
 

Creation of universes from the third-quantized vacuum

Leonardo Campanelli *

All Saints University, Asudom Academy of Science, 5145 Steeles Ave., Toronto, Ontario M9L 1R5, Canada

(Received 27 April 2020; accepted 2 July 2020; published 11 August 2020)

We calculate the average numbers of closed, flat, and open universes spontaneously created from
nothing in the third quantization. The creation of universes is exponentially suppressed for large
values of the kinetic energy of the inflaton, while for small kinetic energies, it is exponentially
favored for closed universes over flat and open ones: for a scale of inflation less than about
2 × 1016 GeV, the ratio of the number of closed universes to either the number of flat or open

universes is nclosed
nflat;open

≳ 1010
10

.
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I. INTRODUCTION

In their seminal paper [1], Hosoya and Morikawa
explored the consequences of the quantization of the wave
function of the Universe, now known as the third quanti-
zation. The main motivation was to overcome the problem
of the probabilistic interpretation of the wave function of
the Universe, the solution of the Wheeler-DeWitt equation:
since the latter is a hyperbolic second-order differential
equation, it does not admit conserved quantities that are
positive definite. Their proposal of a quantum field theory
of the Universe resembles the one that successfully solved
the problem of negative probability in the case of the Klein-
Gordon equation.
As a consequence of their investigation, Hosoya and

Morikawa discovered that universes are spontaneously
created from “nothing” (the third-quantized vacuum), in
the same way particles can be created from vacuum if the
external potential is time dependent. In third quantization,
the time-dependent potential (the Wheeler-DeWitt poten-
tial) naturally arises from Einstein gravity, and the time
variable is played by the (logarithm) of the expansion
parameter.
In their paper, Hosoya and Morikawa calculated the

average number of flat universes created from nothing in
the presence of an homogeneous scalar field (the infla-
ton). Recently enough, Kim [2] calculated the number of
closed and open universes in the case of a vanishing
potential of the scalar field. The aim of this paper is to
evaluate this number in the general case of a nonvanishing
scalar potential.
The plan of the paper is as follows. In Sec. II, we briefly

review third quantization in minisuperspace and in par-
ticular, the mechanism of the creation of universes from

nothing. In Sec. III, an analogy between universe creation
and quantum potential scattering is analyzed. This analogy
will allow us to use standard WKB methods used in
quantum mechanics for the calculation of the number of
cerated universes. In Secs. IV–VI, we calculate the average
numbers of flat, closed, and open universes created out of
nothing in the particular case of constant scalar potential,
both using WKB approximation and an approximate form
of the Wheeler-DeWitt potential. In Sec. VII, we discuss
our result, and we draw our conclusions.

II. THIRD QUANTIZATION AND THE CREATION
OF UNIVERSES FROM NOTHING

A. Nothingness and multiverse

The Wheeler-DeWitt equation in homogeneous and
isotropic minisuperspace is (using the units ℏ ¼ c ¼
4πG=3 ¼ 1)

� ∂2

∂α2 −
∂2

∂ϕ2
þUðα;ϕÞ

�
Ψðα;ϕÞ ¼ 0; ð1Þ

where α ¼ ln a, with a being the expansion parameter,
ϕ is a real scalar field (which we identify as the inflaton),
k is the signature of the spatial curvature, and

Uðα;ϕÞ ¼ V2e4α½2VðϕÞe2α − k� ð2Þ

is the Wheeler-DeWitt potential. The spatial volume V is
equal to 2π2 for closed universes (k ¼ 1). For flat (k ¼ 0)
and open (k ¼ −1) universes, V is a normalization volume
that can be taken as the (finite) volume of the region under
consideration.
In the third quantization, the “Universe field” Ψðα;ϕÞ

is expanded in normal modes with the coefficients of*leonardo.s.campanelli@gmail.com
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expansions being the annihilation and creation operators.
A Fock space can be constructed starting from a vacuum
state, which represents a state of nothing, a state in which
even space-time does not exist.
Following [1], we assume that the Universe is a neutral

scalar. In this case, we can write the Universe wave function
in the in-Fock space as

Ψðα;ϕÞ ¼
Z

dp
2π

ðcpψpðαÞeipϕ þ c†pψ�
pðαÞe−ipϕÞ; ð3Þ

where the subscript p labels the mode function, and its
physical meaning will be discussed later. Here, the anni-
hilation and creation operators cp and c†p satisfy the usual

commutation relations, ½cp; c†p0 � ¼ 2πδpp0 and ½cp; cp0 � ¼
½c†p; c†p0 � ¼ 0. The functions ψpðαÞ are positive frequency
solutions (with respect to α) of the Schrodinger-like
equation,

ψ̈p ¼ Upψp; ð4Þ

where a dot indicates a derivative with respect to α, and

UpðαÞ ¼ −p2 − V2e4αð2V0e2α − kÞ: ð5Þ

Hereafter, we consider only the case of a constant scalar
potential VðϕÞ ¼ V0. Also, we assume V0 ≠ 0 throughout
the paper, with the exception of Sec. VI A, where we
discuss the case of open universes with a vanishing scalar
potential.
In order to have a self-consistent quantization, the

mode ψpðαÞ must satisfy the Wronskian condition
ψp _ψ

�
p − _ψpψ

�
p ¼ i.

The vacuum state j0i is defined by

∀p ∈ R∶ cpj0i ¼ 0 ðnothinghnessÞ ð6Þ

and is normalized as h0j0i ¼ 1. The state c†pj0i represents
the single universe; the state c†pc

†
p0 j0i represents a double

universe and, in general, the state,

YN
i¼1

c†pi j0i ðmultiverseÞ; ð7Þ

represents the multiverse, namely a state with N universes
each of them labeled by pi.

B. Universes from nothing

As in the case of quantum field theory in curved
spacetime, the vacuum state is not unique. Different
inequivalent physical vacua can be introduced in different
region in minisuperspace. In particular, we can define in

and out regions for α → −∞ and α → þ∞, respectively, to
which there correspond in- and out-vacuum states.
The in-vacuum state contains no in universes in the in

region. Such a “Bunch-Davies vacuum” can be constructed
by solving the Wheeler-DeWitt equation for the Universe
states and then by fixing the constants of integrations
appearing in the general solution by matching the latter
with the corresponding adiabatic solution for α → −∞.
Accordingly, we can construct the in-Fock space based on
the in vacuum by repeatedly applying the in-creation
operator on the in-vacuum state. Another Fock state can
be constructed in this way, but this time starting from an out
region α → þ∞.
It is clear from the above discussion that the two Fock

spaces based on the two different choices of the (Bunch-
Davies) vacuum state are both physically acceptable and
must be then related. In particular, there will be a relation

between the in and out modes ψ ðinÞ
p and ψ ðoutÞ

p , as well as a
relation between the in- and out-creation and annihilation
operators. In order to find these relations, let us observe that

if ψ ð1Þ
p and ψ ð2Þ

p are two solutions of Eq. (4), the following
inner product is conserved:1

hψ ð1Þ
p jψ ð2Þ

p i ¼ −iðψ ð1Þ
p _ψ ð2Þ

p − _ψ ð1Þ
p ψ ð2Þ

p Þ: ð8Þ

We can then introduce the time-independent quantities,

αp ¼ hψ ðinÞ
p jψ ðoutÞ�

p i; ð9Þ

βp ¼ −hψ ðinÞ
p jψ ðoutÞ

p i; ð10Þ

and expand the in-ψ mode in terms of the out-ψ mode as

ψ ðinÞ
p ¼ αpψ

ðoutÞ
p þ βpψ

ðoutÞ�
p ; ð11Þ

where we used the fact that

hψ ðinÞ
p jψ ðinÞ�

p i ¼ hψ ðoutÞ
p jψ ðoutÞ�

p i ¼ 1: ð12Þ

Equation (11) is the wanted relation between the ψ in and
out modes. A relation of this type is know as Bogolubov
transformation, and the quantities αp and βp are called
Bogolubov coefficients. They satisfy the relation,

jαpj2 − jβpj2 ¼ 1; ð13Þ

which can be easily derived from their defining equations.
To find the relation between the in- and out-creation and
annihilation operators, we insert the Bogolubov trans-
formation in Eq. (3) and compare the result with the

1The possibility of introducing an inner product remains valid
even in superspace due to hyperbolicity of the Wheeler-DeWitt
equation (see, e.g., [2] and references therein).
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expression of Ψ defined in the out-Fock space. We find

cðoutÞp ¼ αpc
ðinÞ
p − β�pc

ðinÞ†
−p . From the above equation, it

follows immediately that the two Fock spaces based on
the two choices j0; ini and j0; outi of the vacuum are
generally different. In particular, the in-vacuum state will
contain out universes as long as βp ≠ 0,

np ¼ h0; injNðoutÞ
p j0; ini ¼ jβpj2; ð14Þ

where NðoutÞ
p ¼ cðoutÞ†p cðoutÞp is the number operator in the

out-Fock space. Note that universes are created in pairs
with opposite p.

C. Labeling universes

Classically, the canonical momentum conjugate to ϕ is

given by pðclÞ
ϕ ¼ Va3dϕ=dt [1]. Accordingly, p is related to

the kinetic energy (density) of the scalar field, Kϕ, through

Kϕ ¼ 1

2

�
dϕ
dt

�
2

¼ p2

2Va3
: ð15Þ

Thus, p essentially labels universes with different amounts
of kinetic energy of the inflaton. In the out region, where
the created universes behave classically, the expansion is
governed by the usual Friedmann equation,

H2 ¼
�
dϕ
dt

�
2

þ 2VðϕÞ − k
a2

; ð16Þ

where H ¼ ðda=dtÞ=a is the Hubble parameter. Taking
into account Eq. (15), the Friedmann equation takes the
form,

H2 ¼ p2

V2a6
þ 2V0 −

k
a2

¼ −
UpðαÞ
V2e6α

; ð17Þ

where UpðαÞ is given by Eq. (5) for the case of constant
scalar potential (see Fig. 1).

FIG. 1. The Wheeler-DeWitt potential UpðαÞ in Eq. (5) for p ¼
V0 ¼ 1 and k ¼ 1 (continuous line), k ¼ −1 (dashed line), and
k ¼ 0 (dotted line). For open and flat universes, the volume V has
been taken equal to unity. The points α1 and α2 are the classical
turning points in the WKB picture discussed in Sec. III.

FIG. 2. The expansion parameter of flat (upper panel), closed
(middle panel), and open (lower panel) universes created in the
out region as a function of the parameter r defined by Eq. (21).

CREATION OF UNIVERSES FROM THE THIRD-QUANTIZED … PHYS. REV. D 102, 043514 (2020)

043514-3



Flat universes—For flat universes, the solution of
Eq. (17) with að0Þ ¼ 0 is easily found,

aðtÞ ¼
�jpjt

V

�
1=3

sinhð3t=acrÞ; ð18Þ

where we have defined

acr ¼ 1=
ffiffiffiffiffiffiffiffi
2V0

p
: ð19Þ

The above expression for the expansion parameter is well
approximated by

aðtÞ ≃
8<
: ðjpjtV Þ1=3; a≲ acrr1=6;

ðjpjacrV Þ1=3et=acr−1; a≳ acrr1=6;
ð20Þ

where

r ¼
�

p
Va2cr

�
2

: ð21Þ

Thus, flat universes created in the out region with a
sufficiently large expansion parameter, a≳ acrr1=6,

undergo inflation, aðtÞ ∝ e
ffiffiffiffiffiffi
2V0

p
t, while those created with

a small expansion parameter, a ≲ acrr1=6, are dominated by
the kinetic energy of the scalar field, aðtÞ ∝ t1=3 and do not
inflate (see the upper panel of Fig. 2).
Closed universes—Closed universes are created in the

out region only if α > α1 (corresponding toH2 > 0), where
α1 is the largest zero of the potential UpðαÞ (see Fig. 1).
This corresponds to expansion parameters a >

ffiffiffiffiffi
x1

p
acr,

where x1 is defined in Eq. (46). If a <
ffiffiffiffiffi
x1

p
acr, the square

of the Hubble parameter is negative, which indicates a
recollapsing universe. This analysis is true when r < 4=27

(see the discussion in Sec. V), while for r > 4=27, uni-
verses with any value of a can be created. Using the results
of Sec. V (see in particular Fig. 3), the root x1ðrÞ is in the
interval 2=3 < x1ðrÞ < 1 for 0 < r < 4=27. For the sake
of simplicity and convenience, let us assume that created
universes recollapse when a≲ acr for r≲ 1. Assuming that
either a≳ acr or r≳ 1, the expression for the expansion
parameter can be approximated as

aðtÞ ≃
8<
: ðjpjtV Þ1=3; a≲ acrr1=6; r≳ 1;

ðjpjacrV Þ1=3et=acr−1; a≳ acr max½1; r1=6�:
ð22Þ

The upper branch of aðtÞ in the above equation corresponds
to the case of a dominant kinetic term in the Hubble
parameter, while the lower branch to the case of a dominant
potential term. In the former case, universes inflate; in the
latter, they do not (see the middle panel of Fig. 2).
Open universes—For open universes, the approximated

solution of Eq. (17) reads

aðtÞ ≃

8>>>>>>>><
>>>>>>>>:

ðjpjtV Þ1=3; a ≲ acrr1=4; r≲ 1; or

a ≲ acrr1=6; r≳ 1;

ðjpjacrV Þ1=3et=acr−1; a ≳ acr; r≲ 1; or

a ≳ acrr1=6; r≳ 1;

t; acrr1=4 ≲ a≲ acr; r≲ 1.

ð23Þ

The three branches correspond to a dominant kinetic,
potential, and curvature term in the Hubble parameter.
The lower panel of Fig. 2 graphically shows the case of
open universes.

FIG. 3. Left panel. The functions x1ðrÞ, x2ðrÞ, and x3ðrÞ in Eqs. (46)–(48) for 0 ≤ r ≤ 4=27. Observe that x1ð4=27Þ ¼ x2ð4=27Þ ¼
2=3 and x3ð4=27Þ ¼ −1=3. Right panel. The function fðrÞ in Eq. (51) for 0 ≤ r ≤ 4=27.
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III. UNIVERSE CREATION ANALOGY WITH
QUANTUM POTENTIAL SCATTERING

A. General considerations

The Wheeler-DeWitt equation (4) for the ψ modes is
formally equal to the one-dimensional Schrodinger equation
with zero energy, mass equal to 1=2, and potential energy
UpðαÞ, with α taking the place of the spatial coordinate and
p being an external parameter. Continuing the analogy,

Eq. (11) connecting the ψ ðinÞ
p and ψ ðoutÞ

p modes describes the
scattering of ψ waves off the potential Up, the incident,
reflected, and transmitted waves being

ψ ðincÞ
p ¼ αpψ

ðoutÞ
p ; ð24Þ

ψ ðrefÞ
p ¼ βpψ

ðoutÞ�
p ; ð25Þ

ψ ðtrÞ
p ¼ αpψ

ðinÞ
p ; ð26Þ

respectively, as illustrated in Fig. 1. Moreover, one can
define a density current associated to any ψ mode as

jp ¼ hψpjψ�
pi: ð27Þ

The conservation of the current (27), _jp ¼ 0, follows
directly from the conservation of the inner product. The
incident, reflected, and transmitted currents are then

jðincÞp ¼ hαpψ ðoutÞ
p jα�pψ ðoutÞ�

p i ¼ jαpj2; ð28Þ

jðrefÞp ¼ hβpψ ðoutÞ�
p jβ�pψ ðoutÞ

p i ¼ −jβpj2; ð29Þ

jðtrÞp ¼ hψ ðinÞ
p jψ ðinÞ�

p i ¼ 1; ð30Þ

where we used Eqs. (12).
Taking into account Eq. (14) and the Bogoliubov

condition (13), we find the reflection and transmission
coefficients,

Rp ¼ −
jðrefÞp

jðincÞp

¼ np
1þ np

; ð31Þ

Tp ¼ jðtrÞp

jðincÞp

¼ 1

1þ np
; ð32Þ

from which the unitarity condition Rp þ Tp ¼ 1 directly
follows.
It is clear that if p2 < maxU0ðαÞ, then the “particle”

described by the wave function αpψ
ðoutÞ
p will penetrate

through the potential barrier UpðαÞ. To “particles” which
deeply penetrate into the barrier, p2 ≪ maxU0ðαÞ, there
will correspond a large reflection coefficient and, in turn,

by Eq. (31), a large “particle” number np. On the other
hand, if p2 > maxU0ðαÞ, the “particle” is reflected above
the barrier. For p2 ≫ maxU0ðαÞ, the reflection coefficient
for scattering above the barrier will be small. To this case,
there will correspond a small production of “particles”,
np ≪ 1.

B. WKB approximation

The usefulness of Eqs. (31) and (32) resides in the fact
that if the potential Up is slowly varying, in the sense
specified below, one can apply the standard semiclassical
(WKB) results for the reflection and transmission coef-
ficients. Using the formal equivalence of the two problems
of potential scattering in quantum mechanics and the
creation of universes out from the vacuum in the third
quantization, one can then find the expression for the
universe number np. The WKB approximation is valid
whenever the potential Up satisfies the semiclassical
condition [3],

���� _Up

2U3=2
p

���� ≪ 1: ð33Þ

It can be verified that the above condition is satisfied for the
Wheeler-DeWitt potential (2) for values of α far from the
turning points, where the WKB approximation is in general
not valid.
Large universe number—Let us consider the case of

closed universes, k > 1 (see Fig. 1). Accordingly, there
will be two classical turning points, α2ðpÞ < α1ðpÞ, for
a deep penetration through the potential barrier. Since in
this case Rp ≃ 1, and then Tp ≪ 1, we have from Eq. (32),
np ≃ T−1

p ≫ 1. Using the standard result for the expression
of the transmission coefficient in WKB approximation [3],
we find

np ¼ e2Sp ; ð34Þ

where

Sp ¼
Z

α1ðpÞ

α2ðpÞ
dα

ffiffiffiffiffiffiffiffiffiffiffiffiffi
UpðαÞ

q
: ð35Þ

Small universe number—The probability that a “particle”
is scattered above the potential barrier is small for large
values of p2 compared to the height of the Wheeler-DeWitt
barrier U0ðαÞ. This is true for closed, flat, and open
universes. Using Eq. (31), we then have np ≃ Rp ≪ 1.
Using the standard result for the expression of the reflection
coefficient in WKB approximation [3], we find

np ¼ e−4Imσp ; ð36Þ

where
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σp ¼
Z

αIðpÞ

αR

dα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−UpðαÞ

q
: ð37Þ

Here, αIðpÞ is the so-called imaginary turning point, the
complex solution of the equation UpðαÞ ¼ 0 for p2 >
maxU0ðαÞ, and αR is an arbitrary and inessential real
parameter. The integration in Eq. (37) has to be performed
in the complex upper half-plane, Im½αIðpÞ� > 0. If the
equation for the imaginary turning point admits more than
one solution, one must select the one for which σp is
smallest [3].

IV. CREATION OF FLAT INFLATIONARY
UNIVERSES

Exact solution—The case k ¼ 0 was analyzed by
Hosoya and Morikawa [1]. An exact solution for the
number of created universes is given by

np ¼ 1

e2πjpj=3 − 1
ð38Þ

and is, interestingly enough, independent on V0. For large
jpj, np is exponentially suppressed, while for small jpj, np
is inversely proportional to jpj. Equation (38) is easily
found by inserting the Bunch-Davies, in and out solutions
of Eq. (4) (with k ¼ 0),

ψ ðinÞ
p ¼

ffiffiffi
π

6

r
sinh−1=2ðpπ=3ÞJ−ip=3ðV

ffiffiffiffiffiffiffiffi
2V0

p
e3α=3Þ; ð39Þ

ψ ðoutÞ
p ¼

ffiffiffiffiffi
π

12

r
e−pπ=6Hð2Þ

−ip=3ðV
ffiffiffiffiffiffiffiffi
2V0

p
e3α=3Þ; ð40Þ

into Eq. (10) and then using Eq. (14). Here, JνðxÞ is the

Bessel function of first kind, and Hð2Þ
ν ðxÞ is the Hankel

function of second kind [4].
WKB approximation—In this case, the WKB approxi-

mation is valid for large values of jpj. The imaginary
turning points are

αIðpÞ ¼
1

6
½lnðp2=2V2V0Þ þ iπð2nþ 1Þ�; n ∈ N: ð41Þ

Accordingly,

σp ¼ −
q
3
þ jpj

6
ln
jpj þ q
jpj − q

; ð42Þ

where q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−UpðαRÞ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2V2V0e6αR

p
, so that

Imσp ¼ πjpj=6. It follows that

np ¼ e−2πjpj=3; ð43Þ

in agreement with Eq. (38) in the case of large jpj.

The case of null scalar potential—In the case of flat
universes with null scalar potential, the in and out ψ modes
are normalized plane waves. As in the case of conformally
flat quantum theories in curved space, there is no produc-
tion of “particles” out from the vacuum. The number of
created universes is then exactly zero.

V. CREATION OF CLOSED INFLATIONARY
UNIVERSES

The problem does not admit an exact analytical solution.

A. Large universe number: Small jpj
WKB approximation—Let us work in WKB approxi-

mation and consider Eqs. (34) and (35). Using the change
of variable x ¼ 2V0e2α, the universe number can be written
as

np ¼ e2π
2fðrÞ=3V0 ; ð44Þ

where r is given by Eq. (21) with V ¼ 2π2, and we have
introduced the function,

fðrÞ ¼ 3

2

Z
x1

x2

dx
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x3 þ x2 − r

p
: ð45Þ

Here, x1 ≥ x2 ≥ 0 correspond to the classical turning
points, the real and positive solutions of the equation
x3 − x2 þ r ¼ 0. The three solution of such a cubic
equation can be written as

x1ðrÞ ¼
1

3

�
1þ 2 cos

θ

3

�
; ð46Þ

x2ðrÞ ¼
1

3

�
1 − 2 cos

θ þ π

3

�
; ð47Þ

x3ðrÞ ¼
1

3

�
1 − 2 cos

θ − π

3

�
; ð48Þ

with

θðrÞ ¼ arccosð1 − 27r=2Þ: ð49Þ

As it easy to check, the above three solutions are real when

0 ≤ r ≤ 4=27: ð50Þ

In this case, x1 and x2 are positive, with x1 ≥ x2, and x3 is
negative (see the left panel of Fig. 3).
The integral in Eqs. (45) can be expressed in terms of the

complete elliptical integrals as

fðrÞ ¼ cKKðmÞ þ cEEðmÞ þ cΠΠðn;mÞ; ð51Þ
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where

cK ¼ x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x3

p ; cE ¼ x2 − x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x3

p ; cΠ ¼ 3x1x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x3

p ;

ð52Þ

and

m ¼ x2 − x1
x2 − x3

; n ¼ x2 − x1
x2

: ð53Þ

Here, KðmÞ, EðmÞ, and Πðn;mÞ are the complete elliptical
integrals of first, second, and third kind, respectively [4].
A plot of the function fðrÞ is shown in the right panel
of Fig. 3. Notice that

lim
r→0

fðrÞ ¼ 1; lim
r→4=27

fðrÞ ¼ 0: ð54Þ

The WKB result (44) is valid only if np ≫ 1, namely when
the exponent 2π2fðrÞ=3V0 is much bigger than unity. For
r ≪ 1 (the case r ≫ 1 will be analyzed in Sec. V B), this
means V0 ≪ 2π2=3. In this case, we have

np ¼ e2π
2=3V0 ; jpj ≪ 1 ≪ 2π2=3V0; ð55Þ

for the average number of created universes. The case
r≪1 and V0≫2π2=3, namely jpj≪2π2=3V0≪1, cannot
be solved in WKB approximation. We proceed as follows.
Approximate Wheeler-DeWitt potential—Let us app-

roximate the Wheeler-DeWitt potential as

UpðαÞ ≃
�
−p2 þ 4π4e4α; α ≤ α⋆;
−p2 − 8π4V0e6α; α > α⋆;

ð56Þ

where eα⋆ ¼ 1=
ffiffiffiffiffiffiffiffi
3V0

p
, and α⋆ is the point of maximum

of the Wheeler-DeWitt potential. The approximate
potential (56) is discontinuous at α ¼ α⋆ with a jump
discontinuity of

Δ ¼ j lim
α→α−⋆

UpðαÞ − lim
α→αþ⋆

UpðαÞj ¼
5

3

�
2π2

3V0

�
2

: ð57Þ

In the analogue case of quantum potential scattering, the
reflection and transmission coefficients obtained by
approximating a smooth potential with one possessing a
jump discontinuity are trustworthy only if the wavelength
of the incident particle is much bigger than the square root
of the jump (see, e.g., [5]). In our case, such a validity
condition translates into the condition,

jpj ≪
ffiffiffiffiffiffiffiffiffi
Δ=2

p
≃ 2π2=3V0: ð58Þ

The Bunch-Davies-normalized ψ ðinÞ
p and ψ ðoutÞ

p wave func-
tions are easily found in the case of the approximate
Wheeler-DeWitt potential. They are

ψ ðinÞ
p ¼

�
up; α ≤ α⋆;
c1vp þ c2v�p; α > α⋆;

ð59Þ

and

ψ ðoutÞ
p ¼

�
c3up þ c4u�p; α ≤ α⋆;
vp; α > α⋆;

ð60Þ

respectively. Here, up is given by

up ¼ Γð1 − ip=2Þ
2ip=2

ffiffiffiffiffiffi
2p

p I−ip=2ðπ2e2αÞ; ð61Þ

where ΓðxÞ is the Gamma function and IνðxÞ is the
modified Bessel function of first kind [4]. The function
up represents a normalized in mode of a closed universe
with V0 ¼ 0. The function vp, instead, is given by the right-
hand side of Eq. (40) and represents a normalized out mode
of a flat universe with V0 ≠ 0. The constants of integrations
ci (i ¼ 1, 2, 3, 4) can be found by imposing the continuity

of ψ ðinÞ
p and ψ ðoutÞ

p , and their first derivatives, at α ¼ α⋆. We
find

c1 ¼ c�3 ¼ hψ ðinÞ
p jψ ðoutÞ�

p ijα¼α⋆ ¼ αp; ð62Þ

c2 ¼ −c4 ¼ −hψ ðinÞ
p jψ ðoutÞ

p ijα¼α⋆ ¼ βp: ð63Þ

Accordingly, the average number of universes is

np ¼ jhupjvpij2α¼α⋆ : ð64Þ
For jpj → 0, or more precisely for jpj ≪ min½1; 2π2=3V0�,
we find

np ¼ HðV0=2π2Þ
πjpj ð65Þ

at the leading order, where

HðxÞ ¼ π2

1296x2

� ffiffiffi
6

p
I1

�
1

6x

�
Hð1Þ

0

� ffiffiffi
6

p

27x

�

þ 2I0

�
1

6x

�
Hð1Þ

1

� ffiffiffi
6

p

27x

��

×

� ffiffiffi
6

p
I1

�
1

6x

�
Hð2Þ

0

� ffiffiffi
6

p

27x

�

þ 2I0

�
1

6x

�
Hð2Þ

1

� ffiffiffi
6

p

27x

��
; ð66Þ

with Hð1Þ
ν ðxÞ being the Hankel function of first kind [4].

Figure 4 shows the function HðxÞ together with its
asymptotic expansions for small and large values of the
argument,
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HðxÞ ¼
(

5

4
ffiffi
6

p e1=3xð1þOðxÞÞ; x → 0;

3=2þOð1=x2Þ; x → ∞:
ð67Þ

Accordingly, the average number of created universes for
small jpj is2

np ≃

(
5

4
ffiffi
6

p
πjpj e

2π2=3V0 ; jpj ≪ 1 ≪ 2π2=3V0;

3
2πjpj ; jpj ≪ 2π2=3V0 ≪ 1.

ð69Þ

The first equation in (69) is in agreement with the result
(55) obtained in WKB approximation. Notice that both
equations are approximate results and that, in general, the
WKB approximation cannot be used to calculate the
preexponential factor in the transmission coefficient [3]
that, in our case, corresponds to the reciprocal of the
average number of created universes.
It is interesting to observe that for small jpj and large

values of the scalar potential, jpj ≪ 2π2=3V0 ≪ 1, the
number of closed universes approaches the number of

flat universes [see Eq. (38)], and that the former is
exponentially amplified for small scalar potentials,
jpj ≪ 1 ≪ 2π2=3V0.

B. Small universe number: Large jpj
WKB approximation—The case of large jpj can be only

analyzed in WKB approximation (see footnote 2). For
r > 4=27, the solutions x1ðrÞ and x2ð3Þ are complex
(conjugate), and x3ðrÞ is negative. This means that the
Wheeler-DeWitt potential has no classical turning points.
Using Eqs. (36) and (37), we find for the average number of
created universes,

np ¼ e−2π
2gðrÞ=3V0 ; ð70Þ

where

gðrÞ ¼ 3Im

�Z
x1

xR

dx
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 − x2 þ r

p �
: ð71Þ

Here, xR is a real and positive parameter, and between x1ðrÞ
and x2ðrÞ, we selected the former as the imaginary turning
point since it gives the smallest σp (see discussion in
Sec. III B). Taking xR ¼ −x3ðrÞ, we find3

gðrÞ ¼ −2Re½cKFðφ; mÞ þ cEEðφ; mÞ þ cΠΠðn;φ; mÞ�;
ð72Þ

where cK, cE, and cΠ are given by Eq. (52), and

φ ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ x3Þ=ðx2 − x1Þ

p
: ð73Þ

Here, Fðφ; mÞ, Eðφ; mÞ, and Πðn;φ; mÞ are the incomplete
elliptical integrals of first, second, and third kind, respec-
tively [4]. Notice that

lim
r→4=27

gðrÞ ¼ 0: ð74Þ

A plot of gðrÞ and its asymptotic expansion,

gðrÞ ¼ π
ffiffiffi
r

p
− Cr1=6 þOðr−1=6Þ; r → þ∞; ð75Þ

is shown in Fig. 5. The constant C in the above equation is
defined by

C ¼ 3z1Eðz2Þ −
ffiffiffi
3

p
z�1Kðz2Þffiffiffi

8
p ≃ 1.12025; ð76Þ

where z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ i

ffiffiffi
3

pp
and z2 ¼ ð1þ i

ffiffiffi
3

p Þ=2. Inserting
the leading term of the asymptotic expansion (75) into
Eq. (70), we find

FIG. 4. The continuous and dotted lines represent, respectively,
the function HðxÞ in Eq. (66) and its asymptotic expansions in
Eq. (67).

2For large jpj, or more precisely for jpj ≫ max½1; 2π2=3V0�,
Eq. (64) would give an incorrect power-law decay for np, instead
of the correct exponential decay that will be derived in WKB
approximation (see below). This is due to the nonanalyticity of
the approximate expression of the potentialUpðαÞ at the point α⋆.
Indeed, using perturbation theory and following [3], it is easy to
find the expression of the universe number in the case of large jpj.
It turns out to be

np ¼ Δ2=64p6 ¼ 25π8=729V4
0p

4; ð68Þ

where Δ is defined in Eq. (57). We stress again that this result is
unphysical and follows from having approximated the potentialUp
with a nonanalytical expression. Numerically, we checked that
Eq. (64) “correctly” reduces toEq. (68) for jpj ≫ max½1; 2π2=3V0�.

3Interestingly enough, a numerical analysis shows that
gðrÞ ¼ −fðrÞ, with fðrÞ given by Eq. (51) for r > 4=27. We
are not able to provide an analytical proof of the above equality.
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np ≃ e−2πjpj=3; jpj ≫ 1; ð77Þ

for the average number of created universes. Thus, the
number of closed universes is exponentially suppressed for
large jpj, as in the case of flat universes [see Eq. (38)].
The case of null scalar potential—In the case of closed

universes with null scalar potential, the out ψ modes are
exactly zero. In this case, indeed, the Wheeler-DeWitt
potential grows exponentially in the out region (α → 0) and
represents an infinite potential barrier in the analogue case of
quantum potential scattering. No “particles” are present in the
our region, and the number of created universes is exactly zero.
The analogy between quantum potential scattering and the

creation of universes from nothing reposes on the assu-
mption that the in and out modes are normalized according
to the Bunch-Davies “prescription”, as in the case of
quantum theory in curved space. This in turns follows from
the fact that the procedure of third quantization closely
mimics the one adopted in second quantization.4

VI. CREATION OF OPEN INFLATIONARY
UNIVERSES

A. The case of null scalar potential

Exact solution—The case k ¼ −1 and V0 ¼ 0 was
analyzed by Kim [2]. An exact solution for the number
of created universes is given by

np ¼ 1

eπjpj − 1
: ð78Þ

For large jpj, np is exponentially suppressed, while for
small jpj, np is inversely proportional to jpj. Equation ([2])
is easily found by inserting the Bunch-Davies, in and out
solutions of Eq. (4) (with k ¼ −1 and V0 ¼ 0),

ψ ðinÞ
p ¼

ffiffiffi
π

4

r
sinh−1=2ðpπ=2ÞJ−ip=2ðVe2α=2Þ; ð79Þ

ψ ðoutÞ
p ¼

ffiffiffi
π

8

r
e−pπ=4Hð2Þ

−ip=2ðVe2α=2Þ; ð80Þ

into Eq. (10) and then using Eq. (14).
WKB approximation—In this case, the WKB approxi-

mation is valid for large values of jpj. The imaginary
turning points are

αIðpÞ ¼
1

4
½lnðp2=V2Þ þ iπð2nþ 1Þ�; n ∈ N: ð81Þ

Accordingly,

σp ¼ −
s
2
þ jpj

4
ln
jpj þ s
jpj − s

; ð82Þ

where s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−UpðαRÞ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ V2e4αR

p
, so that Imσp ¼

πjpj=4. It follows that

np ¼ e−πjpj; ð83Þ

in agreement with Eq. (78) in the case of large jpj.

B. Small universe number: Large jpj
WKB approximation—The case k ¼ −1 and V0 ≠ 0

cannot be solved analytically. Working in WKB approxi-
mation, we consider Eqs. (36) and (37) since, in this case,
there are not classical turning points. Using the change of
variable y ¼ 2V0e2α, the universe number can be written as

np ¼ e−VkðrÞ=3V0 ; ð84Þ

where

kðrÞ ¼ 3Im

�Z
y1

yR

dy
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 þ y2 þ r

q �
: ð85Þ

Here, yR is a real and positive parameter, while y1
corresponds to the imaginary turning point, the solution
of the equation y3 þ y2 þ r ¼ 0 which gives the smallest
σp in Eq. (37). The three solution of such a cubic equation
can be written as

FIG. 5. The function gðrÞ in Eq. (72) for r ≥ 4=27 with its
asymptotic expansion (75).

4Although in this paper we use the standard Bunch-Davies
vacuum, other possibilities cannot be excluded. Indeed, the
out vacuum used by Kim [2] is not a Bunch-Davies normalized
vacuum. Not surprisingly, he found that the number of created
closed universes in the case of null scalar potential is different
from zero. The number of created universes, thus, strongly
depends on the choice of the vacuum. A similar situation occurs
in second quantization, where the probability of creating a
universe strongly depends on the choice of the initial conditions
for the wave function of the Universe (see, e.g., [6]).
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y1 ¼ −
1

3

�
1 − 2 cos

ϑ

3

�
; ð86Þ

y2 ¼ −
1

3

�
1þ 2 cos

ϑþ π

3

�
; ð87Þ

y3 ¼ −
1

3

�
1þ 2 cos

ϑ − π

3

�
; ð88Þ

with

ϑðrÞ ¼ arccosð−1 − 27r=2Þ: ð89Þ

Notice that ϑðrÞ ¼ π − θð−rÞ, y1ðrÞ ¼ −x3ð−rÞ, y2ðrÞ ¼
−x2ð−rÞ, and y3ðrÞ ¼ −x1ð−rÞ, where θðrÞ is defined in
Eq. (49), and xiðrÞ are given by Eqs. (46)–(48). As it easy
to check, y3 is real and negative, while y1 and y2 are
complex conjugate (see the left panel of Fig. 6). Taking
yR ¼ −y3ðrÞ, the integral in Eqs. (85) can be expressed in
terms of the incomplete elliptical integrals as5

kðrÞ ¼ 2Re½CKFðω; μÞ þ CEEðω; μÞ − CΠΠðν;ω; μÞ�;
ð90Þ

where

CK ¼ y3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − y3

p ; CE ¼ y2 − y3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − y3

p ; CΠ ¼ 3y1y3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − y3

p ;

ð91Þ

μ ¼ y2 − y1
y2 − y3

; ν ¼ y2 − y1
y2

; ð92Þ

and

ω ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 þ y3Þ=ðy2 − y1Þ

p
: ð93Þ

We show the graph of the function kðrÞ in the right panel of
Fig. 6. Also shown are the asymptotic expansions of kðrÞ
for small and large values of the argument,

kðrÞ ¼
� 3

2
π

ffiffiffi
r

p
− 3

8
πrþOðr2Þ; r → 0;

π
ffiffiffi
r

p þ Cr1=6 þOðr−1=6Þ; r → ∞;
ð94Þ

where the constant C is given by Eq. (76). Inserting the
leading terms of the above asymptotic expansions into
Eq. (84), we find

np ≃
�
e−πjpj; 1 ≪ jpj ≪ V=2V0;

e−2πjpj=3; jpj ≫ max½1; V=2V0�:
ð95Þ

Thus, the number of open universes is exponentially
suppressed for large jpj. If the scalar potential is small,
V=2V0 ≫ 1, the suppression factor is the same as in the
case of open universes with null scalar potential [see
Eq. (78)], while if the scalar potential is large, V=2V0 ≪ 1,
the suppression is similar to that of flat universes
[see Eq. (38)].

C. Large universe number: Small jpj
Approximate Wheeler-DeWitt potential—The case of

small jpj cannot be solved in WKB approximation. Let
us proceed as in Sec. VA by approximating the Wheeler-
DeWitt potential as

FIG. 6. Left panel. The functions y1ðrÞ, y2ðrÞ, and y3ðrÞ in Eqs. (86)–(88). Right panel. The continuous and dotted lines represent,
respectively, the function kðrÞ in Eq. (90) and its asymptotic expansions in Eq. (94).

5Numerically, we find that kðrÞ ¼ CKKðμÞ þ CEEðμÞ−
CΠΠðν; μÞ. We are not able to give an analytical proof of the
above equality.
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UpðαÞ ≃
�
−p2 − V2e4α; α ≤ α�;

−p2 − 2V2V0e6α; α > α�;
ð96Þ

where eα� ¼ 1=
ffiffiffiffiffiffiffiffi
2V0

p
. The approximate potential is con-

tinuous at α�, while its derivative is discontinuous with a
jump discontinuity of

δ ¼ j lim
α→α−⋆

_UpðαÞ − lim
α→αþ⋆

_UpðαÞj ¼
V2

2V2
0

: ð97Þ

As discussed in Sec. VA, the above approximation is
trustworthy only for values of jpj small compared to the
square root of the jump,

jpj ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jα�jδ=2

p
∼ V=2V0: ð98Þ

The Bunch-Davies-normalized ψ ðinÞ
p and ψ ðoutÞ

p wave func-
tions are easily found in the case of the approximate
Wheeler-DeWitt potential. They are

ψ ðinÞ
p ¼

�
wp; α ≤ α�;

c1vp þ c2v�p; α > α�;
ð99Þ

and

ψ ðoutÞ
p ¼

�
c3wp þ c4w�

p; α ≤ α�;

vp; α > α�;
ð100Þ

respectively. Here, wp is given by the right-hand side of
Eq. (79) and represents a normalized in mode of a open
universe with V0 ¼ 0, while vp is given by the right-hand
side of Eq. (40) and represent a normalized out mode of a
flat universe with V0 ≠ 0. The constants of integrations ci
(i ¼ 1, 2, 3, 4) can be found by imposing the continuity of

ψ ðinÞ
p and ψ ðoutÞ

p , and their first derivatives, at α�. We find

c1 ¼ c�3 ¼ hψ ðinÞ
p jψ ðoutÞ�

p ijα¼α� ¼ αp; ð101Þ

c2 ¼ −c4 ¼ −hψ ðinÞ
p jψ ðoutÞ

p ijα¼α� ¼ βp: ð102Þ

Accordingly, the average number of universes is

np ¼ jhwpjvpij2α¼α� : ð103Þ

For jpj → 0, or more precisely for jpj ≪ min½1; V=2V0�,
we find

np ¼ hðV0=VÞ
πjpj ð104Þ

at the leading order, where

hðxÞ ¼ π2

96x2
½J1ð1=4xÞHð1Þ

0 ð1=6xÞ − J0ð1=4xÞHð1Þ
1 ð1=6xÞ�

× ½J1ð1=4xÞHð2Þ
0 ð1=6xÞ − J0ð1=4xÞHð2Þ

1 ð1=6xÞ�:
ð105Þ

Figure 7 shows the function hðxÞ together with its asymp-
totic expansions for small and large values of the argument,

hðxÞ ¼
�
1þ x cosð1=2xÞ þOðx2Þ; x → 0;

3=2þOð1=x2Þ; x → ∞:
ð106Þ

Therefore, at the leading order,6

np ≃

8<
:

1
πjpj ; jpj ≪ 1 ≪ V=2V0;

3
2πjpj ; jpj ≪ V=2V0 ≪ 1.

ð108Þ

Thus, for small jpj and small values of the scalar potential,
jpj ≪ 1 ≪ V=2V0, the number of open universes
approaches the number of open universes with null scalar
potential [see Eq. ([2])], while for small jpj and large values
of the scalar potential, jpj ≪ V=2V0 ≪ 1, it approaches the
number of flat universes [see Eq. (38)].

FIG. 7. The continuous and dotted lines represent, respectively,
the function hðxÞ in Eq. (105) and its asymptotic expansions in
Eq. (106).

6For large jpj, or more precisely for jpj ≫ max½1; V=2V0�,
Eq. (103) would give an incorrect power-law decay for np,
instead of the correct exponential decay previously derived in
WKB approximation. This, as already discussed in footnote 4, is
due to the nonanalyticity of the potential UpðαÞ at the point α�.
Using perturbation theory [3], it is easy to find

np ¼ δ2=64p6 ¼ V4=256V4
0p

6; ð107Þ

where δ is defined by Eq. (97). Numerically, we checked that
Eq. (103) “correctly” reduces to the “unphysical” result (107) for
jpj ≫ max½1; V=2V0�.
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VII. DISCUSSION AND CONCLUSIONS

Discussion—In order to be consistent with cosmic
microwave background observations, the scale of inflation
V1=4
0 , which is directly related to the amplitude of the

primordial tensor perturbations, has to be below 1.7 ×
1016 GeV [7]. The minimum value for the so-called “reheat
temperature” is around 4.7 MeV [8]. This constraint, which
comes from the analysis of cosmic microwave background
radiation data, assumes a scale of inflation greater than
about 43 MeV, which can be taken as a lower limit for V1=4

0 .
In the units used in this paper, these limits on the scale of
inflation translate into the constraint,

2.7 × 10−81 ≲ V0 ≲ 6.6 × 10−11; ð109Þ

for the value of the scalar potential. Since, V0 ≪ 1, the
number of created universes from the third-quantized
vacuum is

np ∼

8>><
>>:

1
jpj e

2π2=3V0 ; jpj ≪ 1; ðk ¼ 1Þ;
1
jpj ; jpj ≪ 1; ðk ¼ 0;−1Þ;
e−cπjpj; jpj ≫ 1; ðk ¼ −1; 0; 1Þ;

ð110Þ

where c ¼ 2=3 for closed and flat universes, and for open
universes with jpj ≫ max½1; V=V0�, while c ¼ 1 for open
universes with 1 ≪ jpj ≪ V=V0.
Thus, universes with large values of jpj are essentially

not created, while the creation from nothing occurs only for
those universes labeled by small values of jpj.
Closed universes that are created in the out region

with a ≳ acr undergo inflation since, in this case,
r ¼ p2V2

0=π
4 ≪ 1 (see the middle panel of Fig. 2). After

creation, flat universes can either be kinetic-energy domi-
nated or inflate. Newly created open universes can inflate,
be kinetic-energy dominated, or curvature dominated. For
flat and open universes, the type of classical evolution
after creation depends of the value of the parameter
r ¼ 4p2V2

0=V
2 and on the “size” a of the created universe

(see the upper and lower panel of Fig. 2, respectively).
For small jpj (namely for values of jpj such that

universes are effectively created), the ratio of the number
of closed universes to either the number of flat or open
universes is given by the factor e2π

2=3V0. Using Eq. (109),
this ratio is given by

1010
10 ≲ nclosed

nflat;open
≲ 1010

81

: ð111Þ

Interestingly enough, recent analyses of the Planck data
on the cosmic microwave background radiation favor a
positive-curvature universe [9,10].
Conclusions—The creation from nothing of closed,

open, and flat universes in the presence of a scalar field
(the inflaton) is a general consequence of third quantiza-
tion. Solving the Wheeler-DeWitt equation both in WKB
approximation and using a suitable approximation of the
Wheeler-DeWitt potential, we have found that the creation
of universes, both closed or open and flat, is inhibited for
universes with large amounts of kinetic energy of the
inflaton. For small values of the kinetic energy, instead,
closed, open, and flat universes are created from the third-
quantized vacuum, the state of “nothingness”. Due to the
relatively small value of the inflaton potential, as observed
in our Universe, and for a given small amount of scalar
kinetic energy, the creation of closed universes is exponen-
tially favored over the creation of flat and open ones.
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