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We study the predictions for the matter redshift-space power spectrum and correlation function of a
Lagrangian-space Gaussian ansatz introduced in a previous work. This model is a natural extension of the
Zeldovich approximation, where the displacement and velocity power spectra are determined by the
equations of motion, instead of being set equal to the linear power spectrum. It does not contain any free
parameter. As for the real-space statistics, we find that this Lagrangian-space approach is much more
efficient for the correlation functions than for the power spectra. The damping of the baryon acoustic
oscillations (BAO) oscillations is well recovered, but there is a large smooth drift from the simulations in
the power spectra. The multipoles of the correlation functions are well recovered on BAO scales, with an
accuracy of 2% for ξs0 down to 10h−1 Mpc, and of 3% for ξs2 down to 26h−1 Mpc, at z ≥ 0.35.
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I. INTRODUCTION

The large-scale structure of the Universe is a key probe
of cosmological scenarios and gravitational physics. For
instance, the baryon acoustic oscillations (BAO) of the
matter and galaxy power spectra, which appear as a peak at
about 100h−1 Mpc in their correlation functions, provide a
standard ruler [1]. In combination with other probes such as
the cosmic microwave background (CMB) and the Hubble
expansion rate measured from distant supernovae, this
constrains the parameters of the standard Λ-CDM model
[2] and alternative dark-energy or modified-gravity scenar-
ios. The growth rate of large-scale structures, measured for
instance from the shape and the evolution with redshift of
the galaxy power spectrum, also constrains the underlying
cosmology and gravity on large scales. This has led to
various observational programs [3–7], which require theo-
retical modeling of these large-scale structures in order to
compare the predictions of various scenarios with the data.
These predictions are often done through numerical

simulations, which can handle complicated nonlinear
effects, such as the nonlinear mode coupling of the
gravitational dynamics or baryonic feedback associated
with cooling, star formation and active galactic nuclei.
However, analytical approaches remain useful on large
weakly nonlinear scales, where they are reliable and

facilitate the scanning of a large parameter space, e.g., if
one wishes to investigate alternative scenarios. They also
clarify the main features of the gravitational dynamics that
govern the growth of structures.
In Eulerian space, the main analytical methods are the

standard perturbation theory (SPT) [8,9] and its various
partial resummations [10–13]. However, going to high
orders does not ensure a systematically greater accuracy
[14–17], and the Euler equation itself is only an approxi-
mation that breaks down after shell crossing. This can be
handled by explicit coarse-graining [18] or by effective
field theory (EFT) methods [19–22]. In practice, usual EFT
schemes only take into account part of the impact of small-
scale nonlinearities as they neglect vorticity, but this could
be added to the formalism.
An alternative is to work in Lagrangian space, where we

follow the trajectories of particles [23–28], and shell
crossing is not necessarily a problem. In a recent work
[29], we have presented a new approach to follow the
gravitational dynamics. The idea is to follow the evolution
of the probability distribution Pðx;u; tÞ of the displace-
ment and velocity fields by considering a simplified ansatz
for P, characterized for instance by its low-order correla-
tions, and to use the equations of motion to derive as many
constraints as needed to fully determine these parameters.
At the lowest order, we considered a Lagrangian-space
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curl-free Gaussian ansatz, where Pðx;u; tÞ is Gaussian,
and we only need to follow the evolution of the displace-
ment and velocity power spectra. Because we do not
expand on the displacement and velocity fields, this
provides a nonperturbative scheme with a damping of their
power spectra on nonlinear scales that arises from the
equations of motion.
For real-space statistics of the density field, the pre-

dictions of this method coincide with a truncated Zeldovich
approximation [30]. However, in contrast with the trun-
cated Zeldovich approximation, the displacement and
velocity power spectra are different. This implies that
redshift-space statistics no longer coincide with the pre-
dictions of any truncated Zeldovich approximation. We
investigate in this paper the predictions of this Lagrangian-
space Gaussian ansatz for the matter density redshift-space
power spectrum and correlation function, which we com-
pare with numerical simulations and the standard Zeldovich
approximation. Redshift-space anisotropies, due to the
velocity of the tracers along the line of sight, actually
provide an additional probe of the growth of large-scale
structures and cosmological scenarios [2,31–37]. For
biased tracers, such as galaxies, one also needs to model
the bias to compare with data [38,39]. We leave this second
step for future works, and we focus on the matter clustering
in this paper, as our aim is to investigate the properties of
this new Lagrangian-space Gaussian ansatz.
This paper is organized as follows. We recall in Sec. II

the Lagrangian-space Gaussian ansatz developed in [29],
and we give its prediction for the redshift-space matter
power spectrum in Sec. III. Then, we compare our results
with the Zeldovich approximation and numerical simula-
tions. We study the redshift-space correlation function in
Sec. IV. We compare our method with other approaches in
Sec. V, and we conclude in Sec. VI. We describe our
numerical procedure for the computation of the power
spectrum in the Appendix.

II. LAGRANGIAN-SPACE CURL-FREE GAUSSIAN
ANSATZ

We recall in this section the Lagrangian-space curl-free
Gaussian ansatz introduced in [29]. It is based on a
Lagrangian framework, where we follow the comoving
trajectories of dark matter particles as

xðq; tÞ ¼ qþΨðq; tÞ; ð1Þ

where q is the initial (Lagrangian) coordinate of the particle
and Ψðq; tÞ the displacement field. We simultaneously
keep track of the particle velocities, uðq; tÞ, defined by

uðq; ηÞ≡ ∂Ψ
∂η ; ð2Þ

where we use η ¼ lnDþðtÞ as the time coordinate. Here,
DþðtÞ is the linear growing mode, and the linear growth
rate fðtÞ is given by

fðtÞ ¼ d lnDþ
d ln a

¼
_Dþ

HDþ
; ð3Þ

where HðtÞ is the Hubble expansion rate and the dot
denotes the derivative with respect to cosmic time t. As in
[29], we consider a curl-free ansatz, where the displace-
ment and velocity fields are fully defined by their diver-
gences χ and θ,

χðq; ηÞ ¼ −∇q ·Ψ; θðq; ηÞ ¼ −∇q · u; ð4Þ

which also read in Fourier space as

ΨðkÞ ¼ ik
k2

χðkÞ; uðkÞ ¼ ik
k2

θðkÞ: ð5Þ

Discarding nongravitational interactions, the equation of
motion of the particles is

Ψ̈þ 2H _Ψ ¼ −
∇xΦ
a2

; ð6Þ

where Φ is the gravitational potential. The gravitational
force on the particle q can be written as [28,29]

Fðq; ηÞ ¼
Z

dq0dk
ð2πÞ3 eik·½xðqÞ−xðq0Þ�

ik
k2 þ μ2

; ð7Þ

where μ → 0 provides a convenient regularization of infra-
red divergences associated with the homogeneous back-
ground. This corresponds to the well-known Jeans
“swindle” [40–42]. The expression (7) of the force is well
suited to Lagrangian space, as it sums the gravitational
attraction from all particles q0, at distance xðq0Þ − xðqÞ
from the particle q. Using η as the time coordinate the
equation of motion (6) becomes

∂2Ψ
∂η2 þ

�
3Ωm

2f2
− 1

� ∂Ψ
∂η ¼ 3Ωm

2f2
F: ð8Þ

This implies for the Fourier-space power spectra of the
displacement and velocity fields the exact equations,

∂Pχχ

∂η ¼ 2Pχθ; ð9Þ

∂Pχθ

∂η ¼ Pθθ þ
�
1 −

3Ωm

2f2

�
Pχθ þ

3Ωm

2f2
Pχζ; ð10Þ

∂Pθθ

∂η ¼
�
2 −

3Ωm

f2

�
Pθθ þ

3Ωm

f2
Pθζ: ð11Þ
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This system is not closed, as it involves cross-correlations
with the Lagrangian-space divergence of the gravitational
force ζ,

ζðq; ηÞ ¼ −∇q · F: ð12Þ

The method used in [29] to close this system is to take a
curl-free Gaussian ansatz for the displacement and velocity
fields. Thus, taking the displacement and velocity fields to
have the curl-free form (5) with χ and θ being Gaussian
fields, we can exactly compute the cross power spectra Pχζ

and Pθζ at each time. The latter are nonlinear functionals of
the displacement and velocity fields, using the expression
(7) of the gravitational force. Then, the system (9)–(11)
determines the evolution with time of the displacement and
velocity power spectra. This scheme is nonperturbative, as
we do not expand the equations of motion (9)–(11) nor the
nonlinear expression (7) of the gravitational force.
The approximation enters at the level of the curl-free

Gaussian ansatz for the probability distribution PðΨ;u; ηÞ.
In particular, the exact probability distribution P obeys an
infinite number of constraints, e.g., the evolution equations
of displacement and velocity polyspectra at all orders
(bispectra, trispectra, and so on). By imposing a Gaussian
ansatz, fully defined by the three power spectra fPχχ ; Pχθ;
Pθθg, we can only keep track of three of these constraints.
Then, it is natural to consider Eqs. (9)–(11) that directly
follow the evolution with time of these three power spectra.
This improves over the Zeldovich approximation [23] in

the sense that we derive the “best” Gaussian ansatz for the
displacement and velocity fields, as defined by the require-
ment to fulfil the exact constraints (9)–(11), instead of
simply setting fPχχ ; Pχθ; Pθθg equal to the linear-theory
power spectrum. As seen in [29], this automatically yields a
self-truncation of these power spectra at high k. For the
real-space matter density power spectrum, this is equivalent
to a truncated Zeldovich approximation [30]. However, in
contrast with the standard truncated Zeldovich approxima-
tion, the truncation is not put by hand, with some free
parameters fitted to numerical simulations. It automatically
arises from the equations of motion (9)–(11). Moreover, the
displacement and velocity power spectra become different
on nonlinear scales. This implies that our model is different
from a truncated Zeldovich approximation for the redshift-
space matter density power spectrum.
We refer the reader to [29] for details on the numerical

computation of the displacement and velocity power spectra
fPχχ ; Pχθ; Pθθg from the equations of motion (9)–(11).

III. REDSHIFT-SPACE MATTER DENSITY
POWER SPECTRUM

A. Analytical expressions

The redshift-space coordinate s differs from the real-
space coordinate x by the Doppler effect associated with
the peculiar velocity vz along the line of sight [32,43],

s ¼ xþ v · ez
aH

ez; ð13Þ

where ez is the outward unit vector along the line of sight
and the peculiar velocity v is defined as

v ¼ a _Ψ ¼ afHu: ð14Þ

This gives in terms of the displacement Ψ and of the
velocity u introduced in Eq. (2),

sðqÞ ¼ qþΨþ fuzez: ð15Þ

The conservation of matter gives for the redshift-space
matter density field ρsðsÞds ¼ ρ̄dq in the single-stream
regime. After shell crossing we need to sum over all
streams, but in both cases the redshift-space matter density
power spectrum can be written as [44]

PsðkÞ ¼
Z

dq
ð2πÞ3 he

ik·½sðqÞ−sð0Þ�i; ð16Þ

where we used the flat-sky limit. In this regime this
expression is exact, but in general the average of the
exponential term is difficult to compute. However, as for
the Zeldovich approximation, for the Gaussian ansatz
described in Sec. II this is a simple Gaussian average.
This gives [44]

PsðkÞ ¼
Z

dq
ð2πÞ3 e

ik·q−1
2
h½k·ðΨðqÞ−Ψð0ÞÞþfkzðuzðqÞ−uzð0ÞÞ�2i:

ð17Þ

For the curl-free displacement and velocity fields (5), this
reads

PsðkÞ ¼
Z

dq
ð2πÞ3 e

ik·qe−Aχχ−2fAχθ−f2Aθθ ; ð18Þ

with

Aχχ ¼
Z

dk0½1 − cosðk0 · qÞ� ðk · k0Þ2
k04

Pχχðk0Þ; ð19Þ

Aχθ ¼
Z

dk0½1 − cosðk0 · qÞ� ðk · k0Þkzk0z
k04

Pχθðk0Þ; ð20Þ

Aθθ ¼
Z

dk0½1 − cosðk0 · qÞ� ðkzk
0
zÞ2

k04
Pθθðk0Þ: ð21Þ

It is convenient to define the relative displacement and
velocity variances,

α��ðqÞ ¼
4π

3

Z
∞

0

dkP��ðkÞ½1 − j0ðkqÞ − j2ðkqÞ�; ð22Þ
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β��ðqÞ ¼ 4π

Z
∞

0

dkP��ðkÞj2ðkqÞ; ð23Þ

where �� stands for fχχg, fχθg or fθθg. Then, the
quantities A�� introduced in Eqs. (19)–(21) read

Aχχ ¼ αχχk2 þ βχχ
ðk · qÞ2

q2
; ð24Þ

Aχθ ¼ αχθk2z þ βχθ
ðk · qÞkzqz

q2
; ð25Þ

Aθθ ¼ αθθk2z þ βθθ
ðkzqzÞ2
q2

: ð26Þ

Substituting into Eq. (18) we obtain for the redshift-space
power spectrum,

PsðkÞ ¼
Z

dq
ð2πÞ3 e

ik·qe−αχχk
2−ð2fαχθþf2αθθÞk2z

× e−½βχχðk·qÞ2þ2fβχθðk·qÞkzqzþf2βθθðkzqzÞ2�=q2 ; ð27Þ

which depends on both the norm k of the wave vector and
the cosine of its angle with the line of sight, μ ¼ kz=k.
Because we work in a Lagrangian framework and do not
perform any perturbative expansion, the power spectrum
(27) does not suffer from the infrared divergences or
artificially large contributions that affect Eulerian
approaches and require specific care [45–48]. Indeed, the
argument of the exponential only depends on relative
displacements and velocities, as seen in Eq. (17).
Therefore, it is insensitive to uniform displacements and
velocities and does not break Galilean invariance (or the
weak equivalence principle in the relativistic context). We
describe in the Appendix our numerical procedure to
compute Eq. (27).
It is usual to expand the redshift-space power spectrum

over the Legendre polynomials [32], PlðμÞ,

Psðk; μÞ ¼
X∞
l¼0

Ps
2lðkÞP2lðμÞ: ð28Þ

We obtain these multipoles from the integration over μ,

Ps
2lðkÞ ¼ ð4lþ 1Þ

Z
1

0

dμPsðk; μÞP2lðμÞ: ð29Þ

B. Zeldovich approximation

In the Zeldovich approximation [23], we use the linear
theory to obtain the displacement and velocity fields.
Therefore, the expression (27) remains valid, where we
replace the variance α�� and β�� by the linear variances αL
and βL. Thus, Eq. (27) simplifies as [15,44,49]

Ps
ZelðkÞ ¼

Z
dq

ð2πÞ3 e
ik·q e−αL½k2þð2fþf2Þk2z �

×e−βL½ðk·qÞ2þ2fðk·qÞkzqzþf2ðkzqzÞ2�=q2 : ð30Þ

For the numerical computations, we again use the method
described in the Appendix.

C. Linear power spectrum

At linear order over the initial power spectrum PL, the
redshift-space power spectrum is given by the standard
Kaiser expression [43],

Ps
Lðk; μÞ ¼ ð1þ fμ2Þ2PLðkÞ: ð31Þ

This gives the multipoles,

Ps
L0ðkÞ¼

�
1þ2f

3
þf2

5

�
PLðkÞ;

Ps
L2ðkÞ¼

�
4f
3
þ4f2

7

�
PLðkÞ; Ps

L4ðkÞ¼
8f2

35
PLðkÞ: ð32Þ

D. Numerical results

We show in Fig. 1 the logarithmic power spectrum
multipoles, Δs

lðkÞ2 ¼ 4πk3Ps
lðkÞ. We take the data points

of the N-body simulations presented in [13] based on 60
random realizations of a flat ΛCDM universe consistent
with the five-year observation by the WMAP satellite ([50];
Ωm ¼ 0.279, Ωb=Ωm ¼ 0.165, h ¼ 0.701, ns ¼ 0.96, and
σ8 ¼ 0.8159) with 10243 particles performed in comoving
periodic cubes with volume ð2048h−1 MpcÞ3. To study
higher wave numbers, where these simulations are not
converged, we switch to those done in [51] with 20483

particles in either ð2048h−1 Mpc−1Þ, ð1024h−1 MpcÞ3 or
ð512h−1 MpcÞ3. The first set of simulations cover wave
numbers up to k ¼ 0.25h Mpc−1, where the BAO wiggles
are prominent. Here and in what follows, the symbols with
error bars show the mean and the standard error estimated
from the distribution among different random realizations.
The latter represent the statistical uncertainties of the mean
of the simulation measurements, instead of those of
individual realizations. We compare to numerical simula-
tions the linear theory labeled “L”, the Zeldovich approxi-
mation labeled “Zel”, and our model, labeled ‘Ga” for
Gaussian ansatz. As for the real-space power spectrum, the
logarithmic linear power spectra keep increasing on non-
linear scales, the Zeldovich approximations decay, and our
model predictions go to a constant. As is well known, this is
because in the Zeldovich approximation the large initial
power on small scales makes particles stream through
overdensities, and particles do not remain trapped in
gravitational potential wells. This erases structures on
scales below the nonlinear scale xNL, that is, at high wave
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numbers above kNL, defined byΔ2ðkNLÞ ¼ 1. In contrast, in
our approach the equations of motion (9)–(11) generate a
damping of the displacement and velocity power spectra on
nonlinear scales. This arises from the fact that the force
cross power spectra Pχζ and Pθζ, which are positive and
equal to PLðkÞ on linear scales, become negative on
nonlinear scales for the curl-free Gaussian ansatz (5), as
seen in [29]. This effective anticorrelation is akin to a
repulsive force that stabilizes the nonlinear overdensities. In
practice, this coincides with a truncated Zeldovich approxi-
mation for the real-space power spectrum, but with a
truncation that is not set by hand and arises from the
equations of motion (9)–(11). For the redshift-space power
spectrum, this goes beyond the truncated Zeldovich
approximation, as the displacement and velocity power
spectra are different, but the logarithmic power spectrum
4πk3Ps

lðkÞ again goes to a constant at high k. Although this
is a significant improvement over the standard Zeldovich
approximation, it cannot describe highly nonlinear scales
associated with virialized halos, where the true logarithmic
power spectrum keeps growing.
Both the Zeldovich approximation and our Gaussian

ansatz recover the change of sign of the quadrupole Ps
2ðkÞ

near the nonlinear transition, although they do not predict
its location with a good accuracy. This is already a
significant improvement over the linear theory, which does
not change sign, and it shows that this feature is associated
with the mildly nonlinear stages of the formation of large-
scale structures. In contrast, these two approximations
predict two successive changes of sign of the hexadecapole
Ps
4ðkÞ while the numerical simulations do not show any

change of sign. This is another illustration of the well-
known fact that the hexadecapole is much more difficult to
model and is sensitive to the details of the nonlinear
dynamics. In this case, the Zeldovich approximation and
our Gaussian ansatz only give a significant improvement
over linear theory at high redshift, z≳ 3.
We zoom on the BAO scales in Fig. 2. We show the ratio

of the numerical simulations, the linear theory, the
Zeldovich approximation and the Gaussian ansatz with
respect to the mulipoles (32) of a wiggle-free linear power
spectrum. Because we saw in Fig. 1 that the models do not

perform very well for the hexadecapole, we focus on the
monopole and quadrupole.
As for the real-space power spectrum, we find that the

nonlinear damping of the baryon acoustic oscillations is
well recovered, but there is a smooth drift with respect to
the numerical simulations. As we shall see in Sec. IV, the
accuracy is much greater for the configuration-space
correlation function. This is because the Lagrangian frame-
work, common to both the Zeldovich approximation and
our Gaussian ansatz, is better suited to configuration-space
statistics. This can be seen from the fact that the funda-
mental objects are the configuration-space displacement
and velocity fields, as in (16). More generally, in contrast
with the linearized dynamics, where Fourier modes are
decoupled, nonlinear processes that are local in configu-
ration space, such as the trapping of particles inside
collapsed halos, should be easier to describe in configu-
ration space, where they should generate weak correlations
across scales [17,52]. Then, even if the configuration-space
correlation is well described except on small-scales, the
power spectrum it defines by a Fourier transform can show
large deviations from the exact results down to low k. For
instance, adding a localized Dirac term δDðxÞ to the
correlation ξsðxÞ gives a constant shot-noise contribution
to PsðkÞ that will even dominate for k → 0.
This behavior is common to both the monopole and

quadrupole. It means that the Zeldovich approximation and
the Gaussian ansatz are not competitive with other models
for the power spectrum, which reach a better agreement
with simulations [22]. However, if we are able to extract the
oscillatory feature of the power spectra, or if we add a few
free parameters that describe the smooth drift of the power
spectra, they may fare as well as other approaches.
Moreover, because there are no free parameters to mar-
ginalize over (unless one adds these background additional
ingredients), the constraining power may compete with
more accurate methods that involve several free parameters.
We will investigate this point in future works.
We show the relative deviation of these power spectra

from the numerical simulations in Fig. 3. We clearly see for
the monopole the improvement of the Gaussian ansatz over
both the linear prediction and the Zeldovich approximation.

10-2

10-1

100

101

 0.1 1

|Δ
s l(

k)
2 |

k [h Mpc-1]

z=0.35

l=0
l=2
l=4

 0.1 1  10

k [h Mpc-1]

z=1

l=0
l=2
l=4

 0.1 1  10

k [h Mpc-1]

z=3

l=0
l=2
l=4

FIG. 1. Logarithmic power spectra for multipoles l ¼ 0 (black crosses), l ¼ 2 (blue squares) and l ¼ 4 (red triangles). We show the
linear prediction “L” (dashed lines), our model “Ga” (solid lines) and the Zeldovich approximation “Zel” (dot-dashed lines). The
symbols are the results from numerical simulations. We show our results at redshifts z ¼ 0.35, 1 and 3.
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This is not surprising. As compared with the Zeldovich
approximation, the Gaussian ansatz satisfies the additional
constraints (9)–(11). It is then expected to give a more
realistic description of the dynamics. For the quadrupole,
the Zeldovich approximation fares better at z ¼ 0.35 and
z ¼ 1. However, because of the worse agreement at z ¼ 3

and for the monopole at all redshifts, this is likely to be a
coincidence.

At z ¼ 0.35, for the monopole we obtain an accuracy of
about 5% up to 0.3h Mpc−1, and for the quadrupole of 25%
up to 0.18h Mpc−1. For comparison, we note that the
Lagrangian approach of [26] obtains at z ¼ 0.3 an accuracy
of 5% up to 0.11h Mpc−1 for Ps

0. The Taruya-Nishimichi-
Saito (TNS) model of [53], which combines SPT with a
damping prefactor fitted to simulations, gives at z ¼ 0 an
accuracy of 5% up to 0.3h Mpc−1 for Ps

0, and of 10% up to
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FIG. 2. Upper panels: ratio of the power spectrum monopole Ps
0ðkÞ to a reference linear power spectrum monopole without baryonic

oscillations. We show the linear prediction “L” (blue dashed lines), our model “Ga” (black solid lines) and the Zeldovich approximation
“Zel” (red dot-dashed lines), at redshifts z ¼ 0.35, 1 and 3 (from left to right column). Lower panels: ratio of the power spectrum
quadrupole Ps

2ðkÞ to a reference linear power spectrum quadrupole without baryonic oscillations.
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FIG. 3. Relative deviation from the numerical simulations of the analytical predictions for the redshift-space power spectrum. We
show the multipoles l ¼ 0 (upper row) and l ¼ 2 (lower row).
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0.23h Mpc−1 for Ps
2 [54]. Adding a partial resummation of

Eulerian perturbation theory to this approach [55] gives at
z ¼ 0 an accuracy of 5% up to 0.24h Mpc−1 for Ps

0, and of
10% up to 0.23h Mpc−1 for Ps

2. Using an EFT approach,
[22] obtains at z ¼ 0 an accuracy of 5% up to 0.4h Mpc−1

for Ps
0, and of 25% up to 0.4h Mpc−1 for Ps

2; while [21]
obtain at z ¼ 0.56 an accuracy of 5% up to 0.24h Mpc−1

for Ps
0, and of 10% up to 0.20h Mpc−1 for Ps

2, with
five parameters fitted to simulations. The “time sliced
perturbation theory” approach of [48] gives at z ¼ 0 an
accuracy of 5% up to 0.1h Mpc−1 for Ps

0, and of 25% up to
0.1h Mpc−1 for Ps

2. Thus, the Lagrangian-space Gaussian
ansatz studied in this paper gives an accuracy that falls in
between these various methods but is significantly below
that reached by the most efficient schemes like the EFT
study [22]. This is not so surprising, as our model is only
correct up to linear order over PL. To go to higher orders,
one needs to go beyond the Gaussian and include higher-
order correlations, which will be governed by additional
constraints similar to Eqs. (9)–(11), again derived from
the equation of motion (6).

IV. REDSHIFT-SPACE MATTER DENSITY
CORRELATION FUNCTION

We now study the predictions of our Gaussian ansatz for
the redshift-space correlation function ξsðxÞ. It is the
Fourier transform of the power spectrum,

ξsðxÞ ¼
Z

dkeik·xPsðkÞ: ð33Þ

It also depends on both the distance x and the cosine of the
angle with the line of sight, μ ¼ xz=x. It can again be
expanded over the Legendre polynomials as

ξsðx; μÞ ¼
X∞
l¼0

ξs2lðxÞP2lðμÞ: ð34Þ

We compute the multipoles of the correlation function from
the Hankel transforms of the multipoles of the power
spectrum,

ξs2lðxÞ ¼ 4πð−1Þl
Z

∞

0

dkk2Ps
2lðkÞj2lðkxÞ: ð35Þ
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L
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s 4(

x)
|
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1  10

x [h-1Mpc]
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FIG. 4. Mulitpoles of the correlation function for the linear prediction “L” (blue dashed lines), our model “Ga” (black solid lines) and
the Zeldovich approximation “Zel” (red dot-dashed lines), at redshifts z ¼ 0.35, 1 and 3. We show the multipoles l ¼ 0 (upper row) and
the absolute value of the multipoles l ¼ 2 (middle row) and l ¼ 4 (lower row).
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We obtain in this fashion the redshift-space correlation
functions associated with the linear theory, the Zeldovich
approximation and our Gaussian ansatz.
We show in Fig. 4 the redshift-space correlation func-

tions on weakly nonlinear scales, as compared with
numerical simulations. Here, we use simulations newly
performed with an improved measurement of the correla-
tion functions based on a hybrid scheme that combines the
fast Fourier transform (FFT) and the direct pair counting
(see [56]). This is important especially for high multipole
moments because the discreteness and anisotropies of the
grids of the FFT-based method can be problematic on
scales close to the inter grid separation. These simulations
are performed in the sameWMAP5 cosmology. We employ
the “fixed-and-paired” technique by [57] to reduce the
sample variance and perform five pairs of 10243-body
simulations in three different box sizes (2048, 1024 and
512h−1 Mpc) to obtain converged results. As for the real-
space correlation function, the Zeldovich approximation
gives a redshift-space correlation function that goes to a
constant at small scale (because the power spectrum decays
faster than k−3), whereas our Gaussian ansatz shows a
logarithmic growth. However, neither approximations can

describe the growth of the correlation function on small
nonlinear scales associated with virialized halos. As for the
power spectra, the agreement with the simulations worsens
for higher multipoles l. Again, for the quadrupole, ξs2, both
the Zeldovich approximation and our Gaussian ansatz
recover the change of sign near the nonlinear scale xNL,
but they do not predict its location with a good accuracy.
For the hexadecapole, they also predict two successive
changes of sign whereas the numerical simulations do not
show any change of sign. Whereas we can see a significant
improvement over the linear theory for l ¼ 0 and 2, for the
hexadecapole they only improve over linear theory at high
redshift, z≳ 3, over these weakly nonlinear scales.
We focus on BAO scales in Fig. 5. Here we use the 60

realizations ofN-body simulations in [13], becausewe donot
see a clear improvement with the new paired-and-fixed
simulations. We recover the fact that the Zeldovich approxi-
mation already gives a great improvement over the linear
theory for the baryonic peak of the monopole correlation
function, at x ∼ 105h−1 Mpc. The improvement is also large
for the quadrupole and the hexadecapole. Our Gaussian
ansatz further improves over the Zeldovich approximation
but by a modest amount. This is again an illustration of the
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FIG. 5. Mulitpoles of the correlation function mutiplied by a factor 103. We show the multipoles l ¼ 0 (upper row), l ¼ 2 (middle
row) and l ¼ 4 (lower row).
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fact that the smoothing of the BAO peak, andmore generally
the deviations from linear theory on BAO scales, are
governed by large-scale motions that are well described
by Lagrangian approaches and are not sensitive to displace-
ments on small nonlinear scales, [17,26,52].
We show in Fig. 6 the relative deviations from numerical

simulations of the multipoles of the correlation functions.
The small wiggles are due to the noise of the numerical
simulations and provide an estimate of their accuracy,
beyond the statistical error bars that are shown by the error
bars centered on zero.
In agreement with the previous figures, we find a great

improvement over the linear theory and a modest improve-
ment over the Zeldovich approximation. This shows that, as
expected, making the displacement and velocity power
spectra determined by the equations of motion (9)–(11),
instead of setting them equal to the linear power spectrum,
provides a better description of the dynamics. This
improvement also agrees with the results of [58], who
find that the halo redshift-space correlation function
obtained within a Gaussian streaming model is improved
if one truncates the linear power spectrum, as in the
truncated Zeldovich approximation. However, the modest
level of improvement means that in order to reach smaller

scales, or to obtain a great improvement on large scales, we
need to go beyond the Gaussian ansatz and include higher-
order correlations or polyspectra for the displacement and
velocity fields.
For the monopole, our Gaussian ansatz provides an

accuracy of 2% down to 10h−1 Mpc, at z ≥ 0.35. For the
quadrupole, it gives an accuracy of 3% down to 26h−1 Mpc,
and of 10% down to 20h−1 Mpc, at z ≥ 0.35. For the
hexadecapole, it gives an accuracy of 10% down to
70h−1 Mpc, and of 30% down to 44h−1 Mpc, at z ≥ 0.35.
For comparison, we note that [26] obtains similar results

on the BAO scales for the monopole, using a partial
resummation of Lagrangian perturbation theory. The con-
volution Lagrangian perturbation theory developed in [59],
which is an improved resummation, obtains a similar
accuracy as our approach. The Gaussian streaming model
used in [60] gives at z ¼ 0.55 a percent accuracy down to
10h−1 Mpc for ξs0, and a 2% accuracy down to 25h−1 Mpc
for ξs2. The TNS model with a partial resummation of
Eulerian perturbation theory and a fitted damping param-
eter [55] gives at z ¼ 0.35 an accuracy of 5% down to
20h−1 Mpc for ξs0, and of 10% down to 20h−1 Mpc for ξs2.
Finally, we can see the overall trends of the correlation

function from different prescriptions as a function of the
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FIG. 6. Relative deviation of the analytical predictions from the numerical simulations, for the redshift-space correlation functions. We
show the multipoles l ¼ 0 (upper row), l ¼ 2 (middle row) and l ¼ 4 (lower row).
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separation vector, ðx⊥; xjjÞ, perpendicular and parallel to the
line of sight, in Figs. 7 and 8. As expected, both our
Gaussian ansatz and the N-body simulations approach to
the linear theory predictions at large separations and at
high redshifts. The distinct feature of the finger-of-god
effects is already visible at z ¼ 3 for the N-body data in the
zoom plot near the xjj axis (x⊥ ≲ 1h−1 Mpc), which cannot
be recovered neither by linear theory nor the nonlinear
model. This feature becomes progressively prominent at
lower redshifts. On intermediate scales, the improvement
brought by considering our nonlinear ansatz is clear. The
deformation of the contour lines from the simplest linear
predictions is properly followed by our ansatz, at least to
the right direction, except where the finger-of-god effects
are severe. A proper description of the finger-of-god effects
on Mpc scales requires taking into account the strong non-
Gaussianities found in virialized objects.
Like the Zeldovich approximation, our Gaussian ansatz

does not contain any free parameter. Therefore, it is
competitive with other approaches, as they provide a
similar accuracy as our model and typically include some
additional parameters. However, in practice, redshift-space
statistics are obtained from biased tracers such as galaxies.
This requires adding a bias model to the formalism studied

in this paper, which will degrade the accuracy of the
theoretical predictions. We leave such an investigation for
future works.
As already noticed in Sec. III D, the agreement with the

numerical simulations is much greater for the configura-
tion-space correlation function than for the power spec-
trum. This is due to our Lagrangian framework, and this
feature is shared by other Lagrangian schemes [17,26]. This
also means that configuration-space statistics are much less
sensitive to the details of the dynamics on small nonlinear
scales. Thus, while in the linear theory the power spectrum
is superior to the correlation function, because different
Fourier modes are decoupled, the correlation function
appears to be a more robust tool once nonlinear processes
come into play [17,52]. This suggests that the correlation
function is a better probe of cosmological models if we
wish to include mildly nonlinear scales in the analysis.

V. COMPARISON WITH SOME OTHER
APPROACHES

Reference [26] develops a Lagrangian perturbation
theory, in a manner similar to the expansion (A20).
It keeps the one-point cumulants, such as α∞, in the

FIG. 7. Redshift-space correlation function displayed in two dimensions, ðx⊥; xjjÞ, the pair separation perpendicular and parallel to the
line of sight. We show the results at z ¼ 0.35, 1 and 3 from left to right. The solid, dashed and dotted contour lines correspond to the
N-body simulations, our model (Ga) and linear theory, respectively. The color bars correspond to the contour lines for the simulation
data. Here the simulation data is from the low resolution runs (10243 particles, 2048h−1 Mpc) with the smallest sample variance error.

FIG. 8. Zoom up of Fig. 7, using higer-resolution simulation suite (10243 particles, 512h−1 Mpc).
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exponential and expands over the q-dependent terms. It goes
beyond the Zeldovich approximation by including higher-
order cumulants. The latter are computed from standard
Lagrangian perturbation theory [61,62], assuming a curl-free
velocity field. In contrast, in the model considered in this
paper we do not include higher-order cumulants beyond the
Gaussian, but we do not perform any perturbative expansion,
and the Gaussian power spectra themselves are modified
from the linear theory by nonlinear effects, associated with
the exact equations of motion (9)–(11). This allows us to
go beyond shell crossing. As in [26], in principle we can go
beyond the Gaussian by taking into account higher-order
correlations of the displacement and velocity fields.
However, this may lead to intricate computations, and we
leave such a study for future works.
The TNS model [53] is based on Eulerian standard

perturbation theory. It goes beyond the linear Kaiser result
(31) by going up to one-loop order and keeping a damping
prefactor. This prefactor, which originates from an expo-
nential term as in Eq. (18), is fitted to numerical simulations
to describe the damping due to small-scale motions asso-
ciated with the “finger-of-god” effect. As for Lagrangian
approaches and as for our model shown in Fig. 2, using the
velocity dispersion predicted by linear theory would over-
estimate the damping at high redshifts [53]. Nevertheless,
with the appropriate damping factor it gives a good match to
numerical simulations and improves over standard pertur-
bation theory [53,54].
EFT approaches to the redshift-space power spectrum

have been presented in [21,22]. As compared with the real-
space power spectrum, this requires a few additional
counterterms factors, because of the composite operators
brought by the nonlinear mapping to redshift space. These
new counterterms may also be associated with the succes-
sive terms of the expansion of Psðk; μÞ in powers of μ2 [22].
In our approach we do not need such counterterms (unless
we consider biased tracers or baryonic effects), as we use
the exact equation of motion (6), which is valid beyond
shell crossing. In fact, the equivalent of the EFT counter-
terms is provided by the self-truncation at high k of the
displacement and velocity power spectra. This damping
arises from the equations of motion (9)–(11) in a non-
perturbative manner. This can be seen from the effective
damping factor λ∞ ¼ −e−1=ð12α0Þ=ð6 ffiffiffiffiffiffi

3π
p

α3=20 Þ that arises
from the dynamics in the Gaussian ansatz; see [29] for
details.
These EFT Eulerian-space methods also need to perform

a partial resummation to take into account the damping of
the baryon acoustic oscillations by large-scale motions.
This uses the Lagrangian picture, and its exponential
damping as in Eq. (18), as a starting point to infer an
effective damping kernel that is inserted in the Eulerian
power spectrum [21]. This may be done through a semi-
phenomenological split of the linear power spectrum into a

smooth “no-wiggle” component and the oscillatory
“wiggly” component [22,46]. Then, whereas the no-wiggle
component is expanded as in SPT, the wiggly component
keeps a nonexpanded Gaussian prefactor, which corre-
sponds to part of the exponent in Eq. (18). This provides a
damping of only the wiggly part. This can be related to the
behavior found in Fig. 2. As we use a Lagrangian approach,
the damping due to large-scale motions is automatically
included and “resummed.” In fact, it is never expanded, as
we keep the exponential (18). However, because we do not
treat in different manners the smooth and wiggly compo-
nents, the damping applies to the full power spectrum. This
explains why we find in Fig. 2 an excessive damping of the
smooth component, as compared with the numerical
simulations and such Eulerian schemes with semipheno-
menological splitted damping. This excessive damping is a
typical feature of Lagrangian approaches [17,26,27].
Because our goal is to investigate the Lagrangian-space
Gaussian ansatz introduced in [29], we do not try to cure
this problem by an ad hoc procedure. Indeed, the spirit of
the general method presented in [29], beyond the Gaussian
ansatz computed in this paper, is to keep as much as
possible exact expressions, such as the equations of motion
(9)–(11) and the power spectrum (16). This allows us to
interpret the excessive damping of the smooth component
on BAO scales as due to the neglect of higher-order
correlations of the displacement field and to the failure
to describe highly nonlinear overdensities such as virialized
halos. This is also suggested by the good agreement with
the configuration-space correlation function, except on
small scales below 10h−1 Mpc.
Reference [48] uses the “time sliced perturbation theory”

introduced in [63]. As in our approach, instead of consid-
ering the dynamical fields this method directly works at the
level of their probability distribution. However, whereas we
use a nonperturbative scheme on the probability distribu-
tion of the Lagrangian-space displacement and velocity
fields, the method of [48,63] uses a perturbative expansion
on the probability distribution of the Eulerian-space density
and velocity fields. As for Eulerian-based EFT, they
perform a partial resummation to take care of infrared
effects associated with large-scale motions.
Streaming models [64] relate the redshift-space correla-

tion function to a convolution of the real-space correlation
function by the probability distribution of the pairwise line-
of-sight velocity. In the popular Gaussian streaming model
[60], the velocity distribution is Gaussian, as predicted by
linear theory, but it is possible to include the skewness [65]
or exponential tails [66,67]. However, this requires mea-
surements of the velocity distribution or low-order
moments from simulations. These approaches are related
to our Gaussian ansatz as they recover the Zeldovich
approximation at lowest order if Gaussian terms are kept
exponentiated [59]. The difference is that in our method the
Gaussian term itself is modified in a nonperturbative
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manner by the requirement to fulfil the equations of motion
(9)–(11).

VI. CONCLUSION

In this paper we have investigated the redshift-space
matter density power spectrum and correlation function
predicted by a new Lagrangian Gaussian ansatz. We have
also derived the redshift-space power spectrum for arbitrary
Gaussian displacement and velocity fields, and provided
some explicit expressions for numerical computations.
As for the real-space statistics, we find that the damping

of the BAO oscillations in the power spectrum is well
recovered but the amplitude is off by a smooth drift, so that
this approach is not competitive as compared with other
methods. However, if one can extract the oscillatory pattern
from the data, or if one adds a few free parameters to
describe the smooth drift, this scheme may become
efficient. We leave an investigation of this point for future
work.
The accuracy is much greater for the configuration-space

correlation function. This is generally expected for
Lagrangian-space schemes. It also suggests that nonlinear
processes are easier to separate in configuration space. As
usual, the accuracy degrades for higher orders, as one goes
from the monopole to the quadrupole and the hexadeca-
pole, but in all cases we obtain a significant improvement
over the linear theory and a modest improvement over the
Zeldovich approximation. In particular, for the monopole,
we obtain an accuracy of 2% down to 10h−1 Mpc, at
z ≥ 0.35. For the quadrupole, we find an accuracy of 3%
down to 26h−1 Mpc, and of 10% down to 20h−1 Mpc,
at z ≥ 0.35.
This work suggests several points for further investiga-

tions. The practical analysis of galaxy surveys will require a
biasing scheme in order to describe biased tracers. To
improve the accuracy for the power spectrum or to reach
smaller scales, it will be necessary to go beyond the
Gaussian ansatz and to include the higher-order correla-
tions of the displacement and velocity fields. Indeed, it is
well known that the pairwise velocity distribution is not
Gaussian but asymmetric with exponential tails, even on
large scales, which has an impact on redshift-space sta-
tistics [64,67].
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APPENDIX: NUMERICAL COMPUTATION OF
THE REDSHIFT-SPACE POWER SPECTRUM

We present here the expressions of the redshift-space
power spectrum that we use for our numerical computa-
tions. Similar and alternative methods for the particular
case of the Zeldovich power spectrum are described in
[15,44,49]. Our method gives an expression that keeps the
same form as the expansions of the real-space power
spectra for the Zeldovich approximation [68] and the
Gaussian ansatz [29]. It only involves spherical Bessel
functions and polynomials [the series associated with the
hypergeometric function in Eq. (A18) below terminates at a
finite number of terms].
Choosing the coordinate axis so that k ¼ ð0; 0; kÞ, ez ¼

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
; 0; μÞ and q¼ðq

ffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p
cosφ;q

ffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p
sinφ;qνÞ,

Eq. (27) reads

Psðk; μÞ ¼
Z

∞

0

dq
ð2πÞ3 q

2 e−A
Z

1

−1
dν eikqν−Bν

2

×
Z

2π

0

dφ e−Cν
ffiffiffiffiffiffiffi
1−ν2

p
cosφ−Dð1−ν2Þcos2φ; ðA1Þ

with

A ¼ k2½αχχ þ fμ2ð2αχθ þ fαθθÞ�; ðA2Þ

B ¼ k2½βχχ þ fμ2ð2βχθ þ fμ2βθθÞ�; ðA3Þ

C ¼ k2ðβχθ þ fμ2βθθÞ2fμ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
; ðA4Þ

D ¼ k2βθθf2μ2ð1 − μ2Þ: ðA5Þ

Expanding the exponentials of the cosφ and cos2 φ terms
and using

Z
2π

0

dφðcosφÞ2n ¼ 2π
ð2nÞ!

22nðn!Þ2 ; ðA6Þ

the integration over φ gives

Psðk; μÞ ¼
Z

∞

0

dq
2π2

q2 e−A
Z

1

0

dν cosðkqνÞe−Bν2

×
X∞
l;m¼0

ð2lþ 2mÞ!
ð2lÞ!m!½ðlþmÞ!�2

C2lð−DÞm
22lþ2m

× ν2lð1 − ν2Þlþm: ðA7Þ

To recover the series associated with the real-space power
spectrum, we expand the exponential over ð1 − ν2Þ instead
of ν2 [68,29]. Reorganizing the series, we obtain
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Psðk;μÞ ¼
Z

∞

0

dq
2π2

q2 e−ðAþBÞX∞
n¼0

Bn
Xn
l¼0

�
−C2

4B

�
l

×
Xn−l
m¼0

�
−D
4B

�
m ð2lþ 2mÞ!In;2lðkqÞ
ðn− l−mÞ!ð2lÞ!m!½ðlþmÞ!�2 ;

ðA8Þ

where we introduced

In;2lþ1ðzÞ ¼ ð−1Þlþ1

Z
1

0

dx sinðzxÞð1 − x2Þnx2lþ1;

In;2lðzÞ ¼ ð−1Þl
Z

1

0

dx cosðzxÞð1 − x2Þnx2l: ðA9Þ

We recover the real-space power spectrum by setting f ¼ 0
or μ ¼ 0. In this case, C ¼ D ¼ 0, and only the terms l ¼
m ¼ 0 contribute. We derive explicit expressions for the
integrals In:2l by recursion. At order l ¼ 0, we have
[68,69]

In;0ðzÞ ¼ n!2nz−njnðzÞ; ðA10Þ

while higher orders obey the recursion,

In;lþ1ðzÞ ¼
d
dz

In;lðzÞ: ðA11Þ

Using the properties of spherical Bessel functions,

d
dz

�
jn
zn

�
¼ −

jnþ1

zn
; jn−1 þ jnþ1 ¼

2nþ 1

z
jn; ðA12Þ

we can show by recursion from Eqs. (A10)–(A11) that the
functions In;lðzÞ take the form,

In;lðzÞ ¼ n!2nz−n−lþ1½Pn;lðzÞjnþl−1ðzÞ
þQn;lðzÞjnþlðzÞ�; ðA13Þ

where the functions Pn;lðzÞ andQn;lðzÞ are polynomials of
order l − 2 and l − 1, except for Qn;0, and satisfy the
recursion,

Pn;lþ1 ¼ ð2nþ 2lþ 1ÞP0
n;l − zPn;l þ zQ0

n;l þQn;l;

Qn;lþ1 ¼ −zP0
n;l − zQn;l; ðA14Þ

where the prime denotes the derivative with respect to z.
The lowest orders are

Pn;0 ¼ Pn;1 ¼ 0; Pn;2 ¼ −1;

Qn;0 ¼
1

z
; Qn;1 ¼ −1; Qn;2 ¼ z: ðA15Þ

Substituting Eq. (A13) into Eq. (A8) gives

Psðk;μÞ ¼
Z

∞

0

dq
2π2

q2 e−ðAþBÞkq
X∞
n¼0

�
2B
kq

�
n

×
Xn
l¼0

�
−C2

4Bk2q2

�
l

× ½Pn;2ljnþ2l−1ðkqÞ þQn;2ljnþ2lðkqÞ�

×
Xn−l
m¼0

�
−D
4B

�
m n!ð2lþ 2mÞ!
ðn− l−mÞ!ð2lÞ!m!½ðlþmÞ!�2 :

ðA16Þ

Using the summation in terms of the hypergeometric
function,

Xn−l
m¼0

ð2lþ 2mÞ!
ðn − l −mÞ!m!½ðlþmÞ!�2 ð−xÞ

m

¼ 4lΓ½lþ 1=2�ffiffiffi
π

p ðn − lÞ!l! 2F1ðlþ 1=2;−nþ l;lþ 1; 4xÞ;

ðA17Þ

we obtain

Psðk; μÞ

¼
Z

∞

0

dq
2π2

q2 e−ðAþBÞkq
X∞
n¼0

�
2B
kq

�
n

×
Xn
l¼0

�
−C2

4Bk2q2

�
l

½Pn;2ljnþ2l−1ðkqÞ þQn;2ljnþ2lðkqÞ�

×
n!

ðn − lÞ!ðl!Þ2 2F1ðlþ 1=2;−nþ l;lþ 1;D=BÞ:

ðA18Þ

For f ¼ 0 or μ ¼ 0, which give C ¼ D ¼ 0, we recover the
expression of the real-space power spectrum [29].
As for the real-space power spectrum [15,29], for

numerical computations it is convenient to improve the
convergence of the integral over q by separating the linear
part. Thus, defining the one-point variance,

α∞�� ¼
4π

3

Z
∞

0

dkP��ðkÞ; ðA19Þ

which is also the limit of the variance (22) at large
separations q, the redshift-space power spectrum (18) also
reads as [70]

PsðkÞ ¼ e−k
2½α∞χχþfμ2ð2α∞χθþfα∞θθÞ�

Z
dq

ð2πÞ3 e
ik·q

× e
R

dk0eik0 ·q½ðk·k0Þ2Pχχþ2fðk·k0Þkzk0zPχθþf2ðkzk0zÞ2Pθθ �=k04 :

ðA20Þ

LAGRANGIAN-SPACE GAUSSIAN ANSATZ FOR THE MATTER … PHYS. REV. D 102, 043530 (2020)

043530-13



Defining A∞ as the infinite-separation limit of AðqÞ in-
troduced in Eq. (A2), obtained from the infinite-separation
variance (A19), and expanding the last exponential, gives
the alternative expansion,

PsðkÞ ¼ e−A∞
X∞
n¼0

1

n!
PsðnÞðkÞ; ðA21Þ

where PsðnÞ is of order n in the displacement and velocity
power spectra. The integration over q gives a Dirac factor in

each term PsðnÞ. As usual, the term n ¼ 0 vanishes for
k > 0 while the linear term reads

Psð1Þðk; μÞ ¼ PχχðkÞ þ 2fμ2PχθðkÞ þ f2μ4PθθðkÞ: ðA22Þ

Then, we subtract the first term of the expansion (A21)
from the expression (A18). This gives

Psðk;μÞ¼e−A∞Psð1Þðk;μÞþe−A∞

Z
∞

0

dq
2π2

q2
�
j0ðkqÞ½eA∞−A−B−ð1þA∞−A−BÞ�

þj1ðkqÞ
kq

ð2B−DÞ½eA∞−A−B−1�þC2eA∞−A−B
�
j1ðkqÞ
2kq

−
2j2ðkqÞ
k2q2

�
þeA∞−A−Bkq

X∞
n¼2

�
2B
kq

�
n

×
Xn
l¼0

�
−C2

4Bk2q2

�
l

½Pn;2ljnþ2l−1ðkqÞþQn;2ljnþ2lðkqÞ�
n!

ðn−lÞ!ðl!Þ2 2F1ðlþ1=2;−nþl;lþ1;D=BÞ
�
: ðA23Þ

This improves the convergence of the integral at large q
and makes the numerical computation easier. The one-
point variance A∞ is only an auxiliary quantity for the
numerical scheme. The power spectrum (27) does not
depend on its value and remains well defined even if A∞ is
infinite; see [29] for an explicit example on the case of the

real-space power spectrum with a power-law initial con-
dition PLðkÞ ∝ k−2. Thus, because our approach is based
on a Lagrangian-space framework, it does not suffer from
the infrared divergences or artificially large contributions
that affect Eulerian approaches and require specific care
[45–48].
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