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Recently the global variation of the Planck mass in the general relativistic Einstein-Hilbert action was
proposed as a self-tuning mechanism of the cosmological constant preventing vacuum energy from freely
gravitating. We show that this global mechanism emerges for generic local scalar-tensor theories with
additional coupling of the scalar field to the field strength of a three-form gauge field that turns the scalar
field constant on the domain of the action. Evaluation of the resulting integral constraint equation over the
observable Universe yields a self-consistent framework with general relativistic field equations and
arbitrary radiatively stable residual cosmological constant. We argue that the expectation value for this
residual is in good agreement with the magnitude of the observed cosmic acceleration.
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I. INTRODUCTION

Unravelling the underlying nature of the cosmological
constant in Einstein’s theory of general relativity (GR)
remains a persistent enigma to modern physics. It is
generally anticipated to represent the vacuum energy
contribution to gravitational dynamics, which should be
of adequate magnitude to account for the observed late-
time accelerated expansion of our Universe [1,2]. Quantum
theoretical expectations for this contribution, however,
exceed the measurement by ≳50 orders of magnitude
[3,4]. While this may imply a missing prescription for
the correct computation of standard vacuum energy con-
tributions, it has also motivated the conjecture that vacuum
energy may be prevented from gravitating to full extent by
an undetermined mechanism [5–13] and that cosmic
acceleration could instead be due to a dark energy field
permeating the cosmos or a breakdown of GR at large
scales [14–16]. The dynamics of dark energy however must
be fine-tuned to closely mimic a cosmological constant
[17], and the confirmed equality between the speeds of
gravity and light [18] combined with observations of the
large-scale structure poses hard challenges to the concept of
cosmic self-acceleration from a genuine modification of
gravity [19,20].
Recently, in Ref. [13] the cosmological constant problem

was reexamined under the aspect of an additional variation
of the Einstein-Hilbert action of GR with respect to the
Planck mass, performed along with the metric variation. An
interpretation of this approach is offered by the treatment of
the Planck mass in the action as a global Lagrange

multiplier that imposes GR dynamics on the metric
prescribing the spacetime for the matter fields. The result-
ing additional constraint equation prevents vacuum energy
from fully gravitating. Moreover, the evaluation of this
constraint under consideration of the evolution of the
inhomogeneous cosmic matter distribution was shown to
self-consistently reproduce the observed cosmological
constant with an expected value for its current energy
density parameter of ΩΛ ¼ 0.704 [13], in good agreement
with current measurement [17]. Besides the nongravitating
vacuum, the additional Planck mass variation therefore also
explains the rise of the late-time accelerated cosmic
expansion and the coincidence of ΩΛ with the current
energy density of matter Ωm, also known as the Why now?
problem. In this paper, we develop a local theory from
which the global self-tuning mechanism obtained from
the Planck mass variation naturally emerges. To achieve
this, we consider general scalar-tensor theories arising as
the effective limit of a more fundamental theory with the
addition of a topological sector to the action, in which
the scalar field couples to the field strength of a three-
form gauge field. The resulting additional field equations
enforce constancy of the scalar field on the domain of the
action, and we discuss how this reproduces the global
mechanism.
The paper is organized as follows. Section II briefly

reviews the global self-tuning mechanism from the global
Planck mass variation of Ref. [13]. In Sec. III a local theory
is developed based on generic scalar-tensor theories with
additional coupling of the scalar field to the field strength of
a three-form gauge field, from which the global mechanism
emerges. Section IV discusses likelihood considerations for
the value of the residual cosmological constant produced by
the self-tuning mechanism. Finally, we conclude in Sec. V
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and discuss some general aspects of the mechanism in
Appendix A and graviton loops in Appendix B.

II. THE SELF-TUNING OF Λ FROM A GLOBAL
PLANCK MASS VARIATION

Recently, the variation of the general relativistic (GR)
Einstein-Hilbert action with respect to the quadratic Planck
mass in addition to the usual metric variation has been
proposed as a self-tuning mechanism for the cosmological
constant [13]. The approach allows for an interpretation of
the Planck mass as a global Lagrange multiplier that
imposes GR dynamics for the metric describing the geo-
desics of the matter fields of a given matter Lagrangian.
The two variations result in the usual Einstein field
equations and an additional integral constraint equation
that acts to self-tune the cosmological constant and pre-
vents vacuum energy from freely gravitating. We shall
briefly review this global mechanism before discussing in
Sec. III how it can emerge in generic local scalar-tensor
theories with additional coupling of the scalar field to the
field strength of a three-form gauge field.
Consider the Einstein-Hilbert action of GR,

S ¼ M2
P

2

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ
Z
M

d4x
ffiffiffiffiffiffi
−g

p
Lðgμν;ΨmÞ þ b:t:; ð1Þ

whereM denotes the cosmic manifold, Λ is a free classical
cosmological constant and b.t. refers to the Gibbons-
Hawking-York boundary term. Variation of the action (1)
with respect to the metric gμν yields the Einstein field
equations,

Gμν þ Λgμν ¼ M−2
P Tμν; ð2Þ

where Tμν ≡ −2½δð ffiffiffiffiffiffi−gp
LmÞ=δgμν�= ffiffiffiffiffiffi−gp

denotes the
energy-momentum tensor. Following Ref. [13], in addition
to the metric variation, we shall now perform a variation of
the action (1) with respect to the quadratic Planck massM2

P,
where boundary conditions may be adapted as in Ref. [21]
(also see Ref. [22]), and we will henceforth neglect the
boundary term. To illustrate the cancellation of the vacuum
and bare cosmological constants, Λvac and ΛB, or rather
their absorption in the self-tuning of the classical Λ, we
shall first assume that they are independent of M2

P. Hence,
we assume the simple scaling of the vacuum contribution as
M2

PΛvac ∝ M2
PM

2 for some renormalization mass M (e.g.,
the leading-order behavior found in Ref. [23]). We now
separate out the vacuum and bare components from the
matter Lagrangian density, Lm ¼ L̄m −M2

PðΛvac þ ΛBÞ,
and vary the action (1) with respect to gμν and M2

P. This
gives the Einstein field equations,

Gμν þ ðΛþ Λvac þ ΛBÞgμν ¼ M−2
P τμν; ð3Þ

where τμν is specified by L̄m and represents the stress-
energy tensor of the usual matter components only. The
variation with respect to M2

P yields the constraint,

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R
2
− ðΛþ Λvac þ ΛBÞ

�
¼ 0: ð4Þ

Using the trace of Eq. (3) this implies that Λþ Λvacþ
ΛB ¼ M2

P
2
hτi, where hτi≡ R

M d4x
ffiffiffiffiffiffi−gp

τ=
R
M d4x

ffiffiffiffiffiffi−gp
. The

constraint only needs to apply for a given choice, or
measurement, of the Planck mass; hence, Λ remains not
explicitly dependent on M2

P (see Sec. III). The Einstein
equations may therefore be written as

Gμν þ
M−2

P

2
hτigμν ¼ M−2

P τμν; ð5Þ

and, hence, the vacuum and bare contributions to the
cosmological constant do not freely gravitate. For simplic-
ity, in the following, we will restrict our discussion to the
vacuum term only, but we will address details on the
canceling of ΛB in Appendix A.
The result in Eq. (5) is reminiscent of vacuum energy

sequestering [10], but the cancellation of the problematic
contributions occurs here in a different fashion. Rather than
a cancellation between the left- and right-hand sides of the
Einstein equations as in the sequestering framework, the
value of Λ is set here by the constraint equation (4) such
that the sum of the cosmological constants must match the
quantity M−2

P hτi=2, the residual, or effective, cosmological
constant. Interestingly, the same fraction was found to fix
the cosmological constant in Ref. [24] from the consid-
eration of a boundary condition on the causal region around
an observer.
So far, we have only considered the simple scaling

M2
PΛvac ∝ M2

PM
2. However, it is not granted that the

vacuum contribution should scale as such. More generally,
we may assume a power-law relation M2

PΛvac ¼ M2α
P Λ̄vac,

where the bar denotes the Planck mass independent part. To
cancel this term, we also need a classical counterterm
M2α

P Λ̄α. With the same procedure as for Eq. (5) this yields
the field equations [13],

Gμν þ
1

2 − α

�
ð1 − αÞΛþM−2

P

2
hτi

�
gμν ¼ M−2

P τμν; ð6Þ

where Λ remains a free classical cosmological constant that
is radiatively stable and determined by measurement. For
α ¼ 1, Eq. (6) reduces to Eq. (5). For α ¼ 0, one recovers
the dynamical equations of the local sequestering mecha-
nism [11] with Λtot ¼ 1

4
M−2

P hτi þ ΔΛ, where ΔΛ ¼ Λ=2.
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We can further relax the power-law assumption and
consider a series expansion of Λvac in M2

P, for instance
introduced by graviton loops [25]. We discuss this scenario
in Appendix B. Similarly, if independent of Planck mass,
quantum corrections with higher-derivative terms in Eq. (1)
do not contribute to Eq. (4) or the field equations (also see
Ref. [25]). If dependent on M2

P, they are canceled by the
classical counterterm. In the scalar-tensor representation
discussed in Sec. III, a coupled Gauss-Bonnet invariant
could also be recast as a Horndeski theory, for which the
self-tuning is shown to work in Sec. III B. Importantly, we
can even allow for arbitrary functions of the quadratic
Planck mass for both ΛvacðM2

PÞ and ΛBðM2
PÞ. What is

needed for the cancellation is the addition of a classical
counterterm which is taken to be a free function of M2

P.
This recovers Eq. (6) with α ¼ ∂ lnΛvac=∂ lnM2

P (see
Appendix A).
One may wonder about the fundamental nature giving

rise to a global Planck mass variation of the Einstein-
Hilbert action. It is worth noting the similarity of this
variation to a scalar-tensor theory in Jordan-Brans-Dicke
representation with constant scalar field across the observ-
able universe, and we shall explore this connection in more
detail in Sec. III. A transformation into Einstein frame then
changes the variation from one inM2

P to one with respect to
an effective Λ and a coupling in the matter sector. The
approach therefore shares similarities with the proposals of
Refs. [5–9], but it is also different as, for instance, it does
not impose the constant four-volume of unimodular gravity.
We can exploit the similarities between these frameworks
to address the question of how a the global Planck mass
variation may arise from a local theory of gravity. For
example, the scalar field can become a spacetime constant
when a δ-function is generated through appropriate boun-
dary conditions on an additional vector field [6,8,9].
Alternatively, it can be turned constant through coupling
it to an additional squared four-form field strength as can
arise in supergravity [7–9,26–28]. This approach has been
adopted as well in the local sequestering framework [11].
One may also envisage a type II multiverse scenario, where
different observable patches may be equipped with differ-
ent Planck masses, which could be accompanied with a
variational principle and formulated in terms of a partition
function (cf. [8,9]).
In the following we will focus on the emergence of the

global mechanism from generic scalar-tensor theories
endowed with an additional coupling of the scalar field
to the field strength of a three-form gauge field.

III. A LOCAL THEORY

Having reviewed the self-tuning mechanism of the
cosmological constant from the global Planck mass varia-
tion of the GR Einstein-Hilbert action in Sec. II, we shall
now explore one of the candidates for a local theory that

gives rise to this global mechanism. We will put our focus
on scalar-tensor theories. In Sec. III A we show how a
simple scalar-tensor model with additional coupling of the
scalar field to the field strength of a three-form gauge field
will enforce constancy of the scalar field over the domain of
the Einstein-Hilbert action and reproduce the global self-
tuning mechanism. We then show in Sec. III B how this
approach applies to the most general classes of scalar-
tensor theories. Finally, in Sec. III C we will discuss the
correspondence between the local and global mechanisms
in more detail.

A. Self-tuning mechanism for a simple
scalar-tensor theory

Let us first consider the simple scalar-tensor action,

S ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
1

2
φR − VðφÞ þ Lmðgμν;ΨmÞ

�
; ð7Þ

which shall represent the effective limit of a more funda-
mental theory, for instance, obtained from the compacti-
fication of a higher-dimensional theory of gravity. Note that
for now we do not include a kinetic term. Hence, Eq. (7)
corresponds to a Jordan-Brans-Dicke action with Brans-
Dicke parameter ω ¼ 0, as is the case in fðRÞ gravity. GR
is recovered in the limit of φ → M2

P. We again perform the
separation Lm ¼ L̄m −M2

PΛvacðφÞ, where ΛvacðφÞ shall be
an arbitrary function of φ. Recall that the bare contribution
ΛB is discussed in Appendix A.
In addition to the scalar-tensor action (7), we shall

introduce the topological contribution,

SA ¼ 1

4!

Z
M

d4x ϵμνρσσðφÞFμνρσ; ð8Þ

where Fμνρσ ¼ ∂ ½μAνρσ� is the field strength of a three-form
gauge field Aνρσ coupled to the scalar field φ through a
function σðφÞ. Note the similarity to the local sequestering
framework [11] (also see Refs. [7–9,26–28]). In contrast to
the sequestering mechanism, however, we only have one
scalar field and one topological sector in Eqs. (7) and (8)
since the potential VðφÞ is a function of the gravitational
coupling φ. It is worth noting that SA is a term that is
common to supergravity models [7–9,26–28]. The role it
plays here is to fix the dynamics of the scalar field φ to take
the constant value M2

P across the spacetime M.
We will now see that the local theory described by the

total action Sþ SA reproduces the results of the global self-
tuning mechanism discussed in Sec. II. Variation of the
total action with respect to the metric yields the modified
Einstein equations,

φGμν þ VðφÞgμν þM2
PΛvacðφÞgμν

¼ ð∇μ∇ν − gμν□Þφþ τμν; ð9Þ
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where τμν is again the stress-energy tensor specified by L̄m.
Variation of the action with respect to Aμνρ gives the crucial
condition,

∂μφ ¼ 0: ð10Þ

Thus, the dynamics of the scalar field is fixed in the sense
that it does not have any propagating degrees of freedom or
local fluctuating modes [6]. Finally, varying the total action
with respect to φ, one obtains the constraint equation,

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R − V 0ðφÞ −M2

PΛ0
vacðφÞ

þ σ0ðφÞ
4!

εμνργffiffiffiffiffiffi−gp Fμνργ

�
¼ 0; ð11Þ

where primes denote derivatives with respect to φ.
Taking the trace of Eq. (9) and using Eq. (10), one finds

φR ¼ 4½VðφÞ þM2
PΛvacðφÞ� − τ such that Eq. (11) can be

recast as

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
φ−1ð2 − ∂ lnφÞðV þM2

PΛvacÞ

−
τ

2φ
þ σ0

4!

εμνργffiffiffiffiffiffi−gp Fμνργ

�
¼ 0: ð12Þ

For convenience, we define α≡ ∂ lnΛvac=∂ lnφ and
β≡ ∂ lnΔV=∂ lnφ, where ΔV ¼ V − Vc and Vc shall
play the role of the classical counterterm to Λvac as in
Sec. II with ∂ lnVc=∂ lnφ ¼ α. Note that α and β do not
need to be constants. Eq. (12) becomes

Z
M

d4x
ffiffiffiffiffiffi
−g

p
φ−1

�
ð2 − βÞΔV þ ð2 − αÞM2

PΛvac

þ ð2 − αÞVc −
τ

2
þ σ0φ

4!

εμνργffiffiffiffiffiffi−gp Fμνργ

�
¼ 0: ð13Þ

This implies the constraint,

ð2 − βÞM−2
P ΔV þ ð2 − αÞΛvac þ ð2 − αÞM−2

P Vc

¼ M−2
P

2
hτi þ ΔΛ; ð14Þ

where we have defined

M2
P

φ
ΔΛ≡ −

σ0

4!

�
εμνργffiffiffiffiffiffi−gp Fμνργ

�
¼ −

σ0

4!

R
d4xεμνργFμνργR
d4x

ffiffiffiffiffiffi−gp :

ð15Þ

Finally, with Eq. (9), utilizing φ ¼ M2
P, we obtain the

Einstein field equations,

Gμν þ
1

2 − α

�
ðβ − αÞM−2

P ΔV þM−2
P

2
hτi þ ΔΛ

�
gμν

¼ M−2
P τμν; ð16Þ

where the vacuum term is prevented from freely gravitating
and Λ ¼ M−2

P ΔV is a free, radiatively stable classical
cosmological constant to be determined by measurement.
Note that with β ¼ 1, we recover Eq. (6) of the global self-
tuning mechanism. In contrast to Eq. (6), however, we
also obtain the additional term ΔΛ. Importantly, ΔΛ does
not take the same form as in Refs. [11,25], where the
denominator in the expression equivalent to Eq. (15),
similarly to the numerator, is given by the flux of a second
three-form gauge field. In Eq. (15) the denominator is
instead the four-volume of the cosmic manifold. With the
flux of the 3-form gauge field in the numerator being a
finite, small, UV-stable quantity and assuming the Universe
grows sufficiently old, it is natural to expect that ΔΛ → 0.
Recall, however, that a free classical cosmological constant
is still present with ΔV.

B. Generalization to Horndeski action

The discussion and results presented in Sec. III A can
easily be generalized to broader classes of scalar-tensor
theories such as Horndeski gravity, which describes the
most general local scalar-tensor theory in four dimensions
that yields at most second-order equations of motion [29].
We shall therefore consider the effective limit of a funda-
mental theory which can be cast in the Horndeski
action [30],

S ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
1

2

X5
i¼2

Liðgμν;φÞ þ Lmðgμν;ΨmÞ
�
; ð17Þ

where the sum runs over the generalized Lagrangian
densities,

L2 ¼ G2ðφ; XÞ; ð18Þ

L3 ¼ G3ðφ; XÞ□ϕ; ð19Þ

L4 ¼ G4ðφ; XÞRþG4;Xðφ; XÞ ð20Þ

×½ð□φÞ2 þ φ;μνφ
;μν�; ð21Þ

L5 ¼ G5ðϕ; XÞGμνφ
;μν ð22Þ

−
1

6
G5;Xðφ; XÞ ð23Þ

× ½ð□ϕÞ3 þ 2φν
;μφ

α
;νφ

μ
;α − 3φ;μνφ

;μν
□φ�: ð24Þ

The Gi’s are general functions of the field φ and its
kinetic term X ¼ −ð1=2Þ∂μφ∂μφ. Note that we recover
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the action (7) for the choices G2 ¼ −VðφÞ, G4 ¼ φ and
G3 ¼ G5 ¼ 0.
It is easy to see that the local self-tuning mechanism

of Sec. III A also operates in the Horndeski action. The
only thing needed is the additional coupling of φ with the
field strength of the three-form gauge field, introduced
with the topological sector in Eq. (8). Since this term fixes
the dynamics of φ to take a constant value across the
entire spacetimeM, all derivative terms in Eq. (17) vanish.
The only remaining terms are G2ðφÞ and G4ðφÞ. With
the freedom to redefine the scalar field as ϕ≡G4 and
thus G2ðϕÞ ¼ −VðϕÞ, one hence recovers the action (7).
Note that this can be generalized as well to degene-
rate higher-order derivative scalar-tensor (DHOST) [31]
theories beyond Horndeski gravity.

C. Correspondence to global mechanism

We have found that the Einstein field equations (16) of
the local self-tuning mechanism recover the field equa-
tions (6) of the global theory. At the level of the action, we
can also integrate out the topological sector of the local
model, keeping in mind that it fixes the dynamics of the
nonminimally coupled scalar field. This yields

S ¼ M2
P

2

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ
Z
M

d4x
ffiffiffiffiffiffi
−g

p
Lmðgμν;ΨmÞ þ σðM2

PÞC; ð25Þ

where we have set the constant φ toM2
P and V ¼ M2

PΛ, and
C is the flux of the three-form gauge field that becomes a
constant after integration. Note that we do not have the last
term in the global action (1). Let us therefore briefly
explore its impact on the global self-tuning.
Variation of the action (25) with respect to M2

P gives the
constraint,

1

2

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ ¼ −σ0C; ð26Þ

where the prime denotes a derivative with respect to M2
P.

Dividing both sides by the four-volume we have

1

2
hRi ¼ Λ −

σ0CR
d4x

ffiffiffiffiffiffi−gp ; ð27Þ

and, hence,Λ¼M−2
P hTi=2− C̃, where C̃≡Cσ0=

R
d4x

ffiffiffiffiffiffi−gp
.

Therefore, following the same computations as in Sec. II,
one obtains in analogy to Eq. (6) the expression,

Gμν þ
1

2 − α

�
ð1 − αÞΛþM−2

P

2
hτi − C̃

�
gμν ¼ M−2

P τμν;

ð28Þ

with the additional contribution C̃. Now, C̃ can simply
be absorbed into the free cosmological constant Λ.
Alternatively, one may consider the same arguments made
in Sec. II for the vanishing of ΔΛ, which with finite C but
infinite or large four-volume also motivate that C̃ should be
vanishing. Thus, from these considerations one can safely
take the actions (1) and (25) as describing the equivalent
global self-tuning mechanism.

IV. CALCULATION OF THE RESIDUAL Λ

We next inspect the space-time average hτi ¼R
M d4x

ffiffiffiffiffiffi−gp
τ=

R
M d4x

ffiffiffiffiffiffi−gp
, where for simplicity we

assume a matter-only universe, τ ¼ ρ̄m, with the total
matter energy density ρ̄m composed of baryonic and cold
dark matter. Note that we can safely neglect radiation
components and the inflaton since the space-time integrals
in hτi are dominated by the late-time evolution [10].
Assuming a spatially perfectly homogeneous and isotropic
background in Λ cold dark matter (ΛCDM) for our cosmic
manifoldM, it is easy to see that hτi will vanish in a long-
lived universe. This is not a problem as for β ≠ α we still
have a free, radiatively stable, classical cosmological
constant Λ available in Eq. (16) [also see Eq. (6)]. In
principle, Λ could therefore simply be considered deter-
mined by measurement [11,13]. However, ideally we
would also like to be able to understand the value of Λ
or at least understand why its fractional energy density ΩΛ
is comparable to the that of the total matter Ωm today—the
Why now? problem.
Let us first consider the scenario α ¼ β ¼ 1 [13] such

that the Einstein field equations are given by Eq. (5) and
the residual cosmological constant is given by Λres ¼
M−2

P hτi=2. For Planck cosmological parameters [17], this
implies that the Universe should have undergone an
immediate collapse at the scale factor a ¼ 0.926, at an
age of 0.88H−1

0 , thus, about 1 Gyr in the past [13], and in
contrast, an immediate collapse at the current epoch would
account for 81% of the observed value of the cosmological
constant with a decreasing fraction for a longer future [13].
Similar values are also found for the global sequestering
mechanism (α ¼ β ¼ 0) [12]. While the predicted value of
the cosmological constant is interestingly close to meas-
urement, it is not exact and moreover standard cosmology
does not predict an imminent collapse of the Universe.
It was shown in Ref. [12] that by an extension of the

global sequestering mechanism the fact that the cosmos is
inhomogeneous on small scales can be used to bring the
predicted value of Λres into agreement with observations.
Thereby the cosmic matter content is split into isolated
patches that ultimately form collapsed structures in finite
time. This nonlinear evolution predicts ΩΛ ¼ 0.697 for the
average Λres, which however fluctuates across the different
patches. In Ref. [13] it was shown that in the global self-
tuning mechanism with Eq. (5) (α ¼ β ¼ 1) the averaging
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over these maximally gravitationally bound structures leads
to a prediction of ΩΛ ¼ 0.704 for all patches with their
collapses occurring at some arbitrary time far into the
future. In order to realize the self-tuning of the residual
cosmological constant to the observed value in both
approaches the action must be extended with new seques-
tering terms or a nontrivial empty-space Lagrangian to
prevent vacuum energy from gravitating or the residual
from vanishing.
As we will show in the following, the approach con-

ducted in Ref. [13] can be significantly simplified and
rendered very natural with no new terms required on top
of Eqs. (7) and (8) by simply adopting the observable
Universe as the manifold M over which the integration in
the action is performed. The reason for this is thatM itself
will develop into a maximally gravitationally bound cell,
where ultimately no observations can be made of any test
objects residing outside of it. For a long-lived universe, the
space-time integrals in hτi are completely dominated by
this future state of M, which hence determines hτi. More
specifically, consider a spherical patch of physical size R.
In the Newtonian approximation its energy equation can be
written as [32,33]

E ¼ 1

2

�
dR
dt

�
2

−
GM
R

−
Λobs

6
R2; ð29Þ

where M is the total enclosed mass, Λobs is the observed
cosmological constant driving the cosmic acceleration, and
E is the total energy per unit mass in the interior. The
critical shell of a patch, as the limit between expansion and
collapse into the structure, is given for dR=dt ¼ 0. It
reaches a maximal value of

Rmax ≡
�
3GM
Λobs

�
1=3

ð30Þ

for gravitationally bound patches in the future of a ΛCDM
universe. Assuming sphericity for simplicity, we now
characterize the observable Universe M by its physical
spatial radius ξðtÞ, and the radius of the patch that will
develop into the maximally gravitationally bound structure
in the finite or infinite future of the Universe as ζðtÞ. Hence,
we have limt≫t0ζðtÞ ¼ Rmax or limt→∞ζðtÞ ¼ Rmax, where
t0 denotes the current time. Note that ζðtÞ is not the same
radius as RðtÞ. We can now write

hτi ¼
R
M dV4ρmR
M dV4

¼
R
dt½R ζðtÞ

0 dr r2ρ̂m þ R ξðtÞ
ζðtÞ dr r

2ρ̄m�R
dt½R ζðtÞ

0 dr r2 þ R ξðtÞ
ζðtÞ dr r

2�
; ð31Þ

where ρ̂m and ρ̄m denote the total matter density in the local
matter patch and the cosmological background,

respectively. Note that we can compute ρ̂m and ζðtÞ using
the spherical collapse model [12,13]. Importantly, ξðtÞ →
ζðtÞ for t ≫ t0. This is due to the accelerated background
expansion, where in a finite time into the future everything
outside of ζðtÞ will be expelled out of the cosmic event
horizon, and thus disappear from our detectors. Moreover,
any test object in the intermediate region between Rmax and
the event horizon will become unobservable as it will be
exponentially redshifted away [34–36]. In the far future, the
observable Universe around Earth will therefore reduce to
the radius ζðtÞ. Thus, the second integrals in the numerator
and denominator of Eq. (31) are subdominant in a long-
lived universe, for which we therefore find

hτi →
R
dt

R ζðtÞ
0 dr r2ρ̂mR

dt
R ζðtÞ
0 dr r2

→

R
dt

R Rmax
0 dr r2ρ̂max

mR
dt

R Rmax
0 dr r2

¼ ρ̂max
m : ð32Þ

Using Eq. (30), we thus obtain

ρ̂max
m ¼ 3

4π

M
R3
max

¼ Λobs

4πG
; ð33Þ

or in other terms,

M−2
P

hτi
2

¼ Λobs: ð34Þ

We also confirm this solution numerically with the spheri-
cal collapse computations of Refs. [12,13]. Hence, with
Eq. (34) we find a self-consistent solution in Eq. (5). More
generally, the classical cosmological constant in Eq. (16)
becomes

M−2
P ΔV ¼ ð1 − αÞΛobs − ΔΛ

β − α
: ð35Þ

Note that Eq. (34) applies for hτi independently of the self-
tuning mechanism. The same argument therefore also
applies for the local sequestering mechanism, where
Eq. (34) would determine ΔΛ. Interestingly, Eq. (34) is
also found from considerations of the causal universe in
Ref. [24]. It is worth emphasizing as well that one also
arrives at Eq. (34) considering a single test particle in empty
space. Hence, no additional terms in the actions (7) and (8)
are required to cancel vacuum energy gravitation in empty
space or to prevent Λres from vanishing (cf. [12,13]).
Finally, while we have found a self-consistent self-tuning

mechanism that reproduces Λobs from the space-time aver-
age hτi, Λobs could still be of arbitrary value. As was argued
in Refs. [12,13], however, the only relevant dynamical
quantity in the determination of hτi is the physical radius
ζðtÞ of the matter patch that evolves to become our local
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maximally gravitationally bound structure in the future of
the Universe. The Why now? problem of the cosmological
constant can therefore be phrased in terms of being located
at a particular place in the evolution of ζðtÞ such that
ΩΛðt0Þ ∼ Ωmðt0Þ today, t0, where ΩΛðtÞ≡M−2

P ρ̄m=ð3H2Þ
and ΩΛðtÞ≡ Λobs=ð3H2Þ with H denoting the Hubble
function. One can define the dimensionless physical top-
hat radius yðtÞ ¼ ζðtÞ=aðtÞ=rth, where aðtÞ is the scale
factor and rth is the comoving radius of the top-hat over-
density that evolves into the maximally gravitationally
bound structure, thus, M ¼ ð4π=3Þρ̄mðt0Þr3th in Eq. (30).
Adopting as the simplest ansatz a uniform prior on y ∈ ½0; 1Þ
to estimate our likely location in the evolution of ζðtÞ, we
find the average expectation yðt0Þ ¼ 1=2. This expression
can be solved for t0 without assuming any values for the
cosmological parameters [12,13]. One then finds from this
that ΩΛðt0Þ ¼ 0.704, in good agreement with observations
[17]. Instead of a flat prior on y, however, one may wish
to construct a more physical prior, which likely involves
the consideration of the evolution of stellar systems. Star
formation has peaked about ten billion years in the past such
that one may naïvely expect a peak in the emergence of
intelligent life about five billion years ago, assuming a
similar biological evolution can be extrapolated from one
sample. Following the star formation history, the stellar
formation has dropped by a factor of 4 by the time the Sun
was formed, placing our existence at t0 under these con-
siderations not at the most likely location. As was argued in
Ref. [12] considering instead a prior for stellar systems that
contain heavier elements than iron, one may expect a shift of
the peak of the relevant star formation history of about five
years to later times to allow for the s-process to take place in
typical stars, which would set our Sun close to the shifted
peak position. A cosmological peak for the emergence of
intelligent life may then reasonably be expected close to t0.
We leave a more detailed analysis of the likelihood ofΩΛðt0Þ
from such considerations to future work.

V. CONCLUSIONS

Identifying the physical nature of the cosmological
constant and the late-time accelerated expansion of our
Universe is a prime endeavour to cosmology. It is generally
thought attributed to vacuum fluctuations. However, quan-
tum theoretical computations of this contribution to gravi-
tational dynamics are off by several orders of magnitude.
Recently, a simple variation of the Planck mass in the
Einstein-Hilbert action of GR in addition to the metric
variation has been proposed as a remedy to this problem by
introducing a self-tuning mechanism of the cosmological
constant that prevents vacuum energy from fully gravitat-
ing. Moreover, the evaluation of the resulting constraint
equation under consideration of the evolution of the
inhomogeneous cosmic matter distribution was shown to
self-consistently reproduce the observed cosmological

constant with an expected value for the current fractional
energy density of ΩΛ ¼ 0.704, in good agreement with
observations. Besides the nongravitating vacuum energy,
the global self-tuning mechanism therefore also explains
the rise of the late-time accelerated cosmic expansion
and the coincidence between the current energy densities
of matter and the cosmological constant.
In this paper, we have developed a local theory from

which the global self-tuning mechanism naturally emerges.
To achieve this, we have considered general scalar-tensor
actions that can arise as the effective limit of a more
fundamental theory with the additional presence of a
topological sector in which the scalar field couples to
the field strength of a three-form gauge field. The resulting
additional three-form field equations enforce constancy
of the scalar field on the domain of the action, which
reproduces the global self-tuning mechanism with the
scalar field equation providing the constraint equation.
We then showed that the self-tuning mechanism provides
a self-consistent framework that recovers the observed
cosmological constant from the simple evaluation of the
constraint equation over the observed Universe that in the
future will reduce to the local maximally gravitationally
bound structure. This simplifies the previous picture where
the constraint was evaluated on the inhomogeneous matter
distribution with the employment of a nontrivial empty-
space Lagrangian density to enable the self-tuning of a
nonvanishing cosmological constant in empty space. We
discuss likelihood estimations for our location in the
evolution of the local maximally gravitationally bound
patch, finding that the observed value of the fractional
energy density of the cosmological constant is in good
agreement with expectations. Finally, we lay out some ideas
on how the local self-tuning mechanism can be used to
absorb quantum gravity effects on the gravitational dynam-
ics. We leave a more detail analysis of that to future work.
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APPENDIX A: GENERALIZED COUNTERTERM

In Sec. II, we have for simplicity restricted our dis-
cussion of the global self-tuning mechanism to vacuum
energy contributions that can be written as a power law
of the Planck mass. We have already provided a more
general analysis for the local self-tuning formalism in
Sec. III, allowing for an arbitrary dependence of Λvac on
the Planck mass, where however for simplicity we have
neglected the bare cosmological constant ΛB. We shall
briefly discuss how an arbitrary dependence of Λvac onM2

P
is allowed in the global self-tuning mechanism and how an
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arbitrary ΛB is absorbed. We start from the action (1) and
separate out the vacuum and bare components from the
matter Lagrangian density, Lðgμν;ΨmÞ ¼ L̄mðgμν;ΨmÞ−
ðΛvac þ ΛBÞ, assuming Λvac and ΛB to be arbitrary func-
tions of M2

P. We now perform a similar separation for the
classical cosmological constant, M2

PΛ→M2
PΛþΛCþΛD,

where Λ, ΛC, and ΛD are arbitrary functions of M2
P. The

action, hence, becomes

S ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
ðR − 2ΛÞ

− ðΛC þ ΛD þ Λvac þ ΛBÞ þ Lmðgμν;ΨmÞ
�
: ðA1Þ

Variation with respect to the metric gives the Einstein field
equations,

Gμν þ Λgμν þM−2
P ðΛB þ ΛC þ ΛD þ ΛvacÞgμν ¼ M−2

P τμν:

ðA2Þ

We shall parametrize the Planck mass dependence as

αi ≡ ∂ lnΛi

∂ lnM2
P
; ðA3Þ

where the indices denote i ¼ fB;C;D; vacg, and we
associate α to Λ (or we could take β ¼ 1þ α for M2

PΛ
in the notation of Sec. III). Variation of the action (A1) with
respect to M2

P yields the constraint,

ð1 − αÞM2
PΛþ ð2 − αvacÞΛvac þ ð2 − αBÞΛB

þ ð2 − αCÞΛC þ ð2 − αDÞΛD ¼ hτi
2

; ðA4Þ

where we have used the trace of Eq. (A2). Finally, we solve
this expression for the free function ΛC and introduce the
result into the Einstein equations (A2) to get

Gμν þ
1

2 − αC

�
ð1þ α − αCÞΛþM−2

P

2
hτi

þ ðαvac − αCÞM−2
P Λvac

þ ðαB − αCÞM−2
P ΛB

þ ðαD − αCÞM−2
P ΛD

�
gμν ¼ M−2

P τμν: ðA5Þ

To cancel Λvac we therefore need αC ¼ αvac. Note again
that the constraint on ΛC only needs to apply for a given
choice, or measurement, of the Planck mass, hence, ΛC

does not change its explicit dependence on M2
P [see

Eq. (14)]. To prevent fine-tuning in αC ¼ αvac, we need
ΛC ∝ ΛV with a proportionality factor that is independent
ofM2

P. In particular, this recovers the power-law scenario in

Sec. II with M2
PΛvac ¼ M2αvac

P Λ̄vac and M2
PΛC ¼ M2αvac

P Λ̄α.
The cancellation of the bare contribution then occurs
straightforwardly if αB ¼ αvac. Alternatively, the contribu-
tion cancels for

ΛD ¼ αB − αvac
αvac − αD

ΛB: ðA6Þ

This corresponds to a fine-tuning of ΛD, which is, however,
not problematic since ΛB is not prone to radiative correc-
tions. Similarly, given the free classical cosmological
constant Λ in Eq. (A5), ΛB can simply be absorbed into
the choice of Λ.

APPENDIX B: GRAVITON LOOPS

It is well known that quantum corrections to gravity give
contributions to the gravitational coupling and the cosmo-
logical constant. In particular, the cosmological constant is
modified by both 1PI matter and graviton loops. The one-
loop vacuum correction from the matter sector in curved
space-time is given by [4]

Λvac ¼ M−2
P

X
i

ni
m4

i

64π2
log

�
m2

i

μ2i

�
þ ΛEW

vac þ…; ðB1Þ

where i runs over the different particle species, mi denote
their masses, ni represent their respective number of
degrees of freedom with þ=− for bosons/fermions, and
μi are unknown renormalization mass scales. The electro-
weak phase transition contributes to Λvac as ΛEW

vac ¼
−M−2

P ð ffiffiffi
2

p
=16Þðm2

H=GFÞ, with Higgs boson mass mH
and Fermi constant GF. The ellipsis denotes further
contributions, e.g., the QCD phase transition. We have
discussed how the one-loop correction and higher-order
corrections are absorbed in the self-tuning mechanism
in Secs. II and III. We shall now briefly discuss the graviton
loops.
Generally, the vacuum and bare contributions to the

cosmological constant arising from matter and graviton
loops can be understood as some complicated function of
the quadratic Planck mass. We can perform the expansion,

ΛvacðM2
PÞ ¼ a0M4 þ a1

M6

M2
P
þ a2

M8

M4
P
þ…

¼
X∞
n¼0

an
M4þ2n

ðM2
PÞn

; ðB2Þ

where M is some renormalization mass scale. Con-
sider the expansion of a classical counterterm, ΛC ¼P∞

m¼−∞ Λ̄mðM2
PÞm. For the two contributions to cancel

we need ∂ lnΛC=∂ lnM2
P ¼ ∂ lnΛvac=∂ lnM2

P. It is clear
from this condition that we can only cancel off one arbitrary
coefficient in Eq. (B2) as we run into a fine-tuning problem
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for the next coefficient [see Eq. (A6) for an analogy]. But
we can cancel off an overall scaling of each term, which is
still an interesting property given that the expansion (B2)
does not converge. It should be furthermore emphasized,
however, that graviton contributions have also been studied
for the related sequestering mechanism in Ref. [25]. A
similar approach can be adopted for the cancellation of
quantum gravity corrections in the self-tuning mechanism
from the Planck mass variation presented here. For in-
stance, for quantum corrections with higher-derivative
terms in Eq. (1) that are independent of Planck mass, there

are no contributions to Eq. (4) or to the field equations, and
if dependent onM2

P by an overall power-law scaling ofM2
P,

they are canceled by the same classical counterterm as in
Sec. II. It is also worth emphasizing that in the scalar-tensor
representation of Sec. III, a coupled Gauss-Bonnet invariant
can be recast in Horndeski theory, and we have described
how the self-tuning mechanism is operating for general
Horndeski theories in Sec. III B. We leave a more detailed
analysis of the effects of graviton loops on the self-tuning
mechanism for future work.
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