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We show that the entropy of cosmological perturbations originating as quantum vacuum fluctuations
in the very early universe, including the contribution of the leading nonlinear interactions, can be viewed
as momentum space entanglement entropy between sub- and super-Hubble modes. The interactions
between these modes cause decoherence of the super-Hubble fluctuations which, in turn, leads to a
nonvanishing entropy of the reduced density matrix corresponding to the super-Hubble inhomogeneities.
In particular, applying this to inflationary cosmology reveals that the entanglement entropy produced by
leading order nonlinearities dominates over that coming from the squeezing of the vacuum state unless
inflation lasts for a very short period. Furthermore, demanding that this entanglement entropy be smaller
than the thermal entropy at the beginning of the radiation phase of standard cosmology leads to an upper
bound on the duration of inflation which is similar to what is obtained from the trans-Planckian
censorship conjecture.
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I. INTRODUCTION

There has recently been a lot of interest in entanglement
entropy in the context of quantum field theory and gravity
(see, e.g., [1] for reviews). In particular, the entanglement
entropy of a conformal field theory is holographically
related to properties of the bulk in the context of the
AdS=CFT (anti–de Sitter bulk/conformal field theory on
the boundary [2]) correspondence (see, e.g., [3]). In the
same context, entanglement entropy can be related to
properties of black holes in the AdS bulk [4]. The relation-
ship between the bulk Einstein equations and properties of
entanglement of the boundary CFT was explored in [5].
Entanglement entropy considerations have also been
applied directly to black holes physics (see [6] for a review)
and to de Sitter space in [7,8]. There are also attempts to
build up spacetime itself from quantum entanglement [9].
Most considerations of entanglement are based on a

position space separation of the domain; for example, the
separation between the inside of a black hole and the
outside. However, in cosmology it is more natural to work

in momentum space because it is the properties of the
momentum modes of cosmological fluctuations which are
generally probed (such as the power spectrum). Momentum
space entanglement has been considered in [10] (see
also [11]), and we will use methods from that work
extensively.
Entanglement is a crucial, and rather essential, feature of

quantum mechanical systems. In many early universe
scenarios, the cosmological fluctuations which we measure
today are postulated to emerge from quantum vacuum
perturbations. This is the case not only in inflationary
cosmology [12] but also in the Ekpyrotic scenario [13] and
in the matter bounce scenario [14]. Cosmological pertur-
bations (see, e.g., [15,16] for reviews) are small amplitude
fluctuations about the homogeneous and isotropic cosmo-
logical background. Because of their small amplitude, the
inhomogeneities are generally described in Fourier space.
To leading order, each Fourier mode evolves independently,
and each mode obeys a harmonic oscillator equation with a
time-dependent mass. The Hubble radius H−1ðtÞ (where H
is the Hubble expansion rate) plays a key role in the
dynamics of the modes: on sub-Hubble scales the canonical
fluctuation variable oscillates, while it is squeezed on
super-Hubble scales.
Successful early universe scenarios have the common

feature that the fluctuation modes which are probed today
in cosmological observations were sub-Hubble in the early
universe phase, thus allowing a causal generation mecha-
nism. In the classes of models we consider here, the
initial state for the fluctuations is taken to be the quantum
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vacuum state.1 When the fluctuation modes exit the Hubble
radius, their state becomes a squeezed vacuum state. The
Hilbert space of states thus naturally divides into two parts
—the super-Hubble mode spaceHAðtÞ and the sub-Hubble
mode space HBðtÞ:

HAðtÞ ¼
Y

Hkjkj < HcðtÞ;
HBðtÞ ¼

Y
Hkjkj ≥ HcðtÞ; ð1Þ

whereHk is the harmonic oscillator Hilbert space of the kth
mode andH−1

c ðtÞ stands for the comoving Hubble radius. It
is natural to consider the space of super-Hubble modes to
be the system we consider, and the space of sub-Hubble
modes to be the bath which we integrate over. Note that the
comoving Hubble radius decreases as a function of time in
the early universe phase of the models which we consider.
This means that modes exit the Hubble radius. Hence, the
boundary between the two Hilbert spaces HA and HB
depends on time: the dimension of the system Hilbert space
is increasing. This is a specific feature of a system
on a dynamically expanding background. Furthermore,
although not explicitly stated above, we shall assume an
ultraviolet (UV) cutoff (MPl) for the bath modes so that
there is always a constant supply of modes which we
integrate over. We assume that some underlying UV theory
is able to provide the details of the dynamics of the modes
lying in the range k > MPl and shall not consider them in
our work.
As mentioned above, in this paper, we consider the

entropy of the space of super-Hubble modes which results
from the entanglement with the bath of sub-Hubble modes.
The question of entropy of cosmological perturbations has
been considered previously. For example, in [18–20] the
entropy of a classical field was studied, and the results were
applied to compute the entropy of cosmological perturba-
tions and gravitational waves in an inflationary universe. In
[18–20], the source of entropy can be traced back to the loss
of information about the phases of the fluctuations for
super-Hubble modes, while a similar calculation for the
coherent state basis was shown in [21]. In [22], the issue of
entropy of cosmological perturbations was reconsidered,
taking the loss of information which leads to entropy
generation to be the loss of information due to the spread-
ing of the wave function of the super-Hubble modes which
results from squeezing. Entropy generation as a conse-
quence of coupling to an environment was studied in [23].
In [24], entropy generation of cosmological fluctuations as
a consequence of a truncation of the hierarchy of Green’s
functions was considered.
What was not considered in these previous works on

entropy generation is the role of nonlinearities. Because of

the nonlinear nature of the Einstein equations, there is
always a mixing of modes for cosmological perturbations.
In particular, there is a mixing between the sub- and super-
Hubble modes. As discussed in [25–28], this leads to
decoherence of the reduced density matrix of super-Hubble
modes.2 This decoherence is crucial in order to explain why
the cosmological perturbations become classical even
though they have a quantum origin. The resulting density
matrix of the super-Hubble modes is no longer that of a
pure state, and hence leads to a nonvanishing entropy which
we compute in this paper. We stress that, as shall become
apparent later on, we calculate a lower bound on the
amount of entanglement entropy of scalar density pertur-
bations, produced in any model of inflation, due to the
minimal gravitational nonlinearities which must always be
present. Additional couplings or fields, or considering
interactions between scalar and tensor modes, would lead
to enhanced amounts of entropy production.
There are some similarities between our work and that of

[33], where decoherence through neglecting observatio-
nally inaccessible correlators was considered, and that of
[34], where decoherence via entropy field loops was
studied (decoherence of fluctuations through entropy loops
was considered earlier in [35]). There is also a connection
with the work of [36] where super-Hubble entanglement
through inflaton decay was considered.
Our notation is as follows: We use natural units in which

the speed of light, Planck’s constant, and Boltzmann’s
constant are set to one. We consider a spatially flat
background cosmology such that the metric can be
written as

ds2 ¼ −a2ðηÞ½dη2 − dx2�; ð2Þ

where η is the conformal time which is related to the
physical time t via dt ¼ adη and x are the comoving spatial
coordinates. The Hubble parameter is given in terms of the
scale factor aðtÞ by

HðtÞ ¼ _a
a
; ð3Þ

where the overdot represents the derivative with respect to
t. We emphasize that the Hubble radius plays a crucial role
in our analysis. Sub-Hubble modes of the canonical
fluctuation variable oscillate while those on super-
Hubble scales are squeezed [15,16]. We denote the
Planck mass by MPl.

1String gas cosmology [17] does not fit into this class since
there the initial fluctuations are taken to be thermal.

2See also [29] where the decoherence of super-Hubble modes
as a consequence of the interaction with sub-Hubble modes was
studied using different techniques, Ref. [30] where the
decoherence through interaction with gravitational waves was
considered, and Refs. [31,32] where decoherence due to coupling
to a more general environment was analyzed.
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In the next section, we give a first pass at arriving at the
entropy of cosmological perturbations due to the squeezing
of super-Hubble modes during inflation. In Sec. III, we
review the well-known argument that interaction between
the perturbation modes, arising from minimal gravitational
nonlinearities, leads to a suppression of the off-diagonal
terms in the density matrix for the super-Hubble modes.
This justifies an assumption used in Sec. II for calculating
the entropy due to the squeezed state. Finally, having set up
our dominant interaction term in Sec. III, we go on to
calculate the entanglement entropy density for our system
(super-Hubble) modes in Sec. IV. We estimate an order of
magnitude for the upper bound of this quantity and show
that it is greater than the entropy for the squeezed vacuum,
as calculated in Sec. II. In Sec. V, interestingly we find an
upper bound on the duration of inflation by requiring that
this entanglement entropy remains smaller than the thermal
entropy produced at the end of inflation.3 We discuss our
main findings in Sec. VI.

II. REDUCED DENSITY MATRIX OF
SUPER-HUBBLE MODES

A. The squeezed vacuum

We consider linear scalar cosmological perturbations
about the background metric (2). Assuming that the matter
source of the fluctuations has no anisotropic stress, the
perturbations are described by a single field ζðx; tÞ, the
curvature perturbation in comoving gauge. The metric
including these fluctuations is

ds2 ¼ −a2ðηÞ½dη2 − ð1þ 2ζÞdx2�: ð4Þ

The action for cosmological perturbations has a canonical
kinetic term if we use the rescaled field (we are following
the notation of [39])

χðx; ηÞ≡ zðηÞζðx; ηÞ ð5Þ

with

z2ðηÞ≡ 2ϵHa2M2
plc

−2
s ; ð6Þ

where ϵH is the first “slow-roll” parameter defined via

ϵH ≡ −
_H
H2

ð7Þ

and c2s is the speed of sound squared of the matter source.
Although, later on, we shall only consider models of single-
field inflation with no derivative self-couplings, we are

keeping cs ≠ 1 at this stage so that our expressions remain
as general as possible.4

The linear cosmological perturbations about the classical
background geometry can be canonically quantized [12].
We insert the ansatz for the fluctuating metric and matter
into the total action (joint gravitational and matter action)
and expand to quadratic order. Since at linear order each
Fourier mode evolves independently, we can reduce the
quantization to the standard quantization of a set of
harmonic oscillators, the oscillators having a time depen-
dent mass coming from the time dependence of the back-
ground. In terms of the usual ladder operators, the quadratic
Hamiltonian H2 corresponding to scalar cosmological
perturbations takes the form

H2 ¼
1

2

Z
d3k
ð2πÞ3 ½cskðckc

†
k þ c−kc

†
−kÞ�

−
1

2

Z
d3k
ð2πÞ3

�
i

�
z0

z

�
ðckc−k − c†kc

†
−kÞ

�
; ð8Þ

where a prime denotes a derivative with respect to con-
formal time. As can be seen from (8), the squeezing term
dominates in the limit aH ≫ csk, for a given mode. In
other words, the time-dependent squeezing interaction is
dominant for super-Hubble modes.
This quadratic Hamiltonian generates the following

equation of motion for the ladder operators:

dck
dη

¼
�
z0

z

�
c†k − icskck: ð9Þ

Given an initial condition at an instant of time, η0, we can
solve for this as

ckðηÞ ¼ eiθkðηÞ cosh ½rkðηÞ�ckðη0Þ
þ e−iθkðηÞþ2iϕkðηÞ sinh ½rkðηÞ�c†−kðη0Þ: ð10Þ

In the above, rk and ϕk are the squeezing parameter and the
squeezing angle, whereas θk denotes the action of the
rotation operator. The number of particles in a given mode k
is proportional to the squeezing parameter nk ∼ sinh2 rk.
For inflation, the leading order time dependence of these
parameters is given by [40]

rkðηÞ ¼ − sinh−1
�

1

2cskη

�
; ð11Þ

ϕkðηÞ ¼ −
π

4
−
1

2
tan−1

�
1

2cskη

�
; ð12Þ

3This bound is similar to the bound obtained [37] by invoking
the trans-Planckian censorship conjecture (TCC) [38]. 4In the case cs ¼ 1, the action is

R
d4x 1

2
½ð∂μχÞ2 − z00

z χ
2�.
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θkðηÞ ¼ −kη − tan−1
�

1

2cskη

�
: ð13Þ

Given the quadratic Hamiltonian, the evolution operator
U0ðηÞ can be written as

U0ðη; η0Þj0k; 0−ki ¼ SkðηÞRkðηÞj0k; 0−ki; ð14Þ

where Skðrk;ϕkÞ and RkðθkÞ are the two-mode squeezing
and rotation operators, respectively, which are defined
as [40]

Sk ≔ exp
�
rk
2
ðe−2iϕkc−kck − H:c:Þ

�
; ð15Þ

Rk ≔ exp ½−iθkðc†kck þ c†−kc−k þ 1Þ�: ð16Þ

At the level of the quadratic Hamiltonian, the U0ðηÞ is
unitary. However, once interaction terms are introduced, the
evolution becomes necessarily nonunitary in the presence
of bath modes [39]. The effect of the rotation operator is
only to change the phase and would be of no consequence
to us, and hence we drop it from hereon. The effect of the
two-mode squeezing operator on the vacuum leads to the
squeezed vacuum, which is defined as

jSQðk; ηÞi≡ Skðrk;ϕkÞj0k; 0−ki

¼ 1

cosh rk

X∞
n¼0

e−2inϕk tanhn rkjnk; n−ki; ð17Þ

where

jnk; n−ki≡
�
1

n!
ðc†kc†−kÞn

�
j0k; 0−ki: ð18Þ

For a given mode k, it is easy to see that this state is
normalized, as follows:

hSQðk; ηÞjSQðk; ηÞi

¼ 1

cosh2 rk

X∞
n¼0

X∞
m¼0

e−2iðn−mÞϕk tanhðmþnÞ rkδm;n

¼ 1

cosh2 rk

X∞
n¼0

tanh2n rk ¼ 1; ð19Þ

as required. The squeezed vacuum of all the modes can be
obtained in a straightforward manner as the tensor product
state

jSQðηÞi≡Y
k

jSQðk; ηÞi: ð20Þ

B. The reduced density matrix

The straightforward definition of the density matrix,
corresponding to the squeezed state given in (20), is

ρ ¼ jSQðηÞihSQðηÞj: ð21Þ

If we calculate the entropy corresponding to this state,
naturally this is going to be zero since it is a pure state,
given by the evolution of the vacuum under the quadratic
Hamiltonian (8). More concretely, the density matrix
expressed in terms of the two-mode occupation number
basis reads

ρ¼
Y
k

Y
p

X∞
n¼0

X∞
m¼0

1

coshrk coshrp

×e−2iϕkðn−mÞ tanhn rk tanhm rpjnk;n−kihmp;m−pj; ð22Þ

which is still a pure density matrix.
Let us show this more explicitly, as follows. Our state

can be written as a product state

jψi ¼ jψiA ⊗ jψiB; ð23Þ

where jψiA is the product state of all the super-Hubble
modes and jψiB over the sub-Hubble modes. Since we are
focusing on the super-Hubble modes, our reduced density
matrix is obtained by tracing over the sub-Hubble mode
Hilbert space.

ρA ≡ TrBρ ¼
X
j

hjjψihψ jji; ð24Þ

where the sum is over the basis states of the Hilbert space of
sub-Hubble modes. In the absence of entanglement
between the sub- and super-Hubble modes, and given that
the states of both subsystems are pure, the reduced density
matrix ρA also corresponds to that of a pure state and hence
has vanishing entropy.
So far, however, we have neglected any coarse graining

or nonlinear effects. In particular, we have neglected
entanglement effects between sub- and super-Hubble
modes which are inevitably present because the equations
of gravity are nonlinear. In the following we will take a first
look at the entropy of cosmological perturbations after loss
of some information about the state. In the following
section we then show that this loss of information is an
inevitable consequence of the entanglement between sub-
and super-Hubble modes.

C. First view on entanglement entropy
of cosmological perturbations

In order to get a nonvanishing von Neumann entropy of
the reduced density matrix ρA, we need to coarse grain it in
a suitable way to derive a mixed density matrix. In [18,19],

BRAHMA, ALARYANI, and BRANDENBERGER PHYS. REV. D 102, 043529 (2020)

043529-4



it was observed that the phase associated with the squeez-
ing angle is sensitively dependent on the density perturba-
tion, whereas the amplitude is not. As a consequence, the
coarse-grained entropy in [18,19] was defined by averaging
over the squeezing angle, which also leads to decoherence.
In our setup, a similar “averaging” over the squeezing
angle, provided there is a stochastic part to it in addition to
what is given in (11), would lead to setting the off-diagonal
elements to zero in the number basis, leading to a reduced
density matrix of the form

ρsq ¼
Y
k

X∞
n¼0

1

cosh2ðrkÞ
tanh2nðrkÞjnk;n−kihnk;n−kj: ð25Þ

A different perspective of arriving at the above form for the
reduced density matrix would be to consider only the
diagonal entries of (22), whereas assuming that the off-
diagonal elements quickly fall off to zero. The usefulness of
this perspective lies in the fact that one does not have to
refer to the phase in order to derive the reduced density
matrix. However, now we need to justify our choice of
ignoring the off-diagonal elements for the density matrix.
One way to argue would be to consider that there are a lot of
particles created for a given mode, with opposite momenta,
with ϕk being the phase of each of these particle pairs.
Further assuming that these phases contain a random part,
one can use the destructive interference, due to group
averaging these phases, as being responsible for sup-
pressing the off-diagonal terms. However, in this case
we are back to our previous argument of using an averaging
procedure over the random part of the phases. Instead, one
might follow the arguments of [22,41] to justify the
reduction of the density matrix as a result of assuming a
distribution of coherent states as our initial state—instead
of the usual vacuum—as a manifestation of our ignorance
regarding initial conditions. If one assumes this as the
starting point, it can be shown that the off-diagonal terms
are naturally suppressed as long as one invokes equiparti-
tion of probabilities for the initial states in the ensemble
[41]. We are neither advising this approach nor suggesting
that it is better than considering the averaging procedure
over random phases, but just pointing out that there have
been different justifications for considering the above form
of the reduced density matrix (25). For now, we simply
assume our coarse-graining procedure to be one that results
in the suppression of the off-diagonal terms, as is common
in the literature to calculate the squeezing entropy [20]. In
the next section, we will give an improved analysis and
explain the decay of the off-diagonal elements as a
consequence of decoherence resulting from entanglement
between the modes and use that as a heuristic argument for
our procedure adopted here.
The von Neumann entropy associated with this reduced

density matrix is given by

scsq ¼ −Trðρsq ln ρsqÞ

¼ −
Y
k

1

cosh2rk
ln

�Y
p

1

cosh2rp

�

−
tanh2rk
cosh2rk

ln

�Y
p

tanh2rp
cosh2rp

�

−
tanh4rk
cosh2rk

ln

�Y
p

tanh4rp
cosh2rp

�
− � � �

¼ −
X∞
n¼0

�Y
k

tanh2nrk
cosh2rk

ln

�Y
p

tanh2nrp
cosh2rp

��
: ð26Þ

First, we expand the product in the logarithm as a sum of
logs, i.e.,

ln

�Y
k

tanh2n rk
cosh2 rk

�
¼

X
k

ln

�
tanh2n rk
cosh2 rk

�
: ð27Þ

Using this in (26), we can rewrite the entropy density (per
comoving volume) as

scsq ¼ −
�X∞

n¼0

Y
p

tanh2n rp
cosh2 rp

�

×

�X
k

X∞
m¼0

tanh2n rk
cosh2 rk

ln

�
tanh2n rk
cosh2 rk

��
: ð28Þ

Using the normalization (19), the term in the first paren-
theses is equal to 1. The entropy gets simplified to

scsq ¼
X
k

X∞
n¼0

lnðcosh2 rkðtanh rkÞ−2nÞ
cosh2 rk

tanh2n rk

¼
X
k

lnðcosh2 rkÞ
cosh2 rk

X∞
n¼0

tanh2n rk

−
X
k

lnðtanh2 rkÞ
cosh2 rk

X∞
n¼0

½n tanh2n rk�

¼
X
k

lnð1þ sinh2 rkÞ −
X
k

sinh2 rk lnðtanh2 rkÞ

¼
X
k

½ð1þ sinh2 rkÞ lnð1þ sinh2 rkÞ

− sinh2 rk lnðsinh2 rkÞ�: ð29Þ

In the large occupation number limit, nk ¼ sinh2 rk ≫ 1,
we get back the same expression for the entropy density
s ≈

P
k lnðsinh2 rkÞ, as derived in [18,19]. However, we

derived this result from the von-Neumann entropy formula
for a quantum density matrix instead of using the Shannon
entropy for a classical field. Note that one should expect
that our expression matches that for the classical calcu-
lation, done earlier, only in the large squeezing limit. In this
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sense, one should view
P

k ln ðsinh2 rkÞ as the classical
limit of the von Neumann entropy calculated here within a
quantum field theoretic approach, and it is thus compatible
with previous results [18,19] of considering the entropy of a
classical field. Our result also matches with previous works
as presented in [22].
In the case of slow-roll inflation with an approximately

constant Hubble constant we can estimate the resulting
entropy density by integrating over all super-Hubble
modes and apply an infrared cutoff: we do not consider
modes with wavelengths larger than the Hubble radiusH−1

at the beginning of inflation. With the convention that the
scale factor is set to one at the beginning of inflation, this
implies that in (29) we need to integrate over all values of k
with H < k < aH. At any time, this integral is dominated
by the modes exiting the Hubble radius at that time, and
we thus obtain5

scsq ∼ a3H3: ð30Þ

To obtain the entropy density per physical volume element,
we have to divide the above by a3, and we hence get

ssq ∼H3: ð31Þ

Beforemovingon, let usnote that the entropycalculated in
this section is not quite an entanglement entropy as it arises
from the squeezing of the cosmological perturbations. The
way we manage to get a nonzero result for a density matrix
arising from a quadratic Hamiltonian (8) is by employing
some yet-to-be-specified coarse graining, due to which the
pure densitymatrix in (22) is reduced to amixed one (25), by
ignoring the off-diagonal terms. In the next section, we shall
give a more nuanced argument as to how gravitational
nonlinearities, responsible for decohering the quantum
fluctuations into classical perturbations, necessarily render
the density matrix diagonal. Using this result, we shall argue
that the diagonalization adopted in this section is a well-
motivated one and is the reason why it correctly reproduces
the entropy of the squeezed vacuum. In this way, the
entanglement between sub- and super-Hubble modes, due
to mode mixing arising from gravitational nonlinearities, is
also indirectly responsible, albeit by providing a heuristic
justification for our coarse-graining procedure, for the
entropy of cosmological perturbations calculated above.6

III. NONLINEARITIES, DECOHERENCE, AND
ENTROPY GENERATION

Here we review the analysis of [28] which shows how the
purely gravitational interactions which are inevitably

present because of the nonlinearity of general relativity
lead to a decoherence of the reduced density matrix of the
super-Hubble modes as a consequence of the interaction
with the sub-Hubble fluctuations. For our purposes, we will
focus on the case of inflation.
We shall now take into account the effects of the cubic

Hamiltonian in addition to the quadratic Hamiltonian
discussed in the previous section. This is the leading term
that generates entanglement between the sub- and super-
Hubble modes. We are considering the full cubic action for
the density perturbations in the presence of a single matter
field. If the matter is a canonically normalized scalar field,
then the speed of sound cs ¼ 1. In more general models, c2s
can be smaller than one, and this can significantly increase
the size of the cubic interaction terms, resulting in a
significant contribution to the equilateral-shape non-
Gaussianity parameter fNL. However, as a first pass, let
us only consider vanilla matter models with cs ¼ 1, which
should be sufficient to estimate a lower bound on the
entanglement entropy for models of inflation.
We take the form of the cubic contribution to the

Hamiltonian from [42], from now on setting cs ¼ 1, which
is a generalization of the results from [43],

S3 ¼ M2
Pl

Z
dtd3x

�
a3ϵ2Hζ _ζ

2 þ aϵ2Hζð∂ζÞ2 − 2aϵH _ζ∂iζ∂iχ̃

þ a3ϵHð_ϵH − _ηHÞζ2 _ζ þ
ϵ2H
2
a∂iζ∂iχ̃

−
d
dt
ða3ϵHðϵH − ηHÞζ2 _ζÞ

�
; ð32Þ

where χ̃ ¼ a2ϵH∂−2 _ζ. We have also introduced the second
slow-roll parameter:

ηH ¼ 1

H
_ϵH
ϵH

: ð33Þ

We shall ignore the nonlocal terms that contain χ̃ since
those are not the dominant terms in the action. Additionally,
there are also terms which would get canceled with each
other [such as the _ηH term in the second line would get
canceled by a similar term from the third line of (32)].
Since, in the case of inflation, the dominant mode of ζ has
frozen out on super-Hubble scales, we will neglect inter-
action terms that contain _ζ. Furthermore, we shall restrict
our analyses only to the leading order terms in the slow-roll
parameters, and would thus be left with the second term in
the first line of (32) (the other terms being higher orders in
ϵH and ηH, or contain a _ζ). Hence, the dominant term in the
interaction Hamiltonian is (after integration by parts, and
recalling that Hint ¼ −Lint)

Hint ¼
M2

Pl

2

Z
d3xϵ2Haζ

2ð∂2ζÞ: ð34Þ

5A more explicit calculation for this has been shown in Sec. IV.
6The key point is that this is in addition to the explicit

entanglement entropy due to such interaction terms that we shall
calculate later on.
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TheHint we are considering arises purely from gravitational
nonlinearities, originating from the cubic Lagrangian given
in (32). As discussed above, in a model of single-field slow-
roll inflation without any derivative self-interaction, this
would be the dominant term. However, for a nontrivial
speed of a sound model, there can be a different term which
significantly enhances the cubic interaction. This would
lead to both a faster rate of decoherence and a greater
amount of entanglement entropy. In this sense, our calcu-
lation should be understood to yield the minimum amount
of entanglement entropy that must be produced in any
inflationary model; multiple fields or more complicated
interactions would only enhance our results.
Note here that there is an additional term, not shown

above in the cubic Lagrangian, that is of the exact same
form, ζ2ð∂2ζÞ, but with a prefactor ϵHηHa [44]. This term is
part of a large number of terms which are typically removed
by a field redefinition [43] and do not affect the correlation
functions for calculating the bispectrum. Strictly speaking,
we should keep this term if we are interested in calculating
the entropy corresponding to the ζ field (and not for the
redefined one). However, we drop it here to avoid addi-
tional clutter since it is straightforward to include its effects
at the end by adding a factor of ϵHηH, in addition to the ϵ2H
in (34), to our results.
Having setup our interaction terms, we begin the evolu-

tion at the conformal time η0, in a pure Gaussian product
state of all of the modes, which has the wave function

Ψ½A;B�ðη0Þ ¼ ΨG½A�ðη0ÞΨG½B�ðη0Þ; ð35Þ

where in this case we have indicated which variables the
individual states depend on. As a consequence of the
interactions, the state evolves into

Ψ½A;B�ðηÞ ¼ ΨG½A�ðηÞΨG½B�ðηÞΨI½A;B�ðηÞ ð36Þ

at a later time η, where the third factor is a consequence of the
interaction Lagrangian.
The interaction contribution to the wave function is given

by

ΨI½A;B�ðηÞ ¼ exp

�Z
k;k0;q

ζkζk0ζqF ðk; k0; q; ηÞ
�
; ð37Þ

where k, k0 stand for sub-Hubble modes, q stands for a
super-Hubble mode, and the kernel function F ðk; k0; q; ηÞ
is given by an integration over time of the interaction
Hamiltonian in momentum space (see [28] for details) with
the property that its imaginary part blows up as η → 0. In
the above, the integration runs over all momenta with the
property that kþ k0 þ q ¼ 0 (momentum conservation).
The reduced density matrix of the super-Hubble modes

can be obtained by integrating over the sub-Hubble ones. In
the field representation we have

ρAðζ; ζ̄Þ ¼
Z

DBΨ½ζ; B�ÞΨ�½ζ̄; B�; ð38Þ

where DB stands for the integration over the sub-Hubble
modes B. Equation (38) yields

ρAðζ; ζ̄Þ¼ΨG½ζ�ψG½ζ̄�
Z

DBjΨG½B�j2

×exp

�Z
k;k0;q

ζkζk0 ðζqF ðk;k0;qÞþ ζ̄qF �ðk;k0;qÞÞ
�

≡ΨG½ζ�ΨG½ζ̄�D½ζ; ζ̄�; ð39Þ

where D½ζ; ζ̄� is the decoherence factor. Focusing on a
single super-Hubble mode q, the decoherence factor is

D½ζ; ζ̄� ∼ exp

�
−
4πðΔζqÞ2

q3

×
Z
kþk0¼−q

PGðkÞPGðk0ÞðImF ðk; k0; qÞÞ2
�
; ð40Þ

where the time dependence of the factors has been sup-
pressed, where PG is a property of the Gaussian wave
function, and

Δζq ¼ ζq − ζ̄q: ð41Þ

As is clear from (40), the decoherence factor decays in time
on super-Hubble scales since the imaginary part ofF blows
up. Note that the decoherence effect is dominated by the
Hubble scale modes. There is no UV divergence in the loop
diagram which produces the interaction. This is a conse-
quence of the specific form of our interaction Lagrangian.
To conclude this section, we have reviewed how the

interaction with the sub-Hubble modes leads to
decoherence of the super-Hubble ones. For a particular
mode, decoherence happens after Hubble radius crossing.
The important thing for us is the fact that decoherence leads
to the damping of the off-diagonal terms of the decoherence
functional, such that the reduced density matrix of the
super-Hubble modes become diagonal very quickly. The
bottom line which we wish to emphasize is quite common
for decoherence during inflation—time evolution of the
density matrix of the system, on interaction with the bath
degrees of freedom, leads to a suppression of its off-
diagonal terms [26,45]. Of course, this “dynamical diag-
onalization” happens when the density matrix is written in
terms of the basis of the interaction term. Instead of the
Schrödinger wave functional approach taken here, one can
also demonstrate this by solving the master equation in the
Mukhanov-Sasaki variable basis [26]. Let us note that this
is not a new calculation which we present here; rather, it is a
review of well-established results that the density matrix of
the system modes diagonalizes due to interactions with the
bath modes, in a basis picked by the interaction term.
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How is this then related to our calculations in the
previous section, in which we had calculated the entropy
corresponding to the squeezing of the super-Hubble modes,
assuming that their density matrix turns diagonal? We now
give a better justification for choosing to keep only the
diagonal elements in our coarse-graining procedure
adopted earlier. When interactions between system and
bath modes are turned on, then the resulting density matrix
invariably diagonalizes in the interaction basis. Of course,
this does not imply that the density matrix corresponding to
the free field, in the absence of interactions, must also be
diagonal. However, since interaction terms must be present
(as these nonlinearities considered here are purely gravi-
tational in nature), the density matrix of the full system
must definitely become diagonal. Of course, adding the
interaction term would also change the diagonal term.
However, this change can, a priori, be assumed to be small
since they are suppressed by factors of the interaction
parameter and, in the first approximation, we calculated the
entropy of the free-field density matrix by choosing to
ignore the off-diagonal terms as part of our reduction (or,
coarse-graining) procedure. Remarkably, we showed that
the result was consistent with the classical calculations
done earlier [18,19] for the squeezing entropy. Thus, the
role of nonlinearities in calculating this entropy, corre-
sponding to the squeezed vacuum, is that of justifying our
coarse graining of ignoring the off-diagonal terms. In the
following section, we will compute the entanglement
entropy which the non-Gaussianities directly generate
and show that our first-pass assumption that their effect,
suppressed due to the coupling parameter, is smaller than
the squeezing entropy is not correct. Quite surprisingly, we
shall find that the entanglement entropy, due to the same
non-Gaussian term considered here, is larger than the
squeezing entropy.

IV. ENHANCED ENTANGLEMENT ENTROPY
DUE TO NONLINEARITIES

A. Setup

Having set up our interaction terms, let us discuss how
one can calculate the entanglement entropy of the cosmo-
logical perturbations due to the effects of these coupling
terms. To calculate the entanglement entropy, we shall
follow the prescription of [10] and generalize their results
for flat spacetime to inflationary backgrounds.
Given our breakup of the Hilbert space (1) H ¼ HA ⊗

HB into system and environment modes, our Hamiltonian
can be expressed as

H ¼ HA ⊗ I þ I ⊗ HB þ λHint; ð42Þ

where HA;B denote the free part of the Hamiltonian and λ is
a time-dependent constant. The ground state of the free
theory, neglecting the interactions, is denoted by

j0; 0i ¼ j0i ⊗ j0i, and one can write the interacting
vacuum of the entangled system as

jΩi ¼ j0; 0i þ
X
n≠0

Anjn; 0i þ
X
n≠0

BN j0; Ni

þ
X
n;N≠0

Cn;N jn;Ni; ð43Þ

where jni denotes an n-particle state of the system (in fact,
a product state over all super-Hubble k modes) and jNi is
the corresponding state for the bath.
Following the analyses of [10], one finds that the leading

order contribution to the entanglement entropy for such a
system can be written as

Sent ¼ −λ2 logðλ2Þ
X
n;N≠0

jC̃n;N j2; ð44Þ

where we can express the matrix element Cn;N in terms of
standard perturbation theory as

C̃n;N ¼ hn;NjHintj0; 0i
ðE0 þ Ẽ0 − En − ẼNÞ

: ð45Þ

For future convenience, we shall define the quantity
C̃n;N ¼ Cn;N=ðE0 þ Ẽ0 − En − ẼNÞ. Note that the crucial
assumption that has been made above is that of time-
independent perturbation theory, as was used in [10] to
calculate the matrix element C̃n;N . Other than the explicit
form for this matrix element, the formula for the entangle-
ment entropy in (44) is completely general and applies to
our case. Of course, in order to calculate the entanglement
entropy, we need to reinstate factors of the coupling
parameter λðηÞ ¼ ffiffiffiffiffiffi

ϵH
p

=ð2 ffiffiffi
2

p
aðηÞMPlÞ. Since our interac-

tion parameter, as well as the squeezed vacuum for the
system modes, are both time dependent, as we shall see
later on, we should technically use time-dependent pertur-
bation theory to calculate our matrix element. However, as
shall be explicitly demonstrated in the Appendix B, the
leading order result remains unaltered from using the
simple formula given above for the time-independent case.
Therefore, in the following subsections, we shall continue
to use the expressions (45), together with (44), although the
justification for that shall appear in Appendix B.
Another complication is that in order to apply the above

formula naively, it seems that we need the energy corre-
sponding to the ground and excited states, both for the
Minkowski and the squeezed vacuum, considered above.
The trouble is that there is no well-defined notion for the
energy of the squeezed vacuum. However, note that what
we really need in the above formula is the energy difference
between the first excited state and the corresponding
vacuum, for both the Minkowski and the squeezed vacua.
This is the same for both the system and the bath modes and
is given by ωk ≔ k for (nearly) massless scalar excitations.
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Thus, we need to replace ðE0 þ Ẽ0 − En − ẼNÞ ¼
ðpn þ pNÞ, the latter still being a well-defined quantity.
This fact also plays a key role when we recall that the actual
calculation which we should perform is that for time-
dependent perturbation theory, as has been carried out in
Appendix B, and not just for the approximation of the time-
independent case as shall be treated in the following
sections.
Before going on to calculate this matrix element, and the

corresponding entanglement entropy for our cosmological
system, let us review the flat space calculation first through
an explicit example.

B. Calculation for flat space

Considering a cubic interaction term, one can write the
action for a massive scalar field as

S ¼
Z

d4x

�
−
1

2
ð∂μφÞ2 −

1

2
m2φ2 −

λ

3!
φ3

�
: ð46Þ

For a flat (3þ 1)-dimensional spacetime, the field can be
decomposed in terms of the usual ladder operators as

φðxÞ ¼
Z

d3k
ð2πÞ3 ffiffiffiffiffiffiffiffi

2ωk
p ðake−ik:x þ a†ke

ik:xÞ; ð47Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. Here, instead of putting the fields

in a box as in [10], we choose to work with continuous field
variables, as would be more appropriate for cosmological
perturbations later on. However, we still have a scale μ
which separates our system from the environment, using
the same convention as in [10]. In other words, we are
interested in calculating the entanglement entropy between
the modes with momenta k above and below μ. In this case,
the only nontrivial contribution to the matrix element
would be from an excited state of a 3-particle one which
can be written as

jp1p2p3i ¼ a†p1
a†p2

a†p3
j0i: ð48Þ

Recalling that the interaction Hamiltonian is ðλ=3!Þφ3, λ
having dimension of mass, the required matrix element (45)
can be written as

Cflat
n;N ¼

Z
d3xhp1p2p3j

�Z
d3k

ð2πÞ3 ffiffiffiffiffiffiffiffi
2ωk

p ðake−ik:x þ a†ke
ik:xÞ

�
3

j0i

¼
Z

d3xhp1p2p3j
�Z

d3k1

Z
d3k2

Z
d3k3

1

ð2πÞ9 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk1ωk2ωk3

p ða†k1
eik1:xÞða†k2

eik2:xÞða†k3
eik3:xÞ

�
j0i

¼ 1

23=2

Z
d3x

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωp1
ωp2

ωp3

p eiðp1þp2þp3Þ:x
�

¼ 1

23=2
ð2πÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωp1
ωp2

ωp3

p δ3ðp1 þ p2 þ p3Þ: ð49Þ

In the second line above, we only keep the creation
operators as required, whereas in the third line we have
used the orthonormality property of the inner product to
eliminate the integrals over ðk1;k2;k3Þ. In the final step,
we used the integration over the spatial coordinate, and the
remaining delta function implies that at least one of
the spatial momenta must be above, and at least one below,
the scale demarcating the system and the environment.
The entanglement entropy for this system can then be

evaluated by plugging the above expression into (44)

sflatent ¼−λ2 logðλ2Þ 1

23ð2πÞ6

×
Z
fpgμ

Y
d3pi

δp1þp2þp3

ωp1
ωp2

ωp3
ðωp1

þωp2
þωp3

Þ2 ; ð50Þ

where the integrals are over a set of momenta such that
there can only be two configurations of interest—either one

of ðp1; p2; p3Þ is greater than μ while the rest are below μ,
or two of them are above while one is below μ. We have
also divided the total entanglement entropy by the (infinite)
volume to express it as an entanglement entropy den-
sity (≡Sflatent=Vol).

C. Vacuum and interaction Hamiltonian

Let us first outline the differences we anticipate between
the flat space calculation above and our case for cosmo-
logical perturbations. First, the interaction parameter λ ¼
λðηÞ will now be time dependent. Second, the vacuum for
the system modes is now given by the squeezed vacuum,
and the mode functions corresponding to the vacuum in
curved spacetime will have a different form of their
momentum dependence. Since the vacuum of the super-
Hubble modes will now be the squeezed vacuum, there are
contributions of terms with both creation and annihilation
operators in our case. As mentioned earlier, these two
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reasons are responsible for making the system time
dependent. However, once again, we emphasize that our
result, as shall be derived in the next subsection, is valid up
to the leading order term even though we use time-
independent perturbation theory to derive it. Explicit proof
that this is the case can be found in Appendix B. Finally, a
major conceptual difference arises from the fact that the
scale separating our system from the bath is given by the
(comoving) Hubble scale which is time dependent since we
are working with comoving coordinates (and, in addition,
by itself has a weak time dependence of its physical value
during inflation), and it is not some arbitrary, tunable
parameter μ as in the flat space case. With this in mind, let
us begin by factoring the Hamiltonian for the overall
system as

H ¼ Hsys þHbath þHint; ð51Þ

where the Hsys and Hbath are the quadratic Hamiltonians,
for the super- and sub-Hubble modes, respectively, as given
in (8). Next, we write down the vacuum modes for the
unperturbed systems, ignoring nonlinearities, as

j0; 0i ¼ j0ik>aH ⊗ jSQðηÞik<aH: ð52Þ

The j0; 0i is the vacuum state for both the system and the
bath modes. For the super-Hubble modes, the vacuum is
given by the squeezed state as given in (20). On the other
hand, we have the usual Minkowski vacuum for the sub-
Hubble modes, denoted by j0i.
The explicit form of the interaction Hamiltonian natu-

rally depends on the choice of the interaction term we
choose between the perturbation modes. As mentioned
earlier, for this paper, we shall restrict ourselves to only
cubic perturbation terms which arise naturally from gravi-
tational nonlinearities in any model of inflation, as captured
by our interaction Lagrangian given in (32). We emphasize
once again that considering more complicated interactions
or more fields can lead in a different term dominating Hint,
which would end up producing enhanced amounts of
entanglement entropy. In this precise sense, we give a
lower bound on the amount of entropy production coming
from scalar modes during inflation.
For our dominant interaction term of the form

M2
Pl

Z
dtd3xaϵ2Hζð∂ζÞ2; ð53Þ

we can write down the interaction Hamiltonian by con-
verting the ζ field to our canonical field χ, and then
expanding in terms of the creation and annihilation oper-
ators in momentum space. We find the following expres-
sion [46]:

λðηÞHint¼λðηÞ
Z
Δ

� ffiffiffiffiffiffiffiffiffi
k2k3
k1

s
ðc†−k1

c†−k2
c†−k3

þck1
c†−k2

c†−k3
þ���Þ

þ
ffiffiffiffiffiffiffiffiffi
k2k1
k3

s
ðc†−k1

c†−k2
c†−k3

þ���Þ

þ
ffiffiffiffiffiffiffiffiffi
k1k3
k2

s
ðc†−k1

c†−k2
c†−k3

þ���Þ
�
: ð54Þ

where all the terms in the parentheses (� � �) are the same and
include all possible (momentum-conserving) combinations
of the ladder operators. We have also definedR
Δ ≔

R d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3k3
ð2πÞ3 ð2πÞ3δ3ðk1 þ k2 þ k3Þ. The differ-

ence in the momenta dependence of our choice of Hint

from, say, one with time derivatives such as L3 ∼ ζðζ0Þ2,
would be that some of the terms in the expression above
would come with a minus sign since, in that case, the
interaction term couples the field with its conjugate
momentum [39]. The prefactor is given by (keeping in
mind that we go from cosmic time to conformal time)

λðηÞ ¼
ffiffiffiffiffiffi
ϵH

p
2

ffiffiffi
2

p
aMPl

; ð55Þ

where, as anticipated, we get a time-dependent interaction
parameter. We now have all the ingredients—the vacuum
state and the interaction Hamiltonian—to calculate the
matrix element given in (45).

D. Matrix element

Let us revisit our calculation of the matrix element for the
cubic Lagrangian in Minkowski space. The crucial differ-
ence between that calculation and the one for inflation
would be that instead of only keeping the term which solely
involves creation operators from the interacting
Hamiltonian, we shall also have to consider terms of the
form ck1

c†−k2
c†−k3

and ck1
ck2

c†−k3
. This is easy to under-

stand since for the case of flat spacetime, the only nonzero
contribution for the matrix element between the Minkowski
vacuum and an excited state (with, say, three particles for a
cubic interaction) can come if we sandwich a term con-
sisting of three creation operators in between. If there exists
any annihilation operator, it would simply annihilate the
vacuum, resulting in zero. On the other hand, for inflation,
we have a tensor product of the Minkowski vacuum for the
sub-Hubble modes and the squeezed vacuum for the super-
Hubble ones (52). In this case, the ladder operator(s)
corresponding to the sub-Hubble modes must be creation
ones c†−k, whereas the one(s) corresponding to the super-
Hubble modes can be either c†−k or ck. This is so because an
annihilation operator ck does not annihilate the squeezed
vacuum jSQðk; ηÞi. One can see this explicitly from the
form of the two-mode squeezed vacuum, as given in (17).
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Having said this, let us list all the possible choices of
interaction terms which can appear in the matrix elements:

(i) Terms of the form c†−kc
†
−kc

†
−k: There can be either

two system (super-Hubble) modes and one bath
(sub-Hubble) mode or vice versa.

(ii) Terms of the form ckc
†
−kc

†
−k: There can be either

two system modes and one bath mode or vice versa.
However, the annihilation operator must always
correspond to the super-Hubble mode.

(iii) Terms of the form ckckc
†
−k: There must be two

systemmodes, corresponding to the two annihilation
operators, and can, therefore, be only one bath
mode.

(iv) The terms proportional to ckckck necessarily yield
zero for the matrix element since the annihilation
operator corresponding to any of the bath modes
annihilates the Minkowski vacuum.

Let us consider the first case in detail in the following
calculation while we leave the details of the other terms for
the Appendix A. Therefore, the term of interest for us from
the Hint (54), for calculating (45), is the following:

� ffiffiffiffiffiffiffiffiffi
k2k3
k1

s
þ

ffiffiffiffiffiffiffiffiffi
k1k3
k2

s
þ

ffiffiffiffiffiffiffiffiffi
k1k2
k3

s �
c†−k1

c†−k2
c†−k3

⊂ Hint:

Next, we need to find the explicit action of a creation
operator on the squeezed vacuum. Using the definition of
the two-mode squeezed state from (17), we can formally
express the action of a creation operator on it as

c†−pjSQðk; ηÞi: ð56Þ

Schematically, it implies that we are considering an excited
state with a particle of energy p over our squeezed vacuum.
A similar iteration would create higher order excited states
over the squeezed vacuum. However, recall that for a cubic
interaction term, the only nonzero contribution to the
matrix element comes from having the first excited state
over both the squeezed and the Minkowski vacuum. Also,
since we are only considering cubic interactions, there can
be only two choices—either one of the modes is in the
system and two are in the bath or two of them are in the
system while one is in the bath. However, it will be clear
from the following that the dominant contribution to the
entanglement entropy comes from having two of the modes
in the bath and one in the system. This is not at all
surprising keeping in mind that the decoherence rate is also
dominated by having two short-wavelength modes and one
long-wavelength one.
Let us consider the former option first, i.e., p1; p2 > aH

while p3 < aH. The appropriate excited state to consider is
of the form

jn;Ni ¼ j1−p1
1−p2

i ⊗ c†−p3
jSQðk; ηÞi: ð57Þ

The only other novelty for our calculation is the effect of
the squeezed vacuum on the inner product. Recall the
standard result

hSQðk; ηÞjcpc†−qjSQðk; ηÞi
¼ ½hSQðk; ηÞjjSðk; ηÞQi

þ hSQðk; ηÞjNpjSQðk; ηÞi�δ3ðpþ qÞ
¼ ð1þ sinh2 rpÞδ3ðpþ qÞ; ð58Þ

where we have written things schematically to avoid clutter.
To explicitly see how this result comes about, one should
write down the unitary transformation of the creation and
annihilation operators under the squeezing operator, i.e.,
S†cS and S†c†S as linear combinations of c; c†, dropping
all momenta indices. Also, note that S† ¼ S−1. See
Appendix A for more details. The rest of the calculation
follows exactly that of flat space, and it is easy to evaluate
the matrix element as

ðc†c†c†ÞCsq
n;N ¼ ð2πÞ3ð1þ sinh2rp3

Þ

×

� ffiffiffiffiffiffiffiffiffiffi
p2p3

p1

r
þ

ffiffiffiffiffiffiffiffiffiffi
p1p3

p2

r
þ

ffiffiffiffiffiffiffiffiffiffi
p1p2

p3

r �
× δ3ðp1 þ p2 þ p3Þ: ð59Þ

It is clear that for our choice of p1; p2 ∈ bath while
p3 ∈ system, the dominant term in the above comes from

the third term ðCn;N ∝
ffiffiffiffiffiffiffiffi
p1p2

p3

q
Þ. It is also evident from the

above calculation that if we had two modes in the system
and one in the bath, then the dominant term in the matrix
element would have the form

ðc†c†c†ÞCfold
n;N ¼ð2πÞ3ð1þsinh2rp2

Þð1þsinh2rp3
Þ

×

� ffiffiffiffiffiffiffiffiffiffi
p2p3

p1

r
þ

ffiffiffiffiffiffiffiffiffiffi
p1p3

p2

r
þ

ffiffiffiffiffiffiffiffiffiffi
p1p2

p3

r �
×δ3ðp1þp2þp3Þ

≈ð2πÞ3ð1þsinh2rp2
Þð1þsinh2rp3

Þ

×

� ffiffiffiffiffiffiffiffiffiffi
p1p3

p2

r
þ

ffiffiffiffiffiffiffiffiffiffi
p1p2

p3

r �
δ3ðp1þp2þp3Þ; ð60Þ

where we have chosen p1 > aH and p2; p3 < aH. Already
at this stage we can see that the entanglement entropy for
cosmological perturbations, during inflation, peaks in the
“squeezed” limit p3 ≪ p1 ≈ p2, given the momentum
structure of the matrix element, for ðc†c†c†ÞCsq

n;N, whereas
it gets its maximum contribution in the “folded” limit
p3 þ p2 ≈ p1 for the other case ðc†c†c†ÞCfold

n;N .
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E. Entanglement entropy

Let us recall the formula for the leading order term in the
entanglement entropy

Sent ¼ −λ2 lnðλ2Þ
X
n;N≠0

jCn;N j2
ðpn þ pNÞ2

; ð61Þ

where a sum is implied on both types of Cn;N calculated in
(59) and (60). Note our slight difference in convention of
defining the matrix element Cn;N with that of [10] [our C̃nN

in (45) is equivalent to their CnN]. Also, we have replaced
the explicit expressions for the energy eigenvalues in the
original flat space formula by the comoving momenta
corresponding to the energy difference. As mentioned,
the energy difference between an excited state and the

vacuum—both Minkowski and squeezed—is still a well-
defined quantity. This observation remains crucial in the cal-
culation carried out in Appendix B for the time-dependent
case, and not just for the approximation used here.
Note that the sum over ðn;NÞ translates into integrals

over all the momentum modes in the formula (44). Recall
that there was a similar integral over all momentum modes
also in the expression of the entropy arising from the
squeezing part of the quadratic Hamiltonian, as shown in
(29). However, unlike in that case, we would have the
integrals over all momentum conserving configurations
involving ðp1;p2;p3Þ and not over individual modes as is
expected for an entanglement entropy coming from cubic
interactions. Keeping this is mind, the entanglement
entropy (per unit comoving volume) is given by

ðc†c†c†Þsent ¼ −ð2πÞ3λ2 lnðλ2Þ
Z

aH

H

d3p3

ð2πÞ3
Z

aMPl

aH

d3p2

ð2πÞ3
Z

aMPl

aH

d3p1

ð2πÞ3 δ
3ðp1 þ p2 þ p3Þ

�
p1p2

p3

� ð1þ sinh2rp3
Þ2

ðp1 þ p2 þ p3Þ2

− ð2πÞ3λ2 lnðλ2Þ
Z

aH

H

d3p3

ð2πÞ3
Z

aH

H

d3p2

ð2πÞ3
Z

aMPl

aH

d3p1

ð2πÞ3 δ
3ðp1 þ p2 þ p3Þ

×

�� ffiffiffiffiffiffiffiffiffiffi
p1p3

p2

r
þ

ffiffiffiffiffiffiffiffiffiffi
p1p2

p3

r �
2 ð1þ sinh2rp2

Þ2ð1þ sinh2rp3
Þ2

ðp1 þ p2 þ p3Þ2
�
≕ I1 þ I2; ð62Þ

where we have only kept the dominant terms from the
matrix elements (59) and (60). It is important to discuss the
limits of the above integral first: We have introducedMPl as
the natural physical UV cutoff and the comoving wave
number at the beginning of inflation as the infrared cutoff.
We set ai ¼ 1 for the scale factor at the beginning of
inflation (and therefore, in our convention, a is always
> 1). We also assume that the Hubble parameter, H,
remains constant during inflation. Furthermore, the UV
cutoff for the comoving momenta is given by aMPl which
signifies the fact that the integration of the environment is
over a fixed number of bath modes, even though we are
considering an accelerating background. This is so because
although the environment is continuously depleted by

modes getting redshifted into the system, there is also a
constant supply of modes from the UV into the bath.7

However, the system has an increasing phase space of
modes as more and more modes become super-Hubble as
time goes on, and given our infrared cutoff which states that
there were no comoving modes which were super-Hubble
before inflation started. Naturally, we have to assume that
inflation starts at a finite time in the past which reinforces
the need of having an UV cutoff for the perturbation modes.
Let us now estimate the integrals I1 and I2 given in (62).

For I1, whenwe have two bathmodes and one systemmode,
the integrand would naturally have its largest contribution
coming from the squeezed limit, as shown below:

I1 ¼ −ð2πÞ3λ2 lnðλ2Þ
Z

aH

H

d3p3

ð2πÞ3
Z

aMPl

aH

d3p2

ð2πÞ3
Z

aMPl

aH

d3p1

ð2πÞ3 δ
3ðp1 þ p2 þ p3Þ

�
p1p2

p3

� ð1þ sinh2rp3
Þ2

ðp1 þ p2 þ p3Þ2

¼ −λ2 lnðλ2Þ
Z

aH

H

d3p3

ð2πÞ3
Z

aMPl

aH

d3p2

ð2πÞ3
�
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þ p2

3 þ 2p2p3 cosΘ
p

p3

� ð1þ sinh2rp3
Þ2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þ p2

3 þ 2p2p3 cosΘ
p

þ p2 þ p3Þ2

≈ −λ2 lnðλ2Þ
Z

aMPl

aH

d3p2

ð2πÞ3
Z

aH

H

d3p3

ð2πÞ3
ðaHÞ4
24p5

3

∼
ϵH

3ð2πÞ426a2M2
Pl

ðaHÞ4½ðaMPlÞ3 − ðaHÞ3�
�
1

H2
−

1

ðaHÞ2
�
× lnðλ2Þ ≲ ϵHH2MPla5 lnðλ2Þ: ð63Þ

7This mode creation is a source of nonunitarity which is one of the arguments for the TCC [37,38].
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In the second line, we have killed the p1 integral using
the delta function, introducing the angle Θ between p2 and
p3. In the next line, we introduce the crucial approximation
that the integrand peaks in the limitΘ → π=2 and p2 ≫ p3,
i.e., the squeezed limit. This would help us in getting an
upper bound on the entanglement entropy corresponding to
the I1 term. We have also used the expression for the
squeezing parameter from (11) and used the approximation
that 1þ sinh rk ≈ sinh rk, for large squeezing, in this step.
It is then easy to see that the integration over the bath modes
is dominated by the upper limit (the UV cutoff scale), while
the integral over the system mode p3 is dominated by the
lowest value of p3, i.e., by the infrared (IR) cutoff scale. We
have only kept the leading terms in the integrals in the same
spirit to arrive at our lower estimate for the entropy density,
ignoring numerical factors. We note that a factor of a3

should be divided from the final result in order to account
for the entanglement entropy density (total entropy per unit
physical volume). We are then left with a factor of ða=aiÞ2
(recall, we have set ai ¼ 1), and this reflects the fact that
the phase space of the system modes is growing, and the
contribution to the p3 integral is dominated by the IR
cutoff. Collecting everything, the estimate8 of the entan-
glement entropy per unit physical volume coming from I1
is given by

sI1ent ≲ ϵHH2MPla2 lnðλ2Þ; ð64Þ

where a > 1 is such that the number of e-foldings of
inflation is given by N ≔ ln a in our convention.
Let us now first show that the contribution coming from I2

to theentanglemententropydensitywouldbesubdominant to
the above result. In this case of having two systems and one
bath mode, the largest contribution to the integrand would
come from the folded limit p1 ≈ p2 þ p3. Following the
calculation as in the previous case, we can arrive at an upper
bound for the estimate of this term in a similarway.However,
note that onceweeliminate the integral over thebathmodep1

using the delta function, none of the system mode integrals
which are left have any dependence on MPl. The other
difference lies in the additional squeezing terms leading to
an extra factor of the IR cutoff in the final result, namely,

sI2ent ≲ ϵHH5
1

M2
Pl

a3 lnðλ2Þ: ð65Þ

Once again,wehave expressed this final result in termsof the
entanglemententropyperunitphysicalvolumeandhaveonly
given a rough estimate of the upper bound. Thus, we find

f ≔
sI1ent
sI2ent

¼ 1

a

�
MPl

H

�
3

; ð66Þ

which means that sI2ent shall always remain subdominant to
sI1ent, provided f > 1 ⇒ N < 3 lnðMPl=HÞ. In the next sec-
tion,we shall show that combining theobserved scalar power
spectrum with the fact that the entanglement entropy of
cosmological perturbations during inflation remain smaller
than the thermal entropy produced during (p)reheating leads
to this condition always being satisfied. Therefore, we can
always ignore the entanglement entropy corresponding to
having two systems and one bath mode when compared to
that of having two sub- and one super-Hubble mode.
Note that the above estimates were calculated using the

approximations of squeezed and folded shapes, in which
the integrands reach their peak values. The full integrals do
not lend themselves to having simple analytic forms, and
we have thus avoided writing them down explicitly. The
effect of removing these approximations would result in
some small numerical factors appearing in front of our
estimates, as in (64). However, recall that here we have only
shown the result of the calculation of the entanglement
entropy coming from the terms of the form c†−kc

†
−kc

†
−k,

arising from the interaction Hamiltonian in (54). As
mentioned earlier, there are other terms, proportional to
ckc

†
−kc

†
−k and ckckc

†
−k, which also contribute to the

entanglement entropy. As shown in Appendix A, in the
limit of large squeezing, rk ≫ 1, the contribution of all of
these terms are either proportional to sI1ent or to sI2ent.
Naturally, we neglect the terms proportional to sI2ent since
they are subdominant. And the terms which are propor-
tional to sI1ent shall add to our estimate for the entanglement
entropy density (64). All of this is to say that in our order of
magnitude estimate for the entanglement entropy density of
cosmological perturbations during inflation, there should
be some Oð1Þ numerical factor appearing, namely

sent ∼Oð1Þ lnðλ2ÞϵHH2MPla2: ð67Þ

There are two sources which contribute to this Oð1Þ
number—one from the additional terms, as shown in
Appendix A, and the other coming from the fact that we
are estimating the integral by its upper bound. From now
on, we shall drop this number as well as the logarithmic
factor in our upcoming discussions.
Now that we have an estimate for the entanglement

entropy due to the gravitational nonlinearities, let us
compare this with the contribution coming from the
squeezing part of the quadratic Hamiltonian, as in (29).
As mentioned earlier, for large rk ≫ 1, the entropy density
(per physical volume), coming from (29), is given by (31)

ssq ¼
1

a3

Z
aH

H
d3k ln ðsinh2 rkÞ ∼H3; ð68Þ

8To remind the readers, this is a lower bound on the amount of
entanglement entropy produced in any model of inflation since
we are only considering cubic interactions of density perturba-
tions alone, which come from minimally coupling a scalar field to
GR. There are necessarily other sources such as those due to non-
Gaussian terms for tensor perturbations.
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where we have, once again, ignored some small numerical
factors.
Although sent corresponding to cubic interactions arising

from gravitational nonlinearities is suppressed by a factor
of ϵH (as it should be), it is still greater than ssq. One way to
easily see this is to approximate the value of the observed
scalar power spectrum as

Pζ ∼
1

ϵH

�
H
MPl

�
2

∼ 10−9; ð69Þ

such that ϵH ∼ 109ðH=MPlÞ2. Let us define the ratio

t ≔
sent
ssq

∼ ϵH

�
MPl

H

�
a2 ∼ 109

�
H
MPl

�
e2N: ð70Þ

As we shall see from the bounds on N that we will derive in
the next section, this quantity t > 1 and thus the entangle-
ment entropy from non-Gaussianities would be larger than
that corresponding to the squeezed vacuum, provided
inflation lasts a reasonable amount of time and is not
fine-tuned to be extremely small. This is quite a remarkable
result since this implies that the entanglement entropy due
to (cubic) gravitational nonlinearities are larger than that
due to the (squeezing part of the) quadratic action.

V. UPPER BOUND ON THE DURATION OF
INFLATION

We have seen that the entanglement entropy density of
cosmological perturbations produced by nonlinearities
builds up during a period of inflation as

a
ai

¼ eN; ð71Þ

where N is the number of e-foldings of inflation and ai is
the value of the scale factor at the beginning of inflation
(which we had set equal to 1 in the last section, for
simplicity). In order to allow a graceful exit from inflation
consistent with the second law of thermodynamics, it is
important to make sure that the entropy due to these
interactions remains subdominant to the entropy in the
thermal radiation state after inflation. This thermal entropy
density is given by

sth ¼
4π2

45
g�T3

R; ð72Þ

where TR is the initial temperature of the radiation bath, and
g� is the number of spin degrees of freedom in the radiation
bath. Assuming rapid thermalization after inflation, and
nearly constant Hubble parameter during inflation, this
yields

sth ≃
4π2

45
g�H3=2M3=2

Pl : ð73Þ

Making use of the result (67), the requirement

sth > sent ð74Þ

yields the condition

N <
1

4
ln

�
MPl

H

�
þ 1

2
ln ϵ−1H ð75Þ

(modulo numerical factors). The value of ϵH is given in
terms of H and MPl via Eq. (69), invoking the observed
value of the amplitude of the power spectrum of cosmo-
logical perturbations. Inserting the resulting relation for ϵH
yields

N <
5

4
ln

�
MPl

H

�
−
9

2
ln 10; ð76Þ

which is very close to the bound [37]

N < ln

�
MPl

H

�
; ð77Þ

which results from the TCC [38]. Note that this bound on
the duration of the inflationary phase is the same as derived
in [47], where it was argued that beyond that time the
de Sitter phase cannot be given a well-defined classi-
cal background interpretation due to the buildup of
entanglement.9

We are thus led to speculate the TCC may have a
derivation based on entropy considerations and the second
law of thermodynamics. It is already known that entropy
considerations have also proven useful [50] to derive the de
Sitter swampland conjecture [51,52], one of the various
constraints on effective field theories to be consistent with
string theory (see, e.g., [53,54] for reviews).
Note that we have derived a lower bound on the

entanglement entropy due to the minimal gravitational
nonlinearities (ignoring those due to tensor perturbations).
We might speculate that if we were to do a more detailed
calculation, our entropy bound on N might turn out to be in
even closer agreement with the bound from the TCC. Note
that the bound (76) can be relaxed if we consider H to be
decreasing substantially during inflation, or if the thermal
history of the universe after inflation is nonstandard.
However, as shown in [55,56], in these cases the TCC
bound is also relaxed. Note, also, that if we take into
account entanglement entropy due to modes which were

9In a later paper [48], another (and much larger) timescale was
introduced as the timescale beyond which the actual de Sitter
background breaks down. It was then argued [49] that low energy
effective field theory remains valid up to that time.
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already super-Hubble at the beginning of inflation, the
bound can be strengthened, in the same way that the TCC
bound is strengthened if we consider preinflation evolution
[56,57]. Finally, it has also been pointed out that deriving
the TCC from different quantum gravity arguments can, by
itself, lead to a refinement of it [58] and can bring it closer
to our bound.
Returning to the discussion at the end of the previous

section concerning the ratio of the entropies produced by
nonlinear entanglement effects on the one hand, and by
pure decoherence of the linear modes on the other, we see
that if the duration of inflation saturates the above bound
(76), then the entanglement entropy dominates by a factor
of ðMPl=HÞ3=2, the result we promised to derive earlier. In
other words, unless inflation lasts for a very short period of
time, sent would always dominate over ssq.
Note that a related bound on the duration of inflation

based on entanglement considerations was given in [59],
where it was argued that, interpreting the current horizon
entropy of the Universe as entanglement entropy, there is a
number of e-foldings of inflation before which there is no
entropy and we cannot talk about a de Sitter background.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have derived the entanglement entropy
of inflationary scalar perturbations, corresponding to non-
linearities arising from gravity. Although entropy of cos-
mological perturbations is a rich subject by itself, what is
novel to our work is that we calculate the entanglement
entropy to the leading order of cubic interactions, going
beyond the calculation of entropy corresponding to the
squeezing of the super-Hubble vacuum state. Remarkably,
we show that this cubic (and higher order) interactions are
essential even to calculate the entropy corresponding to the
quadratic Hamiltonian. This is so because decoherence
arising from these terms is what is responsible for reducing
the pure density matrix to a mixed one, by suppressing the
off-diagonal terms. These higher order interaction
Hamiltonians themselves lead to mode couplings such that
there is an entanglement between the super- and sub-
Hubble modes which is a direct manifestation of the
quantum origin of these vacuum fluctuations.10 The entan-
glement entropy corresponding to these interactions is what
we have calculated for the first time by treating the super-
Hubble modes as our system and the sub-Hubble ones as
a bath.
Our result shows that the entanglement entropy density

scales as H2MPlða=aiÞ2, where ai is the scale factor at the

beginning of inflation. In order to allow for a graceful exit
from inflation consistent with the second law of thermo-
dynamics, this entropy must be smaller than the thermal
entropy after inflation. This leads to an upper bound on the
duration of inflation which is very close to the bound
obtained from the TCC. Interestingly, the nonlinearities
produce the dominant contribution to the entropy of
cosmological perturbations, surpassing the one for the
squeezed vacuum, provided ϵ > ðH=MPlÞðai=aÞ2 and is
not fine-tuned to be extremely small. Using the upper bound
derived on the duration of inflation, this translates into the
statement that the entanglement entropy due to cubic
interactions dominate over the one due to the (quadratic)
squeezing term, provided inflation does not last for a very
short period of time. A priori, there is no reason to expect
this to be the case, and indeed one would intuitively guess
that the squeezing entropy would dominate over the (cubic)
entanglement entropy. As an aside, we rederived the
squeezing entropy from the full quantum density matrix,
using a suitable coarse-graining scheme, which matches
previous results [18,19], calculated using a stochastic
classical field approximation, in the large squeezing
(classical) limit.
As we have shown, the calculation of the entanglement

entropy of cosmological perturbations simplifies when
done in momentum space. It is easy to appreciate this
properly if one compares our result with that for determin-
ing the full nonunitary evolution of the density matrix of the
system modes as has been done, for instance, in [39] (see
[46] for the case of tensor modes). The time evolution of the
reduced density matrix involves non-Hamiltonian terms,
and might even contain non-Markovian terms, which
depend on the so-called Lindblad operator. If one were
to try and calculate the solution of the time-dependent
reduced density matrix and then evaluate the von Neumann
entropy associated with it, the calculation would become
much harder and rather intractable. In this paper, we give a
complementary way of calculating the entanglement
entropy without having to deal with the full dynamics
since, as emphasized earlier, we only require the calculation
of certain matrix elements for our purposes. The fact that
these two seemingly different methods yield the same result
for the entanglement entropy has been shown in [60] for
any quantum field theory. In addition, going to momentum
space makes it easy to impose a UV cutoff for the bath
modes, as has been done in this case.
The natural next step for us would be to calculate the

entanglement entropy corresponding to primordial gravi-
tational waves. Once again, assuming the simplest model of
inflation, nonlinearities would arise from gravitational
interactions which would lead to decoherence and entropy
production. Therefore, this calculation would also give an
improved lower bound on the amount of entropy which
must be produced in any model of inflation. Furthermore,
the leading interactions between the tensor perturbations

10This property of the entanglement entropy corresponding to
the interactions alone is something unique for models of the early
universe which explain macroscopic perturbations as originating
from quantum vacuum fluctuations, unlike the entropy corre-
sponding to the squeezing of the modes which can also be
interpreted as some type of classical Shannon entropy.
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are not slow-roll suppressed which typically lead them to
decohere faster than their scalar counterpart [46].
Anticipating along similar lines, we expect that the entan-
glement entropy of tensor modes would be somewhat
enhanced, and this will be studied in future work. The
cubic interactions coupling tensor and scalar modes also
need to be taken into account, which will result in
enhancing both the entanglement entropy density of the
scalar and the tensor perturbations.
Finally, we note that our analysis has been done in the

context of inflationary cosmology, but the methods also
apply to other early universe scenarios in which the
primordial fluctuations are quantum in origin, in particular
to the matter bounce and to the Ekpyrotic scenarios.
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APPENDIX A: FULL ENTANGLEMENT
ENTROPY

In the main body of the paper, we have shown in detail
the derivation of the entanglement entropy due to the
c†−kc

†
−kc

†
−k terms coming from the interaction Hamiltonian

in (54). However, as mentioned earlier, there are other
terms which also contribute to the entropy. Let us first
consider the terms of the form ckc

†
−kc

†
−k appearing in (54):

½cp1
c†−p2

c†−p3
þ cp2

c†−p1
c†−p3

þ cp3
c†−p2

c†−p2
�

×

� ffiffiffiffiffiffiffiffiffiffi
p1p2

p3

r
þ

ffiffiffiffiffiffiffiffiffiffi
p1p3

p2

r
þ

ffiffiffiffiffiffiffiffiffiffi
p2p3

p1

r �
: ðA1Þ

For terms such as these, we can have two possibilities as
before—two sub-Hubble modes and one super-Hubble
mode or the other way around. Let us take the former
case first. In this case, if p1; p1 > aH and p3 < aH, then

the first term proportional to
ffiffiffiffiffiffiffiffi
p1p2

p3

q
would naturally be the

dominant one. For this case, the only term which contrib-
utes would be the last one, proportional to cp3

. This is a
crucial argument, so let us emphasize it again—the matrix
element can be nonzero if there is no annihilation operator
present in the inner product corresponding to sub-Hubble
modes. The reason for this is the same as why there were no
annihilation elements present in the inner product for the
flat space calculation.
In this case, we need to calculate an inner product of the

form

hSQðk; ηÞjcpcqjSQðk; ηÞi
¼ h0k; 0−kjS†kðrk;ϕkÞcpcqSkðrk;ϕkÞj0k; 0−ki
¼ −eiϕp cosh rp sinh rpδ3ðpþ qÞ: ðA2Þ

In deriving this, we have used the transformation of the
annihilation operator under the unitary action of the
squeezing operator, namely [61]

S−1aS ¼ a cosh rþ a†eiϕ sinh r; ðA3Þ

where we have dropped the momentum indices for sim-
plicity. We have also used the fact that S† ¼ S−1.
The matrix element corresponding to this term would be

given by

ðcc†c†ÞCsq
n;N ∼ −ð2πÞ3ðeiϕp3 cosh rp3

sinh rp3
Þ

×
ffiffiffiffiffiffiffiffiffiffi
p1p2

p3

r
δ3ðp1 þ p2 þ p3Þ: ðA4Þ

Now let us recall that what enters in the formula of the
entanglement entropy is not ðcc†c†ÞCsq

n;N but rather its
amplitude squared, i.e., jðcc†c†ÞCsq

n;N j2. In the limit of large
squeezing, sinh rp3

≈ cosh rp3
≫ 1, and it is easy to see that

the entanglement entropy corresponding to this term would
be the same as that coming from sI1ent, as in (64).
Let us now return to our other possibility of having two

super-Hubble modes p2; p3 < aH and one sub-Hubble
mode p1 > aH. In this case, once again, the only nonzero
contribution comes from the term proportional to cp3

in

(A1). Of course, now one of the creation operators, c†p2
,

corresponds to a super-Hubble mode and thus we have an
inner product of the form hSQðk; ηÞjcpc†−qjSQðk; ηÞi in
addition to the one appearing in (A2). Collecting these
terms, the matrix element can easily be calculated to give

ðcc†c†ÞCfold
n;N ∼ −ð2πÞ3ðeiϕp3 cosh rp3

sinh rp3
Þ

× ð1þ sinh2rp2
Þ
� ffiffiffiffiffiffiffiffiffiffi

p1p3

p2

r
þ

ffiffiffiffiffiffiffiffiffiffi
p1p2

p3

r �
× δ3ðp1 þ p2 þ p3Þ: ðA5Þ

Once again, it is easy to see that in the limit rp3
≫ 1, the

contribution of this term to the entanglement entropy would
be exactly the same as that of sI2ent. Thus, the contribution of
this term would be subdominant, for the same reason as that
of sI2ent.
Finally there remains one last type of terms which arise

from the interaction Hamiltonian (54), which are propor-
tional to ckckc

†
−k. These are the terms which go as
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½cp1
cp2

c†−p3
þ cp1

cp3
c†−p2

þ cp3
cp2

c†−p1
�

×

� ffiffiffiffiffiffiffiffiffiffi
p1p2

p3

r
þ

ffiffiffiffiffiffiffiffiffiffi
p1p3

p2

r
þ

ffiffiffiffiffiffiffiffiffiffi
p2p3

p1

r �
: ðA6Þ

For such terms, the only nonzero contribution appears
when there are two super-Hubble and one sub-Hubble
modes. In this case, there shall appear two factors of the
inner product hSQðk; ηÞjcpcqjSQðk; ηÞi in the matrix
element ðccc†ÞCfold

n;N . It should be clear from the calculations
above that the entanglement entropy corresponding to this
term shall be the same as sI2ent and shall, therefore, be
subdominant. Once again, we have assumed the large
squeezing limit to arrive at this conclusion.

APPENDIX B: TIME-DEPENDENT
PERTURBATION THEORY

We begin with the matrix element, for a time-dependent
perturbation Hamiltonian, up to leading order,

C̃nN ¼ −i
Z

η

η0

dη0eiωη0CnNðη0Þ; ðB1Þ

where CnNðηÞ ¼ hn;NjHintðηÞj0; 0i and ω is the energy
difference between the states for which the matrix element
is being calculated. As before, one of the vacuum states,
namely for the super-Hubble modes, is going to be the
squeezed vacuum which is, by itself, also time dependent.
Furthermore, note that ω for our purposes is the energy
difference between a one-particle state and the vacuum
which is well-defined and, just as before, is given
by ω ¼ p1 þ p2 þ p3.
Here, we shall carry out the explicit calculation for the

ðc†c†c†Þsent term for the case in which there are two sub-
Hubble modes and one super-Hubble mode. In our nota-
tion, this should correspond to the sI1ent result. From this
calculation, it would be clear that using the time-dependent
perturbation theory for the other terms would lead to the
same result, up to the leading order term. Following (59),
we find that (although there is no I1 integral here so to
speak, we keep this notation for this term to facilitate
comparison with our earlier calculation):

sI1ent ∼ ð2πÞ3
Z

aH

H

d3p3

ð2πÞ3
Z

aMPl

aH

d3p2

ð2πÞ3

×
Z

aMPl

aH

d3p1

ð2πÞ3 δ
3ðp1 þ p2 þ p3Þ

�
p1p2

p3

�

×

����
Z

η

η0

dη0eiðp1þp2þp3Þη0λð1þ sinh2rp3
Þ
����2; ðB2Þ

Let us slowly examine how we arrive at the above
expression for the time-dependent case. First, note that we
have dropped the logarithmic term since it would be small

and this is consistent with our assumption earlier where we
had also ignored this term, along with some numerical
factors. The important observation is that both λ and rp3

are
time-dependent quantities and cannot be taken outside the
time integral which appears in (B1) (the factor of −i does
not make any difference since we consider the absolute
value of the matrix element). This, and the fact that there is
no ðp1 þ p2 þ p3Þ in the denominator, is what distin-
guishes this expression from our simplified time-indepen-
dent assumption earlier. Let us focus on the time-integral
first and use (11) and the fact that we have large squeezing,
to get

Z
η

η0

dη0
eiðp1þp2þp3Þη0

4p2
3η

0

�
H

ffiffiffiffiffiffi
ϵH

p
2

ffiffiffi
2

p
MPl

�
: ðB3Þ

We can pull out everything which is time dependent outside
this integral, remembering to square everything. [We have
also gotten rid of the (−i) factor appearing in the definition
of the matrix element since we only need its absolute
value.] However, the crucial part is indeed the time integral
which is now approximated as

Z
η

η0

dη0
eiðp1þp2þp3Þη0

η0
≈
1

η

1

ðp1 þ p2 þ p3Þ
: ðB4Þ

Let us go over this approximation slowly as this is the most
important result for us in this calculation. By the Riemann-
Lebesgue lemma,

R
η
η0
dη0fðη0Þeiðp1þp2þp3Þη0 ¼ Oð1=ðp1þ

p2 þ p3ÞÞ when ðp1 þ p2 þ p3Þ → ∞. This is true since,
for us, fðη0Þ ¼ 1=η0, a C∞ function over ðη0; ηÞ [62]. For
the squeezed configuration we are interested in,
p1 ≈ p2 ≫ p3, we have ðp1 þ p2 þ p3Þ very large.
Moreover, by definition of the integration limits,
η0 ≤ η0 ≤ η. Specifically, since η0 denotes the time at the
beginning of inflation, jη0j ≫ 1 whereas η → 0. Therefore,
the leading order term from the above integral can be
approximated as has been shown above since
1=jη0j ≪ 1=jηj. Once we make the above approximation,
the equation for the entanglement entropy is given by

sI1ent ∼
ð2πÞ3
27M2

Pl

Z
aH

H

d3p3

ð2πÞ3
Z

aMPl

aH

d3p2

ð2πÞ3

×
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aMPl
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d3p1

ð2πÞ3 δ
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�
p1p2

p5
3

�
ϵHa2H4

ðp1 þ p2 þ p3Þ2
: ðB5Þ

This expression is exactly the same as that in (63) (up to
the fact that we have explicitly written down the expression
for λ2 here and ignored the log term), and we shall get the
same estimate for the entropy of our leading order term. As
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should be clear from this calculation, all the other terms
which have been calculated assuming time-independent
perturbation theory retain the same form, up to leading

order, even when we relax this assumption and use time-
dependent perturbation theory to calculate our matrix
elements.

[1] P. Calabrese and J. L. Cardy, Entanglement entropy and
quantum field theory, J. Stat. Mech. (2004) P06002; J.
Eisert, M. Cramer, and M. B. Plenio, Area laws for the
entanglement entropy–A review, Rev. Mod. Phys. 82, 277
(2010).

[2] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999); Adv. Theor. Math. Phys. 2, 231 (1998).

[3] S. Ryu and T. Takayanagi, Holographic Derivation of
Entanglement Entropy from AdS=CFT, Phys. Rev. Lett.
96, 181602 (2006); Aspects of holographic entanglement
entropy, J. High Energy Phys. 08 (2006) 045; T. Nishioka,
S. Ryu, and T. Takayanagi, Holographic entanglement
entropy: An overview, J. Phys. A 42, 504008 (2009).

[4] T. Hartman and J. Maldacena, Time evolution of entangle-
ment entropy from black hole interiors, J. High Energy
Phys. 05 (2013) 014.

[5] M. Nozaki, T. Numasawa, A. Prudenziati, and T.
Takayanagi, Dynamics of entanglement entropy from Ein-
stein equation, Phys. Rev. D 88, 026012 (2013).

[6] S. N. Solodukhin, Entanglement entropy of black holes,
Living Rev. Relativity 14, 8 (2011).

[7] J. Maldacena and G. L. Pimentel, Entanglement entropy in
de Sitter space, J. High Energy Phys. 02 (2013) 038; X.
Dong, E. Silverstein, and G. Torroba, De Sitter holography
and entanglement entropy, J. High Energy Phys. 07 (2018)
050; G. N. Remmen, Defining gravity: Effective field
theory, entanglement, and cosmology, Ph.D. thesis, Caltech,
2017; H. Geng, S. Grieninger, and A. Karch, Entropy,
Entanglement and swampland bounds in DS/dS, J. High
Energy Phys. 06 (2019) 105; H. Geng, Some information
theoretic aspects of De-Sitter holography, J. High Energy
Phys. 02 (2020) 005.

[8] C. Arias, F. Diaz, and P. Sundell, De Sitter space and
entanglement, Classical Quantum Gravity 37, 015009
(2020).

[9] M. Van Raamsdonk, Building up spacetime with quantum
entanglement, Gen. Relativ. Gravit. 42, 2323 (2010); Int. J.
Mod. Phys. D 19, 2429 (2010); V. Balasubramanian, B. D.
Chowdhury, B. Czech, and J. de Boer, Entwinement and the
emergence of spacetime, J. High Energy Phys. 01 (2015)
048.

[10] V. Balasubramanian, M. B. McDermott, and M. Van Raams-
donk, Momentum-space entanglement and renormalization
in quantum field theory, Phys. Rev. D 86, 045014 (2012).

[11] R. Lundgren, F. Liu, P. Laurell, and G. A. Fiete, Momen-
tum-space entanglement after a quench in one-dimensional
disordered fermionic systems, arXiv:1909.05140; D.W. F.
Alves and G. Camilo, Momentum-space entanglement after
smooth quenches, Eur. Phys. J. C 79, 48 (2019); S. S. Kumar

and S. Shankaranarayanan, Role of spatial higher order
derivatives in momentum space entanglement, Phys. Rev.
D 95, 065023 (2017); G. Grignani and G.W. Semenoff,
Scattering and momentum space entanglement, Phys. Lett. B
772, 699 (2017); R. Lundgren, Momentum-space entangle-
ment in Heisenberg spin-half ladders, Phys. Rev. B 93,
125107 (2016); R. Lundgren, J. Blair, M. Greiter, A.
Laeuchli, G. A. Fiete, and R. Thomale, Momentum-Space
Entanglement Spectrum of Bosons and Fermions with
Interactions, Phys. Rev. Lett. 113, 256404 (2014); T. C. L.
Hsu, M. B. McDermott, and M. Van Raamsdonk, Momen-
tum-space entanglement for interacting fermions at finite
density, J. High Energy Phys. 11 (2013) 121.

[12] V. Mukhanov and G. Chibisov, (in Russian) Quantum
fluctuation and nonsingular iniverse, Pis’ma Zh. Eksp. Teor.
Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].

[13] J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, The
Ekpyrotic universe: Colliding branes and the origin of the
hot big bang, Phys. Rev. D 64, 123522 (2001); From big
crunch to big bang, Phys. Rev. D 65, 086007 (2002).

[14] F. Finelli and R. Brandenberger, On the generation of a scale
invariant spectrum of adiabatic fluctuations in cosmological
models with a contracting phase, Phys. Rev. D 65, 103522
(2002).

[15] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,
Theory of cosmological perturbations, Phys. Rep. 215, 203
(1992).

[16] R. H. Brandenberger, Lectures on the theory of cosmologi-
cal perturbations, Lect. Notes Phys. 646, 127 (2004).

[17] R. H. Brandenberger and C. Vafa, Superstrings in the early
universe, Nucl. Phys. B316, 391 (1989).

[18] R. H. Brandenberger, V. F. Mukhanov, and T. Prokopec,
Entropy of a Classical Stochastic Field and Cosmological
Perturbations, Phys. Rev. Lett. 69, 3606 (1992).

[19] R. H. Brandenberger, T. Prokopec, and V. F. Mukhanov, The
entropy of the gravitational field, Phys. Rev. D 48, 2443
(1993).

[20] T. Prokopec, Entropy of the squeezed vacuum, Classical
Quantum Gravity 10, 2295 (1993).

[21] A. Matacz, The coherent state representation of quantum
fluctuations in the early universe, Phys. Rev. D 49, 788
(1994).

[22] M. Gasperini and M. Giovannini, Entropy production in the
cosmological amplification of the vacuum fluctuations,
Phys. Lett. B 301, 334 (1993); Quantum squeezing and
cosmological entropy production, Classical Quantum Grav-
ity 10, L133 (1993).

[23] C. Kiefer, D. Polarski, and A. A. Starobinsky, Entropy of
gravitons produced in the early universe, Phys. Rev. D 62,
043518 (2000).

BRAHMA, ALARYANI, and BRANDENBERGER PHYS. REV. D 102, 043529 (2020)

043529-18

https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1751-8113/42/50/504008
https://doi.org/10.1007/JHEP05(2013)014
https://doi.org/10.1007/JHEP05(2013)014
https://doi.org/10.1103/PhysRevD.88.026012
https://doi.org/10.12942/lrr-2011-8
https://doi.org/10.1007/JHEP02(2013)038
https://doi.org/10.1007/JHEP07(2018)050
https://doi.org/10.1007/JHEP07(2018)050
https://doi.org/10.1007/JHEP06(2019)105
https://doi.org/10.1007/JHEP06(2019)105
https://doi.org/10.1007/JHEP02(2020)005
https://doi.org/10.1007/JHEP02(2020)005
https://doi.org/10.1088/1361-6382/ab5b78
https://doi.org/10.1088/1361-6382/ab5b78
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1142/S0218271810018529
https://doi.org/10.1142/S0218271810018529
https://doi.org/10.1007/JHEP01(2015)048
https://doi.org/10.1007/JHEP01(2015)048
https://doi.org/10.1103/PhysRevD.86.045014
https://arXiv.org/abs/1909.05140
https://doi.org/10.1140/epjc/s10052-019-6581-2
https://doi.org/10.1103/PhysRevD.95.065023
https://doi.org/10.1103/PhysRevD.95.065023
https://doi.org/10.1016/j.physletb.2017.07.030
https://doi.org/10.1016/j.physletb.2017.07.030
https://doi.org/10.1103/PhysRevB.93.125107
https://doi.org/10.1103/PhysRevB.93.125107
https://doi.org/10.1103/PhysRevLett.113.256404
https://doi.org/10.1007/JHEP11(2013)121
https://doi.org/10.1103/PhysRevD.64.123522
https://doi.org/10.1103/PhysRevD.65.086007
https://doi.org/10.1103/PhysRevD.65.103522
https://doi.org/10.1103/PhysRevD.65.103522
https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1007/b97189
https://doi.org/10.1016/0550-3213(89)90037-0
https://doi.org/10.1103/PhysRevLett.69.3606
https://doi.org/10.1103/PhysRevD.48.2443
https://doi.org/10.1103/PhysRevD.48.2443
https://doi.org/10.1088/0264-9381/10/11/012
https://doi.org/10.1088/0264-9381/10/11/012
https://doi.org/10.1103/PhysRevD.49.788
https://doi.org/10.1103/PhysRevD.49.788
https://doi.org/10.1016/0370-2693(93)91159-K
https://doi.org/10.1088/0264-9381/10/9/004
https://doi.org/10.1088/0264-9381/10/9/004
https://doi.org/10.1103/PhysRevD.62.043518
https://doi.org/10.1103/PhysRevD.62.043518


[24] D. Campo and R. Parentani, Decoherence and entropy of
primordial fluctuations. I: Formalism and interpretation,
Phys. Rev. D 78, 065044 (2008); Decoherence and entropy
of primordial fluctuations II. The entropy budget, Phys. Rev.
D 78, 065045 (2008).

[25] C. Kiefer, D. Polarski, and A. A. Starobinsky, Quantum to
classical transition for fluctuations in the early universe, Int.
J. Mod. Phys. D 07, 455 (1998).

[26] P. Martineau, On the decoherence of primordial fluctuations
during inflation, Classical Quantum Gravity 24, 5817
(2007).

[27] C. P. Burgess, R. Holman, G. Tasinato, and M. Williams,
EFT beyond the horizon: Stochastic inflation and how
primordial quantum fluctuations go classical, J. High
Energy Phys. 03 (2015) 090.

[28] E. Nelson, Quantum decoherence during inflation from
gravitational nonlinearities, J. Cosmol. Astropart. Phys. 03
(2016) 022.

[29] E. Calzetta and B. L. Hu, Quantum fluctuations,
decoherence of the mean field, and structure formation in
the early universe, Phys. Rev. D 52, 6770 (1995); F. C.
Lombardo and D. Lopez Nacir, Decoherence during in-
flation: The generation of classical inhomogeneities, Phys.
Rev. D 72, 063506 (2005).

[30] M. Franco and E. Calzetta, Decoherence in the cosmic
background radiation, Classical Quantum Gravity 28,
145024 (2011).

[31] M. a. Sakagami, Evolution from pure states into mixed
states in De Sitter space, Prog. Theor. Phys. 79, 442 (1988);
R. H. Brandenberger, R. Laflamme, and M. Mijic, Classical
perturbations from decoherence of quantum fluctuations in
the inflationary universe, Mod. Phys. Lett. A 05, 2311
(1990).

[32] D. Boyanovsky, Imprint of entanglement entropy in the
power spectrum of inflationary fluctuations, Phys. Rev. D
98, 023515 (2018).

[33] J. F. Koksma, T. Prokopec, and M. G. Schmidt, Entropy and
correlators in quantum field theory, Ann. Phys. (Amster-
dam) 325, 1277 (2010); Decoherence and dynamical en-
tropy generation in quantum field theory, Phys. Lett. B 707,
315 (2012).

[34] P. Friedrich and T. Prokopec, Entropy production in
inflation from spectator loops, Phys. Rev. D 100, 083505
(2019).

[35] T. Prokopec and G. I. Rigopoulos, Decoherence from
Isocurvature perturbations in Inflation, J. Cosmol. Astro-
part. Phys. 11 (2007) 029.

[36] L. Lello, D. Boyanovsky, and R. Holman, Superhorizon
entanglement entropy from particle decay in inflation,
J. High Energy Phys. 04 (2014) 055.

[37] A. Bedroya, R. Brandenberger, M. Loverde, and C. Vafa,
Trans-Planckian censorship and inflationary cosmology,
Phys. Rev. D 101, 103502 (2020).

[38] A. Bedroya and C. Vafa, Trans-Planckian censorship and the
swampland, arXiv:1909.11063.

[39] S. Shandera, N. Agarwal, and A. Kamal, Open quantum
cosmological system, Phys. Rev. D 98, 083535 (2018).

[40] A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec,
Inflation and squeezed quantum states, Phys. Rev. D 50,
4807 (1994).

[41] M. Gasperini and M. Giovannini, Von Neumann and
Shannon-Wehrl entropy for squeezed states and cosmologi-
cal particle production, String Theory in Curved Space
Times (World Scientific, Singapore, 1998), pp. 249–259.

[42] P. Adshead, W. Hu, C. Dvorkin, and H. V. Peiris, Fast
computation of bispectrum features with generalized slow
roll, Phys. Rev. D 84, 043519 (2011).

[43] J. M. Maldacena, Non-Gaussian features of primordial
fluctuations in single field inflationary models, J. High
Energy Phys. 05 (2003) 013.

[44] X. Chen, M. x. Huang, S. Kachru, and G. Shiu, Observa-
tional signatures and non-Gaussianities of general single
field inflation, J. Cosmol. Astropart. Phys. 01 (2007) 002.

[45] J. Martin and V. Vennin, Observational constraints on
quantum decoherence during inflation, J. Cosmol. Astro-
part. Phys. 05 (2018) 063; J. Martin, V. Vennin, and P. Peter,
Cosmological inflation and the quantum measurement
problem, Phys. Rev. D 86, 103524 (2012).

[46] J. Gong and M. Seo, Quantum non-linear evolution of
inflationary tensor perturbations, J. High Energy Phys. 05
(2019) 021.

[47] G. Dvali and C. Gomez, Quantum compositeness of gravity:
Black holes, AdS and inflation, J. Cosmol. Astropart. Phys.
01 (2014) 023.

[48] G. Dvali, C. Gomez, and S. Zell, Quantum break-time of de
Sitter, J. Cosmol. Astropart. Phys. 06 (2017) 028; Quantum
breaking bound on de Sitter and swampland, Fortschr. Phys.
67, 1800094 (2019).

[49] G. Dvali, A. Kehagias, and A. Riotto, Inflation and
decoupling, arXiv:2005.05146.

[50] H. Ooguri, E. Palti, G. Shiu, and C. Vafa, Distance and de
Sitter conjectures on the swampland, Phys. Lett. B 788, 180
(2019).

[51] G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa, De Sitter
space and the swampland, arXiv:1806.08362.

[52] S. K. Garg and C. Krishnan, Bounds on slow roll and the de
Sitter swampland, J. High Energy Phys. 11 (2019) 075.

[53] T. D. Brennan, F. Carta, and C. Vafa, The string landscape,
the swampland, and the missing corner, Proc. Sci.,
TASI2017 (2017) 015 [arXiv:1711.00864].

[54] E. Palti, The swampland: Introduction and review, Fortschr.
Phys. 67, 1900037 (2019).

[55] V. Kamali and R. Brandenberger, Relaxing the TCC bound
on inflationary cosmology?, Eur. Phys. J. C 80, 339 (2020);
M. Dhuria and G. Goswami, Trans-Planckian censorship
conjecture and non-thermal post-inflationary history, Phys.
Rev. D 100, 123518 (2019); M. Torabian, Non-standard
cosmological models and the trans-Planckian censorship
conjecture, arXiv:1910.06867; H. H. Li, G. Ye, Y. Cai, and
Y. S. Piao, Trans-Planckian censorship of multi-stage in-
flation and dark energy, Phys. Rev. D 101, 063527 (2020).

[56] S. Mizuno, S. Mukohyama, S. Pi, and Y. L. Zhang,
Universal upper bound on the inflationary energy scale
from the trans-Planckian censorship conjecture, Phys. Rev.
D 102, 021301 (2020).

[57] R. Brandenberger and E. Wilson-Ewing, Strengthening the
TCC bound on inflationary cosmology, J. Cosmol. Astro-
part. Phys. 03 (2020) 047; Y. Cai and Y. S. Piao, Pre-
inflation and trans-Planckian censorship, Sci. China Phys.
Mech. Astron. 63, 110411 (2020).

ENTANGLEMENT ENTROPY OF COSMOLOGICAL … PHYS. REV. D 102, 043529 (2020)

043529-19

https://doi.org/10.1103/PhysRevD.78.065044
https://doi.org/10.1103/PhysRevD.78.065045
https://doi.org/10.1103/PhysRevD.78.065045
https://doi.org/10.1142/S0218271898000292
https://doi.org/10.1142/S0218271898000292
https://doi.org/10.1088/0264-9381/24/23/006
https://doi.org/10.1088/0264-9381/24/23/006
https://doi.org/10.1007/JHEP03(2015)090
https://doi.org/10.1007/JHEP03(2015)090
https://doi.org/10.1088/1475-7516/2016/03/022
https://doi.org/10.1088/1475-7516/2016/03/022
https://doi.org/10.1103/PhysRevD.52.6770
https://doi.org/10.1103/PhysRevD.72.063506
https://doi.org/10.1103/PhysRevD.72.063506
https://doi.org/10.1088/0264-9381/28/14/145024
https://doi.org/10.1088/0264-9381/28/14/145024
https://doi.org/10.1143/PTP.79.442
https://doi.org/10.1142/S0217732390002651
https://doi.org/10.1142/S0217732390002651
https://doi.org/10.1103/PhysRevD.98.023515
https://doi.org/10.1103/PhysRevD.98.023515
https://doi.org/10.1016/j.aop.2010.02.016
https://doi.org/10.1016/j.aop.2010.02.016
https://doi.org/10.1016/j.physletb.2011.12.049
https://doi.org/10.1016/j.physletb.2011.12.049
https://doi.org/10.1103/PhysRevD.100.083505
https://doi.org/10.1103/PhysRevD.100.083505
https://doi.org/10.1088/1475-7516/2007/11/029
https://doi.org/10.1088/1475-7516/2007/11/029
https://doi.org/10.1007/JHEP04(2014)055
https://doi.org/10.1103/PhysRevD.101.103502
https://arXiv.org/abs/1909.11063
https://doi.org/10.1103/PhysRevD.98.083535
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1103/PhysRevD.84.043519
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1088/1475-7516/2007/01/002
https://doi.org/10.1088/1475-7516/2018/05/063
https://doi.org/10.1088/1475-7516/2018/05/063
https://doi.org/10.1103/PhysRevD.86.103524
https://doi.org/10.1007/JHEP05(2019)021
https://doi.org/10.1007/JHEP05(2019)021
https://doi.org/10.1088/1475-7516/2014/01/023
https://doi.org/10.1088/1475-7516/2014/01/023
https://doi.org/10.1088/1475-7516/2017/06/028
https://doi.org/10.1002/prop.201800094
https://doi.org/10.1002/prop.201800094
https://arXiv.org/abs/2005.05146
https://doi.org/10.1016/j.physletb.2018.11.018
https://doi.org/10.1016/j.physletb.2018.11.018
https://arXiv.org/abs/1806.08362
https://doi.org/10.1007/JHEP11(2019)075
https://arXiv.org/abs/1711.00864
https://doi.org/10.1002/prop.201900037
https://doi.org/10.1002/prop.201900037
https://doi.org/10.1140/epjc/s10052-020-7908-8
https://doi.org/10.1103/PhysRevD.100.123518
https://doi.org/10.1103/PhysRevD.100.123518
https://arXiv.org/abs/1910.06867
https://doi.org/10.1103/PhysRevD.101.063527
https://doi.org/10.1103/PhysRevD.102.021301
https://doi.org/10.1103/PhysRevD.102.021301
https://doi.org/10.1088/1475-7516/2020/03/047
https://doi.org/10.1088/1475-7516/2020/03/047
https://doi.org/10.1007/s11433-020-1573-5
https://doi.org/10.1007/s11433-020-1573-5


[58] S. Brahma, Trans-Planckian censorship conjecture
from the swampland distance conjecture, Phys. Rev. D
101, 046013 (2020); A. Berera, S. Brahma, and J. R.
Calderon, Role of trans-Planckian modes in cosmology,
arXiv:2003.07184; R. G. Cai and S. J. Wang, A refined
trans-Planckian censorship conjecture, arXiv:1912.00607;
L. Aalsma and G. Shiu, Chaos and complementarity in
de Sitter space, arXiv:2002.01326; S. Sun and Y. L.
Zhang, Notes on the quantum corrections of swampland
and trans-Planckian censorship conjecture, arXiv:
1912.13509.

[59] N. Bao, C. Cao, S. M. Carroll, and L. McAllister, Quantum
circuit cosmology: The expansion of the universe since the
first qubit, arXiv:1702.06959.

[60] C. Agon, V. Balasubramanian, S. Kasko, and A. Lawrence,
Coarse grained quantum dynamics, Phys. Rev. D 98,
025019 (2018).

[61] T. Holstein and H. Primakoff, Field dependence of the
intrinsic domain magnetization of a ferromagnet, Phys. Rev.
58, 1098 (1940).

[62] H. Haber, The Riemann-Lebesgue Lemma, U.C. Santa Cruz
Physics 214 graduate course (2017).

BRAHMA, ALARYANI, and BRANDENBERGER PHYS. REV. D 102, 043529 (2020)

043529-20

https://doi.org/10.1103/PhysRevD.101.046013
https://doi.org/10.1103/PhysRevD.101.046013
https://arXiv.org/abs/2003.07184
https://arXiv.org/abs/1912.00607
https://arXiv.org/abs/2002.01326
https://arXiv.org/abs/1912.13509
https://arXiv.org/abs/1912.13509
https://arXiv.org/abs/1702.06959
https://doi.org/10.1103/PhysRevD.98.025019
https://doi.org/10.1103/PhysRevD.98.025019
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098

