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We investigate the surface tension of strange quark stars by making use of a color-flavor-locked (CFL)
equation of state. Compact objects with anisotropic pressures provide richer systems for studying surface
tension variations, and establishing physically viable ranges of parameters in maintaining hydrostatic
equilibrium of quark matter at densities exceeding that of nuclear material. The strange quark mass, the
QCD gap energy, and the MIT bag constant are key parameters in the CFL equation of state used, and thus
feature in calculations of the surface tension.
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I. INTRODUCTION

Compact objects such as neutron stars and the proposed
strange quark stars composed of deconfined u, d, s quark
matter (strange matter) [1] offer scenarios in which matter
exists under the most extreme and exotic conditions. The
theory of QCD has been used to study the properties of
quark matter in order to ascertain the prospects for the
existence of strange stars [2,3], and possible stellar candi-
dates have been identified [4]. One of the outcomes of the
study of the microphysics of quark material is the so-called
color-flavor-locked (CFL) superconducting phase in which
statistical analyses lead to a description in terms of macro-
scopic properties, typically the pressure and energy density
in order to determine an equation of state. The complex
nature of such a study, together with the simplifying
assumptions made, can benefit from calculations made
using the classical theory of general relativity (GR)
whereby the bulk properties of the system are gleaned.
In addition to determining an equation of state, it is also
necessary to consider the stability of such ultracompact
quark matter, and the surface tension could play a signifi-
cant role in addition to calculations of the adiabatic index,
which are typically done. It has been shown recently by
Sagun et al. [5] that an equation of state which incorporates
an induced surface tension component significantly lowers
pressures and energy densities which can become excessive
at high baryon densities. More importantly, they also note
that the induced surface tension helps maintain causality,
which is not possible for a van der Waals equation of state
with baryon densities exceeding 0.4=fm3. In compact stars,

the gravitational force on the particles is very large, and the
surface tension does not only depend on the interactions
within the strange quark matter but also on the structure of
the star as a whole [6]. Surface tension estimates have been
an outcome of thermodynamic calculations in which quark
matter is confined to strangelets typically of the order of a
few femtometers in size, though there is no upper bound to
the size of such composite particles [7]. Values in the range
σ ¼ 5 ∼ 30 MeV=fm2 have been calculated according to
the framework of the Dyson-Schwinger equations of
QCD [8]. Other models have given larger values, namely
30 ∼ 70 MeV=fm2 from a quasiparticle model [9] and even
145 ∼ 165 MeV=fm2 according to the Nambu–Jona-
Lasinio model [10,11]. Thus, there is still uncertainty in
calculating the surface tension of strange stars, and the
long-range surface structure could also be of importance. In
considering the star as a whole, it is useful to generate
relationships between surface tension and physical param-
eters such as the surface tangential pressure and density
which can be obtained easily via the field equations of
general relativity.
Early work by Bowers and Laing [12] on anisotropic

compact objects in general relativity indicated that the role
of anisotropy is significant in stellar cores with densities
greater than 1015 g:cm−3. The source of local anisotropy
can be attributed to the interactions between neutrons
which lead to a superfluid state. In addition, properties
such as the presence of a solid core, viscosity and exotic
phase transitions leading to a pion condensed state, can also
influence pressure anisotropy. The role of pressure
anisotropy has also been studied extensively by Herrera
et al. [13,14].
Since the Einstein field equations of general relativity

have the reputation for offering physically nonviable
solutions as shown by Delgaty and Lake [15], it is of
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interest to assert the validity of solutions obtained from GR
by considering the incorporation of additional phenomena
such as electromagnetic fields [16]. Specific to our study,
we include the quark parameters which define both the
microstructure and through suitable statistics also the
macroscopic state functions. This adds further value to
the spacetime metric solutions obtained from relativity.
Upon asserting physical viability of the field equations
obtained, it is of interest to consider pressure anisotropy as
this allows for a nonvanishing tangential pressure at the
boundary of the star and this can be linked to a modification
of the surface tension. The tangential pressure has been
found in previous studies to grow monotonically from
zero at the star center to a value in the range of
20 ∼ 50 MeV=fm3 for quark star models with masses in
the range 1.29M⊙ to 1.85M⊙ [17].
An equation of state (EoS) is also frequently used in

promoting physical viability and setting certain parameters
which arise during the determination of the metric poten-
tials [16,18,19]. Linear, quadratic, polytropic, and van der
Waal’s equations of state have been used previously to
model compact stars [20,21] ranging from white dwarfs to
highly dense neutron stars and quark stars. In the case of
quark or strange-quark stars, the MIT bag model of QCD,
which allows for a confinement pressure in addition to the
degeneracy pressure, makes use of a linear EoS of the form
p ¼ 1

3
ðρ − 4BÞ [22]. In this form, the MIT bag constant 4B

is linked to a surface density [23]. A study of compact
objects using the Vaidya-Tikekar ansatz [24], suitable for
so-called superdense stars, has shown a linear relationship
between the energy density and the isotropic pressure, so a
linear equation of state is generally a good approximation
for very dense, compact objects such as strange stars [25].
Further improvements can be made to take into account the
deconfinement of quarks at high density, and this might
require a departure from linearity. In our work, we allow the
pressure to be anisotropic in order to study its affect on the
surface tension, and departure from a linear EoS might
highlight new physical properties arising from the inclusion
of strange quark mass and QCD gap energies due to quark
interactions. Rocha et al. [26,27] have recently done a
study on compact stars composed of CFL quark matter
where they used an equation of state of the form
pr ¼ αρþ βρ1=2 − γ. In the case β ¼ 0, this reduces to
the MIT bag model EoS. Thirukkanesh et al. [28] carried
out a comparison between compact objects obeying the
MIT bag model and the CFL equation of state in isotropic
coordinates. Two new classes of exact solutions obeying
the CFL equation of state were obtained. These models
were shown to be physically viable in terms of a description
of compact objects in general relativity.
In this paper, we employ the CFL equation of state to

investigate the effect of the bag parameter and the QCD gap
energy on the surface tension of compact objects such as
neutron stars and strange-quark stars. In Sec. II, we present

the line element and the matter tensor describing the
geometry and matter content of the compact object. We
also introduce the CFL equation of state. The equation
governing the surface tension for an anisotropic fluid
sphere is derived in Sec. III. A rigourous analysis of our
results is carried out in Sec. IV, which is followed by a
discussion of our findings in Sec. V. We conclude with an
overview in Sec. VI.

II. FIELD EQUATIONS

The line element for a static spherical object in the
standard form is given by

ds2 ¼ −eνc2dt2 þ eλdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ
where νðrÞ and λðrÞ are the gravitational potentials. The
energy-momentum tensor for an anisotropic star may be
written as

Tij ¼ ðρc2 þ prÞuiuj þ prgij þ ðpr − ptÞninj; ð2Þ

where ρ is the energy density; pr and pt are the radial and
tangential pressures, respectively; ui is the fluid four-
velocity; and ni is a radially directed unit spacelike vector.
Einstein’s field equations are then given by

8πG
c4

ρ ¼ ð1 − e−λÞ
r2

þ λ0e−λ

r
; ð3Þ

8πG
c4

pr ¼
ν0e−λ

r
−
ð1 − e−λÞ

r2
; ð4Þ

8πG
c4

pt ¼
e−λ

4

�
2ν00 þ ðν0Þ2 − λ0ν0 þ 2ν0

r
−
2λ0

r

�
; ð5Þ

which have been used previously by researchers [18]. An
equation of state which is suitable for describing strange
quark matter in the CFL phase [26,27] is given by

pr ¼
1

3
ρþ 2η

π
ρ1=2 −

�
3η2

π2
þ 4

3
B

�
; ð6Þ

where

η ¼ −
m2

s

6
þ 2Δ2

3
: ð7Þ

It incorporates the MIT bag constant B and, in addition,
the strange quark mass ms and a QCD gap energy Δ which
accounts for quark interactions. These parameters are
needed in calculating the chemical potential [29], which
is given by

μ ¼
�
−ηþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4

9
π2ðρ̄ − B̄Þ

r �1=2

; ð8Þ
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where B̄ and ρ̄ are the MIT bag constant and energy density,
respectively, as expressed in terms of standard particle
physics units of ½MeV4� with the conversions being B ¼
B̄=ðℏcÞ3 and ρ ¼ ρ̄=ðℏcÞ3.
It is noted that the chemical potential should preferably

be greater than 300 MeV [29], and this serves as a guide for
choosing suitable values for ms and Δ. The baryon number
density may then be calculated from

nB ¼ μ3

π2
−
m2

sμ

2π2
þ 2

π2
Δ2μ ð9Þ

which gives the density of baryons at the surface as
required. It is worth comparing the baryon number density
to the well-documented number density at nuclear satu-
ration ð0.16 fm−3Þ [30], often used for normalization
in plots.

III. SURFACE TENSION OF
ANISOTROPIC FLUIDS

Bagchi et al. [6], have shown that compact objects
composed of u, d, s quarks should have a greater surface
tension than that of neutron stars. In calculating the surface
tension, it is assumed that the star is a large spherical ball
composed of strange matter which is self-bound and
nonrotating. The excess pressure on the surface of the star
can then be expressed as

jΔpjr¼R ¼ 2σ

R
; ð10Þ

where σ is the surface tension of the star and R is the radius
of curvature, corresponding to the surface boundary.
Although this is an application of the classical Young-
Laplace equation and thus perhaps simplistic, it has been
used previously in calculating the surface tension of strange
stars [6,18,31]. Recently, it has been shown that a relativ-
istic correction could further increase the surface tension
[32] whereby values of σ obtained via the Young-Laplace
method could be augmented by a factor ð1 − 2M=RÞ−1=2,
M being the geometrized mass of the star. This is open for
further investigation and comparison with more sophisti-
cated methods of computing surface tension such as
variation of the chemical potential and Gibbs free energy.
At the surface of the star, the excess pressure can be

related to the pressure gradient, given by

jΔpjr¼R ¼ rn

���� dpdr
����
r¼R

; ð11Þ

where rn is the radius of the quark particle. The radius is
given by

rn ¼ ð1=πnBÞ1=3; ð12Þ

where nB is the baryon number density. Owing to the
highly compact nature of strange stars, a relativistic treat-
ment is necessary in finding internal configurations and
the various physical parameters. For a given EoS, one can
use the generalized Tolman-Oppenheimer-Volkoff (TOV)
equation [33] in which pressure anisotropy may be
included, namely

dp
dr

¼ −
Gðρþ pÞ½mðrÞ

c2r þ 4πr2p
c4 �

rð1 − 2GmðrÞ
c2r Þ

þ 2

r
ðpt − prÞ ð13Þ

as done previously in surface tension studies [18].
The TOV equations may also be written in the form

−
MGðρþ prÞ

r2
e
λ−ν
2 −

dpr

dr
þ 2

r
ðpt − prÞ ¼ 0; ð14Þ

where MG ¼ MGðrÞ is the Tolman-Whittakar gravitational
mass inside a sphere of radius r [34]. This effective
gravitational mass is given by

MGðrÞ ¼
1

2
r2e

ν−λ
2 ν0 ð15Þ

so that (13) is regained upon applying the Schwarzschild
metric. The form of (14) is useful in testing for equilibrium
whereby the components of force are given as

Fh ¼ −
dpr

dr

Fg ¼ −
MGðρþ prÞ

r2
e
λ−ν
2

Fa ¼
2

r
ðpt − prÞ; ð16Þ

where Fh, Fg, and Fa denote hydrostatic, gravitational, and
anisotropic forces, respectively.
Substituting (3) and (4) into (6), we obtain

ν0 ¼ 1

3

�
4

r
ðeλ − 1Þ þ λ0 − 4reλ

G
c4

�
8πBþ 18

π
η2 −

ffiffiffiffiffi
18

π

r
η

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

Gr2
e−λðrλ0 þ eλ − 1Þ

s ��
: ð17Þ

We then make use of the Finch-Skea ansatz [35] and set
the metric potential

eλ ¼ 1þ r2

R2
; ð18Þ

whereR is a scaling parameter related to the curvature. The
spacetime geometry of Finch and Skea has recently been
used by Sharma et al. [36] for obtaining closed-form
solutions for a spherically symmetric anisotropic matter
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distribution. Furthermore, the suitability of the Finch-Skea
model for describing strange stars was also noted.
Substituting our expression for ν0 and evaluating at the

surface boundary [prðr ¼ RÞ ¼ 0], the TOV equation
becomes

dpr

dr

����
r¼R

¼ 2

R
ptðRÞ −

ρðRÞ
3R

�
1

1þ ðR=RÞ2 þ
2

ðR=RÞ2

−
2GR2

c4

�
1þ R2

R2

��
8πB

þ 3η

π

�
6η −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πc4ð1þ 3ðR=RÞ2Þ
GR2ð1þ ðR=RÞ2Þ2

s ���
; ð19Þ

where ptðRÞ and ρðRÞ are the tangential pressure and the
energy density, respectively, evaluated at the surface. As
seen here, pressure anisotropy features prominently in our
work. In a recent study [14], Herrera has remarked on the
importance of pressure anisotropy ðpt > prÞ to help
explain the possibility for more compact objects in contrast
to models which are isotropic. In this regard, pressure
anisotropy is seen to be a relativistic effect and, in essence,
an intrinsic property of relativistic hydrodynamics.
The expression for surface tension is now computed as

σ ¼
����rnptðRÞ −

rnρðRÞ
6

�
1

1þ ðR=RÞ2 þ
2

ðR=RÞ2

−
2GR2

c4

�
1þ R2

R2

��
8πB

þ 3η

π

�
6η −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πc4ð1þ 3ðR=RÞ2Þ
GR2ð1þ ðR=RÞ2Þ2

s �������; ð20Þ

where the radius of the quark particle, rn, is determined
from the baryon number density (9) as given by (12). The
surface tension of strange stars is still uncertain. Early work
by Heiselberg [30] suggested that σ > 70 MeV=fm2 for a
transition from nucleon to quark matter; however, lower
values of a few MeV=fm2 have been found sufficient in
some cases [31]. These are often set as critical values,
associated with the stability of strangelets of the order of
tens of femtometers in size. A much larger compact object
might require significantly larger energies for maintaining
the surface-vacuum interface.

IV. PHYSICAL ANALYSIS

We set the Finch-Skea parameter R ¼ 9.50 km which
provides a suitable mass-radius relationship for modeling
potential strange-star candidates as shown in Fig. 1. In
particular, a star with a central core density of 1.78 ×
1015 g=cm3 and a surface density of 4.10 × 1014 g=cm3 is
calculated for a radius of R ¼ 11.9 km. This is in agree-
ment with ρðRÞ ¼ 4B=c2 for the simplest bag model of

massless, noninteracting quarks with the MIT bag constant
set at 57.5 MeV=fm3 [37]. It is also noted that the core
density is less than 5 times the surface density, consistent
with highly compact quark matter. This is in contrast with
neutron stars where the core density is typically expected to
be 2 to 3 orders of magnitude greater than that at the
surface [38].
We then augment this model to include the strange quark

mass and the QCD gap energy parameter,Δ. Since pressure
anisotropy is of particular importance in our study, we first
plot the pressure profiles and the anisotropy parameter
δ ¼ pt − pr as shown in Figs. 2 and 3, respectively. The
shape of the curves and the surface tangential pressure
(ptðRÞ ¼ δðRÞ) calculated compare well with other studies
[17,23,36]. By lowering the Finch-Skea parameter, one can
enhance the anisotropy so that larger surface tangential
pressures are obtained, but this results in masses and radii
which are larger and uncharacteristic of neutron stars and
proposed strange star candidates.

FIG. 1. Mass-radius relationship for Finch-Skea parameter
R ¼ 9.50 km. Points denote strange-star candidates given in
Table II.

r

M
eV

FIG. 2. Radial and tangential pressure profiles for quark energy
parametersΔ ¼ 100 MeV andms ¼ 150 MeVwith bag constant
set at 57.5 MeV=fm3.
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By allowing the bag constant and quark parameters to
vary, and using the boundary condition prðr ¼ RÞ ¼ 0, we
obtain the model parameters listed in Table I. In Table II,
we list observed physical parameters of candidate strange
stars for comparison.
Similar values for the MIT bag constant B, strange quark

mass ms and gap energy Δ have been used by Rocha et al.
[26]. Equation (20) is then used to plot the surface tension
with respect to the tangential surface pressure for different
values of the bag constant and quark energies. These are
shown in Figs. 6–8. The linear dependence of the surface
tension on tangential pressure, as also shown by Sharma
and Maharaj [18], is a consequence of the form of the
generalized TOV equation used. The TOV equation could
be modified further to include charge distributions and
magnetic fields, and higher order theories of gravity could
also introduce additional nonlinear terms involving pres-
sure and energy density. Since it is a necessary physical
constraint that the pressure gradient within the stellar
interior remain negative, we conclude that there are limiting
values of the surface tangential pressure beyond which the
system is not physically viable. Our calculated values of
surface tangential pressure do not approach this region. The

plots given in Figs. 6–8 could be extrapolated to the low
critical values of surface tension obtained via studies on
strangelets [31], and this could serve as an upper bound
for physically viable values of tangential pressure and
anisotropy.

V. DISCUSSION

Our model parameters of mass and star radius given in
Table I are comparable with observed data given in Table II.
This is clearly seen in the mass-radius relationship given in
Fig. 1. Values of masses and radii that are closest to those of
typical strange star candidates appear to be favored by the
higher bag constant of B ¼ 80 MeV=fm3. Figure 2 shows
the variation of the radial and tangential pressures at each
interior point of the star. The radial and tangential stresses
decrease monotonically outward with the tangential pres-
sure becoming more dominant in the surface layers of
the stellar configuration. The variation of the pressure
anisotropy parameter with radial coordinate is given in
Fig. 3. This parameter is positive throughout the stellar
interior, giving rise to a repulsive force. This force helps
stabilize the configuration with respect to the gravitational
force. Figure 4 shows the equation of state parameter in
both the radial and tangential directions. These functions
are continuous and well behaved throughout the stellar
interior, and the effect of the anisotropy is clearly seen,
providing for a stiffer matter content within the outer stellar
region. The forces associated with the TOV equation are
shown in Fig. 5. It is clear that the sum of the three forces is
zero (FΣ ¼ Fh þ Fg þ Fa ¼ 0) at each interior point of
the configuration, thus indicating a state of equilibrium.

TABLE I. Model parameters.

Model No. M=M⊙ R (km) B ðMeV=fm3Þ Δ (MeV) ms (MeV) nB ðfm−3Þ ptðRÞ ðMeV=fm3Þ σ ðMeV=fm2Þ
1 2.79 12.8 57.5 100 150 0.293 25.9 80.6
2 2.27 11.4 70 100 150 0.338 13.8 84.9
3 1.94 10.5 80 100 150 0.373 5.0 87.1

4 2.47 11.9 57.5 0 0 0.278 23.1 70.5
5 2.00 10.6 70 0 0 0.322 11.1 76.0
6 1.70 9.75 80 0 0 0.356 2.6 78.7

7 2.23 11.3 57.5 50 150 0.266 20.6 64.0
8 1.80 10.0 70 50 150 0.310 8.9 70.0
9 1.52 9.24 80 50 150 0.343 0.6 73.2

FIG. 3. Anisotropy parameter profile for quark energy param-
eters Δ ¼ 100 MeV and ms ¼ 150 MeV with bag constant set
at 57.5 MeV=fm3.

TABLE II. Observed physical parameters of some strange star
candidates [39].

Strange star candidate M=M⊙ Radius (km)

Her X-1 1.07� 0.36 8.1� 0.41
PSR J1614-2230 1.97� 0.04 9.5
Vela X-1 1.77� 0.08 9.56� 0.08
SAX J1808.4-3658 0.9� 0.3 7.95
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Figures 6–8 may be compared with those obtained by
Sharma andMaharaj [18]. Both the surface tensions and the
tangential pressures are generally lower as might be
expected for stars with lower densities and larger radii
as compared with the two more highly compact systems
studied by Sharma and Maharaj. We note that an increase in
the vacuum energy (larger values for the bag constant)
promotes systems with lower tangential pressures and
surface tensions. Although the use of the Finch-Skea model
in our study produced relatively low values of tangential
pressure, it is noted that other models with gravitational
potentials more suited to superdense compact objects could
result in higher surface tangential pressures. This could
significantly reduce the resulting pressure gradient to levels
which would provide smaller surface tensions. However,
our tangential pressures compare well with pressures
obtained from other studies on CFL equations of state

FIG. 4. Equation of state parameter profile for quark energy
parametersΔ ¼ 100 MeV andms ¼ 150 MeVwith bag constant
set at 57.5 MeV=fm3.

29

FIG. 5. Decomposition of the TOV equation into force com-
ponents for quark energy parameters Δ ¼ 100 MeV and ms ¼
150 MeV with bag constant set at 57.5 MeV=fm3.

FIG. 6. Surface tension-tangential pressure relationship for
quark energy parameters Δ ¼ 100 MeV and ms ¼ 150 MeV.
Points denote model parameters from Table I.

FIG. 8. Surface tension-tangential pressure relationship for
quark energy parameters Δ ¼ 50 MeV and ms ¼ 150 MeV.
Points denote model parameters from Table I.

FIG. 7. Surface tension-tangential pressure relationship for
quark energy parametersΔ ¼ ms ¼ 0 MeV. Points denote model
parameters from Table I.
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[28] and, in addition, to induced surface tension equations of
state [5]. According to our study, low values of surface
tension are achievable for tangential pressures greater than
80 MeV=fm3 for the typical quark energy parameters ms ¼
150 MeV and Δ ¼ 100 MeV.
Lower gap energies seem to favor lower surface tensions,

and this could be important near critical values for quark
matter to hadronic matter transitions. For noninteracting
and massless quarks, the 70 MeV=fm2 critical value
originally proposed by Heiselberg [30] is attainable from
our models, apart from model number in Table I. It is
expected that the gap energy should be at least 100 MeV
[30,40] for massive strange quarks in the superconducting
CFL phase and model numbers 7 and 9 are somewhat
indicative of this. In our study, we did not exceed B ¼
80 MeV=fm3 as this resulted in unreasonable behavior in
the anisotropy parameter with vanishing tangential pres-
sures. Values such as B ¼ 115 MeV=fm3 have been used
by Rocha et al. [26] in CFL equation of state studies;
however, this resulted in unreasonably low masses and radii
in our gravitational model.

VI. CONCLUSION

In this work, we calculated and studied the surface
tension of compact objects as mediated by a color-flavor-
locked equation of state. Our results generalize the earlier
work of Sharma and Maharaj [18] in which they utilized a
linear EoS, with the necessity of allowing for pressure
anisotropy being reaffirmed. The gravitational behavior of
our model was determined by employing the Finch and
Skea ansatz together with the CFL EoS. It is noted that the
Finch and Skea ansatz is very effective in providing
computed physical parameters which are realistic and
comparable to other studies of highly compact objects.
More sophisticated gravitational potential formulations,
specific to superdense compact objects, could be applied
in future studies. A formula for the surface tension was
derived by utilizing the generalized TOV equation incor-
porating pressure anisotropy and the CFL EoS. We believe

that this is the first attempt at relating the surface tension of
a compact object in general relativity to the MIT bag
constant and the QCD gap energy parameter. Our findings
indicate that configurations with lower surface tension can
be achieved for smaller QCD gap energies and vacuum
energies. The surface tensions computed for our models are
in the range σ ¼ 60 − 90 MeV=fm2, which is comparable
with other studies. Since these values are significantly
larger than the critical values of a few MeV=fm2 found for
strange quark matter in the form of strangelets, we conclude
that our model likely excludes the possibility of exotic
surfaces such as one in which strangelets are bound within
a crystalline or quasicrystalline setting. Our model thus
appears to be more compatible with a homogeneous sur-
face, which could be fluidic in nature. Previous studies in
which surface tensions of about 4 ∼ 10 MeV=fm2 were
calculated [31]; also note that the surface tension would
certainly be larger if the interface boundaries had finite
thicknesses rather than the infinitely sharp interfaces
assumed in QCD calculations. Thus, it is likely that
σ ≫ σcrit in order for larger strangelets to remain stable
should the surface of a quark star be composed of these.
The importance of pressure anisotropy in our model was
shown. Lower surface tensions might be obtained by using
gravitational models, which further enhance pressure
anisotropy, but we have also shown that the surface
tangential pressure could have limiting values if our surface
tension plots are extrapolated. Finally, in terms of the use of
the CFL EoS, our results support observations made by
Thirukkanesh et al. [28] that the linear EoS is a good
approximation to the CFL EoS for particular combinations
of the QCD gap energy and the MIT bag constant.
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