
singularities at r ¼ 0. In turn,H�,H�

α , CH�, and J � correspond
to the future ðþÞ and past ð−Þ event, acceleration, Cauchy
horizon, and null infinity.
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notion of infinity exists. All observers will intersect the
acceleration horizon before reaching infinity, and the causal
structure of such solution is, roughly, given by the Penrose
diagram in Fig. 1. The region of the spacetime outside the
inner horizon is globally hyperbolic [50].
Finally, note that we can conformally rescale (1) by using

the conformal factor

Ω ¼ 1 − αr cos θ

and get the conformal metric

ds̃2 ¼ Ω2ds2

¼ −fðrÞdt2 þ dr2

fðrÞ þ
r2dθ2

PðθÞ þ PðθÞr2sin2θdφ2: ð10Þ

Such conformal rescaling will prove to be crucial to our
study in the following sections.

III. SCALAR WAVE EQUATION

We consider a massless neutral scalar field ψ minimally
coupled to gravity on a spacetime M with the following
matter action:

Sm ¼ −
1

2

Z
M

d4x
ffiffiffiffiffiffi
−g

p ∂μψ∂μψ ; ð11Þ

whose dynamical evolution is described by the wave
equation

□gψ ¼ 0; ð12Þ

where we used the standard notation □g ≔ gμν∇μ∇ν.
One of the advantages of the C-metric is that (12)

separates (see [50], where this was shown although for a
coordinate system different from ours).
To see this in our coordinate system, we first recall that

(12) is invariant under the conformal transformation
g̃μν → Ω2gμν, ψ̃ → Ω−1ψ and can be rewritten as

□g̃ψ̃ −
1

6
R̃ ψ̃ ¼ 0; ð13Þ

where R̃ is the conformally rescaled Ricci curvature (recall
also that R ¼ 0 here). For further details of this derivation,
we refer to [55], Appendix D.

Then, expanding (13), by using (10), we find

−
r2∂2

t ψ̃

fðrÞ þ ∂rðr2fðrÞ∂rψ̃Þ þ
1

sin θ
∂θðPðθÞ sin θ∂θψ̃Þ

þ ∂2
φψ̃

sin2θPðθÞ þ
1

6
ðr2f00ðrÞ þ 4rf0ðrÞ þ 2fðrÞ þ P00ðθÞ

þ 3 cot θP0ðθÞ − 2PðθÞÞψ̃ ¼ 0; ð14Þ

where the prime denotes differentiation with respect to the
indicated function variable.
Remarkably, we can separate (14) by choosing the ansatz

ψ̃ ¼ e−iωteimφ ϕðrÞ
r

χðθÞ; ð15Þ

where ω is the quasinormal frequency and m the magnetic
(azimuthal) quantum number.
Since the azimuthal coordinate φ is periodic and the

conical singularity along θ ¼ π is removed by requiring
C ¼ 1=PðπÞ, then m must be of the form m ¼ m0PðπÞ,
withm0 integer [56]. We assume, without loss of generality,
that m0 is positive.1 Consequently, (13) becomes

d2ϕðrÞ
dr2�

þ ðω2 − VrÞϕðrÞ ¼ 0; ð16Þ

d2χðθÞ
dz2

− ðm2 − VθÞχðθÞ ¼ 0; ð17Þ

where

dr� ¼
dr
fðrÞ ; dz ¼ dθ

PðθÞ sin θ ð18Þ

and

Vr ¼ fðrÞ
�
λ

r2
−
fðrÞ
3r2

þ f0ðrÞ
3r

−
f00ðrÞ
6

�
; ð19Þ

Vθ ¼ PðθÞ
�
λsin2θ −

PðθÞsin2θ
3

þ sin θ cos θP0ðθÞ
2

þ sin2θP00ðθÞ
6

�
: ð20Þ

We note that Eq. (16) is equivalent to Eq. (13) in [56],
taking into account the proper limits, a → 0, Q → 0, and
−2K → λ − 1=3 which, in the Schwarzschild limit,
matches the corresponding K in [56].

1Equivalently, one could rescale the azimuthal coordinate φ ¼
CΦ where Φ ∈ ½0; 2πÞ. The line element (1), then, becomes
ds2¼Ω−2ð−fdt2þf−1dr2þP−1r2dθ2þPC2r2sin2θdΦ2Þ and m
remains a positive integer without further redefinitions.
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In order to solve the eigenvalue problems relative to (16)
and (17), we need to apply appropriate boundary con-
ditions. For QNMs, the boundary conditions are divided in
two categories for ϕðrÞ and χðθÞ. The physically motivated
boundary conditions in this case are

ϕðrÞ ∼
�
e−iωr� ; r� → −∞ðr → rþÞ;
eþiωr� ; r� → þ∞ðr → rαÞ;

ð21Þ

χðθÞ ∼
�
eþmz; z → −∞ðθ → 0Þ;
e−mz; z → þ∞ðθ → πÞ: ð22Þ

Physically, conditions (21) mean that beyond the event
horizon, all events are causally disconnected with the
external region (purely ingoing waves), while beyond
the acceleration horizon incoming waves are unobservable
(purely outgoing waves). In turn, conditions (22) are
obviously taken so that our solution is physically interest-
ing and the scalar field does not blow up at the interval
boundaries of θ.
The striking advantage of the charged C-metric is the

absence of coupled OðωλÞ terms in (16) and (17). This
suggests that one can solve (17) with (22) to obtain the
eigenvalues λ associated to some given angular and
magnetic quantum numbers l and m, respectively.
Due to the conformal coupling, at the limit α → 0, the

separation constant takes the exact form λ ¼ lðlþ 1Þ þ
1=3 [57]. Hence, we can map each λ obtained by solving
(17) to a certain l.2

Finally, by solving (16) with (21) together with a sepa-
ration constant calculated previously, we obtain a discrete set
of QNMs ω depending on the choice of the BH parameters,
magnetic quantum number m, separation constant λ, and
overtone number n, where the n ¼ 0 mode is called the
fundamental/dominant QNM. The fundamental QNM,
therefore, is the one that has the smallest (in absolute value)
imaginary part which will decay last and will dominate the
late-time behavior of the ringdown waveform.
In the following sections, the procedure that we will use

to integrate Eqs. (16) and (17) begins by the calculation of
the eigenvalues λ, given specificM,Q, α, andm0. This will
be achieved by using the methods described below to
compute QNMs and checked with a Frobenius-like
method, whose main steps are revised in Appendix B.
To calculate the QNMs, we will use the Mathematica

package QNMSpectral developed in [58], which is based
on the discretization of the differential equations using
pseudospectral collocation methods and directly solving
the resulting generalized eigenvalue problem. We also
perform time-domain evolutions of the equations by using
the method developed in [59], where the wave equation is
integrated in double-null coordinates using two Gaussian

wave packets as initial data. We extract the QNMs by
applying the Prony method on the numerically evolved
perturbation [60]. We justify our findings by a direct
comparison of the resulting QNMs from the aforemen-
tioned methods (see Table III in Appendix A) and by
further cross-checking the results at the eikonal limit with
the Wentzel-Kramers-Brillouin method [61] as well as by
calculating the instability time scale of null geodesics at the
photon surface.

IV. QUASINORMAL MODES OF ACCELERATING
BLACK HOLES: THE DISTINCT FAMILIES

Our numerics indicate that there exist three distinct
families of scalar QNMs in the charged C-metric. These
modes antagonize each other, meaning that for different
regions in the BH parameter space, different families
dominate the ringdown signal against the other. We now
discuss their behavior and dependence on the various
parameters which define our physical system.

A. Photon surface (PS) modes ωPS

Many BH spacetimes possess a photon sphere i.e., a
region where null particles are trapped in unstable circular
orbits.3 It has been shown in [64] that the photon sphere, and
its geometrical properties, has a strong pull on the decay of
perturbations in BH solutions of GR (for other theories, see
[65]). In fact, the orbital frequency and instability time scale
of null geodesics at the photon sphere are directly associated
with the real and imaginary parts, respectively, of QNMs at
the eikonal limit, where m ∼ l ≫ 1.
Since in our case there is an aspherical photon surface,4

we call these modes “photon surface” QNMs. We distin-
guish the PS modes from the rest due to their oscillatory
nature. The C-metric possesses a photon surface with a
“radius” that, at the equatorial plane, coincides with the
peak of the effective potential (19) for λ ∼m ∼ l → ∞.
In Fig. 2, we show the effect of the parameter αM on the

real and imaginary parts of the PS modes for an accelerat-
ing Schwarzschild BH. The real part grows until it reaches a
maximum as αM increases and then decreases. The
imaginary part decreases (in absolute value) as the boost
increases, indicating that the modes will become more
dominant at the ringdown waveform. As the boost param-
eter tends to its extremal value α ¼ 1=rþ (usually referred
to as the Nariai limit [67]), both real and imaginary parts
approach 0. This result could be anticipated if one con-
siders the fact that the Nariai modes of de Sitter BHs are
proportional to the surface gravity of the event (or cosmo-
logical) horizon [68,69], which vanishes at the limit
Λ → Λmax, where Λmax is the extremal cosmological

2E.g., in the limit α → 0, the value λ ¼ 1=3 corresponds to
l ¼ 0, while λ ¼ 7=3 corresponds to l ¼ 1 and so on.

3Theorems about the existence and uniqueness of the photon
sphere in static asymptotically flat spacetimes can be found in
[62,63]. However, those results do not include boosted black
holes solutions.

4See [66] for a study of the photon surface in the C-metric.
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constant, and that both the cosmological and acceleration
horizons have quite similar geometric properties.
We note that at the limit where the acceleration vanishes,

the PS QNMs (together with the corresponding eigenvalues
and eigenfunctions) asymptote to the Schwarzschild BH
scalar QNMs, which are designated with circles in Fig. 2.
In Figs. 3 and 4, we turn our attention to the effect of the

acceleration on the real and imaginary parts of the PS
modes for an accelerating RN BH. Form0 ¼ 0, it is evident
that the real part tends to increase with Q=M, for most of
the parameter space (there seems to be a turning point close
to extremality, but there is no significant decrement beyond
that point). The increment on the acceleration, on the other
hand, tends to decrease the frequencies (real part) of the
QNMs. The absolute value of the imaginary part is affected
in the same way for all m0. For m0 > 0, the real part is a
monotonic increasing function ofQ=M, while as αM grows
then a behavior similar to Fig. 2 is observed.

The longest-lived massless QNMs of nonaccelerating
BHs are those with high angular number l and this still
holds true when the scalar field is light. On the other hand,
if the scalar field is heavy, the longest-lived QNMs are
those with low angular number l [70,71].
For an accelerating BH, we observe a similar phenome-

non where the defining factor of the “anomaly” is not
the mass but rather the acceleration. In Fig. 5, we show the
anomalous behavior of PS modes. For small αM, the
dominant modes are obtained for large m ∼ l (see also
Tables I and II), while for large αM, the dominant modes
are obtained for m0 ¼ l ¼ 0.
The addition of electric charge saturates significantly this

anomaly (see the left plot of Fig. 5), which still occurs but
now the threshold αM is significantly higher compared to
the Q ¼ 0 case. Our investigation shows that as the BH
charge becomes extremal, this effect becomes even more
suppressed.

FIG. 2. Real (left) and imaginary (right) parts of n ¼ 0 (solid curves) and n ¼ 1 (dashed curves) scalar QNMs withm0 ¼ 1 (l ¼ 1) vs
the boost parameter αM of an accelerating Schwarzschild black hole. The blue curves indicate the photon surface QNMs, while the red
ones indicate the acceleration modes. The circles at α ¼ 0 designate the scalar l ¼ 1 QNMs of the static Schwarzschild black hole.

FIG. 3. Real (left) and imaginary (right) parts of n ¼ 0 (solid curves) and n ¼ 1 (dashed curves) scalar QNMs withm0 ¼ 0 (l ¼ 0) vs
the electric charge Q=M of an accelerating Reissner-Nordström black hole with boost parameter αM ¼ 0.13. The blue curves indicate
the photon surface QNMs, the red ones indicate the acceleration modes, while the green curves indicate the near-extremal modes.
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In Tables I and II, we have validated our results by
comparing the modes from our numerics with the instability
time scale of null geodesics at the equatorial plane of the
photon surface, where one can realize that convergence is
achieved sufficiently fast as one increases m. It is apparent
that the PS family will dominate against the rest of the

modes, for most of the parameter space and for sufficiently
large acceleration parameters, as discussed below.

B. Acceleration modes ωα

This novel family consists of purely imaginary modes
which grow rapidly (in absolute value) as the boost

FIG. 4. Real (left) and imaginary (right) parts of n ¼ 0 photon surface QNMs with m0 ¼ 0 (l ¼ 0) (top panel) and m0 ¼ 1 (l ¼ 1)
(bottom panel) vs the electric charge Q=M of an accelerating Reissner-Nordström black hole, for various boost parameters αM.

FIG. 5. Imaginary part of the fundamental photon surface modes of the C-metric (left) and the charged C-metric with Q=M ¼ 0.5
(right) as a function of m0 and αM. Recall that when α ¼ 0, then m0 ¼ l.
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parameter increases (see Figs. 2 and 6). Such modes are
absent in nonaccelerating spacetimes, so their existence
depends solely on the acceleration horizon of the boosted
spacetime.
The acceleration modes seem to follow a linear depend-

ence on the surface gravity of Rindler space κRα ¼ α. For
sufficiently small boosts,

ωα ≃ −κRα ðmþ nþ kþ 1Þi; ð23Þ

where k ¼ l −m0. Higher overtones exhibit larger defor-
mations with respect to (23). It is very interesting that these
modes have a weak dependence on the BH charge and only
depend on the surface gravity of Rindler space instead of
the surface gravity of the BH in study.
The acceleration modes found here share many similar-

ities with the de Sitter modes found in [58,72] and further

analyzed in [73–77]. As in (23), the de Sitter modes are also
purely imaginary, depend on the surface gravity of pure
de Sitter space, and have a weak dependence on the BH
charge.

TABLE I. Scalar QNMs of the charged C-metric for various
parameters, where λ are the separation constants, λ0 are the
instability time scales of null geodesics, ωPS the photon surface
QNMs, ωα the acceleration modes, and ωNE the near-extremal
modes. The absence of acceleration modes for largem0 and αM is
due to the fact that they are too subdominant to be captured by our
numerics. The same reasoning applies to the absence of near-
extremal modes for small Q=M and large m0.

Q=M ¼ 0.3

m0 αM ¼ 0.05 αM ¼ 0.1

0 ωα ¼ −0.0506 i ωPS ¼ 0.1079 − 0.1012 i
ωPS ¼ 0.1112 − 0.1042 i ωα ¼ −0.1055 i

λ ¼ 0.3317 λ ¼ 0.3269

1 ωPS ¼ 0.3139 − 0.0974 i ωPS ¼ 0.3234 − 0.0957 i
ωα ¼ −0.1054 i ωα ¼ −0.2234 i
λ ¼ 2.6461 λ ¼ 2.9847

2 ωPS ¼ 0.5246 − 0.0967 i ωPS ¼ 0.5454 − 0.0953 i
ωα ¼ −0.1605 i ωα ¼ −0.3433 i
λ ¼ 7.3755 λ ¼ 8.4983

10 ωPS ¼ 2.2223 − 0.0963 i ωPS ¼ 4.5673 − 0.0951 i
−λ0=2 ¼ −0.0963 −λ0=2 ¼ −0.0951

λ ¼ 132.1497 λ ¼ 155.4315

Q=M ¼ 0.999

m0 αM ¼ 0.3 αM ¼ 0.5

0 ωNE ¼ −0.0412 i ωNE ¼ −0.0342 i
ωPS ¼ 0.1117 − 0.0814 i ωPS ¼ 0.0731 − 0.0581 i

λ ¼ 0.3033 λ ¼ 0.2497

1 ωPS ¼ 0.4596 − 0.0780 i ωPS ¼ 0.4016 − 0.0549 i
ωNE ¼ −0.1147 i ωNE ¼ −0.1232 i

λ ¼ 4.8970 λ ¼ 7.4893

5 ωPS ¼ 1.8128 − 0.0778 i ωPS ¼ 1.6043 − 0.0548 i
−λ0=2 ¼ −0.0778 −λ0=2 ¼ −0.0548

λ ¼ 75.8762 λ ¼ 119.4207

TABLE II. Scalar QNMs with m0 ¼ 0 of the charged C-metric
for various parameters, where λ are the separation constants
associated with the angular quantum numbers l, while ωPS are
the photon surface QNMs, ωα the acceleration modes, and ωNE
the near-extremal modes. The absence of acceleration modes for
large αM is due to the fact that they are too subdominant to be
captured by our numerics. The same holds for the absence of
near-extremal modes for small Q=M.

Q=M ¼ 0.3

l αM ¼ 0.05 αM ¼ 0.1

0 ωα ¼ −0.0506 i ωPS ¼ 0.1079 − 0.1012 i
ωPS ¼ 0.1112 − 0.1042 i ωα ¼ −0.1055 i

λ ¼ 0.3317 λ ¼ 0.3269

1 ωPS ¼ 0.2941 − 0.0976 i ωPS ¼ 0.2839 − 0.0956 i
ωα ¼ −0.1003 i ωα ¼ −0.2019 i
λ ¼ 2.3246 λ ¼ 2.2981

2 ωPS ¼ 0.4852 − 0.0968 i ωPS ¼ 0.4674 − 0.0954 i
ωα ¼ −0.1502 i ωα ¼ −0.3014 i
λ ¼ 6.3100 λ ¼ 6.2392

Q=M ¼ 0.999

l αM ¼ 0.3 αM ¼ 0.5

0 ωNE ¼ −0.0412 i ωNE ¼ −0.0342 i
ωPS ¼ 0.1117 − 0.0814 i ωPS ¼ 0.0731 − 0.0581 i

λ ¼ 0.3033 λ ¼ 0.2497

1 ωPS ¼ 0.3018 − 0.0782 i ωPS ¼ 0.1938 − 0.0553 i
ωNE ¼ −0.0819 i ωNE ¼ −0.0676 i

λ ¼ 2.1230 λ ¼ 1.7488

2 ωPS ¼ 0.4987 − 0.0780 i ωPS ¼ 0.3196 − 0.0550 i
ωNE ¼ −0.1228 i ωNE ¼ −0.1013 i

λ ¼ 5.7626 λ ¼ 4.7468

FIG. 6. Imaginary parts of n ¼ 0 acceleration modes with
m0 ¼ 0 (l ¼ 0) (solid lines) and m0 ¼ 1 (dashed lines) vs the
electric charge Q=M of an accelerating Reissner-Nordström
black hole for various boost parameters αM.

DESTOUNIS, FONTANA, and MENA PHYS. REV. D 102, 044005 (2020)

044005-8



In Fig. 6, we demonstrate how weakly this family of
modes depends on Q=M. The absolute value of the
imaginary part grows rapidly with αM, making the modes
difficult to be captured numerically for large αM.
Nevertheless, we can clearly distinguish how strong the
effect of the boost is, especially for modes with m0 > 0.
It is evident that the acceleration modes will become

the dominant family for m ¼ l ¼ 0 and small boost
parameters (see Tables I and II) and will play an important
role at the late-time behavior of the ringdown waveform, in
that parameter region.

C. Near-extremal modes ωNE

Besides the modes already discussed, a third family of
modes appear in Fig. 3 (with green color) when the BH is
charged. We call this family “near extremal” (NE) since it
only arises when the Cauchy and event horizon approach
each other. Such modes have been found, analytically [78]
and numerically [72–77], in the context of nonaccelerating
charged black holes and play an important role on the
dynamics of the ringdown waveform when Q → Qmax,
where Qmax is the extremal electric charge of the BH. They
arise from −∞ (see Fig. 3) and at extremality they become
zero modes.
At the limit r− → rþ, we can approximate these modes

by the following equation:

ωNE≃−κ−ðmþnþkþ1Þi¼−κþðmþnþkþ1Þi; ð24Þ

where k ¼ l −m0 and κ� ¼ jf0ðr�Þj=2 is the surface
gravity [53,79] of either the event horizon rþ or the
Cauchy horizon r−.
In Fig. 7, we observe that as αM increases, the NE modes

decay slower, while as we approach extremality, the
absolute value of their imaginary parts becomes even
smaller. We expect this family to dominate against the

rest when m ¼ l ¼ 0 and the BH is near extremal (see also
Tables I and II).
It is important to note that all QNMs computed in the

subextremal parameter space of the charged C-metric have
ImðωÞ < 0, which indicates that such spacetime is modally
stable against neutralmassless scalar perturbations.This result
is further justified in the next section. Furthermore, we
have meticulously scanned fðrÞ and Vr in the subextremal
parameter space of the charged C-metric and found no
parameters forwhich these functions present negative regions.
Since fðrÞ and Vr are positive definite functions in the
considered region, one can infer [80] that, indeed, solutions
with ImðωÞ ≥ 0 should not exist in the charged C-metric.

V. STABILITY AND LATE-TIME TAILS

In this section, we study the response of accelerating
BHs against linear scalar perturbations in the time domain
and describe how each family of modes affects the late-time
behavior of the perturbation field.
Past studies show that asymptotically flat BHs respond to

external perturbation in a very distinctive way, undergoing
three different stages: Initially, an outburst of radiation
occurs which carries away energy through gravitational
wave emission. Later, the perturbations evolve as damped
oscillations (QNMs) characteristic of the BH. This stage is
referred to as quasinormal ringing and does not depend on
the initial configuration of the perturbation field. In the final
stage, the quasinormal ringing gives way to an inverse
power-law tail, first described in [51,81,82]. The most
complete and mathematically rigorous picture of perturba-
tions in asymptotically flat spacetimes, to date, was
provided in a series of studies [59,83–85]. In turn, the
behavior of radiation at fixed distances from the BH, at
future null infinity, and at the event horizon was described
in [59,83], where their novel numerical simulations for
the collapse of a self-gravitating scalar field showed that

FIG. 7. Left: n ¼ 0 (solid curves) and n ¼ 1 (dashed curves) near-extremal modes withm0 ¼ 0 (l ¼ 0) vs the boost parameter αM of
an accelerating Reissner-Nordström black hole with electric charge Q=M ¼ 0.999. Right: fundamental near-extremal modes with
m0 ¼ 0 (l ¼ 0) vs the boost parameter αM of an accelerating Reissner-Nordström black hole with varying electric charge Q=M.
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inverse power-law tails are a general feature of radiative
decay, even if a BH does not form. A definitive math-
ematical proof of boundedness and decay results for the
wave equation in Kerr spacetime for the general subex-
tremal case are given in [84,85]. Thus, if the response of the
perturbation field is observed at fixed radius and the field is
static prior to collapse, then at t → ∞,

ψ ∼ t−ð2lþ2Þ; ð25Þ

where l is the angular quantum number of the perturbation.
Since the C-metric has no cosmological constant and is

asymptotically flat (in the sense of [33]), the behavior of the
scalar field at late times could be expected to follow (25).
Nevertheless, acceleration leads to the existence of regions
where events will never intersect the world line of the
accelerating black hole and thus to the formation of an

acceleration horizon. So, there exists a clear physical
boundary beyond which the numerical integration of the
wave equation is pointless. Therefore, this boundary is
where we apply our “purely outgoing” conditions (21). The
change of boundary conditions, and therefore the restriction
of scalar field evolution between two horizons, is expected
to modify the field’s response significantly.
In Fig. 8, we present the response of a scalar field,

simulated by a Gaussian wave, when propagating on a
Schwarzschild (or RN) BH and on the C-metric. We can
clearly see that when the BHs are accelerating, the late-time
behavior of the scalar perturbations changes dramatically
due to the modification of the boundary conditions.
First of all, the decay is not following an inverse power

law but rather an exponential law. Second, and most
importantly, the late-time behavior is governed by the
dominant scalar QNM. More specifically, when the PS

FIG. 8. Top left: time evolution of a scalar field with l ¼ 1 on a Schwarzschild (blue curve) and Reissner-Nordtröm (red curve) black
hole with Q=M ¼ 0.5. Top right: time evolution of a scalar field with m0 ¼ 10 on an accelerating black hole with Q=M ¼ 0.3,
αM ¼ 0.1 (blue curve) and a scalar field with m0 ¼ 0 on an accelerating black hole with Q=M ¼ 0.999, αM ¼ 0.5 (red curve). The
dominant QNMs in both cases belong to the photon surface family. Bottom left: time evolution of a scalar field with m0 ¼ 0 on an
accelerating black hole with Q=M ¼ 0.3, αM ¼ 0.05 (blue curve), and a scalar field with m0 ¼ 1 on an accelerating black hole with
Q ¼ 0 and αM ¼ 0.03 (red curve). The dominant QNMs in both cases belong to the acceleration family. Bottom right: time evolution of
a scalar field with m0 ¼ 0 on an accelerating black hole with Q=M ¼ 0.9995, αM ¼ 0.6 (blue curve), and a scalar field with m0 ¼ 0 on
an accelerating black hole with Q=M ¼ 0.999, αM ¼ 0.3 (red curve). The dominant QNMs in both cases belong to the near-extremal
family. The QNMs for all cases are given in Table III.
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modes are the longest-lived, the late-time response does not
exhibit a tail, but rather the exponentially decaying qua-
sinormal ringing phase is prolonged indefinitely. This is
expected since the dominant PS modes are complex. When
the acceleration or the NE modes are the dominant ones, an
exponential tail suppresses the quasinormal ringing phase.
This can be understood from the fact those families of
modes are purely imaginary; therefore, they do not have an
oscillatory frequency.
In all cases presented in Fig. 8 (besides the top left where

α ¼ 0), the dominant QNM found from the frequency-
domain analysis matches the QNM extracted from the
waveform at late times.
Here, we provide numerical evidence which indicates

that the late-time response of the scalar field, in our
accelerating BH backgrounds, indeed follows an exponen-
tial power law

ψ ∼ e−γt; ð26Þ

where

γ ≡ infmnf−ImðωÞg ð27Þ

is the smallest (in absolute value) imaginary part of all
families of QNMs. A similar decay law has also been found
in asymptotically de Sitter spacetimes [86,87]. This may not
be a surprise, since the cosmological horizon of de Sitter
shares similar characteristics to the acceleration horizon of
the boosted BHs studied here. An important insight that we
can derive from such results is that the asymptotic structure
of the background BH spacetime does not always dictate
how the perturbation field behaves at late times.

VI. CONCLUSIONS

Black holes have been proven to be of paramount
importance to our understanding of strong-field gravity,
serving as cosmic laboratories. Many black holes, through-
out their lifetime, will interact with surrounding matter,
absorb stars, and even collide with other ultracompact
objects leading to a highly perturbed state, where the black
holes undergo damped oscillations until they reach a final
stable state. These damped oscillations are characterized by
quasinormal modes, which portray the final object and
describe its externally observable properties. Therefore, the
understanding of quasinormal modes, as well as the late-
time behavior of the ringdown, is central to black hole
physics, gravitational-wave astronomy, and the asymptotic
structure of spacetime.
Although the quasinormal modes of static black holes

have been abundantly investigated, there was hardly any
knowledge about how moving black holes vibrate. Black
holes indeed move and accelerate under the gravitational
influence of other compact objects, leading to binary
mergers. As the objects come closer together, they

accelerate, due to the emission of gravitational radiation
and, in certain cases, may lead to a moving remnant with
velocity high enough to escape the gravitational pull of its
host galaxy.
A natural choice to describe accelerating black holes is

the C-metric. This metric describes two black holes
accelerating away from each other in opposite directions,
under the influence of a cosmic string in tension. By a
suitable choice of coordinates, one can focus on one of the
accelerating black holes, where the acceleration is encoded
through a boost parameter in the metric tensor.
In this paper, we have calculated numerically the scalar

quasinormal modes of the C-metric and its charged version,
for the first time, by using a frequency- and a time-domain
analysis. We have identified three distinct families of
quasinormal modes which do not converge to one another
in any limit.
The first family is associated to the photon surface of the

C-metric, is complex, and undergoes an anomalous behav-
ior under the increment of the boost parameter. For a
sufficiently small boost, the longest-lived modes are
the ones with large frequencies, while beyond a threshold
of the boost parameter the longest-lived modes are those
with small frequencies. This anomalous effect is signifi-
cantly suppressed when the accelerating black hole is
charged.
The second family of modes is purely imaginary and is

completely characterized by the existence of an acceler-
ation horizon. These modes seem robust to the addition of
electric charge to the black hole and only depend on the
acceleration parameter. As far as we are aware, this family
had not been discovered before.
The final family is related to the event horizon temper-

ature of the near extremally charged C-metric and becomes
long-lived when the event and Cauchy horizons are about
to meet. The increment of the acceleration parameter makes
these modes decay even slower.
The time-domain analysis of scalar perturbations in

accelerating black holes reveals a late-time behavior which,
to our knowledge, has never been observed before in black
holes without a cosmological constant. In contrast to
the anticipated power-law cutoff of perturbations, which
nonaccelerating asymptotically flat black holes exhibit,
accelerating black holes endure an infinitely prolonged
exponential ringdown which is characterized by the dom-
inant quasinormal modes. We identify this outcome with
the presence, and the nature, of the acceleration horizon,
which imposes a change of boundary conditions. This
result suggests that the asymptotic structure of background
black hole spacetimes does not always dictate how radiative
fields behave asymptotically in time.
Here, we have narrowed our study to neutral scalar fields

on nonrotating accelerating black holes. Nevertheless,
rotating accelerating black holes do exist, as exact solutions
to the field equations, as well as accelerating black
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holes with a NUT charge in asymptotically de Sitter and
anti–de Sitter spacetimes. The extension of our results in
such directions, as well as the inclusion of charge in the
perturbing scalar field, would be very interesting if one
considers the similarities shared between the acceleration
and cosmological horizon of de Sitter and the existence of
superradiance, and superradiant instabilities, of charged
scalar fields in Reissner–Nordström–(anti)de Sitter and
Kerr–Newman–(anti)de Sitter black holes [88].
Furthermore, the geometrical similarities of acceleration

and de Sitter horizons can be exploited to study the
extendibility of solutions beyond the Cauchy horizon of
the charged C-metric and the validity of the modern
formulation of the strong cosmic censorship conjecture
(see e.g., [72]). Accelerating black holes obey all the
criteria needed to test the linear stability of Cauchy
horizons, namely, the exponential decay of scalar pertur-
bations dominated by quasinormal modes and the expo-
nential blue shift mechanism triggered by such
perturbations in the black hole interior. Since both mech-
anisms are exponential, they can antagonize and, in some
regime, counterbalance each other, leading to a stable

enough Cauchy horizon which may allow observers to
cross beyond it smoothly. We address this question on a
follow-up paper [89].

ACKNOWLEDGMENTS

The authors are grateful to Vitor Cardoso, David Kofroň,
and Rodrigo Vicente for helpful discussions. K. D.
acknowledges financial support and hospitality from
CAMGSD, IST, Univ. Lisboa where this project was
initiated. K. D. also acknowledges networking support
by the GWverse COST Action CA16104, “Black holes,
gravitational waves and fundamental physics.” F. C. M.
thanks support from CAMGSD, IST, Univ. Lisboa, and
CMAT, Univ. Minho, through FCT funds UID/MAT/
04459/2019 and Est-OE/MAT/UIDB/00013/2020, respec-
tively, and FEDER Funds COMPETE.

APPENDIX A: COMPARISON OF METHODS

In this Appendix, we show results obtained through our
time and frequency-domain QNM calculations. Table III
shows the agreement between our numerical methods.

TABLE III. Comparison between the time- and frequency-domain integration methods used for various cases. We recall that λ
represents the separation constants associated with the angular quantum numbers l, while ωPS are the photon surface QNMs, ωα the
acceleration modes. and ωNE the near-extremal modes.

Case n Time domain Frequency domain

Q=M ¼ 0.3, 0 ωPS ¼ 2.332170 − 0.0951217 i ωPS ¼ 2.3321170 − 0.095128 i
αM ¼ 0.1, 1 ωPS ¼ 2.32887 − 0.2855 i ωPS ¼ 2.32882 − 0.28551 i
m0 ¼ 10, 2 ωPS ¼ 2.3223 − 0.4763 i ωPS ¼ 2.3222 − 0.4763 i
λ ¼ 155.4315

Q=M ¼ 0.999, 0 ωPS ¼ 0.401597 − 0.054934 i ωPS ¼ 0.401596 − 0.054935 i
αM ¼ 0.5, 1 ωNE ¼ −0.1231669 i ωNE ¼ −0.1231669 i
m0 ¼ 1, 2 ωNE ¼ −0.157482 i ωNE ¼ −0.157483 i
λ ¼ 7.4893

Q=M ¼ 0.3, 0 ωα ¼ −0.0505665 i ωα ¼ −0.0505665 i
αM ¼ 0.05, 1 ωα ¼ −0.10344 i ωα ¼ −0.10344 i
m0 ¼ 0, 2 ωPS ¼ 0.11117 − 0.104246 i ωPS ¼ 0.11117 − 0.104247 i
λ ¼ 0.3317

Q=M ¼ 0, 0 ωα ¼ −0.06189606 i ωα ¼ −0.06189607 i
αM ¼ 0.03, 1 ωα ¼ −0.0921 i ωα ¼ −0.0921 i
m0 ¼ 1, 2 ωPS ¼ 0.30325 − 0.097363 i ωPS ¼ 0.30325 − 0.097367 i
λ ¼ 2.5177

Q=M ¼ 0.9995, 0 ωNE ¼ −0.02049096 i ωNE ¼ −0.02049096 i
αM ¼ 0.6, 1 ωNE ¼ −0.041720 i ωNE ¼ −0.041720 i
m0 ¼ 0, 2 ωPS ¼ 0.0517195 − 0.0429256 i ωPS ¼ 0.0517195 − 0.0429256 i
λ ¼ 0.2131

Q=M ¼ 0.999, 0 ωNE ¼ −0.04120898 i ωNE ¼ −0.04120898 i
αM ¼ 0.3, 1 ωPS ¼ 0.1116755 − 0.0814151 i ωPS ¼ 0.1116754 − 0.0814153 i
m0 ¼ 0, 2 ωNE ¼ −0.0836409 i ωNE ¼ −0.0836409 i
λ ¼ 0.3033
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APPENDIX B: FROBENIUS METHOD
FOR EQ. (17)

In this Appendix, we describe an adaptation of the
Frobenius method which we use to solve Eq. (17) and
compare with the results from the methods mentioned at the
end of Sec. III.
We begin by changing the angular coordinate with the

substitution

x ¼ 1 − cos θ
2

; ðB1Þ

after which the angular equation (17) takes the form

TðTχ0Þ0 − 2

3α2Q2
ð6m2 þ α2Q2Tð6λþ T 00ÞÞχ ¼ 0; ðB2Þ

where TðxÞ ≔ 16
Q

4
i¼1ðx − xiÞ is a polynomial with the

four regular singular points of Eq. (B2),

x1 ¼ 0; x2 ¼ 1; x3;4 ¼
αQ2 − r�
2αQ2

: ðB3Þ

In agreement with the boundary conditions, we choose as
ansatz

χðxÞ ¼ ðx − 1Þγ
Xν
n¼0

anxδþn; ðB4Þ

which upon substitution in (B2) yields the indicial relation

δ ¼ m
2ð1 − 2αM þ α2Q2Þ : ðB5Þ

Now, the recurrence relation that comes from the above
ansatz is given by

an ¼ Δn

Xn−1
i¼0

ððv2þi þ τ2þiÞðiþ 1 − n − δÞ

− ðt1þi þ w1þi þ u1þiÞ þ s3þið−δ2 þ δð3þ 2i − 2nÞ
− ðn − 1 − iÞðn − 2 − iÞÞan−i−1; ðB6Þ

in which

Δn ¼
1

u0 þ τ1ðδþ nÞ þ s2ðδ2 þ δð2n − 1Þ þ n2 − nÞ ;

and the terms vn, τn, tn, wn, un, and sn are the expansion
coefficients of the equation with the ansatz (B4), written as

w ¼ γðγ − 1Þðx − x2Þ−2T2 ≡Xν
n¼0

wnxn;

v ¼ 2γðx − x2Þ−1T2 ≡Xν
n¼0

vnxn;

s ¼ T2 ≡Xν
n¼0

snxn;

t ¼ γðx − x2Þ−1TT 0 ≡Xν
n¼0

tnxn;

τ ¼ TT 0 ≡Xν
n¼0

τnxn;

u ¼ −4
�
m2 þ α2Q2

�
λþ T 00

6

��
≡Xν

n¼0

unxn:

In turn, the second boundary condition leads to

χjx→0 ¼ a0xδ; ðB7Þ

which remains physical as long as a0 is bounded. For the
purpose our problem, we can freely choose a0 ¼ 1.
Regarding the first boundary condition, we have two
relations to be specified, namely

γ ¼ m0

2
; ðB8Þ

where we recall that m ¼ m0PðπÞ, and

χjx→1 ¼
Xν
n¼0

anðx − 1Þγ; ðB9Þ

which remains physical as long as the sum is bounded.
Then, the eigenvalue λ comes as a solution of the system

Xν
n¼0

an ¼ C2; ðB10Þ

with a0 ¼ C1, whereC1 andC2 are constants. The radius of
convergence R of the ansatz spans from the point of
expansion x1 to the next singular point, in general x2, so
R ¼ 1. In this way, C2 is marginally convergent and no
matter how far we increase ν, the computational effort to
determine the eigenvalue will fail. For instance, taking
m0 ¼ 0 and small enough values for Q and α (i.e., the most
convergent of all cases), we need at least ν ¼ 15000 to
reproduce the first eigenvalue with an accuracy of 3%.5 In
order to avoid this convergence difficulty, we propose
another approximation to the problem based on the fact that

5In any usual “i5” computer this takes nearly one day of
computational time.
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every λ, which is actually an eigenvalue, is the best locally
convergent C2 (i.e., a minimum). In terms of the computa-
tional implementation, this represents a “bissectional-
inspired” method. The first step is the choice of a specific
ν, followed by a test function

fðλiÞ ¼
����1 −

P
ν
n¼0 anPν=2
n¼0 an

���� ðB11Þ

calculated for different λi ¼ kþ iα, i ¼ 1; 2; 3; � � � ; if. The
essence of the method is to find a minimum for fðλiÞ in a
given iteration and refine thegrid parameterα and the starting
λ-shooting value k for the next iteration. The approximative
guess for λ is to be taken not far away from lðlþ 1Þ þ 1=3
such that the choices of both k and α are bounded.
As an example, in Table IV, we show the convergence of

the method for 19 steps of iteration for the parameters
M ¼ 5Q ¼ 25α ¼ m0 ¼ 1 with ν ¼ 500. With the above
approximation, the correct λ eigenvalue stands for the last
λm (19th iteration) and corresponds exactly to the same
value calculated with the method of spectral decomposition
used in Sec. III.

The method is liable when x3 and x4 are not within the
convergence radius of our expansion, R ¼ 1, resulting in
the convergence condition

3αrþ < 1: ðB12Þ
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