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We investigate the gravitational particle production in the bounce phase of loop quantum cosmology
(LQC). We perform both analytical and numerical analysis of the particle production process in a LQC
scenario with a Bunch-Davies vacuum initial condition in the contracting phase. We obtain that if we
extend the validity of the dressed metric approach beyond the limit of small backreaction in which it is well
justified, this process would lead to a radiation dominated phase in the preinflationary phase of LQC. Our
results indicate that the test field approximation, which is required in the truncation scheme used in the
dressed metric approach, might not be a valid assumption in a LQC scenario with such initial conditions.
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I. INTRODUCTION

It is well known that in the description of the very early
Universe and tracing back the time evolution, we enter in a
Planck scale regime where quantum gravity effects can
dominate. On such scales, modifications of general relativity
(GR) are expected to be important. In the theoretical
explorations of the early Universe, one generally uses the
Friedmann-Lemaître-Robertson-Walker (FLRW) solutions
to the Einstein equations (with appropriate matter sources)
as background spacetimes. However, the FLRW spacetimes
of interest are incomplete in the past due to the big bang
singularity, when matter fields and spacetime curvature
diverge. General relativity is not a suitable theory once
curvature reaches the Planck scale, where quantum effects
become important. Therefore, we cannot expect reliable
results for quantum fields evolving in classical backgrounds.
The natural way is to look for a quantum theory of gravity,
which, e.g., can provide the quantization of spacetime.
There are some viable candidate models of quantum

gravity that can be able to describe the physics of the very
early Universe. Some of these models share the feature
of avoiding the initial singularity, which results in a
nonsingular bouncing universe. Although inflation is the
dominant paradigm for the early Universe, there are
alternative ideas [1–3], like several bouncing models,
which can agree with current cosmological observations
as well as inflation does. In these models, the quantum
effects are important at the Planck scale and are responsible
for the bounce, but become less important as the Universe

evolves away from Planck scale, thus eventually recovering
GR. Among these quantum gravity candidates, loop quan-
tum gravity (LQG) provides a promising avenue in this
direction [4–11]. Loop quantum cosmology (LQC) arises
as the result of applying the principles of LQG to
cosmological settings [12–14]. In LQC, the quantum
geometry creates a repulsive effective force that is totally
negligible at low spacetime curvature but grows rapidly in
the Planck regime, overwhelming the classical gravitational
attraction. In cosmological models, while Einstein’s equa-
tions hold to an excellent degree of approximation at low
curvature, they receive important corrections in the Planck
regime. As a consequence of these corrections, any time a
curvature invariant grows to the Planck scale, quantum
geometry effects dilute it, resolving the problems of
singularities of GR.
In addition to the bounce and contraction phases, the

inflationary scenario admits an extension for LQC in the
expanding phase. Inflation can be important to put several
models in agreement with observations in the context of
LQC (see, for example, Ref. [15]). Several authors have
investigated the naturalness of an inflationary phase after
the bounce [16–19]. Despite the different viewpoints, in
LQC by starting with a scalar field with a typical potential
considered in inflationary models, after the bounce, an
inflationary phase will almost inevitably sets in. In this
context, it is important to analyze the physical implications
of preinflationary dynamics in LQC, i.e., the quantum
evolution from the bounce to the onset of the slow roll.
An important aspect to investigate in bouncing cosmol-

ogies is the Parker mechanism of gravitational particle
production (GPP) [20,21], which has shown to be very
efficient in the bounce phase of several models [22–28].
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If we assume that the spacetime is the Minkowski one both
at early (prebounce) and at late (postbounce) times, but
underwent a period of expansion during an intermediate
time interval, then the initial Minkowski vacuum state of a
test scalar field χ will evolve nontrivially during the
intermediate time interval to a final state, which is not
equal to the final time Minkowski vacuum. From the point
of view of the final Minkowski frame, the final state
contains χ particles. The same phenomenon applies to
linear cosmological perturbations that evolve in a similar
way to test scalar fields on the cosmological background. It
was shown in Ref. [22] that in the matter bounce scenario,
the process of GPP is sufficient to produce a hot early
universe. The matter bounce scenario was also investigated
in the context of LQC in Ref. [29]. It was also shown in
Ref. [28] that GPP, under some conditions, can also be
responsible for the emergence of a hot thermal state in the
Universe in the new ekpyrotic model, thus avoiding the
need to introduce an additional reheating phase. In
Refs. [25,26,30,31], the GPP was also analyzed in the
context of other bouncing cosmologies.1

In this work, we compute the GPP via the Parker
mechanism [20,21] in the preinflationary phase of LQC.
We compute the energy density stored in the produced
particles and compare it with the background energy
density, which we consider to be dominated by the kinetic
energy of the inflaton field before the slow-roll phase.
In our framework, we will consider gravity coupled to
scalar fields and study the dynamics of quantum fields on
quantum cosmological spacetimes.
Since the interest relies on the dynamics of quantized

fields propagating on these quantum cosmological back-
grounds, one needs a quantum gravity extension of the
standard field equations. The extension we are going to
consider lies in the framework of the dressed metric
approach, which allows for a description of the field mode
equations in a form analogous to the classical one [34]. The
dressed metric approach considers a truncation scheme that
is assumed to be well justified in the cases in which the
backreaction of the produced modes are negligible. By
computing the backreaction of the gravitationally produced
particles in the preinflationary phase of LQC, we will be
able to test the validity of the dressed metric approach in
this scenario.
This paper is organized as follows. In Sec. II, we describe

the background dynamics of the LQC model considered
here. In Sec. III, we analyze the gravitational particle
production in LQC. In Sec. IV, we present the analytical
and the numerical results for the energy density of the
particles produced. Finally, our concluding remarks are
presented in Sec. V.

II. BACKGROUND MODEL

We consider LQC as our cosmological scenario from
which the Einstein’s equations receive explicit modifica-
tions in the Planck regime. The spatial geometry in LQC is
encoded in the volume of a fixed fiducial cubic cell, rather
than the scale factor a, and is given by

v ¼ V0a3m2
Pl

2πγ
; ð2:1Þ

where V0 is the comoving volume of the fiducial cell, γ is
the Barbero-Immirzi parameter [35] of LQC, whose
numerical value is given by γ ≃ 0.2375, mPl ≡ 1=

ffiffiffiffi
G

p ¼
1.22 × 1019 GeV is the Planck mass, and G is the Newton
constant of gravitation. The conjugate momentum to v is
denoted by b, and it is given by b ¼ −4πγPðaÞ=ð3a2V0m2

PlÞ,
where PðaÞ is the conjugate momentum to the scale factor.
The solution of the LQC effective equations implies that

the Hubble parameter H can be written as

H ¼ 1

2γλ
sinð2λbÞ; ð2:2Þ

where λ ¼ ð48π2γ2=m4
PlÞ1=4 and b ranges over ð0; π=λÞ. The

energy density, ρ, relates to the LQC variable b through
ρ ¼ 3m2

Pl sin
2ðλbÞ=ð8πγ2λ2Þ. Then, the Friedman equation

in LQC assumes the form [19],

1

9

�
_v
v

�
2 ≡H2 ¼ 8π

3m2
Pl

ρ

�
1 −

ρ

ρc

�
; ð2:3Þ

where ρ is the energy density, ρc ¼ 3m2
Pl=ð8πγ2λ2Þ ≈

0.41m4
Pl is the critical density in LQC, and the dots denote

derivatives with respect to the cosmic time. For ρ ≪ ρc, we
recover GR as expected. The expression (2.3) holds
independently of the particular characteristics of the infla-
tionary regime. We can see that the singularity is avoided
in this model and, when the energy density approaches
the critical density, the Universe undergoes a bounce
with H ¼ 0.
We consider a cosmological scenario in which the energy

content of the Universe is dominated by the inflaton field,
with a potential VðϕÞ. We also consider in our scenario an
extra scalar field χ with no interactions to standard model
(SM) fields and also no direct coupling to the inflaton.
Hence, the field χ only couples to ϕ and to the SM particles
gravitationally. There are many well motivated candidates
for spectator fields in cosmology. For example, dark matter
can well be completely decoupled from the visible matter
(and also from the inflaton) and interact only gravitation-
ally [36]. The production of spectators can all be gravita-
tional (typically, at the end of inflation in the usual
scenarios), or they can also be produced through graviton
mediated scatterings (in which case, their interactions with

1In Refs. [32,33], this production was analyzed specifically in
the context of LQC, but in a different framework than the one
considered here.
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other fields are naturally suppressed by Planck mass
factors). Another example of a spectator field in cosmology
is the curvaton (see, e.g., Ref. [37]), which is essentially, in
its simplest implementations, decoupled from the inflaton
and not contributing to the energy density during inflation,
but it can become important later on. We believe that
spectator fields are well motivated in cosmology and the
GPP of them in the present study is of interest. Here we also
extend the hypothesis of χ being a spectator field to in the
pre-bounce and around the bounce phases. Thus, χ has
negligible contribution to the background dynamics during
these phases. However, due to the marked change in the
metric evolution at around the bounce, we expect that χ will
be produced gravitationally, and it can have important
effects in the postbounce subsequent evolution. We want to
determine how important will be this contribution of the
GPP of χ particles to the subsequent postbounce preinfla-
tionary dynamics.
Due to the quantum nature of H, we can explicitly

observe the evolution of the scale factor during the
cosmological phase close to the bounce, where the
Universe is dominated by the inflaton field, which is
described by a barotropic fluid with equation of state
p ¼ ωρ. This solution reads (see, e.g., Ref. [38])

aðtÞ ¼ aB

�
1þ 6πρc

m2
Pl

ð1þ ωÞ2t2
� 1

3ð1þωÞ
: ð2:4Þ

In this work, we will consider the case of a bounce
dominated by the inflaton kinetic energy, which behaves as
stiff matter, i.e., like a fluid with equation of state ω ≈ 1.
During this phase, the scale factor is given by

a ¼ aB

�
1þ γB

t2

t2Pl

�
1=6

; ð2:5Þ

where γB ≡ 24πρc=m4
Pl ≃ 30.9 and tPl ≡ 1=mPl is the

Planck time. This can be accomplished with the homo-
geneous scalar field inflaton ϕ subjected to a potential
VðϕÞ, whose evolution equation reads

ϕ̈þ 3H _ϕþ V;ϕ ¼ 0: ð2:6Þ

In this scenario, with the bounce dominated by the
kinetic energy of ϕ, the evolution of the Universe after the
contraction, and prior to preheating, can be divided in three
different phases according to the behavior of the equation
of state of the dominant fluid (see, e.g., Ref. [15]): The
bouncing phase, the transition phase, and the slow-roll
inflation phase. In the bounce phase, which lasts from the
bounce until around t ∼ 104tPl, the evolution of aðtÞ is
independent of the inflationary model, since the inflaton
potential energy density is negligible around the bounce.
In the transition phase, the kinetic energy of the inflaton
decreases very rapidly (about 12 orders from its initial

Planck scale), and the equation of state changes suddenly
from wðϕÞ ∼ 1 to wðϕÞ ∼ −1. The transition phase is very
short compared to the other phases. It starts at t ∼ 104tPl
and last until t ∼ 105tPl. After that, the slow-roll phase starts
with the inflaton potential energy dominating. From the
bounce time to the beginning of inflation (i.e., during the
preinflationary phase), the Universe expands around 4–5
e-foldings [15,39]. As we will see bellow, the dynamics
of the fields equations is different in each of these three
phases.
As already mentioned above, the aim of this work is to

see how the GPP of an spectator scalar field χ can affect the
preinflationary phase of LQC. At the same time, this will
also provide us with means to test the validity of the dressed
metric approach in this scenario. We begin by describing
the mechanism of particle production in the following
section.

III. PARTICLE PRODUCTION IN
CURVED SPACE-TIMES

We consider the standard procedure of describing
quantum fields on classical, though curved, spacetimes.
However, this strategy cannot be directly justified in the
quantum gravity era, where curvature and matter densities
are of Planck scale. Nevertheless, using techniques from
LQG, the standard theory was extended providing us with
means to overcome this limitation [34].

A. Dressed metric approach

In LQG, we do not have the analog of the full Einstein’s
equations to perturb. Several strategies have been developed
to overcome this issue. Here, we follow the mainstream
strategy in LQG, which consists in first truncating the
classical theory in a manner appropriate to the physical
problem under consideration. Then, the quantization is
carried out considering the underlying quantum geometry
of LQG. Finally, the consequences of the resulting frame-
work are derived. The full phase space is truncated, keeping
only the FLRW background with first-order inhomogeneous
perturbations. The truncated phase space is described by
ΓTrun ¼ Γ0 × Γ̃1, where Γ0 is the four-dimensional phase
space for the FLRW background, and Γ̃1 is the phase space
of gauge invariant perturbations [40–42]. For a universe
dominated by the scalar field ϕ, the background phase space
Γ0 is coordinatized by [ν; b;ϕ; pðϕÞ] and carries a single
Hamiltonian constraint which implies in the equation,

S0½Nhom� ¼ Nhom

�
−
3b2ν
4γ

þ
p2
ðϕÞm

2
Pl

4πγν
þ 2πγν

m2
Pl

VðϕÞ
�
¼ 0;

ð3:1Þ

where Nhom represents an homogeneous lapse. By consid-
ering in the above equation the choice Nhom ¼ 1, it gives the
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evolution in cosmic time, while Nhom ¼ a gives it in
conformal time, Nhom ¼ a3 in harmonic time, and Nhom ¼
a3V0=pðϕÞ corresponds to using the inflaton field as “time
clock” (see, e.g., Ref. [40] for more details).
Since the phase space of the truncated system is a

product, the Hilbert space of quantum states has the
form H ¼ H0 ⊗ H1. The Hilbert space of background
fields, H0, consists of wave functions Ψ0ðν;ϕÞ. The
evolution of this quantum state is governed by the LQC
quantum Hamiltonian constraint. Thus, the wave function
Ψ0ðν;ϕÞ is subjected to the constraint Ŝ0Ψ0 ¼ 0 from the
Dirac quantization procedure. From this constraint, we
are led to the equation −i∂ϕΨ0ðν;ϕÞ ¼ Ĥ0Ψ0ðν;ϕÞ [40],
where Ĥ0 is a self-adjoint operator whose explicit form will
not be needed here.
Therefore, the evolution of this quantum state with

respect to the emergent time variable ϕ is governed by
the LQC quantum Hamiltonian constraint. Among several
states Ψ0ða;ϕÞ in the LQC Hilbert space, one is interested
in a state that is sharply peaked around a classical trajectory
at late times. Evolving this state by using the LQC quantum
Hamiltonian constraint, it has been shown that it remains
sharply peaked during the whole dynamical trajectory, even
deep in the Planck era [40]. Consequently, the evolution of
the peak of such states can be described by an effective
trajectory that is governed by the effective equations. Now,
quantum perturbations propagate on quantum geometries,
which are regular and free of singularities, being the energy
density bounded above by the critical value ρc ≃ 0.41m4

Pl.
On the other hand, the classical dynamics on the full

ΓTrun is not generated by a constraint; therefore, one cannot
recover the quantum dynamics for the total system by
imposing a quantum constraint. We do this by first
proceeding in the homogeneous sector as mentioned, by
reinterpreting the quantum Hamiltonian constraint as an
evolution equation in the homogeneous sector, and then, we
“lift” the resulting quantum trajectory to the full Hilbert
space H (see Ref. [40]) considering the truncated space.
Nevertheless, in order for the truncation scheme to be valid,
we need to ensure that the energy density stored in the
perturbations is much smaller than the energy density of
the background [41], i.e., ρpert=ρbg ≪ 1, all the way back to
the bounce. Only then we would be assured of a self-
consistent solution, justifying our truncation, which ignores
the backreaction. Otherwise, one would have to perform a
full quantum gravity theory.
In the scenario considered here, in addition to the

dominant inflaton field, we consider a spectator scalar
field χ, which has absent, or negligible interactions to the
other components of the Universe. We follow the analysis
of the gravitational production of this scalar field χ in the
framework of the dressed metric approach [34,40–42],
which has the advantage of allowing the description of the
main equations in a form analogous to the classical ones.

In the dressed metric approach, the equation of motion of
the operators representing scalar perturbations and the
scalar field equations are formally the same as the usual
equations appearing in a classical spacetime in GR. We
analyze the GPP associated with this scalar field χ.
Considering that χ has a sufficiently small or negligible
mass (compared, e.g., to H in the postbounce phase), thus,
χ behaves essentially as radiation during the whole preinfla-
tionary phase.
In the test field approximation, the dynamics of fields

propagating on the quantum geometry, which is described
by the quantum state Ψ0, behave as propagating in a
quantum modified effective geometry described by the
following dressed metric [40,42]:

g̃abdxadxb ¼ ã2ð−dη̃2 þ dxidxiÞ; ð3:2Þ

where the dressed scale factor ã and the dressed conformal
time η̃ are given, respectively, by

ã ¼
�hĤ−1=2

0 â4Ĥ−1=2
0 i

hĤ−1
0 i

�1=4

; ð3:3Þ

and

dη̃ ¼ hĤ−1=2
0 ihĤ−1=2

0 â4Ĥ−1=2
0 i1=2dϕ: ð3:4Þ

In the latter equations, Ĥ0 is the background Hamiltonian,
and the expectation values are taken with respect to the
background quantum geometry state, which is given by
Ψ0ða;ϕÞ. In this approach, the equations of motion of the
operators representing scalar and tensor perturbations are
formally the same as the equations appearing in classical
spacetimes, which in Fourier space read

μ00kðη̃Þ þ
�
k2 −

ã00

ã
þ Ũðη̃Þ

�
μkðη̃Þ ¼ 0; ð3:5Þ

where primes here denote derivative with respect to the
conformal time, μkðη̃Þ ¼ zRk, with Rk denoting the comov-
ing curvature perturbation, zðη̃Þ ¼ a _ϕ=H, and

Ũðη̃Þ ¼ hĤ−1=2
0 â2ÛðϕÞâ2Ĥ−1=2

0 i
hĤ−1=2

0 â4Ĥ−1=2
0 i

: ð3:6Þ

The quantities ã, η̃ and Ũðη̃Þ represent the quantum
expectation values in the background state Ψ0ða;ϕÞ.
However, for sharply peaked background states, the
dressed effective quantities are well approximated by their
peaked values a, η, and UðηÞ. Then, the equation of motion
for scalar modes, Eq. (3.5), becomes

μ00kðηÞ þ
�
k2 −

a00

a
þUðηÞ

�
μkðηÞ ¼ 0; ð3:7Þ
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where U ¼ a2ðf2VðϕÞ þ 2fV;ϕðϕÞ þ V;ϕϕðϕÞÞ and f≡ffiffiffiffiffiffiffiffiffi
2πG

p
_ϕ=

ffiffiffi
ρ

p
. The effective potential U is negligible in the

bounce and transition phases, and it can then be neglected
[15]. Thus, the equation of motion in the bounce and
transition phases can be simply written as

μ00kðηÞ þ
�
k2 −

a00ðηÞ
aðηÞ

�
μkðηÞ ¼ 0: ð3:8Þ

Despite its use in the present study, it is important to
mention that there are other alternatives to the dressed
metric approach. Other important approaches for treating
perturbations in LQC are, e.g., the hybrid quantization
approach (see, for example, Refs. [43,44] and references
therein), and the deformed algebra approach (see, for
example, Ref. [45] and references therein).

B. Gravitational particle production

By considering the evolution of the Fourier modes X k of
the scalar field χ, in the dressed metric approach, the form
of its equation of motion is quite analogous to the classical
spacetime equations. Also, by neglecting the χ mass, the
evolution equation for the conformal rescaled field mode,
χk ≡ aXk, simply takes the same form as that for the
perturbation modes Eq. (3.8). Hence, we can simply
identify μk → χk in Eq. (3.8), giving

χ00kðηÞ þ
�
k2 −

a00ðηÞ
aðηÞ

�
χkðηÞ ¼ 0: ð3:9Þ

Equation (3.9) represents a set of uncoupled oscillators
with time variable frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − a00=a

p
. The time

dependence of a00=a stems from the evolution of the scale
factor aðηÞ, which parametrizes the background evolution.
Therefore, for each instant η, we define a different
vacuum. Parker [20,21] established conditions for the
definition of a time dependent particle number operator
nðηÞ. It can be defined if its vacuum expectation value
varies slowly as possible with time as the expansion rate of
the Universe is sufficiently slow. Also, this expansion
period must occur between two “Minkowskian” vacuum
states. One evaluates the effect of GPP occurring between
these vacuum states. The mathematical treatment is
summarized below.
The Hamiltonian for χkðηÞ in terms of its Fourier modes

reads

HðηÞ ¼
Z

d3kð2Ekâ
†
k⃗
âk⃗ þ Fk⃗âk⃗â−k⃗ þ F�

k⃗
â†
k⃗
â†
−k⃗
Þ; ð3:10Þ

where

EkðηÞ ¼
1

2
jχ0kðηÞj2 þ

ω2
k

2
jχkðηÞj2; ð3:11Þ

FkðηÞ ¼
1

2
ðχ0kðηÞÞ2 þ

ω2
k

2
ðχkðηÞÞ2; ð3:12Þ

where ωk ¼ k in the massless approximation for the χ field.
We diagonalize the Hamiltonian performing the following
Bogoliubov transformation:

b̂k⃗ ¼ αkðηÞâk⃗ þ β�kðηÞâ−k⃗†; ð3:13Þ

where the Bogoliubov coefficients αkðηÞ and βkðηÞ satisfy
the constraint jαkðηÞj2 − jβkðηÞj2 ¼ 1 due to normalization
of the modes. The resulting diagonal Hamiltonian reads

HðηÞ ¼
Z

d3kωkb
†
k⃗
bk⃗; ð3:14Þ

and Eq. (3.11), for instance, becomes

EkðηÞ ¼ ωk

�
1

2
þ jβkðηÞj2

�
: ð3:15Þ

Defining the vacuum states j0ðaÞi and j0ðbÞi such that
ak⃗j0ðaÞi ¼ bk⃗j0ðbÞi ¼ 0, we can compute the expectation

value of the number operator N̂ðbÞ
k⃗

¼ b†
k⃗
bk⃗ in the vacuum

j0ðaÞi,

nkðηÞ ¼ hðaÞ0jN̂ðbÞ
k⃗
j0ðaÞi ¼ jβkðηÞj2: ð3:16Þ

We observe that jβkðηÞj2 is exactly the particle number per
mode. Therefore, from Eq. (3.15), we obtain that EkðηÞ ¼
ωk½1=2þ nkðηÞ� is the energy contribution of GPP. The
Bogoliubov coefficients relate the initial Minkowskian

vacuum states χðiÞk to the final ones χðfÞk in the following
way:

χðfÞk ðηÞ ¼ αkχ
ðiÞ
k ðηÞ þ βkχ

ðiÞ�
k ðηÞ: ð3:17Þ

When βk ¼ 0, there is no particle production and the
constraint jαkðηÞj2 − jβkðηÞj2 ¼ 1 gives αk ¼ 1 and, then,

χðiÞk ¼ χðfÞk for the whole evolution.
From the definition of the particle number per mode,

Eq. (3.16), we can obtain the total particle number density
npðηÞ and the total energy density ρpðηÞ produced. The
total particle number density can be defined as the limit ofP

k jβkðηÞj2 in a box of side L → ∞ divided by the volume
a3ðηÞL3, which gives

npðηÞ ¼
1

a3ðηÞL3

�
L
2π

�
3
Z

∞

0

d3knkðηÞ

¼ 1

2π2a3ðηÞ
Z

∞

0

dkk2jβkðηÞj2: ð3:18Þ
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Likewise, the total energy density ρpðηÞ can be defined as
the momentum sum of ωknkðηÞ, which results in

ρpðηÞ ¼
1

2π2a4ðηÞ
Z

∞

0

dkk2ωkjβkðηÞj2: ð3:19Þ

Equation (3.19) allows us to obtain the energy density
associated with the particles that are gravitationally pro-
duced in the Universe.
It is important to mention that the energy density of

produced particles can also be obtained from the expect-
ation value of the energy-momentum tensor of χ field at any
time η, which reads [46]

ρEMp ðηÞ ¼ 1

4π2a4ðηÞ
Z

∞

0

dkk2
�
jχ0kðηÞj2 þ ω2

kjχkðηÞj2

þ
�
a0

a

�
2

jχkðηÞj2 −
a0

a
½χ�kðηÞχkðηÞ�0

�
: ð3:20Þ

Far from the bounce, when the expansion rate is negligible,
the energy difference due to produced particles with respect
to the initial vacuum reduces to Eq. (3.19).
In the following we will directly solve the equations of

motion for the fields in each cosmological phase.

C. The scalar field equation of motion

In order to perform a preliminary analytical analysis,
we will neglect the backreaction effect of the produced
particles on the cosmological background, and we will
solve the equation of motion for the field modes χk,
Eq. (3.9), for each cosmological phase. Backreaction
effects will be considered explicitly when we numerically
solve for the modes later in Sec. IV B.
To obtain the solution for the modes χk, we need to solve

Eq. (3.9) in each phase (bounce, transition, and slow-roll
inflationary phase). We will not compute the particle
production in the previous matter contraction phase since,
independently of the details of the contracting phase,
particles are effectively produced only after they get rid
of the influence of the potential a00=a, which happens soon
after the bounce phase in the LQC model here considered.
The behavior of the modes in each phase depends on which
term, k2 or a00=a, dominates the time dependent frequency
in Eq. (3.9). To analyze the relevant modes, it is useful to
define the characteristic length λ ¼ ffiffiffiffiffiffiffiffiffiffi

a=a00
p

, which plays a
role analogous to that of the comoving Hubble radius. We
also define the characteristic momentum kB ¼ ffiffiffiffiffiffiffiffiffiffi

a00=a
p jt¼tB ,

which is the physical energy at the bounce. Note that from
Eq. (2.5), we have that

kB ≡ ffiffiffiffiffiffiffiffiffiffi
γB=3

p
mPl ≃ 3.21mPl; ð3:21Þ

where we have set aB ¼ 1 at the bounce. The relevant field
modes χk are those with k ≈ kB, as these are the modes

expected to give the main contribution to the GPP.
However, the dynamics of these modes have different
behavior when they are inside and outside the characteristic
length λ. We will focus on the modes that begin well inside
λ in the contracting phase, exit λ during the bounce phase,
and then enter λ again in the transition phase and then on.
We consider the initial Bunch-Davies (BD) vacuum state in
the contracting phase. In the following subsections, we
describe the solution for χkðηÞ in each cosmological phase.

1. Bounce phase

Since the equations for the momentum modes for the
perturbations, Eq. (3.8), and that for the modes χk,
Eq. (3.9), are essentially identical, we can quite conven-
iently adapt the results already derived by the authors in
Ref. [15] and used in there to solve for Eq. (3.8) to get the
bounce contribution to the power spectrum. This starts by
realizing that Eq. (3.9) can be seen as analogous to a type of
the Schrödinger equation and where the term a00ðηÞ=aðηÞ
acts like a potential, which behaves as an effective barrier
during the bouncing phase. This potential can be well
approximated by a Pöschl-Teller potential at the bounce,
i.e., a00ðηÞ=aðηÞ ≈ k2Bsech

2½ ffiffiffi
6

p
kBðη − ηBÞ�. In this case,

the solution of Eq. (3.9) can be put in the form of the
solution of a standard hypergeometric equation, and it is
given by [15]

χkðηÞ ¼ akxik=ð2
ffiffi
6

p
kBÞð1 − xÞ−ik=ð2

ffiffi
6

p
kBÞ

× 2F1ða1 − a3 þ 1; a2 − a3 þ 1; 2 − a3; xÞ
þ bk½xð1 − xÞ�−ik=ð2

ffiffi
6

p
kBÞ

2F1ða1; a2; a3; xÞ;
ð3:22Þ

where x≡ xðηÞ ¼ f1þ exp½−2 ffiffiffi
6

p
kBðη − ηBÞ�g−1,

a1 ≡ 1

2

�
1þ 1ffiffiffi

3
p

�
−

ikffiffiffi
6

p
kB

; ð3:23Þ

a2 ≡ 1

2

�
1 −

1ffiffiffi
3

p
�
−

ikffiffiffi
6

p
kB

; ð3:24Þ

a3 ≡ 1 −
ikffiffiffi
6

p
kB

; ð3:25Þ

and ak and bk are integration constants determined by
the initial conditions. These will be explicitly deter-
mined below.

2. Transition phase

In the transition phase, on the other hand, the term k2

dominates over a00=a in Eq. (3.9). The solution of the
equation of motion in this phase is given by
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χk ¼
1ffiffiffiffiffi
2k

p ðα̃ke−ikη þ β̃keikηÞ; ð3:26Þ

where α̃k and β̃k are two more integration constants and
also determined when matching the different solutions.

3. Slow-roll inflationary phase

After the transition phase, in the slow-roll inflationary
phase, the Universe is no longer in the quantum regime, and
the equation of motion reduces to the usual relativistic one,

χ00kðηÞ þ
�
k2 −

ν2 þ 1=4
η2

�
χkðηÞ ¼ 0; ð3:27Þ

where

ν2 ¼ η2
a00ðηÞ
aðηÞ þ 1

4
: ð3:28Þ

In this phase, the approximate analytical solution of
Eq. (3.27) is given in terms of the Hankel functions as

χkðηÞ ≈
ffiffiffiffiffiffiffiffiffi−πηp
2

h
αkH

ð1Þ
ν ð−kηÞ þ βkH

ð2Þ
ν ð−kηÞ

i
; ð3:29Þ

where αk and βk are again two other integration constants.

4. Matching phases

To determine the coefficients αk and βk in Eq. (3.29), one
needs to match the solutions of each phase in their
intermediate regions. During the contracting phase, close
to the bounce, all the relevant modes are well inside the
characteristic length λ. Then, we can choose the BD vacuum
state as the initial conditions of the modes. Therefore,

χink ðηÞ ≈
1ffiffiffiffiffi
2k

p e−ikη: ð3:30Þ

We can consider the solution of the bounce phase, Eq. (3.22),
in the limit η − ηB ≫ 0. By comparing the resulting equation
with the above initial condition, we obtain that the coef-
ficients ak and bk in Eq. (3.22) are given by

ak ¼ 0; bk ¼ eikηB=
ffiffiffiffiffi
2k

p
: ð3:31Þ

Next, by comparing the solution for χkðηÞ in the bounce
phase, Eq. (3.22), with the solution in the transition
phase, Eq. (3.26), we can obtain the expressions for α̃k
and β̃k. These, compared to the solution in the slow-roll,
Eq. (3.29), in the limit −kη → ∞, give, after some algebra,
that [15]

αk ¼ α̃k ¼
Γða3ÞΓða1 þ a2 − a3Þ

Γða1ÞΓða2Þ
e2ikηB ; ð3:32Þ

βk ¼ β̃k ¼
Γða3ÞΓða3 − a1 − a2Þ
Γða3 − a1ÞΓða3 − a2Þ

: ð3:33Þ

From the previous results, it then follows that

jβkj2 ¼
1

2

�
1þ cos

�
πffiffiffi
3

p
��

csch2
�

πkffiffiffi
6

p
kB

�
: ð3:34Þ

The coefficients of the slow-roll phase (far future) and the
ones of the contracting phase (far past) are related through
Eq. (3.17). This relation gives that the coefficient βk of
Eq. (3.34) is exactly the Bogoliubov coefficient. As we have
already discussed, the quantity jβkj2 is the number of
particles produced per mode k, nk. By computing this
quantity, we can infer the quantity of particles produced
since the initial BD vacuum in the beginning of the
contracting phase.2 This will be computed in the next section
both analytically, when neglecting the backreaction effect of
the produced particles on the background evolution, and
numerically, by fully including its effect.

IV. RESULTS

We next compute particle production due to the gravi-
tational effects both analytically and numerically. From the
analytical point of view, we make use of the results of the
previous Sec. III C 4. In this case, the produced particles
take no part in the dynamics; i.e., there are no backreaction
effects. On the other hand, in the numerical setting, we
consistently compute the particle production and include its
effects in the Universe dynamics, such that the backreaction
effects are self-consistently taken into account.

A. Analytical results

The energy density of relativistic χ particles that are
produced due to the bounce is determined by Eq. (3.19)
with Eq. (3.34). When performing the momentum integral
in this equation, we must establish both ultraviolet (UV)
and infrared (IR) cutoffs. This point requires some dis-
cussion since there is not a consensus on the choice of these
integration limits. For instance, in Ref. [41], the integration
limits were chosen such that the range of frequencies

2The presence of particles produced before the beginning of
inflation have consequences to the power spectrum of the model,
which receives a correction factor such that it is written as
ΔRðkÞ ¼ jαk þ βkj2ΔGR

R ðkÞ, where ΔGR
R is the GR form of the

spectrum [15,41]. A fast oscillatory behavior of the power spectra
arises from the final interference term, due to the rapidly
changing relative phase. This oscillation is so fast in k that in
any realistic observations they would be averaged out [41].
Consequently, the LQC power spectrum can be simply given by
rescaling the standard one from general relativity by a factor of
ð1þ 2jβkj2Þ. The same equations of motion described in this
section were also solved in Refs. [15,41] in the context of the
curvature perturbation.
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integrated are defined by the window of observable modes
in the cosmic microwave background (CMB). This choice
implies in a kmin much higher than kB. As discussed in
Ref. [41], the dynamics of modes for such high values of k
is largely insensitive to the background geometry, so they
essentially evolve as if they were in flat spacetime. In this
case, the evolved state is indistinguishable from the BD
vacuum at the onset of inflation. In addition, there is
nothing, in principle, to prevent particle production already
starting at the scale λ of the effective horizon, right after the
bounce. The particles that are produced at that moment
should contribute to the energy density, specially if they are
relativistic (radiationlike). In fact, if a too low IR cutoff kmin
is taken such to be much higher than kB, we lose essentially
all particle production, since kB is exactly the scale around
which (and below it) we expected that most of the
gravitational particle production, due to the bounce, effec-
tively happens. The associated modes may not be observed
today, but they should contribute to the energy density
during all the preinflationary era, where their energy
density is not redshifted away too fast. For this reason,
here we choose a different approach. For our purpose of
estimating the energy density stored in the particles
produced, we will be interested in the modes such that
kminðηÞ ≤ k ≤ kB, where kminðηÞ ¼ λ−1 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a00ðηÞ=aðηÞp
for all η. The produced modes are effectively considered
as particles after they reenter the horizon. Those are the
modes which exit and reenter the effective horizon λ during
the preinflationary phase, and then they will only reexit λ
later, in the slow-roll inflationary phase. Hence, those are
the modes which are expected to give the largest contri-
bution to the particle production, since those are the ones
that exit λ and reenter it before inflation starts. Our UV
cutoff will then be given by kB, while λ−1 yields the natural
IR cutoff in the present problem. Therefore, the energy
density of the particles created is given by Eq. (3.19), which
with the appropriate IR and UV cutoffs, can be written as

ρpðηÞ ¼
1

2π2a4ðηÞ
Z

kB

kminðηÞ
dkk2nkðηÞωk; ð4:1Þ

which upon using nk ≡ jβkj2, with jβkj2 given by Eq. (3.34)
and ωk ∼ k for relativistic χ particles, we obtain that

ρpðηÞ ¼
1þ cosð πffiffi

3
p Þ

4π2a4ðηÞ
Z

kB

kminðηÞ
dkk3csch2

�
πkffiffiffi
6

p
kB

�
: ð4:2Þ

Since the integral is dominated by the UV limit kB, we can
simply set the lower limit of integration to zero in the above
equation. Thus, Eq. (4.2) gives

ρpðηÞ ≃ 4.5 × 10−3
k4B

a4ðηÞ ≃ 0.012
m4

Pl

a4ðηÞ ; ð4:3Þ

where we have used the result (3.21) for kB.
Equation (4.3) gives the energy density of particles
produced after the main modes reenter λ after the bounce,
i.e., when aðηÞ > 1. As already previously mentioned, the
relevant modes for GPP of relativistic χ particles are the
ones such that k < kB, which are the ones that exit
and reenter λ during the bounce phase. These modes
will only reexit λ again in the slow-roll inflationary phase.
Therefore, we can neglect the particle production after the
end of the bounce phase until the beginning of the
inflationary phase, since the relevant modes for GPP
are all inside λ during this period.
We are considering the cases where the kinetic energy

density of the inflaton is the dominant energy component
at the bounce. Thus, the background energy evolves like
stiff matter, ρback ¼ ρc=a6. On the other hand, the χ GPP
evolves like relativistic matter ∼1=a4, as seen in Eq. (4.2).
Let us first estimate an upper bound on the energy density
of GPP by imposing that it remains subdominant up to the
beginning of inflation. We write the energy density of
particles produced as ρp ¼ ρχa−4, where ρχ is the energy
density of particles produced soon after the bounce (when
the main modes reenter λ). The elapsed e-foldings between
the bounce and the start of inflation in LQC is around
Npre−infl ¼ 4–5 e-folds (see, e.g., Ref. [15]). Thus, by
requiring that at the start of inflation ρχ < ρbg, we readily
find the condition ρχ ≲ 2 × 10−5m4

Pl for the energy density
of relativistic GPP produced around the bounce not to
dominate the energy content of the Universe up until before
inflation. Let us now estimate ρχ from the result given by
Eq. (4.3). We can take as an estimate the maximum of GPP
to happen around the time ts where a00=a ¼ 0 in the
postbounce phase, which can be estimated from
Eq. (2.5) to be ts ≃ 0.3tPl. Thus, from Eq. (4.3), we can
estimate that ρχ ≡ ρpðtsÞ ≃ 5 × 10−3m4

Pl. This result is
about 2 orders of magnitude larger than the upper bound
estimated above for the relativistic GPP not to dominate
until before the beginning of inflation. Given the previous
discussion about the validity of the truncation scheme used
in the dressed metric approach, we see that what the above
result indicates is that this standard procedure cannot be
justified in this scenario, being necessary a full quantization
approach.
However, the above analytical estimate for the energy

density of GPP is expected to overestimate the particle
production, since the backreaction of this GPP is fully
absent in the derivation of βkðηÞ that was presented in the
previous section and, when included, should affect the
evolution dynamics of the background, potentially decreas-
ing the net GPP. In the next section, we compute the particle
production by including continuously the backreaction of
the GPP on the cosmological background. We then verify
whether we can extend the validity of the dressed metric
approach beyond the limit which it is strictly justified.
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B. Numerical results

The inclusion of the backreaction effects of the particles
that are continuously produced on the cosmological back-
ground can only be done numerically. As in any problem of
GPP, we have to properly account for how the initial
conditions are set, in particular, for the field modes. We
can consider two different sets of initial conditions for the
modes. One is the BD vacuum, imposed at the contracting
phase right before the quantum bounce, and the other is the
fourth-order adiabatic vacuum state [46] set at the bounce. In
Ref. [15], it was shown that, in the scenarios considered here,
they are essentially equivalent and lead to the same results. In
the following we take advantage of this finding, and we are
going to consider the initial BDvacuumstate in our numerical
analysis, which makes the numerics much simpler.
As we have mentioned in the latter subsection, wewill be

interested in the modes such that kminðηÞ ≤ k ≤ kB, where
kminðηÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a00ðηÞ=aðηÞp

. Therefore, using these UVand IR
limits, the energy density of produced particles reads like
Eq. (4.1) from the previous subsection. The expression for
the number density nk is given through Ek, Eq. (3.11),
expressed in terms of the field modes χk and their time
derivatives. The field modes χkðηÞ are explicitly obtained
by numerically solving their equation of motion, given by
Eq. (3.9). If we fix the scale factor as the one given by
Eq. (2.5) and compute the GPP, this procedure must give
results similar to Eq. (4.2). This is the case where there is no
backreaction in the universe dynamics. However, we are
interested in including the effect of particle production on
its dynamics, which demands us to add to the numerical
system the equation for the stiff matter field evolution,
Eq. (2.6), and to include the energy density of produced
particles in the Friedmann equation, Eq. (2.3).
It is important to drawattention to someof the aspects of the

GPP considered here. We compute particle production soon
after thebounce.Weconsider as particles themodeswhichget
inside λ, after the squeezing during the bounce, i.e., modes
that satisfy k2 < a00=a during the bounce phase for some time
interval. Then, the energy contribution from particle produc-
tion is computed at the instant thesemodes reenter λ. For each
instant, we consider the modes which have entered λ and
integrate on these modes. Near the bounce, modes with
k≲ kB are the relevant ones, whereas those with k > kB are
neglected as these modes are always inside λ; i.e., k2 < a00=a
is never satisfied. As we move away from the bounce, lower
energy modes with k < kB reenter λ and are also integrated.
To compute the energy of produced particles, one can use
Eq. (3.19) but keeping in mind that this expression is valid
when we compare far past initial and far future final states.
Equation (3.19) then gives the net energy production between
these states. However, selecting the relevant modes,
kminðηÞ ≤ k ≤ kB, we obtain Eq. (4.1), which accounts only
for particle modes. In Sec. IVA, we use Eq. (4.1) in order to
obtain an analytical estimate due to its simplicity. However,
for more accurate results, we need to observe that the initial

condition is not specified in the far past, but near the bounce.
This may result in some spurious energy density contribution
in the initial vacuum, which must be subtracted. In this
context, we can obtain an exact energy density of produced
particles using Eq. (3.20), which is obtained directly from the
energy-momentum tensor and is integrated along the same
lines of Eq. (4.1). However, this expression does not give the
net result but the energy density at each instant of time. To
obtain a net result, we must subtract the energy density at the
initial vacuum state. Finally, we discuss the aforementioned
subtraction and the initial condition. We take our initial
condition before the bounce, at the instant ti wherea00=a ¼ 0.
This is not too far from the bounce to guarantee the precision
of Eq. (4.1). Also, the fact that a00=a ¼ 0 at t ¼ ti does not
guarantee that a0=a ¼ 0 in Eq. (3.20), which may result in
non-negligible contributions to the energy density. However,
if we consider the subtraction of the vacuum energy for
both expressions, the computations are both consistent. Either
way, we have explicitly verified that if the above cares are
properly taken into account, the results coming from either
Eq. (4.1) or Eq. (3.20) are completely equivalent.
Considering the above remarks, the full set of coupled

equations to be solved numerically is then

H2 ≡
�
a0

a

�
2

¼ 8π

3m2
Pl

a2ρ

�
1 −

ρ

ρc

�
; ð4:4Þ

ρ ¼ ϕ02

2a2
þ VðϕÞ þ ρp; ð4:5Þ

ϕ00 þ 2Hϕ0 þ a2V;ϕ ¼ 0; ð4:6Þ

χ00k þ
�
k2 −

a00

a

�
χk ¼ 0; ð4:7Þ

ρp ¼ 1

2π2a4

Z
kBffiffiffiffiffiffi

a00ðηÞ
aðηÞ

q dkk2ωkjβkðηÞj2; ð4:8Þ

jβkðηÞj2 ¼
1

2ωk
½jχ0kðηÞj2 þ ω2

kjχkðηÞj2� −
1

2
: ð4:9Þ

With the bounce dominated by the kinetic energy of the
inflaton, the potential VðϕÞ can be neglected during the
contraction, bounce, and transition phases, and therefore,
the explicit form of the potential does not affect the particle
production phase. In practice, we consider the chaotic
quartic potential for the inflaton,3

3The use of a quartic inflaton potential here is only meant for
illustrative purposes.Anyother suitable inflaton potential could also
be considered as well. The difference between other choices of
inflaton potential is expected only to be mostly important on the
slow-roll inflationary dynamics and on the resulting observable
quantities. Even though the quartic inflaton potential is ruled out in
the simple inflationary scenarios, it can lead to consistent results and
be in accordance to the most recent Planck data in the context of the
warm inflation scenario (see, e.g., Refs. [39,47] and references
therein), where inflation happens in a state characterized by the
presence of dissipation and radiation effects.
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VðϕÞ ¼ V0

4

�
ϕ

mPl

�
4

; ð4:10Þ

with V0 fixed by the cosmic microwave background
normalization for the amplitude of the power spectrum
[48], which gives V0=m4

Pl ≃ 1.37 × 10−13.
The initial conditions for the χ field momentum modes

are chosen to be the BD ones,

χkðηiÞ ¼
1ffiffiffiffiffi
2k

p e−ikηi ; χ0kðηiÞ ¼ −i
ffiffiffi
k
2

r
e−ikηi ; ð4:11Þ

where the initial time ηi is chosen in the prebounce phase,
when a00=a ¼ 0, which, in terms of the cosmic time, is
found to be ti ≃ −0.312tPl. The initial conditions for the
inflaton field and its derivative are chosen, such that we
would have around 60 e-folds of inflation when neglecting
the backreaction of the GPP. This gives ϕðtiÞ ≃ 1.94mPl and
_ϕðtiÞ ≃ 0.45m2

Pl for the case of the potential in Eq. (4.10).
In Fig. 1, we present the behavior of the energy densities

relevant for our analysis. The dot-dashed curve is the result
for the energy density of produced particles by numerically
solving the coupled set of Eqs. (4.4)–(4.9). The dashed
curve gives the background energy density. The solid curve
is the result obtained when using the approximation given
by Eq. (4.2), while the dotted curve is given by Eq. (4.3).
We see that the simple result Eq. (4.3) starts to agree with
the one from Eq. (4.2) for t≳ 0.3tPl. In either case, both
results overestimate the one obtained from the complete
numerical analysis, which consistently accounts for the
backreaction of the GPP. Both results, however, show a
peak around t ∼ 0.2tPl, right after the bounce and the
superinflation phase. The consistent inclusion of the
backreaction effect smoothly introduces the produced
radiation in the background, ceasing the continuous particle

production. In the numerical calculations, ρp should still
grow for a moment after the modes enter λ, due to the time
interval for the stabilization of the modes. By the time
t≳ 0.6tPl, all the modes are already stabilized, the GPP
ceases, and ρp just redshifts away as relativistic matter, as
expected. At its peak value, we have ρp ≃ 0.05m4

Pl, which is
still considerably larger than the upper bound estimated in
the previous subsection, ρχ ≲ 2 × 10−5m4

Pl. By extending
the validity of the dressed metric approach, the radiation
gravitationally produced4 during the bounce phase in LQC

FIG. 1. Evolution of the different energy densities as a function
of the cosmic time. The dot-dashed curve is the result obtained by
numerically solving the coupled set of Eqs. (4.4)–(4.9). The
dashed curve is the background energy density. The solid curve is
the result obtained when using the approximation given by
Eq. (4.2), while the dotted curve is the result given by Eq. (4.3).

(a)

(b)

FIG. 2. Panel (a): The radiation energy density due to GPP, the
inflaton’s kinetic energy _ϕ2=2 and potential energy VðϕÞ as a
function of the number of e-folds, in the presence of the
backreation effect due to the GPP (solid lines), and in the
absence of GPP (dashed lines). Panel (b): The equation of state
w ¼ p=ρ, in the presence of GPP (solid line), and in the absence
of it (dashed line).

4Here, we denote as radiation all the contributions, which have
equation of state w ¼ 1=3.
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should not dominate the energy content of the Universe
before inflation starts. Nevertheless, the numerical analysis,
including the backreaction effects, shows that the radiation
domination phase will start already at around t ∼ 0.5tPl.
By extrapolating the evolution up until the start of the

slow-roll phase, in Fig. 2(a), we show the evolution of the
kinetic and potential energy densities for the inflaton along
with the radiation energy density due to the GPP and that
include all the effects of backreaction due to the GPP in
their respective evolutions (solid lines). For comparison, we
also show the results for the kinetic and potential energies
densities in the absence of the effects of the GPP. In
Fig. 2(b), we show the equation of state w ¼ p=ρ, in the
presence of GPP (solid line), and in the absence of it
(dashed line). The effect of the GPP is clear in the evolution
of the quantities shown in Fig. 2. The energy density due to
GPP quickly dominates over the kinetic energy soon after
the bounce as described above. The kination regime in the
preinflationary phase after the bounce is soon replaced by a
radiation dominated regime (w ≃ 1=3) that lasts until the
potential energy dominates, when the slow-roll phase starts.
While in the absence of GPP, the preinflationary phase lasts
around four e-folds, the GPP extends it to around six
e-folds, thus delaying the start of the inflationary phase.
This also reflects strongly on the duration of the infla-
tionary phase, which can be seen in Fig. 3, where we show
the slow-roll parameter ϵH ¼ − _H=H2, already in the
preinflationary phase, till the end of inflation. In the
absence of GPP and for the choice of initial conditions,
we have taken in our numerical example, we have 60

e-folds of inflation. However, the GPP shortens the infla-
tionary phase to around 30 e-folds. This is a common
feature expected to happen to other choices of initial
conditions for the inflaton: there will be an increase of
the duration of the preinflationary phase and a decrease of
the inflationary one, whenever radiation dominates the
dynamics after the bounce [39].

V. CONCLUSIONS

We have investigated the process of gravitational particle
production in the preinflationary phase of loop quantum
cosmology (LQC). We show, for the first time, that if we
suppose the validity of the dressed metric approach in a LQC
scenario with a BD initial condition in the contracting phase,
which is equivalent to the choice of a fourth order adiabatic
vacuum at the bounce [15], the backreaction of the produced
particles leads to a short radiation dominated phase before
the onset of inflation. Both the numerical and analytical
analysis agree qualitatively in this conclusion. In a sense, the
cosmological scenario we obtain in this case is very similar
to the one obtained for LQC in warm inflation, as shown
e.g., in Refs. [39,47]. In warm inflation, there is also a
preinflationary phase following the bounce that is radiation
dominated instead of kination dominated. However, in warm
inflation, the radiation is produced by the intrinsic dissipative
processes that can drive the decay of the inflaton field in light
(relativistic) degrees of freedom. Here, the radiation domi-
nated regime in the preinflationary phase after the bounce is
due entirely to gravitational particle production that occurs
during the bounce phase.
In fact, our results give an indication that it is not

consistent to ignore the backreaction of the gravitationally
produced particles in the preinflationary epoch of LQC, and
this backreaction leads to a state at the onset of inflation
significantly different from the BD vacuum. Since one
should not expected that the dressed metric approach
should be self-consistent in this regime, our analysis put
in check the validity of the dressed metric approach in a
LQC model with such initial conditions.
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FIG. 3. The Hubble slow-roll parameter ϵH ¼ − _H=H2, from
the preinflationary phase up to the end of inflation, as a function
of the number of e-folds, in the presence of the effect due to GPP
(solid line) and in the absence of GPP (dashed line).
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