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Study of cubic Galileon gravity using N-body simulations
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We use N-body simulation to study the structure formation in the cubic Galileon gravity model where
along with the usual kinetic and potential term we also have a higher derivative self-interaction term. We
find that the large scale structure provides a unique constraining power for this model. The matter power
spectrum, halo mass function, galaxy-galaxy weak lensing signal, marked density power spectrum as well
as count in cell are measured. The simulations show that there are less massive halos in the cubic Galileon
gravity model than corresponding ACDM model and the marked density power spectrum in these two
models are different by more than 10%. Furthermore, the cubic Galileon model shows significant
differences in voids compared to ACDM. The number of low density cells is far higher in the cubic
Galileon model than that in the ACDM model. Therefore, it would be interesting to put constraints on this
model using future large scale structure observations, especially in void regions.
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I. INTRODUCTION

Since the first observational evidence for late time
acceleration in our Universe was confirmed in 1998
[1-3], we are still in search for a correct theoretical model
that can explain this accelerated expansion as well as is also
consistent with hosts of different cosmological observa-
tions. Although the simplest concordance ACDM model
[4] has been successful in both these counts, but the latest
tension (which is currently at more than 4¢ [5]) in
measurements of Hubble constant H, from local observa-
tions [6-8] and from CMB by Planck [9], lands ACDM
model in serious trouble. In simple words, the constrained
value of H, parameter (Hubble constant at z = 0) for
ACDM model by Planck observation for CMB [9] is more
than 46 away from the model independent local measure-
ments by Riess et al. [6]. Recently, this has resulted in
renewed interests in models beyond ACDM.

To construct models beyond ACDM that can explain the
late time acceleration in the Universe, one can approach it
in two different ways. The first approach is to modify the
energy content in the Universe to include an unknown
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component with negative pressure called “dark energy.”
Scalar fields that are ubiquitous in standard model for
particle physics, are the most suitable candidates for dark
energy [10-12]. With sufficiently flat potentials, they can
mimic the negative pressure that can result the repulsive
gravity to start late time acceleration in the Universe.
Although this approach works at the phenomenological
level to explain late time acceleration, we are still in search
for scalar fields with suitable potentials that can arise in
standard models for particle physics or its various exten-
sions. Also ensuring that these scalar fields do not give rise
to fifth force effects that spoil the local gravity constraints,
is equally challenging.

The second approach is to modify the gravity at large
cosmological scale in such a way so that it becomes
repulsive at large scales resulting accelerated cosmological
expansion [13-16]. One such attempt was made by Dvali,
Gabadadze and Porrati (DGP) where a 4D Minkowsky
brane is located on an infinitely large extra dimension and
gravity is localized in the 4D Minkowsky brane [17]. Even
though this scenario gives rise to late time acceleration its
self-accelerating branch has a ghost [18,19]. But the
decoupling limit of the DGP model gives rise to a
Lagrangian of the form (V¢)2(¢ [18]. Despite of having
higher order term this Lagrangian gives second order
equation of motion and hence free from ghost [18-20].
This Lagrangian, in the Minkowski background, possesses
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the Galilean shift symmetry ¢ — ¢ + b, x* + ¢, where b,
and c are the constants, and hence dubbed as the “Galileon”
[20]. In the Minkowski background there exists five such
terms including the usual canonical kinetic term and a
linear term in ¢ which can possess the above mentioned
shift symmetry and give second order equation of motion
[20]. In curved background we need to include some
nonminimal terms in the Galileon Lagrangian to keep
the equation of motion second order [21]. Galileon models
can be realized as the subclasses of the more general scalar-
tensor theory known as the Horndeski theory [22] and can
give rise to late time cosmic acceleration [23-36] while
being consistent with the local astrophysical bounds by
implementing the Vainshtein mechanism [37] which sup-
presses the fifth force locally.

The detection of the event of binary neutron star merger
GW170817, using both gravitational waves (GW) [38] as
well as its electromagnetic counterpart [39,40] rules out a
large class of Horndeski theories that predicts the speed
of GW propagation different from that of speed of light
[41,42]. In Galileon models, the only higher derivative term
that survives is (V¢)?>C¢, the cubic term in the Galileon
Lagrangian which does not modify the speed of GW. This
cubic term along with the usual kinetic term and the term
linear in ¢ (linear potential) forms the cubic Galileon
model. Replacing the linear potential with a general
potential breaks the shift symmetry but still the equation
of motion is second order. This kind of models are known
as the light mass Galileon models [35,36]. The cubic
Galileon model without potential cannot give rise to a
stable late time acceleration [27]. The cubic Galileon model
has been studied extensively in the context of late time
acceleration [23,24,35,36,43] in the Universe as well as in
the context of growth of matter fluctuations in both
subhorizon and superhorizon scales [44—48]. The current
constraints and models of modified gravity is well sum-
marized in Ishak [49].

Although the background expansion and growth of
linear fluctuations of the matter density field have been
extensively studied in cubic Galileon model, a detail
analysis of structure formation in nonlinear regime using
N-body simulations is necessary to study evolution of voids
and clusters in this model and to compare them with the
prediction from ACDM model. It has been proved that
N-body simulation is essential to investigate the structure
formation and put constraints on modified gravity models
like f(R) gravity model [50] or interacting dark energy
models [51,52]. The deeply nonlinear structure formation
process disclosed by the N-body simulation provides the
accurate prediction of large scale structures, which can be
used to compare with observations like SDSS [53,54].

The nonlinear structure formation of cubic Galileon
model using N-body simulation has been studied without
potential [46,55]. However, a further study into the cubic
Galileon model with a potential is still lack of nonlinear

investigation. Using ME-GADGET code [56,57], we inves-
tigate the cubic Galileon model using N-body simulation
and study the large scale structure in this model. A
comparison between the simulation results of cubic
Galileon model and ACDM model will allow us to locate
our future focusing point when trying to get constraints
from observations. As we are expecting a large class
accurate data from different future surveys like, LSST
[58], Euclid [59,60], DESI [61], JPAS [62,63] and others,
such study is particularly relevant for any viable modified
gravity models.

The background expansion calculation is introduced in
Sec. II. The perturbation calculation is introduced in
Sec. III, including the linear perturbation equations for
each components and the linear matter power spectrum
results. In Sec. IV, we explained the simulations we have set
for comparison in the analysis. We show the results of the
simulations in Sec. V, including the density field, matter
power spectrum, marked density, halo mass function, count
in cell and galaxy-galaxy lensing. Finally, we give the
conclusion in Sec. VI. In summary, we have found that
voids are more important than we expected and it might be
the focus for our future work.

II. BACKGROUND COSMOLOGY

To study the background and perturbation history of the
Universe, we consider cubic Galileon model. The evolu-
tionary dynamics of the cubic Galileon field, ¢ is described
by the action given by [35,36]

2
5= / d“x\/:ﬁ{%R S (V01 +p04) - V(@)

+ S, (1)

where M, is the reduced Planck mass. g is the determinant
of the metric describing the Universe. R is the correspond-
ing Ricci scalar. S, is the action for the total matter
counterpart. The action (1) is a subclass of a more general
action namely the Horndeski action [22]. V(¢) is the
potential of the Galileon field. Here, we consider only
linear potential which is the case for the original Galileon
model. f is a cubic Galileon parameter (for more details
see the Appendix A). For f = 0 the action (1) reduces to
the standard quintessence action with linear potential
[10,11,64-68].

For the background cosmology, we consider flat FRW
metric given by ds* = —dr* + a*(t)d7.d¥, where 1 is the
cosmic time, 7 is the comoving coordinate vector and a is
the cosmic scale factor. Varying the action (1) with respect
to the metric, the background Einstein equations become
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M2(2H + 3H?) = —%2(1 +260) +V(p),  (3)

where overdot is the derivative with respect to the cosmic
time #. H is the Hubble parameter. p,, is the background
matter energy density. The background Euler-Lagrangian
equation for the Galileon field, ¢ is given by

b +3Hp —3pp(3H* G+ HP+2HP) +V, =0, (4)

where subscript ¢ is the derivative with respect to the field
¢. Note that for the simplicity of the notation, we have
considered same ¢ as the background field. All the above-
mentioned equations can be rewritten in a system of
differential equations with respect to some dimensionless
quantities given by [35,36,47,48,69]

dg
o % d
— (dN) , y:L’ €= —6ﬂH2<¢>,
VM, V3HM,, dN
V p . V{) p
A= -Mp174, with T = vﬁ =0 (Here), (5)

¢

where N = In a is the number of e-foldings. The expres-
sions for the system of differential equations can be found
in Appendix B 1 [see the first to fourth lines in Eq. (B9)].
To solve all the differential equation, we consider initial
conditions at an initial redshift, z = z; = 49. The subscript,
i represents the initial value (at z; = 49) corresponding to a
quantity. Among all the quantities in Eq. (5), the € (or €,
i.e., the initial value of it) quantifies the difference between
cubic Galileon and quintessence. So, in all our subsequent
sections, we vary only ¢; parameter keeping all the other
parameters fixed accordingly. For the details of the initial
conditions, see Appendix B 2 (see point no. 1 to 4).

The expressions for some relevant background quantities
are given by

3x%(e(e + 8) +4) — 2¢/64xy%e — 12y*(e + 1)
3(e(x’e +4) +4)(x*(e+ 1) +y?) ’
Qy = 2(e+1) +y?,

W¢:

Q,=1-9Q,
(0) 3
Q' (1+
H? = Hg—( 2 , (6)

m

where w, is the equation of state of the Galileon field. Q,, is

the energy density parameter of the total matter and Q,(,g Vis
its present value. Q is the energy density parameter of the
Galileon field.

In Fig. I, we have plotted the equation of state (w,)
of the cubic Galileon field as a function of the scale
factor (a) for different ¢;. Black (solid), blue (dashed), and
red (dashed-dotted) lines are for ¢; values 0, 20 and 50
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FIG. 1. Behavior of the equation of state (wy) of the cubic

Galileon field as a function of the scale factor (@) for different ¢;.
We can see that, irrespective of values of ¢, wg = —1 at early
times (a < 1). At late times (a = 1), the equation of state
becomes nonphantom (w4 > —1). The value of wy is the largest
for the quintessence model (¢; = 0). The value of wy decrease
with increasing ¢; and finally approach toward cosmological
constant behavior (w, = —1) for very high value of ;.

respectively. The horizontal green (solid) line is for the
corresponding value in ACDM model. We can see that,
irrespective of values of ¢;, w, =~ —1 at early times (a < 1).
At late times (a = 1), the equation of state becomes
nonphantom (w, > —1). This should be the case as we
have chosen the thawing class of initial conditions (dis-
cussed in the Subsection B 2). The value of w, is the largest
for the quintessence model (¢; =0). The value of wy
decrease with increasing ¢; and finally approach toward
cosmological constant behavior (w, = —1) for very high
value of ¢;.

In Fig. 2, we have plotted the normalized Hubble
parameter (E = H/H, with H, being the present day
(z=0 or a = 1) Hubble constant.) as a function of the
scale factor (a) for different ¢;. Color codes are same as in
Fig. 1. Similar to the Fig. 1, the deviation in E from the
ACDM model is the highest for ¢; = 0. The deviations
decrease with increasing ¢;.

III. PERTURBATION CALCULATION

In the linear perturbation theory, the scalar perturbations
can be studied independently with two scalar degrees of
freedom. We consider conformal Newtonian gauge, in
which the perturbed space-time is given by

ds* = (1 +2%¥)dt* — a(1)*(1 — 2®)dr.dr, (7)

where @ is the gravitational potential. ¥ is an another scalar
potential. For cubic Galileon, there is no gravitational slip,
i.e., ¥ = @ in the Fourier space [47]. So, we are left with
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FIG. 2. Behavior of the normalized Hubble parameter (E) as a
function of the scale factor (a) for different ¢;. Similar to the
Fig. 1, the deviation in E from the ACDM model is the highest for
€; = 0. The deviations decrease with increasing ¢;.

one scalar degree of freedom which is ®. All the relevant
perturbation equations are mentioned in Appendix B.

Similar to the background case, the perturbation
equations can also be written in a system of dynamical
differential equations (See Appendix B 1 for details), where
we have introduced two extra dimensionless variables
given by [48]

=on/(G) ma H=gr. ®

where H, = H|y. For the details of the initial conditions, see
Appendix B 2. The matter density contrast is given by

1

O = [(2=x%)®; +2(1 + L —x*(1 +2¢))P

m

+x2(2+3e)q, +x*((2+3e)A—2J + Le)g], (9)

where A is given in Eq. (B11) in Appendix B 3. The
peculiar velocity for the matter is given by

1
Q,
—x2(6+€(3—A))q]. (10)

Ym = 3Hv,, = — 2@, + (2 — x?¢)® + x%eq,

The comoving matter energy density contrast (from
Egs. (9) and (10) with the definition in Eq. (B5) for matter)
is given by

Am:5m+ym‘ (11)

In Fig. 3, we have plotted the comoving matter energy
density contrast (A,,) as function of wave number (k) at
different redshifts (z) for different ¢;. The deviations in A,
from ACDM model is the highest at present (z = 0) for a

particular €; value. This behavior is consistent with
Fig. 1. At early matter dominated era, all the models have
similar behavior like the ACDM model. At late times, they
deviate sufficiently from ACDM behavior. The deviations
decrease with increasing redshifts. At a particular redshift,
the deviation is the highest for ¢; =0 and decreases
with increasing ¢;. This behavior is also consistent with
Figs. 1 and 2.

The linear matter power spectrum (P,,) is proportional to
square of the comoving matter energy density contrast, i.e.,
P,, « A2, [48,68]. So, if we fix initial power spectrum to be
Pi,, we can rewrite

A2 (k,
)= 3565

Equation (12) is valid on all scales. On small
scales, A,,(k, z) can be approximated by §,,(k, z) in above
equation.

In Fig. 4, we have plotted the deviations in the linear
matter power spectrum for cubic Galileon models from
ACDM model as a function of wave number (k) at
z = 0 for different ¢;. To plot these deviations, we have
considered the same initial matter power spectrum
(PL,(k, z; = 49)) for all the models. The initial linear matter
power spectrum (P! (k,z; =49)) is computed by the
CAMB code [70] with ACDM model with QY =0.3156,
Q((po) = 0.6844, Qg = 0.0491 (baryon energy density
parameter at present), 1 = 0.6727, og = 0.831 (at z = 0)
and n, = 0.96. These values are consistent with Planck15,
BAO, SNIa, and HO data [71]. The deviation is the highest
for ¢; = 0. The deviations decrease with increasing ¢;. This
behavior is consistent with the bottom-right panel of
the Fig. 3.

}P{n(k, Zi)- (12)

IV. N-BODY SIMULATION

N-body simulation has long been used to study the
structure formation of the Universe. With N-body simu-
lation, we may be able to study the structure formation in
deeply nonlinear regime. The generic simulation pipeline
was introduced in Zhang et al. [56]. In this pipeline, the
modification of structure formation can be classified into
three kinds in the cubic Galileon gravity, which is

(1) Modification of the initial condition for the
simulation,

(2) Modification of the hubble parameter, which affect
the expansion history,

(3) Modification of the effective gravitational constant,
which is both time and scale dependant in cubic
Galileon.

We have run two sets of simulations to see the effect of
cubic Galileon gravity. First, with the same initial condition
files generated for ACDM model, using Planck15 cosmol-
ogy, with €; =0, 20, 50. Second, the effect of cubic
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Behavior of the comoving matter energy density contrast (A,,) as function of wave number (k) at different redshifts (z) for

different €;. The deviations in A,, from ACDM model is the highest at present (z = 0) for a particular ¢; value. The deviations decrease
with increasing redshifts. At a particular redshift, the deviation is the highest for ¢; = 0 and decreases with increasing ¢;.
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FIG. 4. Deviations in the linear matter power spectrum for
cubic Galileon models from ACDM model as a function of wave
number (k) at z = 0O for different ¢;. The deviation is the highest
for ¢; = 0. The deviations decrease with increasing e;. This
behavior is consistent with the bottom-right panel of the Fig. 3.

Galileon, in the case of €; = 0, was separated into changing
the initial condition for simulation, changing the expansion
history and changing the effective gravity. The simula-
tions are
(i) CGIC, only the initial condition of the simulation is
changed. The og calculated by linear perturbation
theory is controlled to be the same as ACDM at
z = 0. Therefore the matter power spectrum at
z = 49, when we started the simulation, is different.
(ii) CGHz, only the expansion history is changed. The
change of expansion is represented in the hubble
parameter, illustrated in Fig. 2.
(iii) CGGeff, only the Poisson equation is changed. The
change of Poisson equation is expressed in
Eqgs. (B4). If we rewrite the equation as V'@ =
4G (k, 2)a@%prmAnm, Ger(k, z) for €; =0 is illus-
trated in Fig. 5.
We would like to see how much difference will this
difference of choice contribute to the final results. We
have used the ME-GADGET simulation code [56] for all the
simulations. The boxsize is 400 M pc/h and the number of
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FIG. 5. G as a function of redshift z and wave number & is
shown. At larger scale (smaller k) and lower redshift, the
deviation of effective gravity from GR is larger.

particles is 5123, the softening length is 25 kpc/h.
The initial condition is generated using 2LPTic [72] at
z =49, and the preinitial condition file is generated using
CCVT [73].

V. RESULT

A. Marked density

We have shown the density field slice in Fig. 6. The color
bar shows the dark matter over density, where 6 = p/p — 1.

ril2

r0.6

log(6+1)

-0.6

1 ] 2 3 4
x(100h~IMpc

1 ] 2
x(100h~1Mpc)

We have chosen the same initial condition random seed for
the simulations, so the overall large scale structure looks
quite similar between different simulations. We also notice
that the difference between different simulations are really
tiny and not distinguishable by eye. This means the overall
difference between different simulations are quite small.
Marked density field and power spectrum were used
recently [74] to highlight the signature of massive neu-
trinos. The marking of density field depends on its
“environment.” We define the mark

. 1+68, \»
'R o) =|———— 1
m(X;R, p,5y) <1+5s+51e(3_5)) , (13)

and the marked over density is m(X; R, p, &,)5, where we
have chosen R =10 Mpc/h,p = 2,5, = 0.25. 5x(X) is
the over density at position X smoothed by a top hat filter
with radius R. Under this choice, the density field in low
density environment, like voids, receives higher weight and
the density field in high density environment, like clusters,
receives lower weight. The overall density field will
become more Gaussian [74]. We have shown the marked
density field in Fig. 7. We can see that, compared to Fig. 6,
the color looks more uniform and blue, which means the
fluctuation is much smaller than density field, the differ-
ence between high density regions and low density regions
is less significant. However, the comparison between
different simulations is still not very clear by eye. We
need to calculate the power spectrum to see the difference
more clearly.

rl2

r0.6

log(6+1)

—-0.6

1 ] 2 3 40
x(100h~Mpc

1 2 3
x(100h~1Mpc)

FIG. 6. The dark matter density distribution in a 2D slice of the simulation box at z = 0, shows the comparison among ACDM and
€; =0, 20, 50 CG models on the left panel, and the comparison among ACDM, CGIC, CGHz and CGGeff simulations on the right
panel. Since we use the same initial condition random seed, the distribution looks very similar. The difference introduced by CG is also

quite small so that it is not distinguishable.
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FIG. 7. The marked dark matter density distribution shows the comparison among the simulations at z = 0. Comparing to Fig. 6, we
can see that the high density region is clearly suppressed and the fluctuations in the voids are much more clear. The overall differences

between the simulations are still not very clear.

B. Matter power spectrum

Power spectra is the measurement of the correlation of a
given density field in k space. We have used Pylians
PYTHON library [75,76] to measure the power spectrum.
The comparison between ACDM and ¢; = 0, 20, 50 is

provided in Fig. 8. We can see that, compared to ACDM,
CG models is lower in power spectrum. At large scale, the
suppression is 1-2%, €; = 0 is the lowest. This trend and
amount of suppression is very well predicted by the linear
perturbation theory in Fig. 4. This means the predictions

1.00 112
—— ACDM
—— =0
1.10
g =20
— ;=50

1.081

o
©
~

Iy
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=N

0.96

Pk/Pkncom
PK/Pkncom

=
o
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1.024

oT~S—

-
— ;=50
0.92 T T 0.98 T T

10t 10° 107t 10°

k/hMpc—1 k/hMpc=1t

FIG. 8. On the left panel, we show the matter power spectrum ratio of ¢; = 0, 20, 50 CG models and ACDM model. The solid lines are
results from simulations, while the dashed lines show the results calculated by modified HMcode with halo model [69]. The difference is
largest at about k = 0.5h/M pc, with no more than —7%. On the right panel, we show the marked matter power spectrum ratio of ¢; = 0,
20, 50 CG models and ACDM model. The difference is largest at about k = 1h/M pc, with at most 11%. The mark process enlarge the
difference by about a factor of two.
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from simulation and linear calculation are consistent. We
have also shown the comparison between the simulation
results in solid lines and halo model calculated results by the
modified HMCODE [69] in dashed lines. At large scale, the
solid lines and dashed lines are very consistent as expected.
At smaller scale, there is an additional suppression of power
spectrum in CG models. In simulations, a sharp drop at
around k = 0.5 /M pc can be noticed. While in the halo
model calculations, we can see similar drop, but at smaller
scale around k = 0.9 h/Mpc. This is the scale of large
clusters. We suspected that this is a unique feature for the
cubic Galileon gravity near high density clusters. The
additional suppression of power spectrum in CG models
is due to the suppression of very massive halo formation,
which is shown in Fig. 12. Therefore, the additional
suppression is physical, can be identified both in simulations
and in halo model calculations. We also notice that the power
spectrum ratio measured from simulations are very sharp at
the bottom, which is likely due to limited number of
realizations. In order to answer whether such sharp kink
is physical or not, we have done the following discussion. If
the kink is due to cosmic variance, then a simulations with
paired initial condition and the average value between a
simulation with its paired one should remove the kink.
Paired-and-fixed simulation is a technique to get the mean
value of observable like power spectrum from only two
simulations, without a lot of realizations [77,78]. The paired
initial condition has the antiphase of the desired initial
condition, which means where there is a void in the
simulation, there is a cluster in the paired simulation.
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Therefore, the average of the simulation and its paired part
can provide a good estimate of the mean value of any
observable. The paired simulated power spectrum ratio of
CG model and ACDM is shown in yellow line in Fig. 10,
the average value is shown in blue line. They all show the
clear kink feature. It is also possible that the kink may come
from numerical issues such as PM solver in the code. If so,
the position of the kink will be different or disappear if we
have a different box size. We show the power spectrum ratio
between the CG model and ACDM model with the box size
of 1 Gpc/hin the green line. Though the shape of the curve
is different due to the lower resolution, the position of the
kink remains the same. Therefore, it is also not likely to be
numerical reason in the code. However, such kink is still
hard to believe as physical and it is not at where 2-halo and
1-halo transition happens. So whether the kink is physical or
not remains mysterious to us. It remains as an open question
to be answered in a future study.

On the other hand, the difference is at most 7% for the
€; = 0 case. The error bar of shear correlation in DES Y1
METACALLIBRATION catalog is no smaller than 10%, so
that the constraints on matter power spectrum is also
no better than 10%. Therefore, such 7% difference is not
easily identified in observations [79-81]. With the marked
matter density, we can see about twice the significant
difference power spectrum. For the e; = 0 case, the differ-
ence can be as large as 11% at around k = 1 h/Mpc. Even
for the €¢; = 50 case, the difference is smallest, is also about
5%. By down-weighting the high density regions and
highlight the low density regions, the difference between
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FIG. 9. On the left panel, we show the matter power spectrum ratio of CGIC, CGHz, CGGeff, and ACDM. The difference is no larger
than 4%, and the change of expansion history provides the largest difference at all scales. On the right panel, we show the marked matter
power spectrum ratio of CGIC, CGHz, CGGeff, and ACDM. The difference is largest in the CGGeff simulation, which is about 11%.
This means mark according to the large scale environment is very useful in distinguishing the modified gravitation constant.
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FIG. 10. The real space power spectrum ratio of ¢; = 0 and
ACDM are shown, compared with paired simulation, average
value and larger box size. The clear sharp bottom at around k =
0.5h/M pc exist in all different cases, which means we cannot rule
out the possibility that such sharp kink is numerical and not
physical.

ACDM and CG models is also increased. This indicates that
the density fluctuation in the voids might be crucial to tell
ACDM and CG apart.

In order to investigate in detail about the reason of
such difference, we compared the power spectrum and
marked power spectrum among ACDM, CGIC, CGHz, and
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FIG. 11.

CGGeff simulations in Fig. 9. We chose ¢; = 0 for the test
of CGIC, CGHz, and CGGeff simulations. Because we
have found that the difference between ¢; = 0 and ACDM
is the most significant, it is easier for us to measure the
difference. The effect of changing the initial condition of
the simulation is not very significant, both for the power
spectrum and the marked power spectrum. It is between
—2% at large scale to +2% at small scale. So changing the
initial condition is not the major cause of the noticeable
difference. Changing the expansion rate will suppress the
power spectrum and marked power spectrum at all scales
by about 2%. This is well expected because over all, in the
€; = 0 case, the universe expands faster than ACDM as
shown in Fig. 2, therefore the growth should be less in all
scales. The change of the effective gravitational constant,
can clearly produce the sharp drop of power spectrum at
k = 0.5 h/Mpc and increase the marked power spectrum
at around k=1 h/Mpc by about 12%. Therefore, we
clearly know that the major contribution of the difference
we see in Fig. 8 is caused by the modification of Poisson
equation. Because of the special behavior of gravity at
different scale, we can see the difference of power spectrum
and more clearly, the difference of marked power spectrum.

C. Count in cell

The dark matter density was calculated in cells. We can
also compare the number of cells with difference over
density among difference models. We calculated the
density in 5123 cells from each simulation box. The ratio
was taken between the CG model simulations and the
ACDM model. The result is shown in Fig. 11. The error bar

was estimated by 1/v/N by assuming the Poisson error.
There are much more low density cells than high density
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We show the ratio of number count of cells among CG models and ACDM. On the left panel, we show the comparison

between €; = 0, 20, 50 CG models and ACDM model. The CG models have at most 1% more very low density cells (6 < —0.7) than
ACDM, and 1% less medium density cells (—0.7 < é < 10), which is very significant comparing to the small error bar. In the right
panel, we show the effect of CGIC, CGHz, and CGGeft on the numb