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We show that a nonminimal coupling to gravity can not only make some inflationary models consistent
with cosmological data, similar to the case of Higgs inflation, but can also invoke slow-roll violation to
realize a graceful exit from inflation. In particular, this is the case in models where a destabilizing
mechanism that ends inflation should be assumed when the model is minimally coupled to gravity. As
explicit examples, we consider the power-law and inverse monomial inflation models with a nonminimal
coupling to gravity. While these models are excluded in the minimally coupled case, we show that they can
become viable again in nonminimally coupled scenarios. In most scenario we considered, reheating can be
naturally realized via gravitational particle production but this depends on the underlying theory of gravity
in a nontrivial way reheating can be naturally realized via gravitational particle production but that this
depends on the underlying theory of gravity in a nontrivial way.
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I. INTRODUCTION

It is now widely believed that the Universe previously
experienced a period of exponentially fast expansion, called
cosmic inflation. Although the inflationary Universe has
been established as a paradigm, its detailed mechanism or
the underlyingmodel responsible for inflation is not yet fully
understood, and a lot of theoretical and observational effort
has been made during the past decades to elucidate it. From
the observational side, recent precise measurements of the
cosmic microwave background (CMB) by the Planck
satellite have provided tight limits on some inflationary
observables such as the amplitude and spectral index of the
primordial curvature power spectrum and the tensor-to-
scalar ratio [1], which have provided support for some
models but also excluded many (single-field) models of
inflation [2].
However, once one extends the framework to scenarios

with multiple fields, nonminimal coupling to gravity, and so
on, the predictions of some simple models for the spectral
index and the tensor-to-scalar ratio can be modified. In
multifield scenarios such as in the curvaton model [3–5] or
modulated reheating scenario [6,7], a so-called spectator
field can also contribute to the generation of primordial
fluctuations. In such a case, the predictions for the spectral
index and the tensor-to-scalar ratio are modified from the

usual case, and some inflation models become viable again
even if the original single-field model is excluded [8–14].
Something similar can happen in models with a nonminimal
coupling to gravity. For example, the quartic chaotic
inflation with a nonminimal coupling, or the Higgs inflation
model, which has been excluded by the Planck data as a
single-field model, becomes viable again since the predic-
tions for the spectral index and the tensor-to-scalar ratio get
modified due to the existence of a nonminimal coupling
between the Higgs field and gravity [15] (see also Refs. [16–
23] for earlier work on the topic, Refs. [24,25] for recent
reviews, and Refs. [26–28] for extended work employing a
nonminimal derivative coupling). See also Refs. [29–34] for
predictions of inflationary observables in variants of non-
minimally coupled models.
Another issue in constructing models of inflation is

the so-called graceful exit problem. In some inflation
models, such as the power-law inflation [35] and the
inverse monomial inflation [36] models, the end of inflation
cannot be invoked in the usual way—by violation of slow-
roll—but one needs some destabilizing mechanism, such
as tachyonic instability in the inflaton potential, to end
inflation. Although such a mechanism does not necessarily
affect the models’ predictions for observables, one needs to
take care of it for a successful and self-consistent infla-
tionary scenario.
In this paper, we show that even a small nonminimal

coupling to gravity can also help to end inflation, even if
one considers models such as the power-law inflation and
the inverse monomial inflation models in which the end of
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inflation cannot be realized by slow-roll violation when the
inflaton is minimally coupled to gravity. While this con-
clusion is not particularly surprising and has been sug-
gested in the literature (see, e.g., Ref. [37]), at the same
time—and more importantly—the same nonminimal cou-
pling can also make the spectral index ns and the tensor-to-
scalar ratio r consistent with cosmological data such as
those obtained by Planck, in spite of the fact that the
original models are excluded by the current data as
minimally coupled single-field models. As we will show,
this is a nontrivial requirement, and it facilitates model
building of the inflationary Universe, especially in the case
of models with an extended gravity sector.
Another important issue in inflationary cosmology is

reheating. Even if a graceful exit from inflation is realized,
the Universe still has to be reheated to become radiation
dominated by the time of big bang nucleosynthesis (BBN).
We argue that while the usual mechanism for reheating
where the inflaton field oscillates about the minimum of its
potential and decays into particles cannot be realized in the
models we consider, in most of our scenarios reheating can
be realized via gravitational particle production [38,39].
This is made possible due to a kination epoch which
generically follows the inflationary period in the models we
consider. During a kination epoch, the energy density of the
inflaton field ϕ scales as ρϕ ∝ a−6, with a being the scale
factor, and therefore, it decays faster than that of radiation.
Hence, the energy density of radiation, produced by
gravitational particle production, will eventually dominate
the Universe and thus reheat it. As we will show, this is the
case in most models we consider in this paper. Interestingly,
however, whether kination is realized or not within the
nonminimally coupled models we consider depends on the
theory of gravity: the so-called metric or Palatini theory. We
will make this distinction clear in the following sections.
To summarize, the most important new results obtained

in this paper are as follows: (i) identification of a nontrivial
range of values for the nonminimal coupling function
which both realizes a graceful exit from inflation and
makes the models discussed above consistent with the
Planck data, (ii) identification of a suitable reheating
mechanism for the above models in scenarios where the
usual reheating mechanisms do not work, and (iii) charac-
terization of how the above aspects depend on the theory of
gravity (metric or Palatini). As we will show, most of our
scenarios naturally include all ingredients of a successful
inflationary scenario: a spectral index and tensor-to-scalar
ratio consistent with observations, a graceful exit from
inflation, and reheating.
The paper is structured as follows. In the next section, we

introduce a model of inflation with a nonminimal coupling
to gravity and review some basic formulas. In Sec. III, we
discuss how inflation can end by slow-roll violation due to
a nonminimal coupling even when the original (minimally
coupled) model cannot realize the end of inflation in this

way. We also show that we can not only invoke slow-
roll violation but also make the models we consider viable,
i.e., that the predictions for the spectral index and tensor-
to-scalar ratio become consistent with the current data,
although only for a nontrivial range of the nonminimal
coupling value, as we will show. Then, in Sec. IV, we argue
that reheating can be realized via gravitational particle
production in most models we consider in this paper. We
also briefly discuss the dynamics after inflation. The final
section is devoted to the summary and conclusions of
the paper.

II. THE MODEL

A. Action

Here we describe our setup to investigate the violation of
slow-roll in inflationary models with a nonminimal cou-
pling to gravity. The Jordan frame action is assumed as

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

plFðϕÞgμνRμνðΓÞ

−
1

2
gμν∇μϕ∇νϕ − VJðϕÞ

�
; ð2:1Þ

where ϕ is an inflaton and VJðϕÞ is its potential in the
Jordan frame, Mpl is the reduced Planck mass, gμν is the
metric and g its determinant, Rμν is the Ricci tensor
constructed from the space-time connection Γ which
may or may not depend on the metric and its first
derivatives only but also on the inflaton field (see below),
and FðϕÞ is a function which represents a nonminimal
coupling of the inflaton to gravity. In this paper, we assume
the following form for this function:

FðϕÞ ¼ 1þ ξ

�
ϕ

Mpl

�
n
; ð2:2Þ

where ξ is a dimensionless coupling parameter and n is
assumed to be a positive integer. In this paper, we consider
the case with ξ ≥ 0. For the potential VJðϕÞ we will discuss
two examples, which will be presented in Secs. II B 1 and
II B 2. We will also consider two theories of gravity: the so-
called metric and Palatini theories. In the former case the
connection Γ depends on the metric only, whereas in the
latter case it depends, a priori, on both the metric and
the inflaton field (see Ref. [40] for a seminal work and
Ref. [25] for a recent review and introduction to the topic).
For simplicity, we will assume that the connection is
torsion-free (see, e.g., Refs. [41,42] for scenarios where
this condition was relaxed).
After a Weyl transformation,

gμν →Ω2ðϕÞgμν; ΩðϕÞ2≡FðϕÞ¼ 1þξ

�
ϕ

Mpl

�
n
; ð2:3Þ
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the Einstein frame action can be written in both cases as

SE ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
1

2
M2

plĝ
μνR̂μνðΓ̂Þ

−
1

2
ĝμν∇̂μχ∇̂νχ − VEðχÞ

�
; ð2:4Þ

where the hat means that the quantity is defined in the
Einstein frame and where the potential is given by

VEðχÞ ¼
VJðϕðχÞÞ
Ω4ðϕðχÞÞ : ð2:5Þ

We denote the Einstein frame field by χ, which is related to
the Jordan frame counterpart ϕ via

dϕ
dχ

¼
ð1þ ξð ϕ

Mpl
ÞnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξð ϕ
Mpl

Þn þ 3
2
κn2ξ2ð ϕ

Mpl
Þ2n−2

q ; ð2:6Þ

where κ ¼ 1, 0 correspond to the metric and Palatini cases,
respectively. We can solve the above equation numerically
for an arbitrary n both in the metric and Palatini cases to
obtain the relation between ϕ and χ. We note that an
analytic solution, especially for the n ¼ 2 case, is well
known [40,43,44] and, in the Palatini case, the solution
even for a general n can be expressed in terms of hyper-
geometric functions [45]. In the following, we consider the
metric and Palatini cases with n ¼ 4 for illustrative
purposes.
Once we specify the potential in the Jordan frame, we

can calculate the slow-roll parameters and the number of
e-folds by using the Einstein frame potential in the standard
fashion. The slow-roll parameters are defined as

ϵ≡ 1

2
M2

pl

�
V 0
EðχÞ

VEðχÞ
�

2

; η≡M2
pl
V 00
EðχÞ

VEðχÞ
; ð2:7Þ

where the prime denotes a derivative with respect to χ.
Unless some kind of destabilizing mechanism is assumed,
inflation ends when slow-roll is violated, ϵðχÞ ¼ 1. From
Eq. (2.7) we can also calculate the spectral index ns and the
tensor-to-scalar ratio r as

ns ¼ 1 − 6ϵþ 2η; r ¼ 16ϵ: ð2:8Þ

The spectral index has the measured value ns ≃ 0.965 at the
pivot scale k� ¼ 0.05 Mpc−1 [1], whereas the tensor-to-
scalar ratio is constrained to r < 0.06 [46].
In this paper, we consider two types of inflation models

and show that while their minimally coupled versions
predict values of ns and r that are excluded by the data,
their nonminimally coupled extensions can be easily
resurrected. We will describe these models in more detail
in the following subsections.

B. Inflation models

1. Power-law inflation

To facilitate comparison with the minimally coupled
case, we give the inflaton potentials in the Jordan frame.
For the power-law inflation [35], the potential is given by

VJðϕÞ ¼ V0e−αϕ=Mpl ; ð2:9Þ

where α is a dimensionless parameter and V0 is a parameter
representing a scale which is roughly the same as the
energy scale of inflation. A potential like this can arise in
supergravity and string theories, and in some models a
successful inflationary scenario with α ≪ 1 can be con-
structed, for example, in the framework of M theory [47].
In the minimally coupled case, the slow-roll parameters

are given by

ϵ ¼ 1

2
α2; η ¼ α2: ð2:10Þ

Since α is assumed to be a constant, the slow-roll
parameters in this model are also constants. Therefore,
inflation cannot end by violation of slow-roll caused by the
dynamics of the inflaton. Therefore, in this model, one
needs a nonstandard mechanism to end inflation, such as
tachyonic instability (see, e.g., Ref. [2] for details).
The need for an extra mechanism to end inflation is not

the only problem of this model. From Eqs. (2.8) and (2.10)
one can derive a relation between ns and r:

r ¼ −8ðns − 1Þ: ð2:11Þ

Since recent observations imply ns ≃ 0.965, the above
relation indicates that r ≃ 0.28, which is excluded by
observations [1,46]. However, as we will see in the next
section, by introducing a nonminimal coupling, the slow-
roll parameters can evolve in time and, consequently,
violation of slow-roll can be invoked. Furthermore, the
predictions for the spectral index and the tensor-to-scalar
ratio will also get modified, and the tension with the data
can be alleviated for a sufficient choice of the nonminimal
coupling function that depends on the α parameter in the
potential.

2. Inverse monomial inflation

The Jordan frame potential of the inverse monomial
inflation model is given by [36,48]

VJðϕÞ ¼ V0

�
ϕ

Mpl

�
−p
; ð2:12Þ

where p is a positive number and V0 represents an
energy scale. Models with an inverse monomial
potential have been discussed in the context of, e.g.,
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quintessential inflation [36,48], intermediate inflation [49],
tachyon inflation [50,51], and dynamical supersymmetric
inflation [52,53].
In the minimally coupled case, the slow-roll parameters

are

ϵ ¼ 1

2
p2

�
ϕ

Mpl

�
−2
; η ¼ pðpþ 1Þ

�
ϕ

Mpl

�
−2
; ð2:13Þ

from which one obtains

ns − 1 ¼ pð2 − pÞ
�

ϕ

Mpl

�
−2
: ð2:14Þ

From this expression, one can see that the spectral index is
blue-tilted when p < 2, which is excluded by observations.
On the other hand, Eq. (2.13) indicates the relation

r ¼ 8p
2 − p

ðns − 1Þ; ð2:15Þ

from which one can see that even when p > 2 and
ns ¼ 0.965, the tensor-to-scalar ratio is predicted as
r > 0.28; i.e., it is bounded from below, whereas observa-
tions indicate r < 0.06 [46]. Therefore, the minimally
coupled version of this model is completely excluded by
observations.
Furthermore, since in theminimally coupled case inflation

starts at small values of ϕ and the field value grows during
inflation, the slow-roll parametersmonotonically decrease as
inflation proceeds. Therefore, also in this model, inflation
cannot endbyviolation of slow-roll drivenby the inflationary
dynamics without an additional mechanism.
We will see that by introducing a nonminimal coupling,

we can realize a graceful exit from inflation in this model
and obtain values of the spectral index and tensor-to-scalar
ratio consistent with the current data at the same time.

III. VIOLATION OF SLOW-ROLL AND
OBSERVABLES IN THE NONMINIMALLY

COUPLED CASE

In this section, we consider the inflation models men-
tioned in the previous section, but this time in the non-
minimally coupled case, and show how slow-roll can be
violated by the existence of a nonminimal coupling to
gravity, which ends inflation.1 We will also study predic-
tions for the observables ns and r in this context.2 We
present our results for each model in order.

A. Nonminimal power-law inflation

First we discuss the case of the power-law inflation (PLI)
model. For illustrative purposes, as mentioned in Sec. II, we
assume n ¼ 4 for the nonminimal coupling function, i.e.,

Ω2ðϕÞ ¼ 1þ ξ

�
ϕ

Mpl

�
4

: ð3:1Þ

The Einstein frame potential is depicted in Fig. 1 for the
cases of ξ ¼ 0 (minimally coupled case), 10−3; 10−4, and
10−5. In Fig. 1, we take α ¼ 0.02 as a representative
example. As can be seen from the figure, as ξ increases, the
potential becomes more steep, which causes the slow-roll
parameters to increase as the field evolves. This is not
surprising, as the nonminimal coupling changes the
Einstein frame potential. However, when α ∼ 0.02, for ξ≳
10−3 the potential becomes too steep to support more than
roughly 50–60 e-folds, and therefore, for a too-large
nonminimal coupling it becomes questionable whether
the nonminimal PLI model can solve the classic horizon
and flatness problems (see, e.g., Ref. [56]). For this reason,
we only show results in the PLI case for 0 ≤ ξ ≤ 10−3 in
this paper. It should be emphasized that whether a model of
inflation can be made viable needs to be investigated
carefully since the introduction of a nonminimal coupling
does not necessarily guarantee the success of the model.
One needs to assume a suitable value for ξ depending on the
model and its parameters.
In the left panel of Fig. 2, the evolution of one of the

slow-roll parameters, ϵ, is shown for the case with
α ¼ 0.02. Inflation starts from small values of χ and, as
inflation proceeds, the field evolves down the potential
towards a larger value. For α ¼ 0.02, the minimally
coupled case gives ϵ ¼ 2 × 10−4, and hence even in the
nonminimally coupled case, ϵ starts from the value
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E
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0

FIG. 1. Potential for the power-law inflation model with α ¼
0.02 for the cases ξ ¼ 0; 10−3; 10−4, and 10−5. The metric and
Palatini cases are shown.

1For some early, pre-Planck works on the topic in a somewhat
different context, see Refs. [54,55].

2In addition to providing results for these observables, the
Planck data also constrain the running of the spectral index [1].
We have checked that in all cases we present, the running
parameters are small and well within the limits given by the
observations.
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corresponding to the minimally coupled case. As χ
increases and the nonminimal coupling term becomes
larger, ϵ gets larger, as can be read off from the figure.
One can also notice that as ξ becomes larger, ϵ increases to
reach unity at smaller values of χ; i.e., the violation of slow-
roll occurs faster for larger values of ξ.
In the right panel of Fig. 2, the evolution of ϵ is plotted as

a function of Ne, the number of e-folds counted backwards
from the end of inflation. The figure again illustrates that
when ξ is large, ϵ goes up relatively quickly. However, as
one can see in Fig. 3, if ξ is too large, the predictions for ns
and r get close to the minimally coupled case even though
slow-roll violation is quickly realized. In Appendix A, we
discuss the evolution of the slow-roll parameter in more
detail, focusing on the dependence on ξ, which helps us
understand the dynamics and the nontrivial ξ-dependence
of ns and r.

The above aspects indicate that for a successful inflation
model, we need (mild) modifications aroundNe ∼ 50–60 to
obtain predictions for the spectral index and tensor-to-
scalar ratio which are consistent with observations. These
predictions are shown in Fig. 3 in the slow-roll approxi-
mation. In the figure, we take α ¼ 0.01, 0.02, and 0.03 for
illustrative purposes. For larger α, the tensor-to-scalar ratio
r gets larger. As can be seen from the right panel of Fig. 2,
the value of ϵ around Ne ∼ 50–60 for the case with a
relatively large ξ is close to that in the minimally coupled
model, which means that the prediction for r approaches
r ¼ 16ϵ ∼ 8α2. Therefore, when α ≳ 0.1, the tensor-to-
scalar ratio becomes r≳ 0.08 regardless of ξ, which is
not consistent with observations even with a nonminimal
coupling to gravity. Figure 3 also shows that the differences
between the metric and Palatini cases are rather modest,
which is due to ξ taking a value much smaller than unity.
This is reminiscent of the behavior found in, e.g.,
Refs. [45,58,59], which also studied inflationary models
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 0.01

 0.1

 1

 0.01  0.1  1  10

ε

χ/Mpl
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ξ=10-5

Palatinimetric
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FIG. 2. Evolution of ϵ as a function of χ (left) andNe (right) in the power-law inflation model with α ¼ 0.02 for the cases ξ ¼ 10−3 and
ξ ¼ 10−5. The metric and Palatini cases are shown.
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 0.94  0.95  0.96  0.97  0.98  0.99  1  1.01

r
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minimally coupled
metric

Palatini
Planck+BK14

FIG. 3. Predictions for the spectral index ns and tensor-to-scalar
ratio r in the nonminimally coupled power-law inflation model
with α ¼ 0.01, 0.02, and 0.03. We vary the nonminimal coupling
parameter as 10−5 ≤ ξ ≤ 10−3. The yellow curve indicates the
predictions in the minimally coupled case, and the underlying
blue regions indicate the Planck+BICEP2/Keck Array 1σ and 2σ
bounds [1,57]. The number of e-folds is assumed as 50 ≤ Ne ≤
60 in this figure. The metric and Palatini cases are shown.
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FIG. 4. Potential for the inverse monomial inflation model with
p ¼ 0.05 in the cases ξ ¼ 0; 10−4; 10−5, and ξ ¼ 10−6. The
metric and Palatini cases are shown.
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with a small nonminimal coupling to gravity in both the
metric and Palatini frameworks. Finally, we note that the
parameter space of the nonminimal PLI model presented in
Fig. 3 is testable with forthcoming CMB missions. For
example, future CMB B-mode polarization experiments
such as BICEP3 [60], LiteBIRD [61], and the Simons
Observatory [62] will soon be pushing the limit on the
tensor-to-scalar ratio down to r ≃ 0.001, or aiming to detect
r above this limit. These measurements will either provide
further support for the model or rule out a large part of its
parameter space. For a discussion on prospects for dis-
tinguishing between different nonminimal models in the
case of a detection, see Ref. [34].

B. Nonminimal inverse monomial inflation

Let us now discuss the inverse monomial inflation (IMI)
model in the framework of nonminimal coupling to gravity.
Here we again assume n ¼ 4 for the nonminimal coupling
function. In Fig. 4, we show some example Einstein frame
potentials in the case of the nonminimal version of the
model with p ¼ 0.05 and ξ ¼ 10−4; 10−5, and 10−6, as well
as with ξ ¼ 0. As in the PLI case, the inflaton moves from a
small value to a large one during inflation. As can be seen
from Fig. 4, a nonminimal coupling again makes the
potential steeper, which drives the ϵ parameter to larger
values and eventually ends inflation, in contrast to the
minimally coupled counterpart of this model. Similar to the
nonminimal PLI model discussed in Sec. III A, also in this
case the potential becomes too steep to support more than
roughly 60 e-folds3 if the nonminimal coupling is larger
than ξ≳ 10−4 for p ∼ 0.05. For smaller p, however, the
potential can also support more than 60 e-folds for larger ξ.

In Fig. 5, the evolution of ϵ as a function of χ (left panel)
and Ne (right panel) is shown for the example cases ξ ¼
10−4 and ξ ¼ 10−6. We take p ¼ 0.05 in this figure too.
Although the tendency is the same as in the case of the PLI
model, in the case of the IMI model, ϵ first gets smaller
during the early stages of inflation, which is a characteristic
of the minimally coupled model. However, as χ grows, the
nonminimal coupling term becomes more dominant and ϵ
becomes larger. Then, it finally ends inflation, which again
is the effect of the nonminimal coupling.
In Fig. 6, the predictions of the IMI model for ns and r in

the nonminimally coupled case are shown in the slow-roll
approximation for p ¼ 0.01, 0.05, and 0.1. We take the
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FIG. 5. Evolution of ϵ as a function of χ (left) and Ne (right) in the inverse monomial inflation model with p ¼ 0.05 in the cases
ξ ¼ 10−4 and ξ ¼ 10−6. The metric and Palatini cases are shown.
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FIG. 6. Predictions for the spectral index ns and tensor-to-scalar
ratio r in the nonminimally coupled inverse monomial inflation
model with p ¼ 0.01, 0.05, and 0.1. For p ¼ 0.05, 0.1, we vary
the nonminimal coupling parameter as 10−6 ≤ ξ ≤ 10−4, whereas
for p ¼ 0.01 we vary it between 10−6 ≤ ξ ≤ 10−3 because in this
case the potential can support more than 60 e-folds of inflation
also for ξ > 10−4. The predictions of the minimally coupled case
are also shown, and the underlying blue regions indicate the
Planck+BICEP2/Keck Array 1σ and 2σ bounds [1,57]. The
number of e-folds is assumed as 50 ≤ Ne ≤ 60 in this figure.
The metric and Palatini cases are shown.

3While this value is compatible with what is shown in Fig. 6, it
is not enough to solve the classic horizon and flatness problems in
a scenario where the scale of inflation is high and inflation is
followed by a “kination” phase [56]. We will return to the
dynamics after inflation in Sec. IV.
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number of e-folds as 50 ≤ Ne ≤ 60. Regarding the non-
minimal coupling parameter, we vary it as 10−6 ≤ ξ ≤ 10−3

for p ¼ 0.01, but for p ¼ 0.05 and 0.1, we take a narrower
range 10−6 ≤ ξ ≤ 10−4 since the potential cannot support
more than 60 e-folds for ξ ≥ 10−4 in these cases. These are
interesting values of p, as they give a blue-tilted ns in the
original minimally coupled case and hence are totally
excluded by observations. However, due to the existence
of the nonminimal coupling, the (Einstein frame) potential
gets modified and the spectral index can become red-tilted
so that the model is viable for some range of ξ again, just as
in the case of the PLI model. If we take p larger than
p ¼ 0.5, the spectral index can still become negative due to
the existence of the nonminimal coupling, but, on the other
hand, the tensor-to-scalar ratio gets as large as r ∼ 0.1.
Therefore, models with p≳ 0.5 cannot be made viable
even with the existence of a nonminimal coupling of the
type studied in this paper. Finally, similar to the non-
minimal PLI model, Fig. 6 also shows that the differences
between the metric and Palatini cases are small due to the
nonminimal coupling taking only small values. Also,
similar to the nonminimal PLI model, forthcoming CMB
B-mode polarization experiments will soon test the model,
in particular, the parameter space presented in Fig. 6.

IV. REHEATING AND DYNAMICS AFTER
INFLATION

As shown in the previous section, due to the existence of
the nonminimal coupling, we can dynamically realize a
graceful exit in both the PLI and IMI models; that is, we can
obtain ϵ ¼ 1 without any additional mechanism. In addi-
tion to having a successful mechanism for ending inflation,
in a successful inflationary model the Universe must also be
reheated so that by the time of big bang nucleosynthesis,
the Universe becomes radiation dominated.
In the standard reheating scenario (see, e.g., Ref. [63]),

the inflaton field starts to oscillate around its potential

minimum after the end of inflation, and the energy density
of the oscillating scalar field evolves roughly in the same
way as that of nonrelativistic matter. During such an
effectively matter-dominated epoch, the inflaton field can
decay into radiation through some interaction and, as a
result, the Universe can be reheated. On the other hand, the
models discussed here, as seen in Figs. 1 and 4, do not have
any potential minimum even with a nonminimal coupling,
and hence we cannot expect the usual reheating mechanism
described above to work in our setup. However, the so-
called gravitational reheating can still be realized in most of
our scenarios, as we will explain below.
The effective equation-of-state parameter of the inflaton

field in the Einstein frame, wχ , is defined by

wχ ≡ _χ2=2 − VEðχÞ
_χ2=2þ VEðχÞ

: ð4:1Þ

In Fig. 7, we plot the evolution of this quantity in the PLI
and IMI models as a function of the number of e-folds
measured from the end of inflation; that is, Ne ¼ 0 in the
figure corresponds to the end of inflation and −Ne > 0 to
the postinflationary stage. As can be seen in the left panel of
the figure, in the PLI model considered here the equation-
of-state parameter reaches unity soon after the end of
inflation, both in the Palatini and in the metric case. This
wχ ¼ 1 phase is nothing but the so-called kination, where
the kinetic energy of the field dominates the total energy
density of the Universe. However, as can be seen in the
right panel of Fig. 7, only in the Palatini counterpart of
the IMI model is it possible to reach wχ ¼ 1 and reheat the
Universe via gravitational production of particles. In the
metric case with p ∼ 0.05, the potential is not steep enough
to give wχ ¼ 1, but instead we obtain wχ ∼ −0.1. The
reason for this unusual behavior is explained in
Appendix B.
Reheating mechanisms in scenarios where the Universe

undergoes a kination epoch have been studied in a large
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FIG. 7. Evolution of the equation-of-state parameter w as a function of the number of e-folds measured from the end of inflation. Left
panel: The power-law inflation model with α ¼ 0.02 in the cases of ξ ¼ 10−3 and ξ ¼ 10−5. Right panel: The inverse monomial inflation
model with p ¼ 0.05 in the cases of ξ ¼ 10−4 and ξ ¼ 10−6. In both panels, the metric and Palatini cases are shown.
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number of works. One possibility is gravitational reheating,
which is based on gravitational particle production that
necessarily occurs due to excitation of all light fields during
or at the end of inflation [38,39]. It has been shown that in
this way, and under some suitable conditions regarding the
nonminimal coupling between the Standard Model (SM)
Higgs field and gravity, even the SM Higgs can be excited
either during or after inflation; thus, it becomes responsible
for reheating after inflation regardless of the exact shape of
the potential or couplings of the inflaton field [64–66]. For
other recent studies on this mechanism, see Refs. [67–70].
For earlier studies on gravitational reheating in the context
of nonminimal inflation, see Refs. [37,71].
Let us now analyze how long it takes for the Universe to

get reheated.While the energy density of radiation produced
gravitationally is at first only quite modest, ρrad ∼H4� ≪
H2�M2

pl ∼ ρtot, where H� is the Hubble scale and ρtot ∼ ρχ is
the total energy density at the end of inflation,4 the radiation
component’s energy density scales down more slowly than
that of the inflaton field as the Universe expands, which
eventually reheats theUniverse. This is indeed the casewhen
the inflaton enters into a kination phase where its kinetic
energy dominates the energy density, ρχ ∼ _χ2=2 ≫ VðχÞ and
consequently ρχ ∝ a−6, where a is the scale factor. For
radiation, ρrad ∝ a−4 as usual, and therefore ρrad=ρχ ∝ a2.
Thus, the Universe becomes radiation dominated in

Nreh ≃ ln

�
MP

H�

�
≃ 10 − 12; ð4:2Þ

e-folds after the end of inflation. Here we used the definition
of the tensor-to-scalar ratio

r≡ PT

Pζ
¼ 8

M2
PPζ

�
H�
2π

�
2

; ð4:3Þ

which allows us to estimate

H� ≃ 7.7 × 1013
ffiffiffiffiffiffiffi
r
0.1

r
GeV ≃ 7.7 × ð1012–1013Þ GeV;

ð4:4Þ

as in our scenarios r ∼ 0.001–0.1 and the curvature power
spectrum amplitudePζ ¼ 2.1 × 10−9 as given by the Planck
observations [1]. The time of reheating (4.2) corresponds to
the reheat temperature5

Treh ≃ ρ1=4rad ðNrehÞ ≃H�e−Nreh ≃ ð107 − 109Þ GeV; ð4:5Þ

which is well above the temperature required for successful
big bang nucleosynthesis, TBBN ¼ Oð1Þ MeV (see, e.g.,
Ref. [73]). We therefore conclude that gravitational particle
production is sufficient to reheat the Universe in a success-
ful way.
We stress that in most of our scenarios, the conditions for

a successful inflationary model can be satisfied due to the
existence of the nonminimal coupling, even though the
minimally coupled versions cannot accommodate a grace-
ful exit or reheating without some extra mechanisms.
However, there is still a serious issue in this simple setup:
large running of the gravitational coupling in what we call
the Jordan frame, provided that standard matter is mini-
mally coupled in that frame [74–76]. In order to solve this
problem, one may need to further assume that, for example,
the standard matter is minimally coupled in the Einstein
frame (instead of the Jordan frame) or that the inflaton field
has a coupling which changes its potential at large field
values and/or eventually stops rolling after inflation.
However, this issue is beyond the scope of the present
paper, and we leave it for future work.

V. CONCLUSIONS

In this paper, we have shown that a nonminimal coupling
to gravity can not only make some inflationary models
viable, similar to the case of the Higgs inflation model, but
can also invoke slow-roll violation to realize a graceful exit
from inflation. In particular, this is the case for models
where some destabilizing mechanism, such as tachyonic
instability, should be assumed to end inflation when the
model is minimally coupled to gravity.
As explicit examples, we have considered the power-law

and inverse monomial inflation models with a nonminimal
coupling to gravity.When coupled onlyminimally to gravity,
thesemodels are completely excluded since their predictions
for the spectral index ns and tensor-to-scalar ratio r are
inconsistent with the current cosmological data. However,
we have shown that these models can become viable again
with a specific range of values of the nonminimal coupling
to gravity. Typical values are summarized in Table I.

TABLE I. A summary of typical values of the nonminimal
coupling to gravity, which can make the power-law and inverse
monomial inflation models viable again. Note that here we
assume n ¼ 4 for the nonminimal coupling function.

PLI (α ¼) 0.01 0.02 0.03

ξ 1 × 10−3 4 × 10−4 1 × 10−4

IMI (p ¼) 0.01 0.05 0.1
ξ 7 × 10−4 1 × 10−4 7 × 10−5

4More precisely, depending on how the transition from
inflation to the kination epoch proceeds, the efficiency of the
gravitational particle production is reduced and the energy
density is given by ρrad ¼ AH4� where A ¼ Oð0.01Þ −Oð0.1Þ
[72]. However, even when A ¼ 0.01, the qualitative picture does
not change.

5A more detailed analysis of the reheating temperature in the
gravitational reheating scenario has been done in Ref. [69].
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The characterization of this range is one of our most
important results.
Furthermore, the same nonminimal coupling can also

invoke the required slow-roll violation to end inflation
without the need to implement any other mechanism for a
graceful exit; this is nontrivial since introducing a non-
minimal coupling does not necessarily guarantee that
either the modifications to ns and r are consistent with
the Planck data or that the slow-roll violation can be
realized. We also showed that in both the PLI and IMI
models considered in this paper, the forthcoming CMB
B-mode polarization experiments will soon either provide
further support for the models or rule out a large part of
their parameter space.
Our findings facilitate model building of the inflationary

Universe, especially in the framework with an extended
gravity sector. In this paper we have studied both metric
and Palatini theories of gravity. We found that when it
comes to inflationary observables, the differences between
the two theories are generically small in the models
discussed in this paper. This is due to the nontrivial fact
that in our scenarios, compatibility with data requires the
nonminimal coupling to gravity be very small, ξ ≪ 1, in
contrast to many other models such as Higgs inflation,
which require very large nonminimal couplings in order to
be compatible with the data. However, as we also showed,
the postinflationary dynamics of the inflaton field can—
surprisingly—be drastically different in the two counter-
parts of the same model, depending on the underlying
theory of gravity.
The above notion has important consequences for

reheating. Since there is no potential minimum in our
setup, the usual reheating mechanism where the oscillating
inflaton field decays into radiation cannot work. However,
in most of our scenarios a kination phase is typically
realized just after the end of inflation, which allows
gravitational particle production to complete reheating at
temperatures well above those required for successful
BBN. Among the models we considered in this paper,
the only exception is the nonminimally coupled inverse
monomial inflation model within the metric theory of
gravity. This highlights the fact that even when the
differences between two theories of gravity are small as
far as inflationary observables are concerned, their suit-
ability for building a successful model of inflation can be
dramatically different. However, as shown in the paper,
most of our models can accommodate all three major
ingredients of a successful inflationary model: predictions
for ns and r consistent with data, a graceful exit, and
reheating. However, in all scenarios there still remains an
issue regarding the running of the gravitational constant at
late times, as discussed briefly at the end of the previous
section. A detailed study of this issue is left for future
work.
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APPENDIX A: MORE ON THE ξ-DEPENDENCE
OF THE BEHAVIOR OF THE SLOW-ROLL

PARAMETER ϵ

As shown in Fig. 3, for larger ξ, the tensor-to-scalar ratio
asymptotically gets closer to the value in the minimally
coupled case, that is, r ¼ 16ϵ ¼ 8α2 for the PLI model. In
order to understand this feature better, here we investigate
how the evolution of the slow-roll parameter ϵ changes
depending on the nonminimal coupling parameter ξ.
Below we focus on the Palatini case because the

differences between the metric and Palatini theories of
gravity are only quite small, as can be seen in Fig. 2, and the
Palatini case is simpler to analyze. Although here we
consider only the PLI model discussed in Sec. III A, the
behavior in the case of the IMI model can be explained in
the same way.
In the PLI model, the slow-roll parameter ϵ, which is

defined by Eq. (2.7), is given by

ϵ ¼ 1

2

�
1þ ξ

�
ϕ

Mpl

�
n
��

αþ 2nξðϕ=MplÞn−1
1þ ξðϕ=MplÞn

�
2

: ðA1Þ

In this expression, one can see that the behavior of the slow-
roll parameter during inflation is characterized by two
contributions from the nonminimal coupling, ξðϕ=MplÞn
and 2nξðϕ=MPlÞn−1. As can be seen in the left panel of
Fig. 8, the value of ξðϕ=MplÞn is smaller than unity around
Ne ∼ 50–60, and thus the slow-roll parameter evaluated at
Ne ∼ 50–60 is approximately given by

ϵ ≃
1

2

�
αþ 2nξ

�
ϕ

Mpl

�
n−1

�
2

: ðA2Þ

The value of 2nξðϕ=MplÞn−1 is larger than α ¼ 0.02 in the
ξ ¼ 10−5 case, while in the ξ ¼ 10−3 case this contribution
is smaller than α, as can be seen in the right panel of Fig. 8.
Thus, for larger ξ, the tensor-to-scalar ratio, r ¼ 16ϵ,
approaches the value in the minimally coupled case, that
is, r ¼ 8α2.
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Next, let us consider the reason why for larger ξ we
get a smaller contribution from the nonminimal coupling
to the slow-roll parameter ϵ at Ne ∼ 50–60. Assuming
ξðϕ=MplÞn ≪ 1 which is basically guaranteed for Ne ∼
50–60 as shown in Fig. 8, we have

dϕ
dχ

≃1;
d
dN

�
χ

Mpl

�
≈−Mpl

V 0
E

VE
≃αþ8ξ

�
χ

Mpl

�
3

; ðA3Þ

where we have used ϕ ≃ χ and n ¼ 4. For the α >
8ξðχ=MplÞ3 phase, the solution to the above equation is

χðNÞ ∼ αNMpl: ðA4Þ

On the other hand, for the α < 8ξðχ=MplÞ3 phase, we can
obtain an approximate solution as

χðNeÞ ∼
Mpl

ð16ξNeÞ1=2
: ðA5Þ

From this solution, we see that for fixed Ne, χ becomes
smaller for larger ξ, and hence the contribution from non-
minimal coupling in the slow-roll parameter at Ne ∼ 50–60
gets smaller for larger ξ. In Fig. 9, we compare the above
analytic solutions to numerical ones, and we find that the
analytic solutions fit the numerical ones well.

APPENDIX B: ASYMPTOTIC FORM OF THE
POTENTIAL AFTER INFLATION

In this Appendix, we explain why the dynamics after
inflation depends on the inflation model and also on the
theory of gravity. Here we adopt units of Mpl ¼ 1.
Let us assume that after the end of inflation, ϕ ≫ 1 and

the nonminimal coupling term is dominant. This is the case
in both the PLI and IMI models we have considered in this
paper. Then, we have

dϕ
dχ

≃

8>><
>>:

ξϕnffiffiffiffiffiffi
ξϕn

p ¼ ξ1=2ϕn=2 ðPalatiniÞ
ξϕnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2n2ξ2ϕ2n−2
p ¼

ffiffi
2
3

q
1
nϕ ðmetricÞ:

ðB1Þ

For the Palatini case, with n > 2, we obtain a solution as

ϕð2−nÞ=2
0 − ϕð2−nÞ=2 ¼ n − 2

2
ξ1=2ðχ − χ0Þ; ðB2Þ

and for the metric case, we have

FIG. 8. Evolution of the two contributions: ξðϕ=MplÞn (left) and 2nξðϕ=MplÞn−1 (right) as a function of −Ne in the PLI model. Here
we take α ¼ 0.02. The blue curve is for ξ ¼ 10−5, whereas the green and red ones are for ξ ¼ 10−4 and 10−3, respectively. In the right
panel, we show α ¼ 0.02 with a black dotted line for comparison.

FIG. 9. Evolution of the χ field as a function of −Ne. Here we
take α ¼ 0.02. The blue curve is for ξ ¼ 10−5, whereas the green
and red ones are for ξ ¼ 10−4 and 10−3, respectively. For
comparison, the analytic solution for each case is shown as a
dashed curve [for α < 8ξðχ=MplÞ3] or a dotted curve
[for α > 8ξðχ=MplÞ3].
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ϕ ¼ ϕ0 exp

� ffiffiffi
2

3

r
1

n
ðχ − χ0Þ

�
: ðB3Þ

Here ϕ0 and χ0 can be taken to be the field values at the end
of inflation. In the Palatini case, by taking n ¼ 4 as in the
main text, we write the above solution as

ϕ ¼ ξ−1=2

C − χ
; ðB4Þ

where C≡ ξ−1=2ϕ−1
0 þ χ0. Substituting this solution into

the expression for the potential after inflation, for the PLI
model we have

VðPÞ
E ðχÞ ≃ V0 exp ½−αϕðχÞ�

ξ2ϕðχÞ8
¼ V0ξ

2ðC − χÞ8 exp ½−αξ−1=2ðC − χÞ−1�; ðB5Þ

and for the IMI model,

VðPÞ
E ðχÞ ≃ V0ϕðχÞ−p

ξ2ϕðχÞ8 ¼ V0ξ
ð4þpÞ=2ðC − χÞ8þp: ðB6Þ

The superscripts emphasize that these results apply for the
Palatini theory. In both models, after the end of inflation
C − χ quickly becomes small; that is, ϕ asymptotically
diverges, and then the potential is quickly damped. Thus,
we expect to realize a kination phase. In Fig. 10, we show a
numerical result for the potential in terms of χ. In order to
see the difference clearly at the large χ region, that is, after
the end of inflation, we show the results in a logarithmic
scale. In both panels, the blue curve is for the Palatini case.
We see that in the Palatini case, the potential is indeed

quickly damped soon after the end of inflation in both the
PLI and IMI models.
In the same way, by substituting the solution in the

metric case into the expression for the potential, we obtain
for the PLI model with general n,

VðMÞ
E ðχÞ ≃ V0 exp ½−αϕðχÞ�

ξ2ϕðχÞ2n

¼ V0ξ
−2ϕ−2n

0 exp

�
−αϕ0 exp

� ffiffiffi
2

3

r
1

n
ðχ − χ0Þ

��

× exp

�
−2

ffiffiffi
2

3

r
ðχ − χ0Þ

�
: ðB7Þ

As χ grows, this potential is also quickly damped, and a
kination phase can be realized. As one can see from the
above formula, the potential for the PLI model in the metric
case becomes steeper than a simple exponential potential.
On the other hand, in the metric IMI model, we have

VðMÞ
E ðχÞ ≃ V0ϕðχÞ−p

ξ2ϕðχÞ2n

¼ V0ξ
−2ϕ−2n−p

0 exp

�
−

ffiffiffi
2

3

r �
p
n
þ 2

�
ðχ − χ0Þ

�
:

ðB8Þ

This is just the potential of the minimal PLI model with
α ¼ ffiffiffiffiffiffiffiffi

2=3
p ð2þ p=nÞ. In the right panel of Fig. 10, we

assume p ¼ 0.05 and ξ ¼ 10−4. The end of inflation in this
figure corresponds to χ0 ≃ 18Mpl. The orange dashed line
is the approximate form given by Eq. (B8). As a reference,
the same line is also shown in the left panel for the PLI
model. We see that the approximate form is in agreement
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FIG. 10. Comparison of the Einstein frame potential between the metric and Palatini cases. In order to see the difference clearly at the
large χ region, we show the results in a logarithmic scale. Left panel: VE=V0 in the PLI model with α ¼ 0.02 and ξ ¼ 10−4. Right panel:
VE=V0 in the IMI model with p ¼ 0.05 and ξ ¼ 10−4. By the orange dotted line, we show the approximate form given by Eq. (B8) with
α ¼ ffiffiffiffiffiffiffiffi

2=3
p ðpþ 8Þ=n ≃ 1.64, which corresponds to the asymptotic form of the potential in the IMI model. We also show the same line in

the left panel for reference.
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with the numerical result after the end of inflation.
Furthermore, in the minimal PLI model, we have an
approximate relation between α and the equation of
state wχ as α2 ≃ 3ð1þ wχÞ, and from this equation, for

our case with p ¼ 0.05 and n ¼ 4, we have α ≃ 1.64 and
wχ ≃ −0.1. This is again consistent with the numerically
evaluated value of the equation-of-state parameter in the
IMI case.
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