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We consider a very simple model for gravitational wave echoes from black hole merger ringdowns which
may arise from local Lorentz symmetry violations that modify graviton dispersion relations. If the
corrections are sufficiently soft so they do not remove the horizon, the reflection of the infalling waves
which trigger the echoes is very weak. As an example, we look at the dispersion relation of a test scalar field
corrected by rotonlike operators depending only on spatial momenta, in Gullstrand-Painlevé coordinates.
The near-horizon regions of a black hole do become reflective, but only very weakly. The resulting
“bounces” of infalling waves can yield repetitive gravity wave emissions but their power is very small. This
implies that to see any echoes from black holes we really need an egregious departure from either standard
GR or effective field theory, or both. One possibility to realize such strong echoes is the recently proposed
classical firewalls which replace black hole horizons with material shells surrounding timelike singularities.
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After much expectation and some trepidation, gravita-
tional waves from black holes have been detected [1]
ushering an era of gravity wave astronomy. The idea is that
gravity waves may become a versatile tool to study
gravitating structures in the universe; specifically they
can be a tool to understand more closely the structure of
their sources. Since black holes are presumed to be among
the sources of gravity waves, this gives us a chance to learn
more about black holes by studying gravity waves emitted
by them. Even very basic questions about black holes are
interesting since now they might be able to be subjected to
an experimental test. Black holes in standard general
relativity (GR) are perfect absorbers. If a wave is aimed
at a black hole, it will be absorbed, with the cross section
given by the black hole horizon area [2]. In a way, as a wave
approaches the near-horizon region, the universality of the
horizon geometry suppresses the reflection of the wave, and
instead provides it with an infinitely deep crevasse to
slide down. In perturbation theory, this is seen by the fact
that the general-relativistic nonlinearities modify the usual
Newtonian centrifugal barrier surrounding a gravitating
mass and turn it into an infinitely deep potential well. In
coordinates which are analytic across the horizon, this
means that the propagating modes for each helicity are
focused by gravity very strongly, with only infalling waves
being a regular mode near the horizon. Technically, the
would-be outgoing modes would have unbounded back-
reaction on the geometry close to the horizon, and hence

having a horizon means that such modes cannot emanate
from it.
This would not happen if geometry were different.

Deviations of the geometry from the near horizon geo-
metry of a black hole would generically obstruct perfect
absorption and allow a fraction of the wave to reflect.
Interestingly, if this were to happen, the reflected wave
could end up generating a sequence of wave echoes [3],
bouncing between the reflective region deep inside, where
the near horizon geometry is modified, and the interior of
the centrifugal potential barrier, located at distances com-
parable to the gravitational radius of the source. The
reflected wave would trickle out at regular periods, and
if it did, one could obtain some information about
the distortion close to where the horizon should be from
correlating the echo period, the reflected amplitudes of
different rings, and the frequency dependence of the
observables. Alternatively a failure to observe any echoes
would reinforce the universality of GR—and the standard
equivalence principle—near black hole horizons.
This has prompted a number of authors to consider such

gravitational wave echoes as a probe of gravity at very high
scales, where new phenomena might arise. Indeed, if there
are deviations from standard GR at high scales, the black
hole absorptivity might be imperfect, or even more dra-
matically, the object might not even be a black hole [3–9].
However unlikely such scenarios might be, it is of interest
to consider them given that we really have very few direct
tests of gravity in such highly nonlinear regimes.
In this work we will instead take a more conservative

approach and consider breaking of Lorentz symmetry at
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high energies, which affects only the dispersion relation of
the propagating probe wave. The reason is that even such
relatively plain physics could in principle lead to the
emergence of gravitational echoes even in the standard
black hole geometry. The echoes do arise, but the power
they carry is generically very small. The reason is that the
black holes in such theories are black: they have regular
horizons, with leading-order universal gravity, which there-
fore makes the corrections only weakly reflective.
Specifically, the Lorentz violations are already con-

strained by observations to be quite small at the level of
observable phenomena (see, e.g., [10–14]). This means that
any Lorentz violations which one might wish to consider
are to be coded by irrelevant operators in the effective field
theory (EFT), which are suppressed by some high UV
scale. If they are to correct dispersion relations that directly
affect the propagation of “free fields” (which still gravitate)
on a background, these operators should be quadratic in
fields, but involve higher derivatives. In the linear limit (i.e.,
for fields propagating in weak gravitational fields) such
terms are negligible at low energies.
However, a wave packet falling into a black hole is like a

kinetic energy projectile, going in with a steady acceler-
ation and reaching relativistic velocities near the horizon. In
a locally Lorentz-invariant theory, if there is nothing but the
horizon ahead of it, the wave packet will continue on in,
with its image fading away from sight. Essentially, in the
tortoise coordinate, the wave packet will behave as a free
wave in empty space, which—after passing through a
centrifugal barrier—goes on all the way.
If on the other hand Lorentz symmetry violations change

the dispersion relation, the infalling wave packet will
encounter an additional bump—a well or a barrier—that
shows up far along after the centrifugal hurdle was cleared.
Just like in ordinary quantum mechanics, a wave packet
encountering any such bump will experience a fractional
reflection, and a fraction of the energy of the initial wave
will bounce off and travel back. The reflected wave will
propagate to the centrifugal barrier, and some will get out,
while a fraction will reflect back in, triggering a sequence
of echoes.
Note that introducing a Lorentz-violating operator corre-

sponds to favoring a specific set of coordinates. A problem
arises in black hole backgrounds near the horizon, where
due to the blueshift the irrelevant operators in generic
coordinates—which depend on a positive power of energy,
and so a positive power of a large boost factor—introduce
muchworse singularities than one encounters in standardGR
coupled to a locally Lorentz-invariant field theory. If per-
mitted, such behavior renders any perturbative description
of the wave packet propagation on the background totally
unreliable. Note that this is a generic property of Lorentz-
violating operators: due to Lorentz breaking, we cannot just
go to the locally freely-falling coordinate frame where the
theory reduces to a smooth set of weakly coupled harmonic

oscillators which have finite proper stress-energy. When the
theory is Lorentz-invariant, we can transition to such a
system, even near—and across—the black hole horizon,
when we follow infalling null geodesics, as long as those
exist. With generic Lorentz breaking, however, infalling
geodesics will not be smooth on the horizon, because of the
backreaction of Lorentz-breaking contributions on the back-
ground geometry generated by tidal forces—i.e., because of
too strong focusing in the near horizon limit. Thus any
Lorentz breakingwhich one is to use as a “perturbation” near
the black hole horizon must be rather special in order to
remain weak and not disqualify the starting background in
the first place. This is really nothing new, in fact, and so we
will not dwell on further details—to convince oneself, all one
needs is dimensional analysis and power counting of the
boost factors.Howeverwe should be clear about this from the
outset. The physical cause of these problems—the untamed
boosts near the black hole—is the same issue which
embodies the spirit of black hole no hair theorems and
balding dynamics [15–17].
Indeed a similar problem has been encountered in the

past, where in order to study effects of Lorentz breaking at
very short distances (aka “trans-Planckian” problem) irrel-
evant Lorentz-breaking operators were introduced in
Gullstrand-Painlevé (GP) coordinates [18,19], where such
pathological singularities are precluded by writing them in
a coordinate system regular across the horizon.1 Thus these
divergences are tamed.2 We will see that in this case, when
we use ingoing GP coordinates as a framework to code
Lorentz violations, the regularity of the coordinates on the
horizon implies that the reflection is small, and the echoes
are very quiet.
In hindsight, this outcome is not surprising. The simple

reason why the echoes are quiet is decoupling. The black
hole emits the bulk of its gravity waves at frequencies
≃1=r0, where r0 is the gravitational radius of the black hole.
If the departures from the perfect black hole configurations
of standard GR occur only at short distances, then in the
observed range, the emitted power in echoes cannot be
larger than ∼ðω0=k0Þ2 ∼ 1=ðk0r0Þ2, just like in the studies
of trans-Planckian cosmology [21,22]. This scaling is
precisely what we find. When the scale k0 controlling
the correction is high, since the typical black hole gravity
wave frequency is so low, ω ≃ 1=r0 ≃ 10−9 eV, the echoes

1Any coordinate system which is regular on the horizon would
do as well, since the transformations between it and the GP
coordinates remain finite. For example we could have used the
Eddington-Finkelstein coordinates too.

2In contrast, [4] add Lorentz-breaking operators in a coordinate
system which diverges on the horizon. This feeds the coordinate
divergence into the observables, rendering their framework
completely different from a black hole: it is a naked singularity
through and through and so completely unreliable. The claims
of echo detection by these works has been questioned in for
example [20].
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will be invisible. This is much worse than in early universe
cosmology, where the frequency can be much higher,
ω ≃H ≲ 1013 GeV. To have echoes at the observable level,
therefore, requires much more dramatic violations of either
GR or EFT, or both.
One might be misled to infer that our conclusion is of

limited validity, since—as we said right up front—it is
based on employing a special set of Lorentz-violating
operators: those defined in coordinate charts which are
analytic across the horizon. One might object that the
effects we see are small because the sources are small.
However—we stress again—that while the Lorentz-violat-
ing operators we use do seem special—in that they are
introduced in coordinate systems analytic across the
horizon—this is necessary in order to keep the whole
system under control. The exact same operators which we
use could be introduced with less circumspection, in e.g.,
Kruskal coordinates, where the echoes would then seem to
be dramatically larger [4]. However in this case there are no
modes of this “perturbation” that can ever cross the horizon
smoothly—any attempt to pass would blow the horizon up.
Such behavior can be readily divinated from carefully
inspecting modes of field theories near the horizon devised
to study Hawking radiation; for examples see [23–25]. As a
result using coordinates which are not analytic across the
horizon as the playground to study effects of Lorentz
violation is seriously misguided. The converse outcome,
which we find from employing analytic charts, may seem
less exciting but it is reliable, as long as we think the
sources of gravity waves are black holes. To argue this, our
example is as general as it needs to be. Note that while
we have utilized Gullstrand-Painleveé coordinates in our
analysis, we could have used any other coordinate system
related to these by a finite boost and arbitrary spatial
coordinate transformations (as, e.g., ingoing Eddington-
Finkelstein). The conclusions would be completely the
same. If the sources of gravity waves are not black holes,
but systems of naked singularities, other approaches may
be applicable. We in fact outline one such possibility at the
very end of this article, with the understanding that it is
not a black hole in the usual sense of the word—since there
are no horizons.
We start with looking at Lorentz violating operators. The

Schwarzschild metric in ingoing GP coordinates, in which
the time is the proper time of a free-falling observer, is
given by

ds2 ¼ −dt2GP þ ðdrþ vðrÞdtGPÞ2 þ r2dΩ2; ð1Þ

where the function vðrÞ ¼ −
ffiffiffiffiffiffiffiffiffi
r0=r

p
, r0 ¼ 2GM being the

position of the horizon. The orthonormal tetrad adapted to
the free-fall frame is given (in the tGP − r subspace) by
the vectors sGP ¼ ð1; vðrÞ; 0; 0Þ, uGP ¼ ð0; 1; 0; 0Þ. Note
that on the horizon, v ¼ −1 and thus the metric is
ds2 → −2dtGPdrþ dr2 þ r20dΩ2, which indeed is regular.

We will probe this geometry with a massless scalar field.
The propagation of our probe scalar field on this back-
ground is described by [18]

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
−∂μϕ∂μϕþ α

k20
ðuμ∂μðuν∂νϕÞÞ2

�
; ð2Þ

where the Lorentz-violating operator involves a special
frame selected by the ingoing radial vector u. In flat space
this simulates a quartic spatial momentum correction
similar to the rotons in a fluid. Here, k0 is a high-
momentum cutoff and α a dimensionless number which
can take either sign.
We remind the reader that here we study the echoes

generated by scalar waves falling into a static Schwarzschild
black hole andyetwe are extracting the information about the
gravity waves falling into an astrophysical, spinning, black
hole.While this may seem off, our argument applies because
in theories which are locally Lorentz-invariant to leading
order, the counting of degrees of freedom in linearized
approximation shows that the system always reduces to a
set ofKlein-Gordon equations, one for each helicity [26], and
where near the horizon we can neglect spin-dependent
corrections as long as the black hole spin is far from extremal
[27]. We treat Lorentz breaking as a background supported
correction, and so our precise numerics might be off, but as
long as the corrections are finite, these will only appear as
infra-red effects. Further, real black holes have spin, so one
may wonder that the spin significantly modifies our results.
This may be; but as long as the black hole is nonextremal
these should be subleading corrections only. Even with spin,
the echoeswill stay tiny, as long as the corrections to the near-
horizon spacetime happen at very small distances.
It is now straightforward to obtain the field equation for

the scalar, by varying (2) and writing the result on the
background (1). After expanding the field into spherical
harmonics, ϕ ¼ P

l;m
ΨðtGP;rÞ

r Ylmðn̂Þ, and performing
straightforward albeit tedious algebra, we find the equation
of motion

− Ψ̈þ v

�
_Ψ
2r

− 2 _Ψ0
�
þ v2

r
Ψ0 þ ð1 − v2ÞΨ00

−
�
lðlþ 1Þ

r2
þ r0
r3

�
Ψ

þ α

k20

�
∂4
rΨþ 2

r2
Ψ00 −

4

r3
Ψ0 þ 4

r4
Ψ
�
¼ 0: ð3Þ

The terms which are α-independent are readily recognized
as the field equation for a massless scalar propagating on
the Schwarzschild geometry, □ϕ ¼ 0, whereas the α-
dependent terms are the Lorentz-violating corrections
projected onto the radial vector u, which picks the special
frame. Because of this choice, the corrections depend only
on the radial derivatives, correcting the dispersion relation
of ϕ.
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Note that in the limit where we approach the horizon,
v ¼ −1, the coefficient of the term ∝ Ψ00 vanishes. This
means that the horizon is a regular-singular point of (3), and
hence only one of the solutions of (3) can be regular on it.
That solution on the horizon obeys the limiting form of (3)
which, in the absence of the α-dependent terms, involves
only first derivatives in the radial direction. It is easy to
check that when α ¼ 0 and near the horizon v ¼ −1, where
we can ignore the effects of the centrifugal barrier, the
equation for monochromatic waves Ψ ¼ e−iωtGPζ degener-
ates to ζ0 ¼ −iωζ=2 describing precisely the infalling
modes as the only regular solutions.
The next step is to determine how the correction ∝ α

changes this conclusion. However, continuing with the
analysis in GP coordinates turns out to be cumbersome.
Transitioning to the standard Schwarzschild coordinates in
the Kruskal gauge helps tidy up the calculations of the wave
reflection, since the equation can be readily rewritten as a
Schrödinger equation and the Lorentz-violating terms can
be treated as a perturbation. The important aspect of this
coordinate change is to preserve the special selection of the
Lorentz-violating operator ∝ α, selected in the GP coor-
dinates to avoid introducing uncontrollable divergences on
the horizon. This means that in the Schwarzschild coor-
dinates, the vector uGP ¼ ð0; 1; 0; 0Þ will not have such a
simple component form, but will be transformed by the
time coordinate change,

dtS ¼ dtGP þ vðrÞ
1 − r0=r

dr; ð4Þ

while the radial coordinate remains the same. Note that this
means that simply taking Eq. (3) and replacing tGP with tS
is incorrect, because this would miss the transformation of
u induced by the radially dependent time-shift (4). Instead,
we will have to reevaluate the α-dependent terms in the new
coordinates, using the transformed set of components for u.
Henceforth, we will drop the subscripts S, and use r and t
for the standard Schwarzschild coordinates.
Now we turn to transforming the field equation (3), using

(4). Here our strategy will be to first consider the Lorentz-
invariant terms, □ϕ ¼ 0, determine the leading order
solution, and then calculate the leading correction to it
by an iterative method, where we plug the leading order
solution in the α-dependent terms and use the result as a
source for determining the Lorentz-violating correction to
ϕ. The correction in principle contains both the projections

on the infalling and reflected wave, and so once we
compute it we will need to project out the infalling
contribution to finally determine the reflected wave.
So, using the same expansion in spherical harmonics as

before, but with the Schwarzschild time as opposed to GP

time, ϕ ¼ P
l;m

Ψðt;rÞ
r Ylmðn̂Þ, we find that the Lorentz-

invariant part—i.e., the D’Alembertian—transforms to

□ϕ → −
1

r − r0
∂2
tΨþ r − r0

r2
∂2
rΨþ r0

r3
∂rΨ

−
lðlþ 1Þr − r0

r4
Ψ: ð5Þ

Since the Schwarzschild time t is a Killing direction,
we can now Fourier transform Ψðt; rÞ ¼ e−iωtψðrÞ.
Substituting this in (5) and using the tortoise radial
coordinate,

r� ¼ rþ r0 ln

�
r
r0

− 1

�
; ð6Þ

helps organize the radial derivatives. We finally obtain

□ϕ →
1

r − r0

�
d2ψ
dr2�

þ ω2ψ

�
−
lðlþ 1Þr − r0

r4
ψ ; ð7Þ

which takes the form of a Schrödinger equation. The
potential term has a maximum at r ∼Oðr0Þ, and close to
the horizon vanishes exponentially in r� → −∞. Since we
are interested in the dynamics very close to the horizon, we
will generally neglect this potential. Imposing purely
ingoing boundary conditions at the horizon, reflecting
the GP analysis above, our zeroth order solution near
the horizon is then simply

ψ0 ¼ e−iωr� : ð8Þ

To calculate the correction due to the Lorentz-breaking
terms, we recalculate the α-dependent terms in the new
coordinate system, and substitute ψ0 in the terms propor-
tional to α. The fact that ψ0 solves the free wave equation
then implies that the α-dependent terms evaluated on ψ0

source the correction ψ1, and so on. After a straightforward
but tedious calculation, we obtain the equation for the
correction, in the near-horizon limit where we neglect the
centrifugal barrier

�
d2ψ1

dx2�
þ f2ψ1

�
¼ αe−ifx�

ðk0r0Þ2
ffiffiffi
x

p
− 1

ð ffiffiffi
x

p þ 1Þ3
�
f4xþ 3if3x−1=2 − f2

7þ 4
ffiffiffi
x

p þ 8x
4x2

þ if
21þ 68

ffiffiffi
x

p þ 73xþ 32x3=2

8x7=2
þ 4

ð ffiffiffi
x

p þ 1Þ4
x5

�
≡ e−ifx�SðxÞ: ð9Þ
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Here we have introduced dimensionless variables x ¼ r=r0,
x� ¼ r�=r0 and f ¼ ωr0. As r → r0, x → 1, and it can be
easily checked that the right-hand side vanishes as
ð ffiffiffi

x
p

− 1Þ. We stress that utilizing the tortoise radial
coordinate is more useful than the Schwarzschild radial
coordinate, in order to understand that the solutions near
the horizon remain free of spurionic singularities. The
notation in (9) is cumbersome, since it involves both
standard and tortoise radial coordinates, which we—as
everyone else—use merely for the compactness of the
notation.
After ignoring the centrifugal barrier, the left-hand side

(lhs) of (9) is especially simple, which enables us to use the
Green’s function technique to solve for ψ1. The required
Green’s function is just the harmonic oscillator with
appropriately chosen boundary conditions. Since we are
not modifying the physics at the horizon, and the correction
vanishes there, we impose purely ingoing boundary con-
ditions as x� → −∞. However, since we are interested in
the reflected wave, for x� → þ∞we want both ingoing and
outgoing waves. It is straightforward to show that the
Green’s function satisfying these boundary conditions is

Gðx�; y�Þ ¼ ce−ifðx�−y�Þ þ 1

2if
½eifðx�−y�Þθðx� − y�Þ

þ e−ifðx�−y�Þθðy� − x�Þ�; ð10Þ
where c is a constant, determined by the normalization.
The leading order correction to the zeroth order solution

is therefore

ψ1ðx�Þ ¼
Z

x�

−∞
dy�

eifðx�−2y�Þ

2if
Sðyðy�ÞÞ

þ
Z

∞

x�
dy�

e−ifx�

2if
Sðyðy�ÞÞ

þ ce−ifx�
Z

∞

−∞
dy�Sðyðy�ÞÞ; ð11Þ

where the last term is a purely incoming mode. A numerical
solution for ψ1 is shown in Fig. 1. To identify the amplitude
of the reflected wave, we project ψ1 on ðeifx� Þ� ¼ e−ifx� .
This yields

R ¼
Z

∞

−∞
dx�e−ifx�ψ1ðx�Þ ¼ RðaÞ þ RðbÞ; ð12Þ

where we have

RðaÞ ¼ 1

2if

Z þ∞

−∞
dx�

Z
x�

−∞
dy�e−2ify�Sðyðy�ÞÞ; ð13Þ

and

RðbÞ ¼ 1

2if

Z þ∞

−∞
dx�e−2ifx�

Z þ∞

x�
dy�Sðyðy�ÞÞ: ð14Þ

These integrals are cumbersome, but the exact answers are
not necessary to understand the physics. We will therefore
only focus on the limits of high and low frequencies. In the
limit ωr0 ≫ 1, we have

SðxÞ ¼ αf4

ðk0r0Þ2
xð ffiffiffi

x
p

− 1Þ
ð ffiffiffi

x
p þ 1Þ : ð15Þ

In this case, the integrals for R diverge at large distances:
however, this is because we neglected the centrifugal
barrier term in Eq. (7), having focused on the solutions
close to the horizon. Therefore, we can regulate these IR
divergences by introducing a cutoff at the far end of the
barrier—i.e., the photon sphere—r ∼ 3

2
r0. This is morally

equivalent to the IR cutoff in the brick wall model for black
hole entropy [28].
In this case, we find that the reflection coefficient is

dominated by RðbÞ, and a numerical evaluation gives the
absolute value:

FIG. 1. Left panel: Plot of the numerical evaluation of k20r
2
0jRj=α, where R is the reflection coefficient, as a function of dimensionless

frequency f. Right panel: Plot of the real part of the perturbation k20r
2
0ψ1ðrÞ=α, at fixed frequency f ¼ 2, as a function of the distance

from the horizon r − r0.
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jRj ≃ 0.01
αω2

k20
: ð16Þ

Since the scale of Lorentz breaking is very high, only
frequencies of order ω ∼ k0 will be reflected appreciably.
The lowest frequency waves emitted by a black hole

inspiral have wavelengths comparable to the gravitational
radius of the source, and so in this case ωr0 ≃ 1. It is clear
from Eq. (9) that in this case all the contributions to the
source S are comparable, because f ≃ 1. Regulating the
integrals at the photon sphere, and accounting for the
multiplicity of the various contributing factors, the integral
is roughly

jRj ≃Oð1Þ αω
2

k20
≃Oð1Þ α

k20r
2
0

: ð17Þ

The increase of the numerical factor by about two orders of
magnitude comes from summing the large coefficients in
the expansion. The scaling with k0r0 however must follow
from the equivalence principle to match the high frequency
result (16). The numerical solution for R at all frequencies
is shown in Fig. 1.
In either case, since most of the observed frequencies

of gravity waves are in the range ω ∼ 1=r0, and since
r0 ∼ km ∼ 109 eV−1, for typical k0 which are high, sup-
pressing Lorentz violations at low energies, the echo
signals would be extremely small. E.g., if we take the
scales from particle physics constraints [11], R would end
up being miniscule. Even if we allow Lorentz violations in
the gravitational sector at a millimeter scale, k0 ≳ 10−3 eV,
the echoes would be feeble: R≲ 10−12. To get a non-
negligible signal from Lorentz-violating dispersion relation
corrections we would need k0 ∼ 10−9 eV, which is
excessive.
For completeness, we note that to determine the time

between different echoes in a sequence, we need to estimate
the region of origin of the incipient reflected wave due to
the correction near the horizon. From (12), (13), (14)
clearly the strongest contribution to the integral comes from
the region where the integrand has an extremum, attaining a
stationary phase and adding up coherently to the reflection
coefficient. For high frequency waves, where the integral is
dominated by (14) this implies that the region where the
reflection occurs is at S → 0, which by Eq. (15) means that
the reflected wave comes from near the horizon, since the
wave changes the least in that region.3 For low frequency
waves, the reflection is more spread out given the com-
petition between different terms in (9).
Note that if the echoes came from a specific locale deep in

the gravitational well of the black hole, the time interval

between adjacent reflections, as measured by an observer at
a safe distance from the source (r ≫ r0) is time-dilated by
the black hole’s gravitational field. Indeed, the time between
two echoes can be estimated by the interval it takes a
massless particle to fall from the photon sphere to near the
horizonwhere the echoes originate. Thismeans that the time
interval is given by the tortoise coordinate displacement
between the echo’s origin and the photon sphere,

Δt ¼ Δr�

≃ 3r0=2 − recho þ r0 ln

�
r0=2

recho − r0

�

≃ r0 ln

�
r0=2

recho − r0

�
: ð18Þ

The log in this formula is the time dilation factor. In practice
this factor is finite: if the black hole’s geometry is modified
no closer than recho − r0 ≃ lPl, this term is Δt≲
r0 lnðr0=lPlÞ, which for solar mass black holes is about
10−3 seconds. As noted in [3,8], this makes echoes easy to
separate from the primary gravity wave emissions by the
black hole, if they are completely localized.
In slight contrast, the Lorentz violations which we

discussed here would produce a more smeared-up spectrum
of echoes which would originate at all distances from the
horizon. However most of the power would be stored in the
modes coming from deep inside, meaning that the echo
would start as a gradually rising “hum.” Nevertheless, since
the power in echoes is so weak, this feature seems moot.
As we noted in the Introduction, the reason why the

echoes are quiet is decoupling. The echoes are suppressed
because the reflective corrections are perturbative and so
very small at low energies. To generate a significant effect,
the reflective terms need to mix with waves whose
frequencies are comparable to the scale where violations
occur. If the distortions of GR black holes occur only at
short distances, and via perturbative terms, this renders the
signals weak, unless some dramatic effects from beyond
normal GR and EFT kick in.
As an example of such effects, it has been speculated in

the literature on black hole echoes that a source of dramatic
effects might be the firewalls of [29]. Firewalls are
purported structures around black holes which may arise
from quantum backreaction of Hawking radiation onto the
black hole. Without getting into the details of whether black
hole firewalls are really there or not, or what they are,
which still seems to be a matter of debate [30], we will
merely try to elucidate if they can give rise to observable
echoes. Since the firewalls are expected to be layers of
energy deviating from the vacuum near the black hole
horizon, one might model their distortion of classical black
hole geometry by introducing thin shells of matter as
sources of gravitational field in Einstein’s equations [31],
and then matching various bulk solutions across the shell.

3Using the tortoise coordinate, in this regime the wave grows
slowly as x over a very large domain of x�, and picks up
contributions of Oðω2=k20Þ.
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The constructions of [31] do this, by matching an exterior
Schwarzschild geometry to a section of the interior RN,
specifically taking the interior RN to be the section which
hosts the timelike singularity, see Fig. 2.
This configuration can in principle provide significantly

stronger echoes. Namely, while the exterior is Schwarzschild,
the shell can reflect some of the infalling waves. This is even
clear from Huygens’ principle. At the level of perturbation
theory description of the wave packets propagating on this
configuration, the shell appears as a δ-function correction to
thewave equation (7), with a coefficient α ∼ σ=M2

Pl, where σ
is the shell tension. The reflection coefficient then is given by
R ∼ γ2α2=ω2 ∼ γ2α2r20, where γ is the time dilation factor of
the clock on the shell relative to infinity, γ ¼ 1 − r0=rs. A
shell placed far from the horizon, and near the photon sphere,
would have γ ∼ 1 and α ∼ 1=r0, which would make it very
reflective, R ∼ 1. However as noted in [31], such a shell is
hardly a model of a firewall, and in fact it would make the
configurationbehavemuchmore like a star rather than a black
hole. On the other hand, a shell placed close to the horizon
would have α ∼MPl, but the time dilation factor would be
γ ∼ ϵ ∼ ðlPl=r0Þ2, so that R ∼ ðlPl=r0Þ2 ≪ 1. Basically the
time dilation would all but extinguish the reflection from
the shell itself, due to the covariance of its description. This
again displays decoupling.

However, if the shell completely removes the horizon as
in Fig. 2, inside the shell there resides a timelike singularity,
which in general need not be absorptive. In fact a priori the
boundary conditions for a wave equation on the singularity
can be quite general, and very reflective. One could, for
example, attempt to model the singularity’s influence by
being guided by decoupling, as in the singular extra-
dimensional bulks in [32]. In this case one might impose
the Neumann conditions on the wave function—which
would of course yield maximal reflection. If so, this could
produce a very significant signal. The details are beyond
the scope of this article, but we hope to return to this
question elsewhere.
In summary, in this work we have considered the

possibility to generate echoes in the gravity wave sources,
due to higher order irrelevant operators that correct the
dispersion relations. If the corrections do not alter the black
hole geometry, leaving a regular horizon as a null boundary
at the bottom of the black hole’s gravitational well, the
echoes will have a miniscule power. The reason is the
decoupling between the near horizon high energy physics
and the low energy physics outside of the black hole. We
have reflected also on the possibility of firewalls enhancing
the signal. In this case, we used a recent classical model of a
firewall [31]. In this case, the very correction of the
geometry, parameterized by a shell shielding the horizon,
also decouples when the shell is far inside. However, if the
horizon is completely removed, which has been argued in
[31] to be a possibility, leaving a timelike singularity inside,
the echoes may be enhanced dramatically. The singular
configuration need not be a perfect absorber across the full
spectrum of frequencies. This illustrates that echoes, if
observed, are a signature of very dramatic deviations from
standard GR or EFT in the vicinity of horizons. It would be
interesting to study this example in more detail to explore
this exotic but curious possibility.
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