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We use N-body simulation to study the structure formation in the cubic Galileon gravity model where
along with the usual kinetic and potential term we also have a higher derivative self-interaction term. We
find that the large scale structure provides a unique constraining power for this model. The matter power
spectrum, halo mass function, galaxy-galaxy weak lensing signal, marked density power spectrum as well
as count in cell are measured. The simulations show that there are less massive halos in the cubic Galileon
gravity model than corresponding ΛCDM model and the marked density power spectrum in these two
models are different by more than 10%. Furthermore, the cubic Galileon model shows significant
differences in voids compared to ΛCDM. The number of low density cells is far higher in the cubic
Galileon model than that in the ΛCDM model. Therefore, it would be interesting to put constraints on this
model using future large scale structure observations, especially in void regions.
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I. INTRODUCTION

Since the first observational evidence for late time
acceleration in our Universe was confirmed in 1998
[1–3], we are still in search for a correct theoretical model
that can explain this accelerated expansion as well as is also
consistent with hosts of different cosmological observa-
tions. Although the simplest concordance ΛCDM model
[4] has been successful in both these counts, but the latest
tension (which is currently at more than 4σ [5]) in
measurements of Hubble constant H0 from local observa-
tions [6–8] and from CMB by Planck [9], lands ΛCDM
model in serious trouble. In simple words, the constrained
value of H0 parameter (Hubble constant at z ¼ 0) for
ΛCDM model by Planck observation for CMB [9] is more
than 4σ away from the model independent local measure-
ments by Riess et al. [6]. Recently, this has resulted in
renewed interests in models beyond ΛCDM.
To construct models beyond ΛCDM that can explain the

late time acceleration in the Universe, one can approach it
in two different ways. The first approach is to modify the
energy content in the Universe to include an unknown

component with negative pressure called “dark energy.”
Scalar fields that are ubiquitous in standard model for
particle physics, are the most suitable candidates for dark
energy [10–12]. With sufficiently flat potentials, they can
mimic the negative pressure that can result the repulsive
gravity to start late time acceleration in the Universe.
Although this approach works at the phenomenological
level to explain late time acceleration, we are still in search
for scalar fields with suitable potentials that can arise in
standard models for particle physics or its various exten-
sions. Also ensuring that these scalar fields do not give rise
to fifth force effects that spoil the local gravity constraints,
is equally challenging.
The second approach is to modify the gravity at large

cosmological scale in such a way so that it becomes
repulsive at large scales resulting accelerated cosmological
expansion [13–16]. One such attempt was made by Dvali,
Gabadadze and Porrati (DGP) where a 4D Minkowsky
brane is located on an infinitely large extra dimension and
gravity is localized in the 4D Minkowsky brane [17]. Even
though this scenario gives rise to late time acceleration its
self-accelerating branch has a ghost [18,19]. But the
decoupling limit of the DGP model gives rise to a
Lagrangian of the form ð∇ϕÞ2□ϕ [18]. Despite of having
higher order term this Lagrangian gives second order
equation of motion and hence free from ghost [18–20].
This Lagrangian, in the Minkowski background, possesses
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the Galilean shift symmetry ϕ → ϕþ bμxμ þ c, where bμ
and c are the constants, and hence dubbed as the “Galileon”
[20]. In the Minkowski background there exists five such
terms including the usual canonical kinetic term and a
linear term in ϕ which can possess the above mentioned
shift symmetry and give second order equation of motion
[20]. In curved background we need to include some
nonminimal terms in the Galileon Lagrangian to keep
the equation of motion second order [21]. Galileon models
can be realized as the subclasses of the more general scalar-
tensor theory known as the Horndeski theory [22] and can
give rise to late time cosmic acceleration [23–36] while
being consistent with the local astrophysical bounds by
implementing the Vainshtein mechanism [37] which sup-
presses the fifth force locally.
The detection of the event of binary neutron star merger

GW170817, using both gravitational waves (GW) [38] as
well as its electromagnetic counterpart [39,40] rules out a
large class of Horndeski theories that predicts the speed
of GW propagation different from that of speed of light
[41,42]. In Galileon models, the only higher derivative term
that survives is ð∇ϕÞ2□ϕ, the cubic term in the Galileon
Lagrangian which does not modify the speed of GW. This
cubic term along with the usual kinetic term and the term
linear in ϕ (linear potential) forms the cubic Galileon
model. Replacing the linear potential with a general
potential breaks the shift symmetry but still the equation
of motion is second order. This kind of models are known
as the light mass Galileon models [35,36]. The cubic
Galileon model without potential cannot give rise to a
stable late time acceleration [27]. The cubic Galileon model
has been studied extensively in the context of late time
acceleration [23,24,35,36,43] in the Universe as well as in
the context of growth of matter fluctuations in both
subhorizon and superhorizon scales [44–48]. The current
constraints and models of modified gravity is well sum-
marized in Ishak [49].
Although the background expansion and growth of

linear fluctuations of the matter density field have been
extensively studied in cubic Galileon model, a detail
analysis of structure formation in nonlinear regime using
N-body simulations is necessary to study evolution of voids
and clusters in this model and to compare them with the
prediction from ΛCDM model. It has been proved that
N-body simulation is essential to investigate the structure
formation and put constraints on modified gravity models
like fðRÞ gravity model [50] or interacting dark energy
models [51,52]. The deeply nonlinear structure formation
process disclosed by the N-body simulation provides the
accurate prediction of large scale structures, which can be
used to compare with observations like SDSS [53,54].
The nonlinear structure formation of cubic Galileon

model using N-body simulation has been studied without
potential [46,55]. However, a further study into the cubic
Galileon model with a potential is still lack of nonlinear

investigation. Using ME-GADGET code [56,57], we inves-
tigate the cubic Galileon model using N-body simulation
and study the large scale structure in this model. A
comparison between the simulation results of cubic
Galileon model and ΛCDM model will allow us to locate
our future focusing point when trying to get constraints
from observations. As we are expecting a large class
accurate data from different future surveys like, LSST
[58], Euclid [59,60], DESI [61], JPAS [62,63] and others,
such study is particularly relevant for any viable modified
gravity models.
The background expansion calculation is introduced in

Sec. II. The perturbation calculation is introduced in
Sec. III, including the linear perturbation equations for
each components and the linear matter power spectrum
results. In Sec. IV, we explained the simulations we have set
for comparison in the analysis. We show the results of the
simulations in Sec. V, including the density field, matter
power spectrum, marked density, halo mass function, count
in cell and galaxy-galaxy lensing. Finally, we give the
conclusion in Sec. VI. In summary, we have found that
voids are more important than we expected and it might be
the focus for our future work.

II. BACKGROUND COSMOLOGY

To study the background and perturbation history of the
Universe, we consider cubic Galileon model. The evolu-
tionary dynamics of the cubic Galileon field, ϕ is described
by the action given by [35,36]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

2
ð∇ϕÞ2ð1þ β□ϕÞ − VðϕÞ

�

þ Sm; ð1Þ

whereMpl is the reduced Planck mass. g is the determinant
of the metric describing the Universe. R is the correspond-
ing Ricci scalar. Sm is the action for the total matter
counterpart. The action (1) is a subclass of a more general
action namely the Horndeski action [22]. VðϕÞ is the
potential of the Galileon field. Here, we consider only
linear potential which is the case for the original Galileon
model. β is a cubic Galileon parameter (for more details
see the Appendix A). For β ¼ 0 the action (1) reduces to
the standard quintessence action with linear potential
[10,11,64–68].
For the background cosmology, we consider flat FRW

metric given by ds2 ¼ −dt2 þ a2ðtÞdr⃗:dr⃗, where t is the
cosmic time, r⃗ is the comoving coordinate vector and a is
the cosmic scale factor. Varying the action (1) with respect
to the metric, the background Einstein equations become

3M2
plH

2 ¼ ρ̄m þ
_ϕ2

2
ð1 − 6βH _ϕÞ þ VðϕÞ; ð2Þ
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M2
plð2 _H þ 3H2Þ ¼ −

_ϕ2

2
ð1þ 2βϕ̈Þ þ VðϕÞ; ð3Þ

where overdot is the derivative with respect to the cosmic
time t. H is the Hubble parameter. ρ̄m is the background
matter energy density. The background Euler-Lagrangian
equation for the Galileon field, ϕ is given by

ϕ̈þ 3H _ϕ − 3β _ϕð3H2 _ϕþ _H _ϕþ2Hϕ̈Þ þ Vϕ ¼ 0; ð4Þ

where subscript ϕ is the derivative with respect to the field
ϕ. Note that for the simplicity of the notation, we have
considered same ϕ as the background field. All the above-
mentioned equations can be rewritten in a system of
differential equations with respect to some dimensionless
quantities given by [35,36,47,48,69]

x ¼ ðdϕdNÞffiffiffi
6

p
Mpl

; y ¼
ffiffiffiffi
V

p
ffiffiffi
3

p
HMpl

; ϵ ¼ −6βH2

�
dϕ
dN

�
;

λ ¼ −Mpl
Vϕ

V
; with Γ ¼ V

Vϕϕ

V2
ϕ

¼ 0 ðHereÞ; ð5Þ

where N ¼ ln a is the number of e-foldings. The expres-
sions for the system of differential equations can be found
in Appendix B 1 [see the first to fourth lines in Eq. (B9)].
To solve all the differential equation, we consider initial
conditions at an initial redshift, z ¼ zi ¼ 49. The subscript,
i represents the initial value (at zi ¼ 49) corresponding to a
quantity. Among all the quantities in Eq. (5), the ϵ (or ϵi,
i.e., the initial value of it) quantifies the difference between
cubic Galileon and quintessence. So, in all our subsequent
sections, we vary only ϵi parameter keeping all the other
parameters fixed accordingly. For the details of the initial
conditions, see Appendix B 2 (see point no. 1 to 4).
The expressions for some relevant background quantities

are given by

wϕ ¼ 3x2ðϵðϵþ 8Þ þ 4Þ − 2
ffiffiffi
6

p
λxy2ϵ − 12y2ðϵþ 1Þ

3ðϵðx2ϵþ 4Þ þ 4Þðx2ðϵþ 1Þ þ y2Þ ;

Ωϕ ¼ x2ðϵþ 1Þ þ y2;

Ωm ¼ 1 −Ωϕ;

H2 ¼ H2
0

Ωð0Þ
m ð1þ zÞ3

Ωm
; ð6Þ

wherewϕ is the equation of state of the Galileon field.Ωm is

the energy density parameter of the total matter and Ωð0Þ
m is

its present value. Ωϕ is the energy density parameter of the
Galileon field.
In Fig. 1, we have plotted the equation of state (wϕ)

of the cubic Galileon field as a function of the scale
factor (a) for different ϵi. Black (solid), blue (dashed), and
red (dashed-dotted) lines are for ϵi values 0, 20 and 50

respectively. The horizontal green (solid) line is for the
corresponding value in ΛCDM model. We can see that,
irrespective of values of ϵi, wϕ ≈ −1 at early times (a ≪ 1).
At late times (a ≈ 1), the equation of state becomes
nonphantom (wϕ > −1). This should be the case as we
have chosen the thawing class of initial conditions (dis-
cussed in the Subsection B 2). The value of wϕ is the largest
for the quintessence model (ϵi ¼ 0). The value of wϕ

decrease with increasing ϵi and finally approach toward
cosmological constant behavior (wϕ ¼ −1) for very high
value of ϵi.
In Fig. 2, we have plotted the normalized Hubble

parameter (E ¼ H=H0 with H0 being the present day
(z ¼ 0 or a ¼ 1) Hubble constant.) as a function of the
scale factor (a) for different ϵi. Color codes are same as in
Fig. 1. Similar to the Fig. 1, the deviation in E from the
ΛCDM model is the highest for ϵi ¼ 0. The deviations
decrease with increasing ϵi.

III. PERTURBATION CALCULATION

In the linear perturbation theory, the scalar perturbations
can be studied independently with two scalar degrees of
freedom. We consider conformal Newtonian gauge, in
which the perturbed space-time is given by

ds2 ¼ ð1þ 2ΨÞdt2 − aðtÞ2ð1 − 2ΦÞdr⃗:dr⃗; ð7Þ

whereΦ is the gravitational potential.Ψ is an another scalar
potential. For cubic Galileon, there is no gravitational slip,
i.e., Ψ ¼ Φ in the Fourier space [47]. So, we are left with

FIG. 1. Behavior of the equation of state (wϕ) of the cubic
Galileon field as a function of the scale factor (a) for different ϵi.
We can see that, irrespective of values of ϵi, wϕ ≈ −1 at early
times (a ≪ 1). At late times (a ≈ 1), the equation of state
becomes nonphantom (wϕ > −1). The value of wϕ is the largest
for the quintessence model (ϵi ¼ 0). The value of wϕ decrease
with increasing ϵi and finally approach toward cosmological
constant behavior (wϕ ¼ −1) for very high value of ϵi.

STUDY OF CUBIC GALILEON GRAVITY USING N-BODY … PHYS. REV. D 102, 043510 (2020)

043510-3



one scalar degree of freedom which is Φ. All the relevant
perturbation equations are mentioned in Appendix B.
Similar to the background case, the perturbation

equations can also be written in a system of dynamical
differential equations (See Appendix B 1 for details), where
we have introduced two extra dimensionless variables
given by [48]

q ¼ ðδϕÞ=
�
dϕ
dN

�
; and H̃ ¼ H

H0

; ð8Þ

whereH0 ¼ H0. For the details of the initial conditions, see
Appendix B 2. The matter density contrast is given by

δm ¼ −
1

Ωm
½ð2 − x2ϵÞΦ1 þ 2ð1þ L − x2ð1þ 2ϵÞÞΦ

þ x2ð2þ 3ϵÞq1 þ x2ðð2þ 3ϵÞA − 2J þ LϵÞq�; ð9Þ

where A is given in Eq. (B11) in Appendix B 3. The
peculiar velocity for the matter is given by

ym ¼ 3Hvm ¼ 1

Ωm
½2Φ1 þ ð2 − x2ϵÞΦþ x2ϵq1

− x2ð6þ ϵð3 − AÞÞq�: ð10Þ

The comoving matter energy density contrast (from
Eqs. (9) and (10) with the definition in Eq. (B5) for matter)
is given by

Δm ¼ δm þ ym: ð11Þ

In Fig. 3, we have plotted the comoving matter energy
density contrast (Δm) as function of wave number (k) at
different redshifts (z) for different ϵi. The deviations in Δm
from ΛCDM model is the highest at present (z ¼ 0) for a

particular ϵi value. This behavior is consistent with
Fig. 1. At early matter dominated era, all the models have
similar behavior like the ΛCDM model. At late times, they
deviate sufficiently from ΛCDM behavior. The deviations
decrease with increasing redshifts. At a particular redshift,
the deviation is the highest for ϵi ¼ 0 and decreases
with increasing ϵi. This behavior is also consistent with
Figs. 1 and 2.
The linear matter power spectrum (Pm) is proportional to

square of the comoving matter energy density contrast, i.e.,
Pm ∝ Δ2

m [48,68]. So, if we fix initial power spectrum to be
Pi
m, we can rewrite

Pmðk; zÞ ¼
�
Δ2

mðk; zÞ
Δ2

mðk; ziÞ
�
Pi
mðk; ziÞ: ð12Þ

Equation (12) is valid on all scales. On small
scales, Δmðk; zÞ can be approximated by δmðk; zÞ in above
equation.
In Fig. 4, we have plotted the deviations in the linear

matter power spectrum for cubic Galileon models from
ΛCDM model as a function of wave number (k) at
z ¼ 0 for different ϵi. To plot these deviations, we have
considered the same initial matter power spectrum
(Pi

mðk; zi ¼ 49Þ) for all the models. The initial linear matter
power spectrum (Pi

mðk; zi ¼ 49Þ) is computed by the

CAMB code [70] with ΛCDM model with Ωð0Þ
m ¼ 0.3156,

Ωð0Þ
ϕ ¼ 0.6844, Ω0

b ¼ 0.0491 (baryon energy density
parameter at present), h ¼ 0.6727, σ8 ¼ 0.831 (at z ¼ 0)
and ns ¼ 0.96. These values are consistent with Planck15,
BAO, SNIa, and H0 data [71]. The deviation is the highest
for ϵi ¼ 0. The deviations decrease with increasing ϵi. This
behavior is consistent with the bottom-right panel of
the Fig. 3.

IV. N-BODY SIMULATION

N-body simulation has long been used to study the
structure formation of the Universe. With N-body simu-
lation, we may be able to study the structure formation in
deeply nonlinear regime. The generic simulation pipeline
was introduced in Zhang et al. [56]. In this pipeline, the
modification of structure formation can be classified into
three kinds in the cubic Galileon gravity, which is
(1) Modification of the initial condition for the

simulation,
(2) Modification of the hubble parameter, which affect

the expansion history,
(3) Modification of the effective gravitational constant,

which is both time and scale dependant in cubic
Galileon.

We have run two sets of simulations to see the effect of
cubic Galileon gravity. First, with the same initial condition
files generated for ΛCDM model, using Planck15 cosmol-
ogy, with ϵi ¼ 0, 20, 50. Second, the effect of cubic

FIG. 2. Behavior of the normalized Hubble parameter (E) as a
function of the scale factor (a) for different ϵi. Similar to the
Fig. 1, the deviation in E from theΛCDMmodel is the highest for
ϵi ¼ 0. The deviations decrease with increasing ϵi.
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Galileon, in the case of ϵi ¼ 0, was separated into changing
the initial condition for simulation, changing the expansion
history and changing the effective gravity. The simula-
tions are

(i) CGIC, only the initial condition of the simulation is
changed. The σ8 calculated by linear perturbation
theory is controlled to be the same as ΛCDM at
z ¼ 0. Therefore the matter power spectrum at
z ¼ 49, when we started the simulation, is different.

(ii) CGHz, only the expansion history is changed. The
change of expansion is represented in the hubble
parameter, illustrated in Fig. 2.

(iii) CGGeff, only the Poisson equation is changed. The
change of Poisson equation is expressed in
Eqs. (B4). If we rewrite the equation as ∇⃗2Φ ¼
4πGeffðk; zÞa2ρ̄mΔm, Geffðk; zÞ for ϵi ¼ 0 is illus-
trated in Fig. 5.

We would like to see how much difference will this
difference of choice contribute to the final results. We
have used the ME-GADGET simulation code [56] for all the
simulations. The boxsize is 400 Mpc=h and the number of

FIG. 4. Deviations in the linear matter power spectrum for
cubic Galileon models from ΛCDM model as a function of wave
number (k) at z ¼ 0 for different ϵi. The deviation is the highest
for ϵi ¼ 0. The deviations decrease with increasing ϵi. This
behavior is consistent with the bottom-right panel of the Fig. 3.

FIG. 3. Behavior of the comoving matter energy density contrast (Δm) as function of wave number (k) at different redshifts (z) for
different ϵi. The deviations in Δm from ΛCDM model is the highest at present (z ¼ 0) for a particular ϵi value. The deviations decrease
with increasing redshifts. At a particular redshift, the deviation is the highest for ϵi ¼ 0 and decreases with increasing ϵi.
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particles is 5123, the softening length is 25 kpc=h.
The initial condition is generated using 2LPTic [72] at
z ¼ 49, and the preinitial condition file is generated using
CCVT [73].

V. RESULT

A. Marked density

We have shown the density field slice in Fig. 6. The color
bar shows the dark matter over density, where δ ¼ ρ=ρ̄ − 1.

We have chosen the same initial condition random seed for
the simulations, so the overall large scale structure looks
quite similar between different simulations. We also notice
that the difference between different simulations are really
tiny and not distinguishable by eye. This means the overall
difference between different simulations are quite small.
Marked density field and power spectrum were used
recently [74] to highlight the signature of massive neu-
trinos. The marking of density field depends on its
“environment.” We define the mark

mðx⃗;R; p; δsÞ ¼
�

1þ δs
1þ δs þ δRðx⃗Þ

�
p
; ð13Þ

and the marked over density is mðx⃗;R; p; δsÞδ, where we
have chosen R ¼ 10 Mpc=h; p ¼ 2; δs ¼ 0.25. δRðx⃗Þ is
the over density at position x⃗ smoothed by a top hat filter
with radius R. Under this choice, the density field in low
density environment, like voids, receives higher weight and
the density field in high density environment, like clusters,
receives lower weight. The overall density field will
become more Gaussian [74]. We have shown the marked
density field in Fig. 7. We can see that, compared to Fig. 6,
the color looks more uniform and blue, which means the
fluctuation is much smaller than density field, the differ-
ence between high density regions and low density regions
is less significant. However, the comparison between
different simulations is still not very clear by eye. We
need to calculate the power spectrum to see the difference
more clearly.

FIG. 5. Geff as a function of redshift z and wave number k is
shown. At larger scale (smaller k) and lower redshift, the
deviation of effective gravity from GR is larger.

FIG. 6. The dark matter density distribution in a 2D slice of the simulation box at z ¼ 0, shows the comparison among ΛCDM and
ϵi ¼ 0, 20, 50 CG models on the left panel, and the comparison among ΛCDM, CGIC, CGHz and CGGeff simulations on the right
panel. Since we use the same initial condition random seed, the distribution looks very similar. The difference introduced by CG is also
quite small so that it is not distinguishable.
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B. Matter power spectrum

Power spectra is the measurement of the correlation of a
given density field in k space. We have used Pylians
PYTHON library [75,76] to measure the power spectrum.
The comparison between ΛCDM and ϵi ¼ 0, 20, 50 is

provided in Fig. 8. We can see that, compared to ΛCDM,
CG models is lower in power spectrum. At large scale, the
suppression is 1–2%, ϵi ¼ 0 is the lowest. This trend and
amount of suppression is very well predicted by the linear
perturbation theory in Fig. 4. This means the predictions

FIG. 7. The marked dark matter density distribution shows the comparison among the simulations at z ¼ 0. Comparing to Fig. 6, we
can see that the high density region is clearly suppressed and the fluctuations in the voids are much more clear. The overall differences
between the simulations are still not very clear.

FIG. 8. On the left panel, we show the matter power spectrum ratio of ϵi ¼ 0, 20, 50 CG models and ΛCDMmodel. The solid lines are
results from simulations, while the dashed lines show the results calculated by modified HMcode with halo model [69]. The difference is
largest at about k ¼ 0.5h=Mpc, with no more than −7%. On the right panel, we show the marked matter power spectrum ratio of ϵi ¼ 0,
20, 50 CG models and ΛCDM model. The difference is largest at about k ¼ 1h=Mpc, with at most 11%. The mark process enlarge the
difference by about a factor of two.
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from simulation and linear calculation are consistent. We
have also shown the comparison between the simulation
results in solid lines and halo model calculated results by the
modified HMCODE [69] in dashed lines. At large scale, the
solid lines and dashed lines are very consistent as expected.
At smaller scale, there is an additional suppression of power
spectrum in CG models. In simulations, a sharp drop at
around k ¼ 0.5 h=Mpc can be noticed. While in the halo
model calculations, we can see similar drop, but at smaller
scale around k ¼ 0.9 h=Mpc. This is the scale of large
clusters. We suspected that this is a unique feature for the
cubic Galileon gravity near high density clusters. The
additional suppression of power spectrum in CG models
is due to the suppression of very massive halo formation,
which is shown in Fig. 12. Therefore, the additional
suppression is physical, can be identified both in simulations
and in halomodel calculations.We also notice that the power
spectrum ratio measured from simulations are very sharp at
the bottom, which is likely due to limited number of
realizations. In order to answer whether such sharp kink
is physical or not, we have done the following discussion. If
the kink is due to cosmic variance, then a simulations with
paired initial condition and the average value between a
simulation with its paired one should remove the kink.
Paired-and-fixed simulation is a technique to get the mean
value of observable like power spectrum from only two
simulations, without a lot of realizations [77,78]. The paired
initial condition has the antiphase of the desired initial
condition, which means where there is a void in the
simulation, there is a cluster in the paired simulation.

Therefore, the average of the simulation and its paired part
can provide a good estimate of the mean value of any
observable. The paired simulated power spectrum ratio of
CG model and ΛCDM is shown in yellow line in Fig. 10,
the average value is shown in blue line. They all show the
clear kink feature. It is also possible that the kink may come
from numerical issues such as PM solver in the code. If so,
the position of the kink will be different or disappear if we
have a different box size. We show the power spectrum ratio
between the CGmodel and ΛCDMmodel with the box size
of 1 Gpc=h in the green line. Though the shape of the curve
is different due to the lower resolution, the position of the
kink remains the same. Therefore, it is also not likely to be
numerical reason in the code. However, such kink is still
hard to believe as physical and it is not at where 2-halo and
1-halo transition happens. Sowhether the kink is physical or
not remains mysterious to us. It remains as an open question
to be answered in a future study.
On the other hand, the difference is at most 7% for the

ϵi ¼ 0 case. The error bar of shear correlation in DES Y1
METACALLIBRATION catalog is no smaller than 10%, so
that the constraints on matter power spectrum is also
no better than 10%. Therefore, such 7% difference is not
easily identified in observations [79–81]. With the marked
matter density, we can see about twice the significant
difference power spectrum. For the ϵi ¼ 0 case, the differ-
ence can be as large as 11% at around k ¼ 1 h=Mpc. Even
for the ϵi ¼ 50 case, the difference is smallest, is also about
5%. By down-weighting the high density regions and
highlight the low density regions, the difference between

FIG. 9. On the left panel, we show the matter power spectrum ratio of CGIC, CGHz, CGGeff, and ΛCDM. The difference is no larger
than 4%, and the change of expansion history provides the largest difference at all scales. On the right panel, we show the marked matter
power spectrum ratio of CGIC, CGHz, CGGeff, and ΛCDM. The difference is largest in the CGGeff simulation, which is about 11%.
This means mark according to the large scale environment is very useful in distinguishing the modified gravitation constant.
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ΛCDM and CGmodels is also increased. This indicates that
the density fluctuation in the voids might be crucial to tell
ΛCDM and CG apart.
In order to investigate in detail about the reason of

such difference, we compared the power spectrum and
marked power spectrum among ΛCDM, CGIC, CGHz, and

CGGeff simulations in Fig. 9. We chose ϵi ¼ 0 for the test
of CGIC, CGHz, and CGGeff simulations. Because we
have found that the difference between ϵi ¼ 0 and ΛCDM
is the most significant, it is easier for us to measure the
difference. The effect of changing the initial condition of
the simulation is not very significant, both for the power
spectrum and the marked power spectrum. It is between
−2% at large scale to þ2% at small scale. So changing the
initial condition is not the major cause of the noticeable
difference. Changing the expansion rate will suppress the
power spectrum and marked power spectrum at all scales
by about 2%. This is well expected because over all, in the
ϵi ¼ 0 case, the universe expands faster than ΛCDM as
shown in Fig. 2, therefore the growth should be less in all
scales. The change of the effective gravitational constant,
can clearly produce the sharp drop of power spectrum at
k ¼ 0.5 h=Mpc and increase the marked power spectrum
at around k ¼ 1 h=Mpc by about 12%. Therefore, we
clearly know that the major contribution of the difference
we see in Fig. 8 is caused by the modification of Poisson
equation. Because of the special behavior of gravity at
different scale, we can see the difference of power spectrum
and more clearly, the difference of marked power spectrum.

C. Count in cell

The dark matter density was calculated in cells. We can
also compare the number of cells with difference over
density among difference models. We calculated the
density in 5123 cells from each simulation box. The ratio
was taken between the CG model simulations and the
ΛCDMmodel. The result is shown in Fig. 11. The error bar
was estimated by 1=

ffiffiffiffi
N

p
by assuming the Poisson error.

There are much more low density cells than high density

FIG. 10. The real space power spectrum ratio of ϵi ¼ 0 and
ΛCDM are shown, compared with paired simulation, average
value and larger box size. The clear sharp bottom at around k ¼
0.5h=Mpc exist in all different cases, which means we cannot rule
out the possibility that such sharp kink is numerical and not
physical.

FIG. 11. We show the ratio of number count of cells among CG models and ΛCDM. On the left panel, we show the comparison
between ϵi ¼ 0, 20, 50 CG models and ΛCDM model. The CG models have at most 1% more very low density cells (δ < −0.7) than
ΛCDM, and 1% less medium density cells (−0.7 < δ < 10), which is very significant comparing to the small error bar. In the right
panel, we show the effect of CGIC, CGHz, and CGGeff on the number counting. CGHz has less extreme density cells, while CGGeff has
more extreme cells, the effect of CGIC is less important.
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cells, so the error bar for low density cell number is too
small to be shown. We can see that the overall trend of
number of cells is similar for CG models. There are more
void (δ < −0.7) cells, less average cells (−0.7 < δ < 10)
and more cluster (δ > 10) cells, in the CG model than
ΛCDMmodel. The error bar for the number of cluster cells
is large, so the significance of the difference is not too
surprising, and the difference of number of void cells is
more significant. Both the high density cells and low
density cells can leave clear weak lensing effects. We
may be able to tell the difference by this count in cell
measurement, focusing on voids, from weak lensing
observations [82,83]. We can again see that the effect of
modifying Poisson equation is the most significant, chang-
ing the expansion history is less significant, with oppo-
site trend.

D. Halo mass function

Halo mass function was used to show the abundance of
dark matter halos with different mass. It is a good measure
of the structure formation. It is also believed that galaxies
lies in dark matter halos, therefore taking the statistics of
the halos is a good way to link simulations with observa-
tions. We use AHF halo finder [84] to identify the dark
matter halos in the simulation.
The halo mass function comparison is shown in

Fig. 12. We show the ratio of halo mass function
between CG models and ΛCDM model. In CG models,
there are less halos with 1012 h−1 M⊙ <M <
3× 1013 h−1 M⊙;M > 1014 h−1 M⊙ and more halos with

3 × 1013 h−1 M⊙ < M < 2 × 1014 h−1 M⊙. The differ-
ence is more clear with a smaller ϵi value. By studying
the halo mass function in CGIC, CGHz, and CGGeff
simulations, we can see that the major effect is coming
from changing the Poisson equation. The change of
initial condition and the expansion has very limited
effect in halo mass function. It is also understandable
why high mass halo is more sensitive to the change,
because around the high mass halos, the gravitational
field is strong. Therefore, the effect of changing the
gravity is more clear. There are less high mass halos in
CG models, in other words, the halos in CG models are
less massive than those in the ΛCDM model. We should
expect that galaxy-galaxy lensing may be able to dis-
tinguish such difference.

E. Galaxy-galaxy lensing

Gravitational lensing is the phenomenon where the light
rays from distant galaxies are distorted by intervening
gravitational potentials traced by galaxies and dark matter
halos. Assuming an isotropic distribution of both the galaxy
shape and orientation, the nonzero average tangential shear
residual, γT , can be related to the foreground potential. In
galaxy-galaxy lensing, this signal is interpreted as the
combination of γT and the geometry of the lensing system,
Σcritðzl; zsÞ ¼ c2

4πG
Ds

DlsDl
, where zl, zs denote the redshifts of

the lens and the source. Dl, Ds and Dls are the angular
diameter distances of the lens, source galaxy and the
difference between them respectively. The galaxy-galaxy

FIG. 12. We show the ratio of halo mass function between CG models and ΛCDMmodel. The error bar is given by Poisson noise. The
difference is mainly at high mass end. There are less very massive halos (> 1014 h−1 M⊙) in the CG model, which is mainly caused by
the change of gravitational constant, shown in the lower panel by CGGeff.
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lensing signal is reflecting the differential change of 2D
surface density, excess surface density (ESD),

ΔΣðRÞ ¼ Σð≤ RÞ − ΣðRÞ ¼ γtΣcritðzl; zsÞ; ð14Þ

here Σð≤ RÞ is the average surface density inside the
projected distance R and ΣðRÞ is the surface density at
the projected distance R. Therefore, the ESD provides the
link between simulations and observations. By comparing
the ESD signal measured from simulations and that
measured from observations, we may be able to tell
different models apart. And galaxy-galaxy lensing signals
have already been applied to constrain various modified
gravity models, e.g., Brouwer et al. [85], Luo et al. [86] as
well as test general relativity at galactic scale Chen et al.
[87]. We follow the calculation introduced in Zhang et al.
[51] for both the simulation and observation. In the
simulations, We cut off a cylinder near the selected halos
(10 Mpc=h), compress the cylinder in the line-of-sight
direction, stack them and calculate the ESD signal. By
stacking the most massive 1771 halos in each simulation at
z ¼ 0.1, we can measure the ESD signal for different
models. We have also measured the ESD signal at z ¼ 0.2
to take the redshift evolution into account. The evolution of
halos is an important uncertainty in the ESD signal
prediction from simulations. However, since the error
bar from observations are much larger than the difference
between models, we only show the curves measured at
z ¼ 0.1 for better illustration. In the observation, we use the

shear catalog from Luo et al. [54], which is based on the
SDSS DR7 image data [53]. For foreground galaxies,
we employ the catalog from Yang et al. [88] to identify
the lens systems. Following the galaxy-galaxy lensing
measurement procedure in Luo et al. [89], we select the
most luminous 3660 galaxy groups in the group catalog
from redshift 0.01–0.2 as the lens.
The weak lensing measurements and simulation predic-

tions of each cosmological model are shown in Fig. 13. The
mean value measured from stacked halos is given in solid
lines and the measured data points from observations are
given in black cross, together with the error bar. We can see
that the ESD signals in CG models are lower than that of
ΛCDM model. This is in agreement with what we have
found in the halo mass function, that the halos in CG
models are less massive than that in ΛCDMmodel with the
same initial condition. However, such difference is so small
that they are all within the error bar range of the obser-
vational data. The ESD difference between each model is
only about 3%–6%, which is hard to obtain in the current
data sets. In the future, we may have enough observational
data to constrain CG models.

VI. CONCLUSION

We have studied the effect of cubic Galileon gravity on
the large scale structure using N-body simulation. Though
the overall difference between cubic Galileon gravity and
ΛCDM is not very big, we still see that following difference
which might be useful for constraints in the future.

FIG. 13. We show the excess surface density (ESD) of ϵi ¼ 0, 20, 50 CG models and ΛCDM models on the left panel, comparing
to the observational data points in black cross. The ESD in CG models are lower than that in ΛCDM model, but the difference is still
within the error bar of the current observational data. On the right panel, we show the ratio of ESD signal from CG models and ΛCDM
model. The difference is at most about −6% in the ϵi ¼ 0 case. This difference might be distinguishable in the future studies.
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(1) The major difference introduced in the cubic
Galileon gravity is the expansion history and the
modification of Poisson equation.

(2) The difference in matter power spectrum is at most
7% at k¼0.5h=Mpc, while the markedmatter power
spectrum can be at most 11% different at k ¼
1.0 h=Mpc.

(3) The number of low density or void cells is signifi-
cantly different.

(4) The cubic Galileon gravity tends to produce less
massive halos than ΛCDM model.

(5) The galaxy-galaxy lensing signal difference is at
most 6%, which is not enough to be distinguished by
the current observational data.

(6) The difference is mainly caused by the time and
scale dependant effective gravitational constant.

From the simulation results, we can see that the modified
Poisson equation in the cubic Galileon gravity model clearly
introduced different structure formation fromΛCDMmodel.
However, the effect in high density region, represented by
galaxy-galaxy lensing signal and halo mass function, shows
that it is not distinguishable in the uncertainty range.Thevoid
region, instead, shows more promising future. We can tell
from the result of marked density and marked matter power
spectrum that, when we suppress the weight of high density
region and raise the weight in low density region, the
difference is enhanced by about a factor of 2. We can also
see that the number counting of void cells clearly shows the
difference due to their large number and small error bar. It has
also been reported that the void is crucial for telling the
difference of modified gravity and ΛCDM model [82,90–
93]. In future, the void should be taken more seriously for
constraining the cubic Galileon gravity models and maybe
also other modified gravity models.
In the future, we plan to study further the possibility of

using voids to test modified gravity models. By combining
the void lensing [82,83,94,95] from observation and
N-body simulation, we may be able to better constrain
cubic Galileon gravity.
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APPENDIX A: ACTION OF THE CUBIC
GALILEON MODEL

The evolutionary dynamics of the cubic Galileon field, ϕ
is described by the action given by [20,21]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ 1

2

X3
i¼1

ciLi

�
þ Sm; ðA1Þ

with L1 ¼ M3ϕ, L2 ¼ ð∇ϕÞ2 and L3 ¼ ð∇ϕÞ2
M3 □ϕ. Where

M is a mass dimensional constant c;is are dimensionless
constants. For simplicity, we take c2 ¼ −1 since this does
not change the essence of the cubic Galileon model. Also,
we define c3

M3 ¼ −β. We consider the linear term in the
action (A1) in a way that it looks like a potential given by

VðϕÞ ¼ − 1
2
c1M3ϕ. So, the action (A1) looks like S¼R

d4x
ffiffiffiffiffiffi−gp ½M

2
pl

2
R− 1

2
ð∇ϕÞ2ð1þβ□ϕÞ−VðϕÞ�þSm [35,36]

which is exactly the Eq. (1). The purpose to write down
the action in this form is that for β ¼ 0 the action reduces
to the standard quintessence action with linear potential
[10,11,64–68].

APPENDIX B: DETAILED PERTURBATION
CALCULATION

We present the detailed perturbation calculations here
(mainly which we have not discussed in the main text). The
first order Einstein equations [with the metric (7)] are given
by [96]:

∇⃗2Φ − 3a2Hð _ΦþHΦÞ ¼ 4πGa2
X
i

δρi; ðB1Þ

_ΦþHΦ ¼ 4πGa
X
i

ðρ̄i þ P̄iÞvi; ðB2Þ

Φ̈þ 4H _Φþ ð2 _H þ 3H2ÞΦ ¼ 4πG
X
i

δPi; ðB3Þ

where the summation is over matter and Galileon field. Any
quantity with bar corresponds to the background counter-
part. δρi, δPi and vi are the perturbations of the individual
component’s (i ¼ m for matter and i ¼ ϕ for Galileon)
energy density, pressure and velocity field respectively.
Combining Eqs. (B1) and (B2), we have the relativistic
Poisson equation given by

∇⃗2Φ ¼ 4πGa2
X
i

ρ̄iΔi; ðB4Þ

where Δi is given by

Δi ¼ δi þ 3Hð1þ wiÞvi; ðB5Þ
where δi is the individual component’s energy density
contrast, defined through δρi ¼ ρ̄iδi.Δi is a gauge invariant
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quantity and it is called the comoving energy density
contrast for a particular component (i.e., either for matter
or for Galileon). Here H is the conformal Hubble param-
eter (H ¼ aH).
With the space-time (7) and from the action (1), the first

order perturbed energy density, pressure and velocity for
the Galileon field ϕ become [47,48]

δρϕ ¼ ð1 − 9βH _ϕÞ _ϕ _δϕþβ _ϕ2 ∇⃗2
δϕ

a2
þ Vϕδϕ

− ð1 − 12βH _ϕÞ _ϕ2Φþ 3β _ϕ3 _Φ; ðB6Þ
δPϕ ¼ β _ϕ2δ̈ϕþ ð1þ 2βϕ̈Þ _ϕ _δϕ

− ð1þ 4βϕ̈Þ _ϕ2Φ − β _ϕ3 _Φ − Vϕδϕ; ðB7Þ

aðρ̄ϕþ P̄ϕÞvϕ ¼ β _ϕ2 _δϕþð1−3βH _ϕÞ _ϕδϕ−β _ϕ3Φ; ðB8Þ

where δϕ is the first order perturbation to the background
field, ϕ.
Now putting Eq. (B7) into Eq. (B3), we get evolution

equation for the gravitational potential Φ. And by varying
the action (1), we calculate the Euler-Lagrangian equation
order by order and in the first order perturbation we get
evolution equation for the δϕ. We are not explicitly writing
down these two equations separately because of their large
expressions. These are mentioned in the last four lines of
Eq. (B9) in Appendix B 1.

1. Autonomous system of equations

Using both background and perturbed dimensionless
quantities [mentioned in Eqs. (5) and. (8)], we form the
following autonomous system of equations (including
background and perturbation quantities together) [48]:

dx
dN

¼ f1ðx; y; ϵ; λÞ;
dy
dN

¼ f2ðx; y; ϵ; λÞ;
dϵ
dN

¼ f3ðx; y; ϵ; λÞ;
dλ
dN

¼
ffiffiffi
6

p
xλ2ð1 − ΓÞ;

dH̃
dN

¼ f4ðx; y; ϵ; λÞH̃;

dΦ
dN

¼ Φ1;

dq
dN

¼ q1;

dΦ1

dN
¼ f5ðx; y; ϵ; λ;Φ; q;Φ1; q1Þ;

dq1
dN

¼ f6ðx; y; ϵ; λ;Φ; q;Φ1; q1Þ: ðB9Þ

Note that for simplicity of the notations, in the above set of
equations, we have kept the same notations for Φ and q in
the Fourier space corresponding to the same quantities in
the real space. f1 to f6 are given in the Appendix C.

2. Initial conditions

We choose initial conditions at sufficiently large redshift,
z in early matter-dominated era. For this purpose z ¼ 49 is
large enough to be considered. At this large redshift, the
dark energy density contribution is negligible to the total
energy density.

(i) Here, we consider thawing class of initial conditions
[64–68]. In thawing class of scalar field models, due
to the large Hubble friction in the early matter-
dominated era, the scalar field is initially frozen to a
value wϕ ≈ −1. At late times, the scalar field thaws
away from its initial frozen state. The equation of
state of the scalar field becomes larger toward
nonphantom values (wϕ > −1). For cubic Galileon
field, this thawing behavior is possible if x ≪ 1 (this
can be seen through first line of Eq. (6): at x ≪ 1,

wϕ ≈
−12y2ðϵþ1Þ
3ð4ϵþ4Þy2 ¼ −1). So, we restrict ourselves to

xi ¼ 10−8. The subscript “i” refers to the corre-
sponding initial value of any quantity at initial
redshift (zi ¼ 49). Note that the evolution of the
background quantities has no significant depend-
ence on xi as long as xi ≪ 1.

(ii) The initial condition in y is chosen in such a way
that the present value of Ωϕ becomes a relevant
specific value [this can be seen through the
second line of Eq. (6)]. So, we compute yi by

solving back Ωð0Þ
ϕ ¼ 0.6844. This value is consistent

with Planck15, BAO, SNIa, and H0 data [71].
(iii) The initial slope of the potential is controlled by the

initial value of λ. For λi ≪ 1, the equation of state of
the Galileon field does not deviate much from its
initial value −1 (i.e., initially, it always stays very
close to the cosmological constant behavior). For
higher values of λi, the Galileon field sufficiently
thaws away from the cosmological constant behav-
ior accordingly. So, in our analysis, we consider
λi ¼ 0.7 throughout.

(iv) We keep ϵi to be a free parameter.
(v) The initial value of H̃ is chosen such that it becomes

1 at present.
(vi) Initially, at redshift zi ¼ 49, there is hardly any

contribution from the Galileon field to the evolution.
So, we set qi ¼ 0.

(vii) For the same reason (same to the previous point), we
put q1ji ¼ dq

dN ji ¼ 0.
(viii) One can check that, during the matter dominated era,

Φ is constant, i.e., Φ1ji ¼ dΦ
dN ji ¼ 0.

(ix) Also, during the matter dominated era, we have
Δm ∼ a [can be seen through Eq. (B5) or Eq. (11)].
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Considering this and using the Poisson equation,
Eq. (B4), we get the initial condition in Φ given by

Φi ¼ −
3

2

H2
i

k2
ai ¼ −

3

2

�
h2

3000

H̃i

ðk in h Mpc−1Þ
�
2

ai;

ðB10Þ

where h is related to the present value of Hubble parameter
given by H0 ¼ 100 h km s−1 Mpc−1.

3. Matter energy density contrast

By putting Eq. (B6) into Eq. (B1) and going to
the Fourier space, we get the matter density contrast
given in Eq. (9). The expression of quantity A in Eq. (9)
is given by

A ¼ ðd2ϕdN2Þ
ðdϕdNÞ

¼ −3Bϵ − 2Bþ 2J þ 6ϵ

2ðϵþ 1Þ ; ðB11Þ

with

B ¼ 3þ 1

H

�
dH
dN

�
¼ 2þ 1

H

�
dH
dN

�

¼ 3

2
ð1 − ωϕΩϕÞ; ðB12Þ

where L ¼ k2

3H2 ¼ 1
3
½3000h2

1
H̃
ðk in hMpc−1Þ�2 and J ¼

ffiffi
3
2

q
λ y2

x .

Similarly, by putting Eq. (B8) into Eq. (B2) and going to
the Fourier space, we get the peculiar velocity for the matter
given in Eq. (10).

4. Dark energy density contrast

The dark energy density contrast can be computed as

δde ¼
xTA

TB
; ðB13Þ

where TA and TB are given by

TA ¼ Tð1Þ
A þ Tð2Þ

A ;

TB ¼ 3ðx2ðϵþ 1Þ þ y2Þ;
with

Tð1Þ
A ¼ −3

ffiffiffi
6

p
λqy2 − 6Φxð2ϵþ 1Þ − 3Φ1xϵþ 3Lqxϵ;

Tð2Þ
A ¼ 3ð3ϵþ 2ÞðT21

A þ qT22
A Þ

x2ϵ2 þ 4ϵþ 4
;

with

T21
A ¼ q1xðx2ϵ2 þ 4ϵþ 4Þ;

T22
A ¼ 3xðx2ðϵ2 þ 5ϵþ 2Þ þ ϵ − 2Þ

− xy2ðϵð
ffiffiffi
6

p
λxþ 9Þ þ 6Þ þ 2

ffiffiffi
6

p
λy2: ðB14Þ

APPENDIX C: f 1 TO f 6 IN EQ. (B9)

f1 to f3 in Eq. (B9) are given by

f1 ¼
1

fd
½3x3ð2þ 5ϵþ ϵ2Þ − 3xð2 − ϵþ y2ð2þ 3ϵÞÞ

þ 2
ffiffiffi
6

p
y2λ −

ffiffiffi
6

p
x2y2ϵλ�; ðC1Þ

f2 ¼ −
y
2fd

½12ð−1þ y2Þð1þ ϵÞ − 6x2ð2þ 4ϵþ ϵ2Þ

þ
ffiffiffi
6

p
x3ϵ2λþ 2

ffiffiffi
6

p
xð2þ ð2þ y2ÞϵÞλ�; ðC2Þ

f3 ¼ −
ϵ

xfd
½−3xð−3þ y2Þð2þ ϵÞ þ 3x3ð2þ 3ϵþ ϵ2Þ

− 2
ffiffiffi
6

p
y2λ −

ffiffiffi
6

p
x2y2ϵλ�; ðC3Þ

with

fd ¼ 4þ 4ϵþ x2ϵ2: ðC4Þ
f4 is given by

f4 ¼−
1

2

�
1þfn

fd

�
¼−

1

2
ð1þ3wϕΩϕÞ

with

fn ¼ 3x2ðϵðϵþ8Þþ4Þ−2
ffiffiffi
6

p
λxy2ϵ−12y2ðϵþ1Þ: ðC5Þ

f5 and f6 in Eq. (B9) are given by

f5¼A−1
2 ½x2ðϵð4ϵ2ð−2ðJ−3Þx2þL−3Þþ4ϵð−4JþLþ6x2−6ÞþLx2ϵ3−48Þ−12Q2ðϵðϵðx2ð2ϵþ3Þþ4Þþ8Þþ4ÞÞ�Φ

−A−1
1 ½2ðϵþ1ÞðA4x2ϵ−2A3Þ�q−A−1

2 ½2x4ϵ2ðϵðJþ2ϵÞþ3Q2−3Þþ2x2ðϵ2ð8Jþ10ϵ−11Þþ4ðJ−6Þϵ
þ12Q2ðϵþ1Þ2−12Þþ40ðϵþ1Þ2�Φ1þA−1

2 ½2x2ðϵð2Jðϵðx2ϵ−2Þ−4Þþ3ϵðx2ðQ2ð3ϵþ4Þ−2ðϵþ1ÞÞ
þ3ϵþ20Þþ84Þþ24Þ�q1; ðC6Þ
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f6 ¼ A−1
2 ½8Jðϵð3x2ϵþ 8Þ þ 4Þ − 2x2ϵ3ðLþ ð6Q2 − 3Þx2 þ 3Þ − 8ϵ2ðLþ 3ðQ2 þ 2Þx2Þ − 8ϵðLþ 3x2 þ 9Þ�Φ

þ A−1
1 ½2A3ϵþ 4A4ðϵþ 1Þ�qþ A−1

2 ½ϵð16J þ ϵð2x2ð−6Q2 þ 7ϵþ 16Þ þ x4ϵ2 þ 28Þ þ 56Þ þ 64�Φ1

þ A−1
2 ½2Jðϵðx2ðϵðx2ϵ − 8Þ þ 4Þ − 24Þ − 16Þ − 3x4ϵ2ð−2Q2ð3ϵþ 1Þ þ ϵðϵþ 6Þ þ 2Þ

þ 6x2ðQ2ð6ϵ2 þ 8ϵþ 4Þ þ ϵð−ϵ2 þ ϵ − 8Þ − 4Þ − 12ððϵ − 4Þϵ − 2Þ�q1; ðC7Þ

with

Q ¼ y
x

J ¼
ffiffiffi
3

2

r
λ
y2

x

A1 ¼ fd

A2 ¼ f2d: ðC8Þ
Finally, A3 and A4 are given by

A3 ¼ −Q−2A−3
1 x2½Q2ð4J2ϵðϵðx6ϵ3 þ 4x4ϵðϵþ 1Þ− 4x2ð7ϵþ 6Þ þ 8Þ þ 16Þ þ 6Jðϵð−x6ϵ3ð5ϵþ 4Þ

þ x4ϵðϵððϵ− 24Þϵ− 40Þ− 16Þ þ 16x2ðϵþ 1Þð2ϵðϵþ 6Þ þ 5Þ− 8ðϵðϵþ 16Þ þ 26ÞÞ− 64Þ
þ 9ðx6ϵ3ð3ϵðϵþ 2Þ2 þ 4Þ þ x4ϵðϵðϵðϵð23ϵþ 112Þ þ 156Þ þ 80Þ þ 16Þ
− x2ðϵðϵðϵðϵð9ϵþ 94Þ þ 380Þ þ 480Þ þ 208Þ þ 32Þ− 2ϵ3ð3ϵþ 26Þ þ 96ϵþ 32ÞÞ þ 2ΓJ2ϵðx2ϵ− 2Þðϵðx2ϵþ 4Þ þ 4Þ2
þ 3Q4x2ðϵð8Jðϵðx2ðϵþ 1Þðϵðx2ϵþ 8Þ þ 4Þ− 2ð7ϵþ 12ÞÞ− 8Þ− 3x4ϵ2ð3ϵðϵþ 2Þðϵþ 3Þ þ 8Þ
− 6x2ðϵðϵðϵð15ϵþ 88Þ þ 132Þ þ 72Þ þ 16Þ þ 12ðϵðϵð26− 3ϵÞ þ 60Þ þ 36ÞÞ þ 96Þ
þ 9Q6x4ϵðϵðϵðx2ð3ϵðϵþ 2Þ þ 4Þ þ 42ϵþ 92Þ þ 64Þ þ 16Þ�; ðC9Þ

A4 ¼ Q−2ð1þ ϵÞ−1A−3
1 ½−2J2x2ϵð2Q2ðϵðx2ðϵðϵþ 2Þðx2ϵþ 8Þ þ 8Þ − 44ϵ − 80Þ − 32Þ þ Γð3ϵþ 2Þðϵðx2ϵþ 4Þ þ 4Þ2Þ

− 4JQ2ðx4ϵðϵðϵðϵððLþ 21Þϵ − 45Þ − 192Þ − 168Þ þ 6Q2ðϵðϵð13ϵþ 34Þ þ 28Þ þ 8Þ − 48Þ
þ 2x2ðϵðϵðϵð4Lðϵþ 1Þ þ 75ϵþ 390Þ þ 612Þ þ 360Þ − 24Q2ð2ϵþ 1Þðϵþ 1Þ2 þ 72Þ þ 16ðϵþ 1Þ2ððLþ 6Þϵþ 3Þ
þ 3x6ϵ3ðQ2ðϵþ 1Þðϵþ 4Þ þ ϵððϵ − 1Þϵ − 7Þ − 4ÞÞ þQ2ð9ðx2ð16Q2ð3ϵ2 þ ϵþ 2Þðϵþ 1Þ2
þ ϵðϵðϵð3ϵðϵþ 16Þ þ 284Þ þ 456Þ þ 240Þ þ 32Þ þ x6ϵ2ðQ4ð3ϵ3 − 12ϵ − 8Þ þQ2ð3ϵþ 2Þðϵðϵðϵþ 3Þ þ 8Þ þ 8Þ
− 2ðϵþ 1Þðϵðϵð2ϵþ 7Þ þ 10Þ þ 4ÞÞ − x4ð16Q4ðϵþ 1Þ2ðϵð3ϵþ 4Þ þ 2Þ
− 2Q2ðϵðϵðϵðϵð27ϵþ 184Þ þ 384Þ þ 352Þ þ 160Þ þ 32Þ þ ϵðϵðϵðϵðϵþ 7Þð3ϵþ 50Þ þ 624Þ þ 496Þ þ 192Þ þ 32Þ
þ 48ϵðϵþ 1Þ2Þ − Lðϵðx2ϵþ 4Þ þ 4Þ2ðϵðϵðx2ð−3Q2 þ 2ϵþ 6Þ þ 5Þ þ 8Þ þ 12ÞÞ�: ðC10Þ
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