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The influence of considering a generalized dark matter (GDM) model, which allows for a non-pressure-
less dark matter and a nonvanishing sound speed in the nonlinear spherical collapse model is discussed for
the Einstein-de Sitter-like and ΛGDMmodels. By assuming that the vacuum component responsible for the
accelerated expansion of the Universe is not clustering and therefore behaving similarly to the cosmological
constant Λ, we show how the change in the GDM characteristic parameters affects the linear density
threshold for collapse of the nonrelativistic component (δc) and its virial overdensity (ΔV). We found that a
positive GDM equation of state parameter, wgdm, is responsible for lower values of δc as compared to the
standard spherical collapse model and that this effect is much stronger than the one induced by a change in
the GDM sound speed, c2s;gdm. We also found that ΔV is only slightly affected and mostly sensitive to wgdm.

These effects could be relatively enhanced for lower values of the matter density. We found that the effects
of the additional physics on δc and ΔV, when translated to nonlinear observables such as the halo mass
function, induce an overall deviation of about 40% with respect to the standard ΛCDM model at late times
for high mass objects. However, within the current constraints for c2s;gdm and wgdm, we found that these

changes are the consequence of properly taking into account the correct linear matter power spectrum for
the GDM model while the effects coming from modifications in the spherical collapse model remain
negligible. Using a phenomenologically motivated approach, we also study the nonlinear matter power
spectrum and found that the additional properties of the dark matter component lead, in general, to a strong
suppression of the nonlinear power spectrum with respect to the corresponding ΛCDM one. Finally,
as a practical example, we compare ΛGDM and ΛCDM using galaxy cluster abundance measurements,
and found that these small scale probes will allow us to put more stringent constraints on the nature
of dark matter.

DOI: 10.1103/PhysRevD.102.043512

I. INTRODUCTION

Nowadays, most of the cosmological data suggests a
cosmic expansion history with a flat geometry and some
sort of dark energy, usually in the form of the cosmological
constant Λ, in order to explain the recent accelerating
expansion of the Universe. Assuming that large scale
structure formed thanks to the gravitational interaction of
the cold dark matter (CDM) component, the resulting
standard model of cosmology is then dubbed ΛCDM
(see [1,2] for a review). In this model, the cosmological
constant is a fluid with constant equation of state w ¼ −1

and energy density ρΛ, both constant in time and space, that
is usually associated to the vacuum energy density. The
CDM component is instead described as a nonrelativistic
fluid whose influence is only gravitational. Together, the
cosmological constant and the CDM amount to approx-
imately 95% of the total energy budget, with the remaining
5% in the form of baryons and a negligible amount, today,
of relativistic particles (photons and neutrinos) [3].
However, with the advent of stage IV surveys like DESI

[4], Euclid [5], LSST [6], WFIRST [7], and the SKA [8]
providing high accuracy data especially on small scales,
one of the most challenging problems is to understand the
role played by the different cosmic components in the
nonlinear regime of gravitational clustering. This aspect
could be tackled through different approaches, among
which we recall the halo model [9], where one of the
issues is to understand the interplay of different possible
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physical effects that contribute to determine the properties
of virialized halos. One of the powerful tools to study the
nonlinear evolution of perturbations and formation of
haloes is given by the popular spherical collapse model
(SCM), introduced in a seminal paper by [10] to deal with a
system made only of CDM. This model has been later
extended and applied to study the evolution of density
perturbations and structure formation in the presence of
dark energy, both homogeneous [11–16] and clustering
[17–19]. In this work, we investigate further the nonlinear
evolution of matter perturbations by focusing on the
generalized dark matter (GDM) model, which considers
the dark matter fluid augmented by positive pressure,
parametrized by a background equation of state wgdm

and a nonvanishing sound speed c2s;gdm [20]. Note that
the original GDM description also accounted for negative
pressure and a nonvanishing viscosity c2vis;gdm. The effects
of this modeling on the expansion and linear perturbations
have been recently studied in [21–26]. Here we decided not
to include the contribution of the viscosity c2vis;gdm since at
the linear level it is degenerate with the sound speed c2s;gdm.
This can be seen considering the scale at which the
potential decays at a conformal time η [21,23]:

k−1d ðηÞ ¼ η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s;gdm þ 8

15
c2vis;gdm

r
: ð1Þ

On scales larger than k−1d one cannot distinguish the effect
of these parameters separately. The viscosity, in addition,
causes a dump in the oscillations, but the cutoff is a bigger
effect. This degeneracy would be broken in the time-
dependent case, however analysis [24] showed that current
data are not good enough to spot any evidence of a time
evolution for any of the GDM parameters. Therefore, we
only consider constant background equation-of-state
parameter and sound speed.
However, the standard SCM needs to be appropriately

modified to have a recipe for the GDM to be able to explore
the small scales that next stage surveys will probe and
extract the maximum information from them. A recent
approach, focused on developing a halo-model-based
approach for nonlinear corrections for the GDM matter
power spectrum, considered a scaling of the SCM [26].
Here, instead, we focus on developing the SCM for GDM
by considering the evolution of matter perturbations within
the GDM framework (taking into account the effects of
wgdm and c2s;gdm), and use a simple phenomenological
approach to address the nonlinear matter power spectrum.
We restrict our analysis to an Einstein-de-Sitter-like (EdS)
model where Ωm ¼ 1 and ΩΛ ¼ 0.0, and a flat ΛCDM
cosmology. For the ΛCDM model, we assume the follow-
ing cosmological parameters: Ωm ¼ 0.3, ΩΛ ¼ 0.7 and
h ¼ 0.7. In particular, we discuss how the linear over-
density threshold for collapse (δc) and the virial overdensity

(ΔV) change while changing the properties of the dark
matter component.
The paper is organized as follows: in Sec. II we give a

brief description of the spherical collapse model for
generalized dark matter and derive the appropriate equa-
tions describing the evolution of nonlinear perturbations,
by specializing on the virial overdensityΔV and the linearly
extrapolated overdensity δc. In Sec. III we present our
findings, studying the evolution of the main parameters of
the spherical collapse model as a function of the equation of
state wgdm and effective sound speed c2s;gdm of the matter
component and translate our results into observable quan-
tities such as the mass function. As a practical application,
we compute the goodness of fit of the ΛGDM mode, for
some specific values of wgdm and c2s;gdm, using cluster
counts from real data. Finally, we discuss the evolution of
the nonlinear matter power spectrum based on a phenom-
enologically motivated approach and conclude in Sec. IV.

II. THE GDM MODEL

In this work we assume that dark matter only interacts
gravitationally with the other components and all fluids
satisfy the standard continuity equation ∇νT

μν
i ¼ 0,

where Tμν
i is the stress-energy tensor and for a perfect

fluid reads as

Tμν
i ¼ ðρic2 þ PiÞuμuν þ Pigμν; ð2Þ

where ρi, Pi and ui are the density, the pressure, and the
four-velocity of each fluid, respectively, and gμν the metric.
Contracting the continuity equation once with uμ and

once with the projection operator hμα ¼ gμα þ uμuα, one
obtains the relativistic expressions for the continuity and
the Euler equations, respectively:

∂ρi
∂t þ∇r⃗ · ðρiv⃗iÞ þ

Pi

c2
∇r⃗ · v⃗i ¼ 0; ð3Þ

∂v⃗i
∂t þ ðv⃗i · ∇r⃗Þv⃗i þ∇r⃗Φþ ∇r⃗Pi

ρi þ Pi=c2
¼ 0: ð4Þ

Here v⃗i is the three-dimensional velocity of each species,Φ
the Newtonian gravitational potential and r⃗ denotes physi-
cal coordinates.
The 00-component of Einstein’s field equations gives the

relativistic Poisson equation

∇2
r⃗Φ ¼ 4πG

X
k

�
ρk þ

3Pk

c2

�
; ð5Þ

where the potential is sourced by all the fluid components
and ρk and Pk are the total density and pressure of each
fluid. We define, in fact ρk ¼ ρ̄k þ δρk and Pk ¼ P̄k þ δPk,
where overbarred quantities represent the background.
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The background continuity equation for the fluid i is

_̄ρi þ 3H
�
ρ̄i þ

P̄i

c2

�
¼ 0; ð6Þ

where ρ̄i ¼ 3H2Ωi
8πG and Ωi is the fluid density parameter. To

solve the previous expression, it is necessary to specify a
relation between pressure and density. This is usually
done by introducing the background equation-of-state
parameter wi ¼ P̄i=ðρ̄ic2Þ, so that one solves the equation
_̄ρi þ 3Hð1þ wiÞρ̄i ¼ 0, once the time dependency of wi is
provided.
To study the perturbations, we introduce comoving

coordinates x⃗ ¼ r⃗=a, with a the scale factor, and define

ρiðx⃗; tÞ ¼ ρ̄ið1þ δiðx⃗; tÞÞ; ð7Þ

Piðx⃗; tÞ ¼ P̄i þ δPi; ð8Þ

Φðx⃗; tÞ ¼ Φ0ðx⃗; tÞ þ ϕðx⃗; tÞ; ð9Þ

v⃗iðx⃗; tÞ ¼ a½HðaÞx⃗þ u⃗iðx⃗; tÞ�; ð10Þ

whereHðaÞ is the Hubble function and u⃗ðx⃗; tÞ the comoving
peculiar velocity.We relate pressure perturbations to density
perturbations by introducing the effective sound speed
c2s;i ¼ δPi=ðδρic2Þ. In a standard cold dark matter model,
c2s;i ¼ 0, as there are no pressure perturbations.
Inserting Eqs. (7)–(10) into Eqs. (3)–(5), and taking into

account the background equations, we derive the following
equations for the perturbed quantities:

_δi þ 3Hðc2s;i − wiÞδi ¼ −½1þ wi þ ð1þ c2s;iÞδi�∇⃗ · u⃗i;

ð11Þ

_u⃗i þ 2Hu⃗i þ ðu⃗i · ∇⃗Þu⃗i þ ∇⃗ϕ

a2
¼ 0; ð12Þ

∇2ϕ ¼ 4πGa2
X
k

ρ̄kð1þ 3c2s;kÞδk: ð13Þ

Note that, as commonly done, we assumed a top-hat profile

for the density perturbations. This leads to ∇⃗δi ¼ 0, which
considerably simplifies the equations. In addition, both wi

and c2s;i are functions of time only. While this is justified for
the equation of state, it is a simple approximation for the
sound speed, but nevertheless in agreement with current
literature [21].
The previous sets of equations allow us to study the

evolution of the linearly extrapolated overdensity δc, which
represents an important ingredient for the mass function, a
tool used to infer the effects of dark energy and modified
gravity on some observables like cluster abundance. In this

work, we will follow a similar line of thinking, but use the
mass function to test properties of the dark matter compo-
nent, rather than the gravitational sector.
In full generality, to derive the equation of motion of the

(generalized) dark matter component, one takes the time
derivative of Eq. (11) and substitutes in it the divergence of
Eqs. (12) and (13). Nevertheless, when doing so, the final
expression becomes very complicated as both the equation
of state and the effective sound speed can be time
dependent. This expression will give very little insight to
understand the physics of the problem. We will, therefore,
first derive the full equation by defining additional coef-
ficients which will help to write the final result in a rather
compact form and, subsequently, we will specialize it to the
simpler case where c2s ¼ 0, but w ≠ 0. This will correspond
to the case where dark matter fully clusters.
Following [27], we define the following quantities:

Ai ≡ 3Hðc2s;i − wiÞδi; Bi ≡ 1þ wi þ ð1þ c2s;iÞδi;

so that Eq. (11) can be written as

_δi þ Ai þ Biθi ¼ 0; ð14Þ

where θi ≡ ∇⃗ · u⃗i.
At the same time, the divergence of Eq. (12) can be

written as

_θi þ 2Hθi þ
1

3
θ2i þ

∇2ϕ

a2
¼ 0; ð15Þ

where spherical symmetry is assumed.
Taking the time derivative of (14) and using Eq. (15) to

replace _θi and Eq. (14) for θi, we finally get

δ̈i þ _Ai þ
�
2H −

_Bi

Bi

�
ðAi þ _δiÞ

−
1

3

ð_δi þ AiÞ2
Bi

−
Bi

a2
∇2ϕ ¼ 0: ð16Þ

For c2s ¼ w ¼ 0, Ai ¼ 0 and Bi ¼ 1þ δi, leading to the
standard equation describing matter perturbations in the
presence of the cosmological constant or smooth dark
energy:

δ̈i þ 2H_δi −
4

3

_δ2i
1þ δi

− 4πG
X
k

ρ̄kδk ¼ 0: ð17Þ

Note that here the sum over the perturbed species is done
for baryons (considered to be a pressureless fluid) and
(generalized) dark matter. Therefore, we need to solve two
differential equations of motion for the perturbations,
one for baryons and one for generalized dark matter.
Nevertheless, since baryons are subdominant at all times,
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considering only the GDM component would not alter our
conclusions.
Let us now consider a specific case where c2s;i ¼ wi to

grasp more understanding of the evolution of matter
perturbations. The previously defined coefficients simplify
to Ai ¼ 0 and Bi ¼ ð1þ wiÞð1þ δiÞ, and perturbations are
adiabatic, with Pgdm ¼ wgdmc2ρgdm also at the perturbative
level. Similarly to what was shown in [13] for homo-
geneous dark energy models, the equation of motion now
reads

δ̈þ
�
2H −

_wgdm

1þ wgdm

�
_δ −

1

3

4þ 3wgdm

1þ wgdm

_δ2

1þ δ

− ð1þ wgdmÞð1þ δÞ∇
2ϕ

a2
¼ 0; ð18Þ

where, for simplicity, from now on, we drop the index i and
consider only the expressions for generalized dark matter.
These expressions show that the nonlinear dynamics of

matter perturbations can be heavily affected by the presence
of a background equation-of-state parameter wgdm and
therefore we expect its value to be severely constrained.
Similar conclusions can be reached for the effective sound
speed c2s , as a value different from zero defines a sound
horizon scale associated to perturbations which generally
implies that the fluid is not fully clustering.
Having derived the expressions for the nonlinear

evolution of matter density perturbations, we stress that,
despite we consider constant wgdm and sound speed c2s;gdm,
the formalism does not rely on this assumption and can be
used without modifications also in the case of time
dependence.
To determine the virial overdensity ΔV, we assume

energy conservation during the collapse. This condition
leads to a relation between the potential and kinetic energy
of the collapsing sphere at turn-around and virialization
time [28]:

Ugdm;ta þ UΛ;ta ¼ Ugdm;vir þ Tgdm;vir þ UΛ;vir þ TΛ;vir;

ð19Þ

where U and T are the potential and kinetic energy,
respectively, of the GDM and dark energy Λ component.
The subscripts ta and vir refer to turn-around and virializa-
tion, respectively. For simplicity, we will assume the dark
energy component to be in the form of a cosmological
constant, but our results can be easily extended to more
general models.
The potential energy for a fluid endowed with pressure

as the GDM is Ugdm ¼ − 3
5
ð1þ 3wgdmÞ GM2

R and for the
cosmological constant is UΛ ¼ 4π

5
GMρΛR2, where M and

R are the mass and the radius of the spherical perturbation,
respectively. For a system with the potential energy of the

form U ∝ Rn, the kinetic energy will be T ¼ nU=2 [29].
Then, according to the virial theorem, we find

Ugdm;ta þUΛ;ta ¼
1

2
Ugdm;vir þ 2UΛ;vir: ð20Þ

Defining θ ¼ ρΛ
ρgdm

and η ¼ rvir
rta

as in [12,30], we find a

cubic equation describing the evolution of η:

θη3 þ
�
1þ θ

2

�
η − 1=2 ¼ 0; ð21Þ

where we used

�
ρ̄X;eff
ρ̄

�
vir

¼ θη3
�
avir
ata

�
−3ð1þwΛÞ

: ð22Þ

In the previous expression, wΛ ¼ −1 and ρ̄X;eff ¼ ρ̄Xþ
3P̄X=c2.
Solving for η, the virial overdensity at collapse redshift

zc is

ΔVðzcÞ ¼
ρvir
ρ̄vir

¼ η−3
ρcluster
ρ̄

����
ta

�
1þ zta
1þ zcoll

�
3

; ð23Þ

where ρcluster ¼ ρ̄ð1þ δÞ is the total density of the pertur-
bation. Since the constrained values for wgdm ≪ 1 and
c2s;gdm ≪ 1 [23,25,26], we assumed, for simplicity, that
matter scales as in the standard CDM model.

III. RESULTS

In this section we present some results for the spherical
collapse model for the generalized dark matter models
previously discussed, taking into account the effects of both
the background equation-of-state parameter wgdm and the
effective sound speed c2s;gdm. We concentrate on the linear
overdensity parameter δc and the virial overdensity ΔV.
These quantities have both their own theoretical impor-
tance: the linear overdensity parameter is a key ingredient
for the halo mass function, while the virial overdensity is a
measure of how dense cosmic structures are and ultimately,
in first approximation, assuming spherical symmetry, it
gives a measure of their radius knowing their mass. Whilst
quite often the halo mass function is evaluated under the
approximation that δc ≈ δEdSc , it is necessary, in our opinion,
in an era of precision cosmology where data become
progressively more accurate, to perform an exact and
detailed analysis to avoid introducing artificial biases in
the study of the mass function which will hamper a proper
comparison between analytical predictions and future
observational data and lead to erroneous conclusions.
The virial overdensity is indirectly related to the mass
function and it can be used to determine the weak-lensing
peaks, as discussed in [16], where the authors studied the
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effect of different virialization recipes and were able to
show that one of the recipes proposed in the literature
provides results which are at odds with current numerical
and observational results. In this work, we will not pursue
this specific analysis, as our analysis would need to be
validated with N-body simulations, but we will, never-
theless, comment upon it.

A. Evolution of the spherical collapse parameters

To evaluate the evolution of the spherical collapse
parameters, we follow [13,19] and we look for an initial
overdensity δini such that the nonlinear equation (18), in the
general case where wgdm ≠ c2s;gdm and both not null,
diverges at the chosen collapse time. This same value is
then used as an initial condition of the linearized version of
(18), which describes the evolution of δc. The value of ΔV,
instead, simply follows by evaluating η as explained in
[12], which, as said above, is an approximation to the true
behavior of the GDM, but due to the strong constraints, this
does not introduce a significant bias.
In Fig. 1 we show the evolution of the critical over-

density δc as a function of redshift z assuming Einstein-de
Sitter-like (EdSGDM) and flat ΛGDM as cosmological
models. Different curves refer to different values of the
effective sound speed, while keeping wgdm ¼ 0 as for the
standard cold dark matter model. This setup allows us to
study the effect of the modified clustering properties of
dark matter. Note that for stability reasons, c2s;gdm > 0. For
comparison, in cyan, we also show the evolution of the
reference ΛCDM cosmology. The values chosen for the
effective sound speed are motivated by the constraints
obtained studying the evolution of linear perturbations

[22,25,26]. For completeness, in Table I we provide the
constraints obtained in [26].
As expected, all the models asymptotically approach the

EdS limit at high redshifts, regardless of the sound speed
value. Differences for δc between the ΛGDM and the
standardΛCDMmodel are absolutely negligible, and likely
due to numeric, except for high values of the sound speed,
well above the linear constraints limits, i.e., c2s;gdm ∼ 10−4.
This shows that to modify the evolution of δc, relatively
high values of the sound speed are required.
As the sound speed c2s;gdm influences how much the fluid

collapses, we can understand the dependence of δc if we
vary this parameter. As the sound speed increases, a higher
δc is needed, because there is an additional pressure effect
that resists the collapse and opposes structure formation.
We remind the reader that a higher value of the sound speed
implies a smoother component.
We do not show the effect of the sound speed on the

virial overdensity ΔV as this parameter is not directly
included in its definition, but it enters in it through the
nonlinear evolution of matter perturbations.
In Fig. 2, we present the evolution of δc (top panel) and

ΔV (bottom panel) as a function of redshift z for different
values of the generalized dark matter equation-of-state
parameter wgdm, while setting c2s;gdm ¼ 0. It is immediately
clear that wgdm has a much stronger effect than that induced
by the sound speed and it becomes more pronounced for δc
than ΔV for values around wgdm ∼ 10−3 where we also
checked that the relative difference of δc with the ΛCDM
result is few times higher than that of ΔV even if we go to
wgdm ∼ 10−2 for the latter.
To see why the equation-of-state parameter wgdm has a

stronger effect than c2s;gdm, we remind the reader that when
wgdm ≠ 0, the background expansion history is modified
and pressure effects are not negligible even at early times,
while c2s;gdm only affects the perturbations. This also
explains why increasing wgdm leads to a decrease of δc:
a positive wgdm makes the contribution of the dark matter
component less important (as it decreases faster) than that
of the cosmological constant at late times and to overcome
the additional contribution to the expansion one needs
lower overdensities to achieve the collapse.

1

FIG. 1. The linear critical density contrast δc as a function of the
collapse redshift z for different values of the generalized dark
matter sound speed c2s;gdm for an EdSGDM and flat ΛGDM
cosmology. For reference, we consider also the standard ΛCDM
model, where c2s;gdm ¼ 0.

TABLE I. Constraints on the GDM parameters using linear
theory and different combinations of cosmological probes (CMB,
CMB lensing, and BAO) from Thomas et al. [26]. The values
provided correspond to the 95% confidence regions.

CMB
CMB

þlensing
CMBþ lensing

þBAO

102 × wgdm −0.040þ0.473
−0.468 0.066þ0.434

−0.427 0.074þ0.111
−0.110

106 × c2s;gdm < 3.31 < 1.92 < 1.91

106 × c2vis;gdm < 5.70 < 3.27 < 3.30
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So far, we have considered the influence of wgdm and
c2s;gdm separately, but to span the full parameter space of the
model, we need to consider their combined effect and we
do so by solving the full equation of motion (16). We
verified that for realistic values of the two parameters, the
resulting δc is in agreement with ΛCDM. For the highest
values considered for both wgdm and c2s;gdm, the relative
difference is still below the percent level.
Our analysis led us to the conclusion that the values

allowed for wgdm and c2s;gdm from previous works on the
evolution of linear perturbations (see Table I) have a
negligible impact on δc and ΔV. Nevertheless, these two
quantities are not directly observable and therefore it is
important to study how the mass function is influenced.
Before we study the impact on the mass function, though,

we want to take a step further and investigate the combined
action of varying the background matter density parameter
Ωm while fixing the two parameters of the GDM model to
wgdm ¼ 5 × 10−4 and c2s;gdm ¼ 5 × 10−7, as there might be
additional degeneracies among the three parameters at the
perturbative level. The reason behind this is that Ωm has a
very strong impact on the growth of cosmic structures
[31,32] and its determination might be affected when
studying a more general dark matter model, as is the case
for this work.
In the following, therefore, we vary Ωm between 0.1 and

0.8 and compare the results for a GDM with the standard
CDM model having the same matter density parameter. We
present our results in Fig. 3. Stronger effects take place for
low matter density parameters for both δc and ΔV as in this
case very overdense initial perturbations are required to
overcome the accelerated cosmic expansion and collapse.
We note that in this case, the effect is of the order of 0.1% for
δc and up to 8% forΔV. Differences become much smaller at
high redshifts, as the EdS is a good approximation of the true

FIG. 2. Top (bottom) panel: The linear critical density contrast δc
(virial overdensityΔV) as a function of the collapse redshift z for dif-
ferent values of the generalized dark matter equation of state
parameter wgdm for an EdSGDM and flat ΛGDM cosmology.

FIG. 3. Relative differences between the ΛCDM and ΛGDM linear critical density parameter δc (left) and virial overdensity ΔV (right)
as a function of the collapse redshift z for different values of the matter density parameter Ωm. We assume wgdm ¼ 5 × 10−4 and
c2s;gdm ¼ 5 × 10−7 as reference values for the parameters of the GDM model.
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cosmology. For a model with Ωm ≈ 0.3 (roughly the current
accepted value), at z ¼ 0, we find a 0.08% difference for δc
and 2% for ΔV. Deviations for ΔV are obviously stronger as
this quantity is derived by solving the nonlinear equation of
motion for the matter overdensity δ.

B. The mass function

The previous discussion shows that for realistic values of
wgdm and c2s;gdm allowed by previous studies [23,25,26], the
parameter to take more into consideration is the equation of
state wgdm and that the quantity being mostly affected is the
virial overdensity ΔV, with differences up to a few percent
for accepted values of the matter density parameter Ωm.
Although these numbers are small, we remind the reader
that their combined effect enters exponentially into the
evaluation of the halo mass function, therefore even small
differences can be amplified and lead to appreciable
differences, therefore making it a very sensible probe for
cosmology when its high-mass end is investigated (i.e.,
massive galaxy clusters).
The halo mass function is defined as [33]

dnðMÞ
dM

¼ −
ρ̄

M
dν
dM

F ðνÞ; ð24Þ

where ρ̄ is the mean matter density today, F ðνÞ the
multiplicity function and ν ¼ δc=σðMÞ with σðMÞ the
variance within a sphere of radius R and mass M ¼
4π=3ρ̄R3 for a cosmology described by a linear matter
power spectrum PðkÞ. The mass variance is defined as
σ2ðM; zÞ ¼ 1

2π2

R
∞
0 k2Pðk; zÞW2ðkRÞdk, whereWðkRÞ is an

appropriate window function representing the Fourier
transform of the top-hat function in real space.
In order to compute the linear matter power spectrum for

GDM, we have followed [23,25] in modifying the Einstein-
Boltzmann solver CLASS [34,35]. Thus, at a linear level of
perturbations and in the synchronous gauge, the conserva-
tion of the energy momentum tensor yields [36]

_δþð1þwgdmÞ
�
θþ

_h
2

�
þ3H

�
δP
δρ

−wgdm

�
δ¼ 0; ð25aÞ

_θ þHð1 − 3wgdmÞθ þ
_wgdm

1þ wgdm
θ −

δP=δρ
1þ wgdm

k2δ

þ k2σ ¼ 0: ð25bÞ

The system is closed by supplying the relations associating
the GDM equation of state parameter wgdm, the pressure
perturbation δP and scalar anisotropic stress σ to the
density fluctuation δ, the divergence of its velocity θ and
the synchronous metric perturbations h and η,

δP ¼ c2s;gdmδρ − _ρðc2s;gdm − c2a;gdmÞθ=k2; ð26Þ

_σ þ 3H
c2a;gdm
wgdm

σ ¼ 4

3

c2vis;gdm
1þ wgdm

ð2θ þ _hþ 6_ηÞ; ð27Þ

where the adiabatic sound speed is c2a;gdm ≡ ðwgdmρ̄Þ_= _̄ρ and
c2vis;gdm is a viscosity parameter we set to zero in this work.
The public version of CLASS already includes a para-
metrization of a dark energy fluid with constant equation
of state parameter and constant sound velocity [37]. We
used this parametrization as GDM, while we kept a
cosmological constant for the dark energy contribution,
and a negligible fraction of CDM. Note that the perturba-
tions of this fluid must then be added to the total matter
perturbations, which is not the case in the public version,
since this fluid is supposed to behave as dark energy.
For the multiplicity function, we adopt the functional

form proposed by [38,39]

νF STðνÞ ¼ A

ffiffiffiffiffiffi
2a
π

r �
1þ

�
1

aν2

�
p
�
ν exp

��
−
aν2

2

�	
; ð28Þ

with the parameters A, a and p more recently fitted by [40]
using the abundance matching technique in N-body sim-
ulations and ν ¼ δc=ðDþσMÞ, with σM the mass variance.
While the mass function depends explicitly on δc, the fitted
parameters are a function of the virial overdensity ΔV and
read

a ¼ 0.4332x2 þ 0.2263xþ 0.7665;

p ¼ −0.1151x2 þ 0.2554xþ 0.2488;

A ¼ −0.1362xþ 0.3292;

where x ¼ log ðΔðzÞ=ΔVðzÞÞ and ΔðzÞ is a given over-
density, such as a multiple of the critical density.1

Thus, the overall effect on the mass function is given by
the combination of a few factors: a different background
expansion induced by wgdm, the evolution of structures
given by the linear growth factor DþðaÞ and δc, the
evolution ofΔV and the linear matter power spectrum PðkÞ.
Despite the parametrization adopted here has been

originally proposed as an improved fit to ΛCDM simu-
lations [38], it has been soon afterward justified theoreti-
cally based on the ellipsoidal collapse [39]. It has been also
shown that the Sheth and Tormen parametrization has a
more general validity than just the standard ΛCDM model,
as demonstrated by [15] comparing the results of N-body
simulations for nonminimally coupled models with theo-
retical estimations of the halo mass function. The agree-
ment was shown to be very good, provided, though, that the

1Note that our definition of the virial overdensity refers to the
background density rather than the critical one. Therefore, in the
evaluation of the mass function we scale it by Ωm, where
necessary.

SPHERICAL COLLAPSE IN GENERALIZED DARK MATTER … PHYS. REV. D 102, 043512 (2020)

043512-7



model-dependent parameters (i.e., δc) were used, rather
than the common assumption in the literature where the
linear overdensity parameter for the EdS model is used
instead of the correct one. According to this, we are
confident that our choice is justified.
We present the results of our investigation in the top

panel of Fig. 4, where we show the mass function at
different redshifts, considering both ΛCDM and ΛGDM
models assuming wgdm ¼ 5 × 10−4 and c2s;gdm ¼ 5 × 10−7

for the latter, two values within the constraints obtained
from probes of large scale structure formation [25,26].
We note immediately that despite δc is hardly affected

and ΔV only at the percent level by the combined action of
the equation-of-state parameter wgdm and the sound speed
c2s;gdm as we previously discussed, the differential mass
function (top panel) shows strong signatures due to the
additional physics investigated. One of the main reasons is
the strong suppression of power in the linear matter power
spectrum due to c2s;gdm especially on small scales, as shown
by [21] and as we checked but do not show here by
changing the value of ΔV. As we will discuss more in detail
later, this directly explains why there is, in general, a lower
number of structures, especially for small mass objects.
Finally, a part of the contribution could also come from ΔV,
as we showed that at the nonlinear level this is the quantity
more affected.
More quantitatively, there is a decrement of about 75%

and 80% for objects of ≈ 5 × 1013 M⊙h−1 for z ¼ 0 and
z ¼ 2, respectively. At higher masses, differences between
the ΛCDM and ΛGDM models are comparable and of the
order of 40%. At low masses though, according to expect-
ations, differences steadily increase with redshift.
To see why we obtain the counterintuitive result of

stronger effects at low masses, in the middle panel of Fig. 4,
we show the evolution of the square root of the variance
σðMÞ as a function of the perturbation massM for different
redshifts z. We consider both the ΛCDM and the ΛGDM
models with the same set of parameters we used to study
the halo mass function. We immediately see that σΛGDM <
σΛCDM at all masses and redshifts, thus explaining the
smaller number of halos in the GDM model. In addition,
and this is the key to explain the results for the halo mass
function, stronger differences occur at low masses and low
redshifts, as the ΛGDM model approaches ΛCDM at
higher redshifts.
To disentangle the effect of the matter power spectrum

from that of the virial overdensity ΔV entering in the
definition of the parameters of the mass function, we
evaluate the mass function for ΛCDM and ΛGDM by
assuming the same ΛCDM linear matter power spectrum
for both models, but keeping the other quantities relative to
each model. We show this in the bottom panel of Fig. 4.
With respect to before, we now see a completely

different situation, which is more in line with usual

FIG. 4. In the toppanelwe show thedifferentialmass function as a
function of mass for different redshifts using the appropriate linear
matter power spectrum for eachmodel (ΛCDMandΛGDM). In the
middle panel we present the evolution of the square root of themass
variance as a function of mass for different redshifts and for both
models. In the bottom panel we show the differential mass function
as in the top panel but using the ΛCDMmatter power spectrum for
bothΛCDM andΛGDM, while the rest of GDMmodel-dependant
quantities are kept. In all panels we assume wgdm ¼ 5 × 10−4 and
c2s;gdm ¼ 5 × 10−7 for the ΛGDM model.
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expectations as the major differences occur, as one would
expect, for high-mass objects. Nevertheless, differences are
very small and probably more likely due to numerical
effects rather than genuine physical effects.
These results thus show that the additional physics of the

dark matter sector has a strong impact on the observables,
not only on the linear evolution of perturbations but also on
the nonlinear evolution of the formation of structure
through the halo mass function (top panel). However,
within the current linear constraints on c2s;gdm and wgdm

(see Table I), there is no significant modification coming
from changes to δc and ΔV, and this is confirmed in the
bottom panel where we replaced the correct linear matter
power spectrum for the GDM with that expected from the
ΛCDM cosmology.

C. Comparison with observations

The comparison between the theoretical and the obser-
vational halo mass function is not an easy task as one has to
take into account complications inferring the halo mass.
The determination of the mass can be done via x-ray
observations: measuring the x-ray temperature function of
galaxy clusters and assuming a mass-temperature relation,
it is possible to transform it into a mass function.
This is easy to see noticing that the halo number is a

conserved quantity and we can write

nðT; zÞdT ¼ nðMðT; zÞÞdM; ð29Þ

where T denotes the x-ray temperature. We have, therefore,
to establish the relation dM=dT.
We also point out that this approach needs the catalog

used to be flux complete, which is indeed the case for high-
mass clusters. But this also implies that a proper selection
function should be used to take into account this bias.
For a precise determination of the halo mass function

from a given sample catalog, we will use the same
procedure outlined in [41]. The catalog used contains
massive clusters with M > 8 × 1014 M⊙h−1 within a
comoving radius R ¼ 1.5 h−1 Mpc and span a redshift
range 0.05≲ z≲ 0.83 which consists of four bins, each
with an effective fraction of the observed bin volume (see
Table I of [41]). The x-ray temperatures, as reported in
Table II of [41], to which we refer for a complete list of the
objects used, are taken from [42–46].
The mass-temperature relation is [47,48]

M0 ¼ 1.5 × 1014M⊙h−1κΔ
TX

keV
1

1þ z
; ð30Þ

where M0 is the virial mass contained in a comoving
radius R0

0 ¼ 1.5 h−1Mpc, TX the cluster x-ray temperature
and κΔ ¼ 0.76.
Putting this together, the observed number of clusters in

a redshift bin i is

N 0
i ¼ αi

Z
zi
2

zi
1

dz
dV
dz

N0ðM0 > M0
0; zÞ; ð31Þ

with

N0ðM0 > M0
0; zÞ ¼

Z
∞

gðM0
0
Þ
dMnðM; zÞ; ð32Þ

and the function g relates the observed massM0 to the virial
mass and returns the fiducial mass adopted in the obser-
vations. We refer the reader to Appendix B of [41] for
details on how to evaluate this function. The parameter αi
represents the fraction of the volume observed at that
redshift bin. In other words, this means that for a given
redshift bin, there is a minimum mass below which the
object cannot be detected by the particular survey consid-
ered. As the sample is at relatively small redshifts, effects
on the selection function due to the cosmology are
negligible, taking into account that the background expan-
sion for the GDM model is extremely close to that of
ΛCDM. Finally note that this cluster sample was used by
[49] to put constraints on the parameters of the nonspheri-
cal collapse model in the ΛCDM framework.
In Fig. 5 we present a comparison for the number of

objects above a given mass and in a given redshift interval
for three different models: the reference ΛCDM and two
GDM models with realistic values for the two parameters
wgdm and c2s;gdm. For the GDM models, we set wgdm ¼
5 × 10−4 and c2s;gdm ¼ f5 × 10−7; 5 × 10−6g. We consider
25 redshift bins between the redshift interval 0 ≤ z ≤ 1 and
we show the number of objects with respect to the central

FIG. 5. Number of objects above a given mass, as explained in
the text, in a given redshift bin. We consider 25 bins between
z ¼ 0 and z ¼ 1 and three different cosmological models: ΛCDM
(black line), GDM with wgdm ¼ 5 × 10−4 and c2s;gdm ¼ 5 × 10−7

(orange line), and GDM with wgdm ¼ 5 × 10−4 and c2s;gdm ¼
5 × 10−6 (purple line).
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value of the bin. It is clear that the sound speed has an
important quantitative effect on the halo count, but the
shape of the curves is generally the same. The overall effect
of increasing the sound speed is a decrease in the number of
objects above a given mass, rather independent of the mass.
Some stronger effect is seen, as expected, for the high-mass
end. From a more quantitative point of view, increasing the
sound speed by an order of magnitude leads to about 3
orders of magnitude less objects over the redshift interval
investigated. For the GDM model with c2s;gdm ¼ 5 × 10−6

the differences with respect to ΛCDM are about a factor of
2 and for high redshifts, due to the low number of objects,
usually within the uncertainties of the observational probes.
We can now evaluate the χ2 for the three models

discussed in Fig. 5 using the data and the procedure
discussed in [41] constructing a likelihood function L
based on Poisson statistics [50]:

lnL ¼ lnPðNijniÞ ¼
XNb

i¼1

½Ni lnNi − ni − ln ðNi!Þ�; ð33Þ

where PðNijniÞ is the probability of finding Ni clusters in
each of the nb bins given an expected number of ni in each
bin in redshift.
For the ΛCDMmodel we find χ2=dof ≈ 6.7=4with fixed

values of the cosmological parameters (Ωm ¼ 0.33,
σ8 ¼ 0.81, h ¼ 0.675, ns ¼ 0.965), while for the GDM
models with c2s;gdm ¼ 5 × 10−7 and c2s;gdm ¼ 5 × 10−6 (and
the same cosmological parameters) we find 7.9=4 and
60.6=4, respectively. It is immediately clear that the ΛCDM
model is in better agreement with data with respect to these
particular ΛGDM models, and this is a direct consequence
of the strong suppression induced by the large sound speeds
chosen. It is important to note that this does not disfavor
ΛGDM in any way, since ΛCDM is a particular case of it.
What can be extracted from these results is that values of
the GDM parameters currently allowed by measurements in
the linear regime (Table I), provide a worse χ2 for GDM.
Therefore, small-scales cosmological probes, like cluster
counts, will enable to improve our constraints on the GDM
parameters and allow us to improve our knowledge on the
nature of dark matter.

D. The nonlinear matter power spectrum

The final part of our investigation deals with the
evolution of the matter power spectrum. In general, there
are no theoretically motivated procedures which allow us to
evaluate the nonlinear evolution of structures. The spherical
collapse model is a welcome exception to that and, despite
its simplifications, it has proven to be very useful and in
very good agreement with results from N-body simulations
about the evolution of the mass function. This has been
shown with detailed studies for ΛCDM cosmologies
comparing the Sheth-Tormen mass function [38,39] with

the Millennium simulation [51] or for nonminimally
coupled models [15].
For the nonlinear matter power spectrum, the situation is

rather different. Usually, one can use some fitting function
for the ΛCDM model [52] or the halo model [9] and adapt
them to the particular model considered. This has been
done, for example, in [53] for fðRÞ models.
For GDM models, in a recent work [26], the authors

developed a formalism in the framework of the halo model
to explore how the nonlinear matter power spectrum could
evolve. To do so, they used a modified concentration
parameter based on the recipe for warm dark matter of
[54,55]. As the halo model also requires the knowledge of
the halo mass function, [26] related the evolution of δc to
that of the ΛCDM model according to the idea that if in
GDM models power is removed, then the collapse should
be inhibited.
The final result of their machinery is given in their Fig. 2.

Nonlinear effects kick in at smaller scales than the ΛCDM,
but the main feature is that also the nonlinear spectrum
shows a strong suppression of power. We note that this
procedure needs, of course, to be validated with suitably
modified N-body simulations and it relies, at this stage, on
several, albeit plausible, assumptions.
In this work, we, therefore, follow a different approach,

which is also used for modified gravity models and does
not rely on the knowledge of the nonlinear evolution of
perturbations in GDMmodels, but only on that of a ΛCDM
model. The idea is, in fact, to consider a ΛCDMmodel with
the same cosmological parameters of the GDM model,
determine its nonlinear matter power spectrum using the
recipe of [56] and divide it by the linear spectrum. This
quantity represents a nonlinear transfer function mapping
the linear power spectrum into the nonlinear one.
Multiplying the linear GDM matter power spectrum by
the nonlinear transfer function, one obtains the correspond-
ing nonlinear evolution of the matter power spectrum. We
note that this approach has been used by [57] to constrain
Horndeski models using cosmic shear, galaxy-galaxy
lensing and galaxy clustering with the KIDS [58,59] and
GAMA surveys [60–62]. As the laws of gravity are not
modified, we do not need to take into account further
screening mechanisms.
Our results are presented in Fig. 6, where we compare

the linear and nonlinear matter power spectrum of a
ΛGDM model with the corresponding ΛCDM ones at
z ¼ 0. For the GDM model we assumed wgdm ¼ 10−4 and
c2s;gdm ¼ 10−6, in agreement with constraints in [26].
With such a low value of the sound speed, the linear

spectra of the ΛCDM and ΛGDMmodels agree rather well
up to k ≈ 0.02 hMpc−1, but on smaller scales the new
physics kicks in and we easily see a strong suppression in
structure, which becomes more and more pronounced the
smaller the scale is: for k ≈ 1 hMpc−1 the two spectra differ
by about a factor of 300.
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A very similar behavior is obtained when comparing the
nonlinear matter power spectra for the two models. This is
easy to understand as the linear GDM spectrum was
scaled by the nonlinear transfer function defined above.
We remark that this does not have to be the case in general.
In addition, it is useful to take into account that our
nonlinear mapping is purely phenomenological and, if
we exclude the behavior at the linear level, there is no
direct dependence on the GDM parameters.
It is therefore important to compare our predictions with

the generalized halo model of [26]. The two different
approaches give very similar results up to k ≈ 0.4 hMpc−1,
but on smaller scales the rescaling method proposed here
shows much less power than the halo-model approach
discussed in [26]. To see whether this is a general feature,
we also considered the case with wgdm ¼ 10−4 and
c2s;gdm ¼ 10−5. In this case, while our approach still shows
an increase of power on small scales, the halo model does
not lead to any difference between the linear and nonlinear
matter power spectrum, as a high sound speed completely
hampers nonlinearities. This probably shows a failure in the
regime of validity of the halo model which, though, should
not have practical consequences as this value has been
already ruled out by linear analysis.

IV. CONCLUSIONS

In this work we discussed how the equation-of-state
parameter wgdm and the sound speed c2s;gdm for generalized
dark matter (GDM) affect the properties of the two main
quantities of the spherical collapse model, the linear over-
density parameter δc and the virial overdensity ΔV.

We compared them with the corresponding quantities
derived for the standard ΛCDM model for different values
of wgdm and c2s;gdm. We demonstrated that the parameter
mostly affecting their evolution is the background equation
of state wgdm, while the sound speed c2s;gdm, within the
constraints from linear probes, has a negligible contribution
to the overall nonlinear evolution.
The effect of the two additional quantities describing the

GDM properties is strongly dependent on the matter
density parameter Ωm. We saw that the lower the matter
density parameter, the stronger are the deviations from a
ΛCDM model, as higher initial overdensities are required
to overcome the accelerated expansion of the Universe to
allow structures to collapse.
Since the spherical collapse parameters are not direct

observables, we used their evolution, together with the
linear matter power spectrum PðkÞ obtained for the GDM
model, as building blocks for the halo mass function. We
found that major deviations take place on smaller mass
objects, rather than at higher masses and this is a direct
consequence of the modifications on the linear matter
power spectrum, as we verified by using the linear matter
power spectrum of the ΛCDM model for both cosmologies
(bottom panel of Fig. 4). In this case in fact, differences are
much smaller and in line with expectations: the decrease is
stronger at higher masses, albeit in general at the sub-
percent level. The overall effect of the GDM dynamics is
that of decreasing the number of halos, as additional
pressure terms kick in the equations of motion. This is a
strong effect, up to 70% already at z ¼ 0 and 80% at z ¼ 2

and of the order of 40% for objects of M ≈ 1015 M⊙h−1.
Due to the abundance of galactic objects, this effect should
be easily seen and therefore put strong constraints on the
GDM parameters.
We finally note that, while both important to completely

characterize the dynamics of GDM models, the equation-
of-state parameter wgdm and the sound speed c2s;gdm act on
two different sets of observables. The first is important
mainly at the nonlinear level, while the latter is very
important for the evolution of the linear matter power
spectrum, which reflects, of course, on the halo mass
function. Therefore, while heavily constrained at the linear
level already, the two GDM parameters can be further
strongly constrained if probes at the nonlinear level are
combined.
With the effect on the mass function being detectable

with present and most importantly, near-future deep sur-
veys, we remark that a proper analysis of the additional
degrees of freedom in a particular cosmological model
needs to be taken into full consideration, especially if we do
not fix the matter density parameter to the fiducial value. As
a practical example for GDM models, a robust measure-
ment of the matter power spectrum and of the mass
function, or more generally in the nonlinear regime, can
lead to stronger constraints on the GDM parameters.

FIG. 6. Evolution of the linear (solid lines) and nonlinear (dot-
dashed lines) matter power spectra for the ΛCDM (purple lines)
and ΛGDM (red lines) models at z ¼ 0. The blue dot-dashed line
represents the nonlinear matter power spectrum using the halo-
model prescription of [26]. For the GDM model, we assumed the
following parameters: wgdm ¼ 10−4 and c2s;gdm ¼ 10−6.
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To this purpose, we implemented a phenomenological
approach to study the evolution of the nonlinear matter
power spectrum PðkÞ. Knowing the linear and nonlinear
matter power spectrum for a ΛCDM model, we derive a
“nonlinear” transfer function which we multiply with the
GDM linear spectrum to infer its nonlinear counterpart.
While being approximated, we checked that this approach
gives results in good agreement with the more sophisticated
approach based on the halo model discussed in [26] up to
k ≈ 0.4 hMpc−1 and on small scales a strong lack of power
in our approach with respect to [26]. For large values of the
sound speed, while the approach presented in this work still
clearly shows a different evolution between linear and
nonlinear spectra, this is not the case anymore for the halo-
model approach, as the sound speed completely wipes out
any nonlinear evolution. This might, eventually, show a
breakdown of the halo model in its current form. We
caution, however, that a proper determination of this
quantity can be done with accurate N-body simulations.
Rather than the differential mass function itself, it is

possible to compare theoretical predictions with the number
counts one can infer from observed halo catalogs. For that,
we compared our predictions with the halo catalog used by
[41,49] to put constraints on the dark energy models and to
extensions of the spherical collapse model. We chose the

catalog used by [41] as it allows us a study also at higher
redshifts, where stronger differences are expected.
Studying the χ2, we showed that ΛGDM models with
GDM parameters allowed by observations in the linear
regime provide worse χ2 values than ΛCDM. This shows
that cluster counts, and especially future larger and deeper
surveys, will allow us to put more stringent constraints on
the nature of dark matter. Note that an increase in our dark
matter knowledge is very important, since we showed that a
change in the values of GDM parameters could translate
into changes of large scale structure abundance. These
could then help to explain recent discrepancies between
local and deep large scale structure measurements of the
growth of structures, which common modifications to
ΛCDM failed to achieve [63].
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