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The first-order relativistic fluid theories of dissipation proposed by Eckart and Landau-Lifshitz have
been proved to be unstable. They admit solutions which start in proximity of equilibrium and depart
exponentially from it. We show that this behavior is due to the fact that the total entropy of these fluids,
restricted to the dynamically accessible states, has no upper bound. As a result, these systems have the
tendency to constantly change according to the second law of thermodynamics and the unstable modes
represent the directions of growth of the entropy in state space. We, then, verify that the conditions of
stability of Israel and Stewart’s theory are exactly the requirements for the entropy to have an absolute
maximum. Hence, we explain how the instability of the first-order theories is a direct consequence of the
truncation of the entropy current at the first order, which turns the maximum into a saddle point of the total
entropy. Finally, we show that recently proposed first-order stable theories, constructed using more general
frames, do not solve the instability problem by providing a maximum for the entropy, but, rather, are made
stable by allowing for small violations of the second law.
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I. INTRODUCTION

In the gravitational wave era [1] it is necessary, more
than ever, to have at our disposal relativistic hydrodynamic
theories of dissipation which are well-suited for numerical
implementation. Heat conduction and viscosity, in particu-
lar bulk viscosity [2], are thought to play a major role in
neutron star mergers, and understanding these transport
processes is necessary for a reliable interpretation of the
data [3,4]. Special relativistic fluid dynamics is also an
essential tool in high-energy nuclear physics, where it is
successfully used to describe the quark-gluon plasma
formed in heavy ion collisions [5].
The literature is rich with alternative theories of dis-

sipation [6–10], possessing different mathematical proper-
ties and physical insight, whose central purpose is mostly to
solve the pathological aspects of the minimal models of
[11,12]. However, born as the straightforward relativistic
generalizations of Navier-Stokes and of the Fourier law
[13], the theories of Eckart and Landau-Lifshitz still appear,
intuitively, as a natural way of embedding viscosity and
heat conduction in a relativistic framework.
The aim of this paper is to provide a physical perspective

on the fundamental origin of incompatibility of this kind of
straightforward Navier-Stokes approach with relativistic
thermodynamics. Furthermore, understanding the cause
of the incompatibility will allow us to interpret the
physical content of the most important modern theories
of dissipation depending on how they solve this structural
inconsistency.

Among all the troublesome properties that a Navier-
Stokes-type theory exhibits (which include acausality and
differential equations of amixed hyperbolic-parabolic form),
we will focus here on the instability of the equilibrium.
Hiscock and Lindblom [14] have shown that, if homo-
geneous perfect-fluid configurations are slightly perturbed,
the disturbance can growwith no bound, producing runaway
solutions. This phenomenon is in contrast with our under-
standing of dissipation as the process which leads thermo-
dynamic systems to converge to the equilibrium state as time
goes to infinity.
The physical interpretation of this instability has never

been completely clarified. Some qualitative studies were
carried out by Carter [15] for the case of the heat
conduction, which led to the conclusion that these anoma-
lous behaviors might arise from an improper redistribution
of the inertia between the particle and the entropy current.
However, the apparently natural “regular” solution that
these arguments seemed to suggest [16] has been proven to
lead to a fluid model which is in turn unstable [17].
The most well known successful alternative to the Eckart

and Landau-Lifshitz theories is the Israel-Stewart second-
order theory [6], which has been shown to be causal and
stable (for linear perturbations from equilibrium), if appro-
priate choices of the parameters are adopted [18].
Interestingly, [9,19,20] recently proved that, if different
hydrodynamic frames from those considered by [11,12] are
considered, stability and causality may be actually restored
in a first-order theory. This unexpected result reveals that
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the pathological behavior of the models of Eckart and
Landau-Lifshitz does not arise directly from the first-order
truncation, but must have a more subtle origin.
Since both the second-order theories and the general-

frame first-order theories admit the original formulations of
Eckart and Landau-Lifshitz as particular cases, they can be
stable only within a particular range of values of their
parameters. In both cases the stability conditions can be
obtained only though a detailed perturbative analysis about
equilibrium [18,21] and the conditions one obtains lack an
intuitive physical interpretation [22]. This has lead some
authors to consider the Israel-Stewart theory too compli-
cated and artificial and to claim that the thermodynamic
background is not sufficiently understood [23].
In this paper we clarify both the physical origin of the

instability of the first-order theories and the thermodynamic
meaning of the stability conditions of the models of Israel
and Stewart [6] and Bemfica et al. [20].
Throughout the paper we adopt the spacetime signature

ð−;þ;þ;þÞ and work in natural units c ¼ kB ¼ 1.

II. MATHEMATICAL PRELIMINARIES

To understand the origin of the instability of Eckart and
Landau-Lifshitz theories we first need to know, from a
mathematical perspective, why this phenomenon is not
expected to occur in real dissipative systems. In this section
we briefly recall the foundations of irreversible thermody-
namics and set the stage for our discussion.

A. Entropy as a Lyapunov function

Given a set of dynamical variables zj, which obey first-
order equations of motion of the form

_zj ¼ F jðzkÞ; ð1Þ

we say that a smooth (i.e., continuous, differentiable and
with continuous partial derivatives) function

S ¼ SðzjÞ ð2Þ

is a Lyapunov function of the system if
(i) S admits an absolute maximum, i.e., there is a state

defined by the values zjeq such that

SðzjÞ ≤ SðzjeqÞ ∀ zj; ð3Þ

(ii) the maximum value of S is reached only in
ðzj ¼ zjeqÞ, so the point of absolute maximum is
unique;

(iii) S is a nondecreasing function of time:

dS
dt

¼ ∂S
∂zjF

j ≥ 0: ð4Þ

When the system admits a function S of this kind, then the
state ðzjeqÞ is an equilibrium state of the system. In fact, if
the system has an initial condition

zjð0Þ ¼ zjeq; ð5Þ

then S has its maximum possible value at t ¼ 0. Since S
cannot decrease and ðzjeqÞ is the only state in which S is
maximum, then we necessarily have

zjðtÞ ¼ zjeq ∀ t ≥ 0: ð6Þ

The state of equilibrium can also be shown to be Lyapunov
stable [24], namely for any ϵ > 0 there is a κ > 0 such that,
if

δjkðzjð0Þ − zjeqÞðzkð0Þ − zkeqÞ ≤ κ2; ð7Þ

where δjk is the Kronecker delta symbol, then

δjkðzjðtÞ − zjeqÞðzkðtÞ − zkeqÞ ≤ ϵ2 ð8Þ

for any t ≥ 0. Intuitively, this means that if the system starts
“close enough” to the equilibrium state, then it will remain
“close enough” forever. This is due to the fact that, to run
away from equilibrium, the system should make S
decrease, which is forbidden. Therefore, a system which
is Lyapunov stable does not admit runaway solutions from
equilibrium, but only solutions which converge to it, or
evolve around it moving on surfaces at constant S.
In the kinetic theory of ideal gases, for finite systems

governed by Boltzmann’s transport equation, the entropy
(defined as minus Boltzmann’s H-functional, see e.g., [25])
satisfies all the requirements to be a Lyapunov function [26]
over the state-space with fixed constants of motion, namely
the total energy, linear momentum, angular momentum and
possibly particle numbers or (in the case of a gas of quasi-
particles) “the superfluid velocity” [25,27]. For this reason,
once the constants of motion are assigned in the initial
conditions, there is a unique equilibrium state and this state
is guaranteed to be Lyapunov stable.
In a generic thermodynamic system, the existence,

uniqueness and stability of the global thermodynamic
equilibrium are ensured only if (for fixed values of the
constants of motion, which will appear in the equation of
state of the system [28]) the entropy is a Lyapunov
function, see [29,30]. For this to be true, all the defining
conditions (i,ii,iii) need to be fulfilled. When hydrody-
namic models are formulated, however, the validity of the
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third requirement (which is nothing but the second law of
thermodynamics) is usually enforced by construction,
while in many cases the conditions (i) and (ii) are not.
The main goal of this paper is to show that the instability

of the Eckart and Landau-Lifshitz first-order theories is the
result of the fact that in these theories the entropy does not
have a maximum value and it may diverge even if the total
energy and momentum of the system are conserved.
Therefore, the existence of runaway solutions has a clear
thermodynamic origin and is rooted in the fact that it is
favorable for the system to depart from the perfect fluid
state because this leads to an increase of entropy.

B. The degrees of freedom of the theory

Since our aim is to study the entropy as a function over
all the configurations that the system is allowed explore, it
is necessary to analyze this configuration space in detail.
Throughout the paper we will consider a fluid whose
energy-momentum tensor can be decomposed into a
perfect-fluid part and a nonequilibrium deviation Tμν as
follows

Tμν ¼ ðρþ PÞuμuν þ Pgμν þTμν: ð9Þ

The fluid is supposed not to interact with any other external
field, so that we can impose energy-momentum conserva-
tion

∇μTμν ¼ 0: ð10Þ

With the only exception of subsections VI A, VI B and VI
F, we will always assume for simplicity that the particle
number is not conserved (zero chemical potential) and that
the fluid in thermodynamic equilibrium behaves as an ideal
gas of ultra-relativistic particles. Therefore, the equilibrium
pressure P and the equilibrium internal energy ρ are related
by the kinetic identity

P ¼ 1

3
ρ ð11Þ

and a radiation-type equation of state

ρ ¼ aRΘ4 ð12Þ

holds, where Θ is the (equilibrium) temperature and aR is a
constant. The rest-frame (equilibrium) entropy density s
can be obtained from the Euler relation

sΘ ¼ ρþ P; ð13Þ

which immediately implies

s ¼ 4

3
aRΘ3: ð14Þ

This choice of fluid is made just to have a reference model
in which all the calculations can be easily performed
analytically. In fact, our purpose is not to give another
proof of the instability of the first-order theories (which is a
well-known fact), but to understand its thermodynamic
meaning. Our simplified model, therefore, will only serve
as a guiding example to the mechanisms of the instability,
but the most important results of the paper will be shown
(when necessary) to hold in full generality.
The total flow of entropy is assumed to be described by

an entropy four-current

sμ ¼ suμ þ σμ; ð15Þ

where σμ is a nonequilibrium contribution, which in general
vanishes when Tμν ¼ 0. The second law of thermodynam-
ics has the local form [31,32]

∇μsμ ≥ 0: ð16Þ

In the following, we will work for simplicity in a flat
spacetime with global inertial coordinates. Therefore,
assuming that the fluid occupies a finite volume, we define
the total entropy of the system at a given time as

S ¼
Z

s0d3x: ð17Þ

Equation (16), then, implies

dS
dt

≥ 0; ð18Þ

which is the second law in its global form.
In a general hydrodynamic model, the state of the fluid at

a given time can be completely assigned by determining the
values of all the hydrodynamic fields in that particular
instant of time. Therefore, the state-space of the system is
the set of all the possible fluid configurations. In our
example, to specify the configuration of the fluid com-
pletely, we need to know at least four independent
equilibrium quantities, such as Θ and the three spatial
components uj of the four-velocity (from now on we adopt
the notation that the index j runs over the spatial compo-
nents only: j ¼ 1, 2, 3). Regarding the degrees of freedom
introduced by the dissipative terms, one needs to make a
more careful analysis.
Let us focus, for definiteness, on the case of bulk

viscosity, given by a choice of the nonequilibrium con-
tributions of the form

Tμν ¼ Πðgμν þ uμuνÞ: ð19Þ

The scalar Π is the viscous stress. In Newtonian hydro-
dynamics, the value of Π is usually determined from the
Navier-Stokes assumption
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Π ¼ −ζ∂juj: ð20Þ

This implies that, in Newtonian hydrodynamics, if we
assign the value of uj everywhere (on the hypersurface at
constant time), then the value of Π is automatically
determined (analogous arguments hold for the shear stress
and the heat flux, assuming the Fourier law). Therefore, in
Newtonian hydrodynamics, the presence of dissipation
does not introduce new degrees of freedom.
In relativistic hydrodynamics, however, equation (20)

cannot hold in every reference frame, because it is not
covariant. The most trivial relativistic generalization of (20)
is provided by the first-order prescription

Π ¼ −ζ∂νuν: ð21Þ

The presence of a term ∂tu0 implies that the knowledge of
the four-velocity along the hypersurface at constant time is
not enough to constrain the value of Π. Instead, the
foregoing equation can be inverted as follows,

∂tu0 ¼ −∂juj −
Π
ζ
; ð22Þ

which shows that in relativity Π can be considered a new
degree of freedom of the model [14] and (22) is the new
equation of motion that closes the system.1 Therefore, in a
relativistic model for bulk viscosity, we need 5 independent
hydrodynamic fields to completely specify the state (i.e.,Θ,
uj and Π).
This relativistic enlargement of the state-space occurs

whenever one constructs, in a preferred reference frame, a
parabolic equation of the kind ðA∂t þ B∂2

xÞf ¼ 0 and then
moves to a generic frame through a Lorentz boost. The
derivatives in space become, in the new reference frame,
linear combinations of derivatives in both space and time,
producing a term proportional to B∂2

t f and therefore
increasing the number of degrees of freedom of the model.
More details about this mechanism can be found in
Appendix, where a brief analysis for the case of the
diffusion equation (whose instability in relativity is for-
mally identical to the instability of Landau-Lifshitz, see
[33]) is provided. In the appendix we also give an intuitive
explanation of the connection underlined by [18] between
stability and causality (although the problem of causality is
not explicitly addressed in the present work).
In summary, the approach of extended irreversible

thermodynamics [34,35] of treating the dissipative terms
as degrees of freedom is unavoidable in relativity. In this

sense, there is no conceptual difference between the second
order theories (where the dissipative terms are promoted to
degrees of freedom explicitly) and the first order theories
(where, for the case of Eckart and Landau-Lifshitz, this is
hidden behind the fact that in the rest frame of the fluid
element there are no derivatives in time).
We will show that this inevitable extension of the state

space is the origin of the instability. In fact, it produces a
new class of available thermodynamic states of the total
fluid (which have no Newtonian analogue), and this
generates novel paths in the state space in which the
entropy can grow without any bound.

III. INSTABILITY OF THE ECKART THEORY OF
HEAT CONDUCTION

The first example we examine is the model for heat
conduction proposed by Eckart [11].

A. The instability mechanism

An energy-momentum tensor of the form

Tμν ¼ ðρþ PÞuμuν þ Pgμν þ qμuν þ uμqν ð23Þ

is assumed. The four-vector qμ is the heat flow and satisfies
the geometrical constraint

uμqμ ¼ 0; ð24Þ

while the entropy four-current is postulated to be

sμ ¼ suμ þ 1

Θ
qμ: ð25Þ

Therefore, this theory is formulated in the general form
presented in subsection II B with

Tμν ¼ qμuν þ uμqν σμ ¼ 1

Θ
qμ: ð26Þ

Let us consider a homogeneous portion of fluid. Then the
Eqs. (10) and (16) acquire the simpler form (we recall that
we work in a flat spacetime with global inertial coordinates)

∂tT0ν ¼ 0 ∂ts0 ≥ 0: ð27Þ

The first equation implies that the energy and momentum
densities, defined respectively as

E ≔ T00 Pj ≔ T0j; ð28Þ

are necessarily conserved during the evolution of homo-
geneous fluids. The second equation of (27) is the local
version of (18) for homogeneous systems. Note that in
homogeneous fluids the quantity per unit volume which
needs to increase to ensure the validity of the second law is

1It can be rigorously proven that (21) produces a new degree of
freedom by verifying that if we replace Π by −ζ∇νuν in the
energy conservation relation ∂μTμ0 ¼ 0, the resulting equation
has a second order term ∂t∂tu0 (which has no Newtonian
analogue). This implies that we need to specify also ∂tu0 (or
equivalently Π) in the initial conditions.

L. GAVASSINO, M. ANTONELLI, and B. HASKELL PHYS. REV. D 102, 043018 (2020)

043018-4



not the rest-frame entropy density s, but the entropy density
s0, measured in the frame in which the fluid is homo-
geneous. It is important to keep this difference in mind,
because we will see that the Lorentz contraction of volumes
plays a role in the instability.
Now our aim is to show that, for fixed values of E and

Pj, the density s0 can become arbitrarily large by varying
the remaining unconstrained hydrodynamic variables. In
this way it will be automatically proven that the entropy has
no upper bound and thus cannot be a Lyapunov function for
the system.
It is sufficient to work with Pj ¼ 0. Then, we can use the

invariance under rotations of the fluid element to restrict
ourselves to the case in which

u0 ¼ γ u1 ¼ γv u2 ¼ u3 ¼ 0; ð29Þ

where

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð30Þ

From (29), one can easily show that the constraint (24)
explicitly reads

q0 ¼ vq1: ð31Þ

Let us briefly count the degrees of freedom. According to
the discussion of subsection II B, to specify the state of the
fluid completely we need to know, for the case of heat
conduction, the value of 5 variables (v, Θ, q1, q2, q3).
However, as we said before, there are 4 constraints (E, P1,
P2, P3). This means that the system is in principle allowed
to visit a 1D manifold of states (which we can parametrize
e.g., with v) compatibly with four-momentum conserva-
tion. So we need to study how s0 varies along this manifold.
First of all, we note that the conditions P2 ¼ P3 ¼ 0,

combined with the third equation of (29), immediately
imply

q2 ¼ q3 ¼ 0: ð32Þ

Now, recalling Eq. (23), we need to employ the two
remaining constraints

E ¼ 4Pγ2 − Pþ 2γq0

P1 ¼ 4Pγ2vþ γq1 þ γvq0 ¼ 0 ð33Þ

to write Θ and q1 as functions of v. Note that we have used
the kinetic identity (11) to substitute ρwith 3P. With a little
algebra, and with the aid of equation (31), one can show
that the system (33) is equivalent to

P ¼ 1þ v2

3 − v2
E q1 ¼ −

4γv
3 − v2

E: ð34Þ

The second equation can be used to rewrite the zeroth
component of (25) in the form

s0 ¼ γs
1þ v2

: ð35Þ

Combining Eqs. (11), (12) and (14) one can show that

s ¼ 4

�
aRP3

3

�
1=4

: ð36Þ

Using this expression into (35), together with the expres-
sion for the pressure given in (34), we finally obtain

s0 ¼ s̃ð1 − v2Þ−1=2ð1þ v2Þ−1=4
�
1 −

v2

3

�
−3=4

; ð37Þ

where we have defined

s̃ ≔
4

3
ðaRE3Þ1=4: ð38Þ

Now we immediately see that s0 has no upper bound. In
fact, as v → �1,

s0 → þ∞: ð39Þ

This proves that the entropy does not have a maximum, so
it is not a Lyapunov function for Eckart’s theory.

B. Physical interpretation of the instability

We can, now, provide a physical interpretation of the
instability of Eckart’s theory and why runaway solutions are
admitted. Let us consider the homogeneous fluid configu-
ration we presented in the previous subsection (withPj ¼ 0)
and let us impose v ¼ 0. From (29) and (34) we find

uj ¼ 0 P ¼ 1

3
E qj ¼ 0: ð40Þ

These equations imply that the fluid is at rest (uj ¼ 0), in
local thermodynamic equilibrium (qj ¼ 0), with rest-frame
energy density ρ ¼ 3P ¼ E. It is a well-known result of
kinetic theory [26] that this fluid configuration should
correspond to the state of global thermodynamic equilibrium,
i.e., of absolute maximum entropy, compatibly with the
conservation of the total energy and momentum. This
configuration should therefore be stable, because any physi-
cally allowed (i.e., compatible with the conservation laws)
spontaneous deviation from it would result in a decrease of
the total entropy. In the case of Eckart’s theory, however, this
is not the case.
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To see this in more detail let us consider a state with a
small v > 0. From the second equation of (34) we have

q1 ≈ −
4

3
Ev: ð41Þ

This corresponds to a configuration in which the fluid has
accelerated in the positive direction 1, using the heat flux q1

as rocket fuel. In fact, the total momentum is still zero
because the energy flow of the heat in the negative direction
1 compensates the translational momentum of the fluid. We
can compute the entropy in this state, expanding equa-
tion (37) to the second order, obtaining

s0 ≈ s̃

�
1þ v2

2

�
: ð42Þ

We see that the entropy is an increasing function of v2. Now
the origin of the instability is clear: since there is heat flux,
entropy is necessarily produced, but if s0 grows, then v2

must increase, leading to a larger heat flux and therefore to
a larger heat production. The fluid, then, accelerates more
and more until it reaches the speed of light, where s0

diverges, as can be seen in Fig. 1.
We have shown that the origin of the instability of

Eckart’s theory is fundamentally thermodynamic. Since the
theory is constructed in a way to ensure the exact validity of
the second law, the system will naturally evolve to the
available state with maximum entropy. However, the
perfect fluid state, identified by the condition v ¼ 0, is

not the maximum of the entropy, but only a saddle point:
restricting the entropy to the homogeneous configurations
only, the perfect fluid state is the absolute minimum point.

C. The dynamics of the instability

The problems of Eckart’s theory are often attributed to
the Fourier-type law [36], namely the fact that the heat flow
is expressed as [11]

qμ ¼ −kΘðgμν þ uμuνÞ
�∇νΘ

Θ
þ uσ∇σuν

�
; ð43Þ

where k is the conductivity coefficient. However, in our
calculations we have never used explicitly the above
expression. Since our analysis is purely thermodynamic
(i.e., it deals only with the instantaneous properties of the
system in a given state and not with its dynamical evolution
in time), we see that the problem of Eckart’s theory is more
fundamental: it arises directly from the first-order expan-
sion of the entropy current, Eq. (25). Equation (43)
produces the instability only because it encodes the second
law in the model.
Nevertheless, we now show that the mechanism for the

instability we have presented in the previous subsection
produces the homogeneous unstable mode of Eckart’s
theory identified by [14], proving the complete consistency
of our analysis with the first-order stability studies.
Since we are working with global inertial coordinates,

taking the component μ ¼ 1 of Eq. (43) gives

q1 ¼ −kð∂1Θþ u1uσ∂σΘþ Θuσ∂σu1Þ: ð44Þ

We retain only the first order in v and use the fact that the
configuration is homogeneous to find

q1 ¼ −kΘ _v: ð45Þ

Combining with (41) we get the exponential growth law

_v ¼ Γþv; ð46Þ

with a rate

Γþ ¼ 4E
3kΘ

: ð47Þ

This formula for Γþ is the formula of the imaginary
frequency of the unstable mode identified by Hiscock
and Lindblom [14], cf. Eq. (52) therein. Now, we can
use the existence of this runaway solution to prove that the
entropy density, for small v, needs to have the second-order
expansion given in Eq. (42).
We consider the general equation for the entropy

production of Eckart’s theory,

-1 -0.5 0 0.5 1
v

0

1

2

3

4

5

FIG. 1. Plot of the Eckart normalized entropy per unit volume
s0=s̃ as a function of the velocity v, as given in equation (37). As
can be seen, the state v ¼ 0 is not the maximum of the entropy
density, but the minimum among the homogeneous configura-
tions that the system is allowed to explore. As discussed in the
main text, this is the origin of the instability.
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∇νsν ¼
qνqν
kΘ2

: ð48Þ

At the second order in v it reduces to

∂ts0 ¼
q1q1

kΘ2
; ð49Þ

Using (45) and (46) we can recast it into the form

∂ts0 ¼ kΓþv_v: ð50Þ

However it is easy to verify that

s̃ ¼ kΓþ; ð51Þ

which, plugged into (50), gives

∂ts0 ¼
s̃
2
∂tðv2Þ: ð52Þ

Then, considering that s0ðv ¼ 0Þ ¼ s̃, we recover (42).
Equation (52) shows that the instability (i.e., the fact that v2

grows) is a direct result of the second law (i.e., the fact that
s0 grows) and this can only be true if the entropy is not
maximal in v ¼ 0.
It is interesting to note that in this subsection we have

followed an opposite path with respect to the previous ones.
We have started directly from the first-order stability
analysis of [14] and we have studied the runaway solution
directly. Using Eq. (48), we have tracked how the entropy
changes with time during the runaway, obtaining s0ðtÞ.
Then, making the change of variable

s0ðtÞ ¼ s0ðvðtÞÞ; ð53Þ

we obtained the function s0ðvÞ directly. Hence, we have
shown that the unstable modes probe the convexity of the
entropy near v ¼ 0. In this sense, the existence of the
runaway solutions is the marker of its saddle point nature,
showing that, since the perfect fluid state is not Lyapunov
stable, the entropy cannot be a Lyapunov function of the
system. This argument is fully general and applies beyond
the toy-model we are considering here.

D. Comparison with the Newtonian theory

The fact that the runaway solutions are a purely
relativistic effect is now evident. In fact, the dependence
of s0 on v in the expansion (42) is an order v2 (where we
recall that v is measured in units of the speed of light).
Furthermore, from (35) we also see that the convexity is
due to the presence of coefficients like γ, which encodes the
relativistic contraction of volumes, a phenomenon which
does not exist in Newtonian physics. However, in the light
of the discussion of subsection II B, it is now possible to

explain the fundamental mathematical difference between
the two theories in more detail.
Let us consider the 0j component of the Eckart energy-

momentum tensor (23):

Pj ¼ ðρþ PÞu0uj þ q0uj þ qju0: ð54Þ

To obtain the Newtonian limit we need to take the limit

ρ → þ∞ u0 → 1; ð55Þ

obtaining the expression for the momentum density

Pj ¼ ρuj: ð56Þ

Hence, in the Newtonian limit

Pj ¼ 0 ⇔ uj ¼ 0: ð57Þ

Since in Newtonian physics the heat flux qν does not give
any contribution to the momentum, this means that the fluid
configurations with v ≠ 0 cannot be explored when the
total momentum density is zero. Therefore, the mode that
gives rise to the instability [which is the way in which the
system can probe the profile of (37)] is not dynamically
allowed and the fluid is forced to remain at rest.
Again, this is just a reformulation of the statement that

the state space of the relativistic fluid has a larger
dimension with respect to the Newtonian one. A further
confirmation comes from the fact that, as we see in (45), the
unstable mode is made possible only because of the
presence of the time derivatives in the relativistic Fourier
law (43), which makes q1 a degree of freedom of the
relativistic theory.

IV. INSTABILITY OF FIRST-ORDER BULK
VISCOSITY

The instability mechanism we have presented in the
previous section is not a specific feature of Eckart’s model
for heat conduction, but is a general problem of both
[11,12] theories. To see this, we perform an analogous
study for the case of bulk viscosity. Note that both Eckart
and Landau-Lifshitz theories treat this dissipative phe-
nomenon in the same way, producing an instability which
has been observed also in numerical simulations [37].

A. The instability mechanism

Let the stress-energy tensor be

Tμν ¼ ðρþ Pþ ΠÞuμuν þ ðPþ ΠÞgμν; ð58Þ

and assume an entropy current

sμ ¼ suμ: ð59Þ
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The non-equilibrium stress correctionTμν is, then, given by
(19), while the correction to the entropy current is σμ ¼ 0.
The reference perfect fluid is again assumed to be the one
introduced in subsection II B. We remark that the
assumption that the fluid is an ultra-relativistic ideal gas
must be considered in this section only a prescription for
the equation of state and not a real microscopic interpre-
tation, otherwise the bulk viscosity should vanish identi-
cally. Furthermore, again we focus on homogeneous
configurations.
The line of reasoning is similar to that of subsection III A,

with the difference that (as was shown by Hiscock and
Lindblom [14]) the configuration in which the total momen-
tum is zero is stable for homogeneous perturbations.
Therefore, to see the unstable behavior of the fluid we need
to work with an unperturbed state in which the fluid is
moving. Without any loss of generality, we can impose E,
P1 > 0, and

P2 ¼ P3 ¼ 0: ð60Þ

The degrees of freedom of the system now are (v, Θ, Π),
while we have two relevant constraints (E, P1). Thus, again,
we are dealing with a 1D manifold of physically accessible
states. The constraint equations read

E ¼ ð4Pþ ΠÞγ2 − P − Π

P1 ¼ ð4Pþ ΠÞγ2v: ð61Þ

These equations can be used towriteP andΠ as functions of
v along the curve, giving

P ¼ 1

3
ðE − P1vÞ Π ¼ P1

v

�
1þ v2

3

�
−
4

3
E: ð62Þ

From the second equation we note that necessarily v ≠ 0,
which means that the system is dynamically allowed to exist
only inside the open segment 0 < v < 1. Setting Π ¼ 0 in
the second equation we obtain the speed at which the fluid
moves in local thermodynamic equilibrium,

veq ¼
2E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2 − 3ðP1Þ2

p
P1

: ð63Þ

The first equation of (62) can be used to compute the entropy
density s0 as a function of v (performing analogous calcu-
lations to those presented in the previous section) giving

s0 ¼ s̃ð1 − v2Þ−1=2
�
1 −

P1

E
v

�
3=4

: ð64Þ

It is easy to show that veq is the only stationary point of s0.
However, again, this point corresponds to the minimum of
s0ðvÞ, as can be seen in Fig. 2.

Now we are able to understand the instability of first-
order bulk-viscous fluids. If the system starts with v > veq,
then, since the entropy must grow, the fluid will be forced
to accelerate until it reaches the speed of light. If, instead, it
is prepared with v < veq, then it is forced to slow down
until it stops. However, from the second equation of (62),
we see that, as v → 0, the viscous stress diverges, Π → ∞,
and, as Π explodes, so does the entropy production.
Therefore this system, of equations approaches in a finite
time a singularity.
It is clear why this instability mechanism is forbidden in

Newtonian hydrodynamics: for these accelerations to be
possible, the viscous stress needs to contribute to the total
momentum, to ensure that the latter is constant during the
evolution of the fluid.

V. HOW TO SOLVE THE PROBLEM

Since the theories of Israel and Stewart [6] and Bemfica
et al. [20] have been proved to be (conditionally) stable,
they manage to avoid the instability mechanisms we
presented in the previous sections. To understand how this
is possible, we need first of all to clarify what does not work
in the formulation of the theories of Eckart [11] and Landau
and Lifshitz [12] in the first place. In order to capture the
physical essence of the problem, in this section we will deal
with a thermodynamic toy-model which contains all the
physical ingredients we need.
Consider a thermodynamic system with two degrees of

freedom ðu; qÞ, with no constants of motion and such that
in a neighbourhood of the origin the entropy has the form
(neglecting overall additive constants)

0 0.2 0.4 0.6 0.8 1
v

0

0.5

1

1.5

2

FIG. 2. The normalized entropy per unit volume s0=s̃ as a
function of the velocity v, as given by Eq. (64), for P1=E ¼ 2=3.
The state of local thermodynamic equilibrium is given by Eq. (63)
(for P1=E ¼ 2=3 we find veq ¼ 3 −

ffiffiffi
6

p
≈ 0.55) and corresponds

to the minimum of s0=s̃. The particular value P1=E ¼ 2=3 has
been selected for aesthetic reasons, the qualitative behavior of the
function does not depend on this choice.
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S ¼ −u2 þ uq − q2: ð65Þ

The function Sðu; qÞ is a quadratic form and can be
rewritten in the diagonal representation

S ¼ −
1

4
ðuþ qÞ2 − 3

4
ðu − qÞ2: ð66Þ

Therefore, S admits a unique absolute maximum, given by

u ¼ q ¼ 0; ð67Þ

which is the stable equilibrium state of the system.
Now, let us assume that jqj ≪ juj for every realistic

initial condition of the system, so that we can expand S to
the first order in q and neglect the contribution q2 in (65).
Hence, we obtain a first-order entropy

SI ¼ −u2 þ uq: ð68Þ

The eigenvalues of the Hessian of SI are

λ− ¼ −1 −
ffiffiffi
2

p
λþ ¼ −1þ

ffiffiffi
2

p
: ð69Þ

Since λþλ− ¼ −1 < 0, the point u ¼ q ¼ 0 is no longer the
maximum of the entropy, but it is a saddle point. Therefore,
we see that neglecting second-order contributions to the
entropy one may destroy its nature of Lyapunov function.
This is what happens when a first-order theory is con-
structed: the omission of second-order terms in the entropy
current can lead to the removal of contributions which are
essential to determine the overall concavity of the total
entropy, transforming its maximum into a saddle point.
There are two possible solutions to this problem. The

first is to keep all the contributions to the second order.
Clearly, if the microscopic input is realistic, all the terms
should add up to give an entropy which is maximum in
equilibrium (at least for small deviations from it), guaran-
teeing its Lyapunov stability. In fact, Sec. VI is devoted to
show that the conditions of stability of the second-order
theory of Israel and Stewart [6] are those which make the
total entropy maximum in equilibrium. The same result
holds also for the nonperturbative theories of Carter [8],
Lopez-Monsalvo and Andersson [38], and Gavassino et al.
[10], since they have the same stability properties as [6],
see [39].
There is, however, an alternative approach. If one already

knows that the equilibrium state must be u ¼ q ¼ 0, then a
first-order model for dissipation should just ensure that the
system naturally evolves to this state and that

dSI
dt

≥ 0 ð70Þ

only up to the first order in q. In other words, if SI is just the
first order expansion of the “real” S, then its growth should

be guaranteed except for terms of order q2. In this way one
has the freedom to construct the equations of motion for u
and q, tuning them in a way to ensure both the stability of
the equilibrium, as an exact constraint, and the validity of
the second law, as an approximate condition. Section VII is
devoted to show that the possibility of small violations of
the second law is the key to ensure the stability of the first-
order theories in more general frames proposed by Bemfica
et al. [19,20] and Kovtun [9].
We remark that in the present paper the terms first-order

and second-order theory are interpreted according to the
standard definition introduced by Hiscock and Lindblom
[18] and currently used in textbooks [40]. The terminology
refers to the order of the expansion of the entropy four-
current used to derive the equations of motion (a procedure
which always requires one to move to the second order,
even in the construction of first-order theories, as shown by
Hiscock and Lindblom [18]), not to the order in the
displacements from equilibrium of the final hydrodynamic
equations. Therefore, according to this definition, Israel-
Stewart remains a second-order theory even when it is
linearized for small deviations about equilibrium (the
equations retaining the Cattaneo-type structure, see
Appendix). As a consequence, the theories of heat con-
duction proposed by Andersson and Lopez-Monsalvo [41]
and Ván and Biró [23], although referred to as first-order,
are considered in the present paper as belonging to the class
of second-order theories.

VI. STABILITY OF THE SECOND ORDER
THEORIES

We show that the conditions of stability of the theory of
Israel and Stewart [6] in the Eckart frame obtained by
Hiscock and Lindblom [18] coincide with the condition for
the total entropy of the fluid to be maximum in equilibrium
(and thus to be a Lyapunov function).

A. Brief summary of the theory

In the second-order theory one assumes that the stress-
energy tensor of the fluid has the form

Tμν ¼ðρþPþΠÞuμuνþðPþΠÞgμνþqμuνþuμqνþΠμν

ð71Þ

with

uμqμ ¼ uμΠμν ¼ Π½μν� ¼ Πμ
μ ¼ 0: ð72Þ

The three dissipative contributions qμ, Π, Πμν are respec-
tively heat flux, bulk viscosity and shear viscosity.
Furthermore, it is assumed that there is a conserved particle
current nμ ¼ nuμ (we work in the Eckart frame) such that

∇μnμ ¼ 0: ð73Þ
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The entropy current is expanded according to the logic of
the extended irreversible thermodynamics approach [35]:

sμ ¼ suμ þ qμ

Θ
−
1

2
ðβ0Π2 þ β1qνqν þ β2ΠνρΠνρÞ

uμ

Θ

þ α0Π
qμ

Θ
þ α1

Πμνqν
Θ

: ð74Þ

The quantity s is the equilibrium entropy, i.e., the entropy
which is computed using the equilibrium equation of state

s ¼ sðρ; nÞ ð75Þ

of the fluid. This model is said to be a second-order theory
because the entropy four-current is expanded to the second
order in the deviations from local thermodynamic equilib-
rium. The second-order terms in qμ, Π, Πμν appearing in
equation (74) are, indeed, the novelty introduced in the
model and their presence can compensate (if the coeffi-
cients satisfy appropriate conditions) the inevitable explo-
sion of the zeroth and first order contributions we described
in the previous sections.
The equations of motions, which we do not need to

report here, are constructed in way to ensure that

∇μsμ ¼
qμqμ
kΘ2

þ Π2

ζΘ
þ ΠμνΠμν

2ηΘ
≥ 0; ð76Þ

where k, ζ and η are respectively the heat conductivity, the
bulk viscosity and the shear viscosity coefficient.

B. The stability conditions

Let us summarize the steps followed by Hiscock and
Lindblom [18] to find the conditions for the second-order
theory to admit a stable equilibrium.
First of all, they consider the stationary solutions to the

system of equations, which are good candidates to be also
equilibrium configurations. Clearly, for the configuration to
be stationary, one needs to set the entropy production to
zero. Thus from (76) they find that all the dissipative terms
must vanish:

qμ ¼ Π ¼ Πμν ¼ 0: ð77Þ

Therefore, the energy-momentum tensor of the fluid in
equilibrium must be that of a perfect fluid, in agreement
with kinetic theory [26,31]. They also use the equations of
motion explicitly to obtain the remaining equilibrium
conditions which are provided by kinetic theory:

∇μðuν=ΘÞ þ∇νðuμ=ΘÞ ¼ 0 ð78Þ

and

∇μ

�
ρþ P − Θs

nΘ

�
¼ 0: ð79Þ

Once the candidates to be equilibrium states are found, they
write the equations of motion for perturbations about these
states. Subsequently, they show that it is possible to define a
current Eμ (equation (44) in [18]) which is quadratic in the
deviations and satisfies the condition

∇μEμ ¼ −
�
δqμδqμ
kΘ2

þ ðδΠÞ2
ζΘ

þ δΠμνδΠμν

2ηΘ

�
≤ 0; ð80Þ

where δf is the perturbation of a generic hydrodynamic
variable f. Introducing, then, the functional

E ¼
Z

E0d3x; ð81Þ

Eq. (80) implies

dE
dt

≤ 0: ð82Þ

Finally, they find the conditions under which

E ≥ 0 ð83Þ
for any small deviation from equilibrium, obtaining a set of
constraints for the equation of state and the coefficients of
the model. When these constraints are satisfied, then,
combining (82) and (83), one obtains

EðtÞ ∈ ½0; Eð0Þ� ∀ t ≥ 0; ð84Þ

implying, for arguments analogous to those we exposed by
us in Sec. II A, the Lyapunov stability of the configuration.

C. Equivalence with the maximum entropy principle

At this point, showing that the stability conditions found
by Hiscock and Lindblom [18] imply that the entropy is
maximum at equilibrium is straightforward.
First of all, we note that (77) implies

δqμ ¼ qμ δΠ ¼ Π δΠμν ¼ Πμν: ð85Þ

Therefore we can combine (76) with (80) to obtain

∇μsμ ¼ −∇μEμ: ð86Þ

Considering that S and E are given respectively by (17)
and (81), Eq. (86) implies

SðtÞ þ EðtÞ ¼ Sð0Þ þ Eð0Þ: ð87Þ

Now we impose that the theory is stable and that all the
perturbations (which conserve the original value of the
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constants of motion of the fluid) decay to zero as t → þ∞,
implying

Sðþ∞Þ ¼ Seq Eðþ∞Þ ¼ 0: ð88Þ

The second condition results from the fact that Eμ is
quadratic in the perturbation and therefore is exactly zero
in equilibrium. The quantity Seq is simply the value of the
entropy in the unperturbed equilibrium state. If we plug
these two conditions in (87), we obtain

Seq ¼ Sð0Þ þ Eð0Þ; ð89Þ

which plugged again into (87) implies

E ¼ Seq − S: ð90Þ

Since this relation holds for any initial (dynamically
accessible) small perturbation, we have proved that the
functional E is nothing but the second-order correction to
the entropy in the deviations from equilibrium. The stability
condition (83), then, implies

Seq ≥ S; ð91Þ

which is the requirement that the entropy is maximum in
the equilibrium state and is, therefore, a Lyapunov function.

D. Example: Stable heat conduction

It is interesting to verify how the second-order terms in
the entropy current counterbalance the explosion of the
first-order theories with a concrete example. We consider
again the Eckart fluid introduced in subsection III A, but we
replace the entropy current (25) with the Israel-Stewart
prescription

sμ ¼ suμ þ 1

Θ
qμ −

β1qνqν
2Θ

uμ: ð92Þ

The stability condition (i.e., the condition to have E ≥ 0)
obtained by [18] for this model reads

β1 >
1

ρþ P
: ð93Þ

Let us verify that this makes the state v ¼ 0 (i.e., the
homogeneous perfect fluid configuration) a local maximum
of the entropy, as discussed in Sec. III A.
Since the stress-energy tensor is the same, the steps

which lead us to Eq. (42) are unchanged, apart from the fact
that we need to add to s0 the second order contribution,
obtaining

s0 ¼ s̃

�
1þ v2

2

�
−
β1q1q1

2Θ
: ð94Þ

We have made the replacement qνqν ¼ q1q1 because
−q0q0 is a fourth order term, see Eq. (31). The condition
that the entropy is maximum in equilibrium reads

s̃ ≥ s0; ð95Þ
which, with the aid of (41), implies

β1 > s̃Θ
�
4

3
E
�

−2
: ð96Þ

All the quantities appearing in the inequality above are
background terms [as can be seen from (94)], thus they can
be evaluated at v ¼ 0, which, from (40), we know to be
characterized by the conditions

ρ ¼ E s ¼ s̃: ð97Þ

However, from (11) and (13), we also have the chain of
identities

sΘ ¼ 4

3
ρ ¼ ρþ P: ð98Þ

With these conditions it is possible to prove the equivalence
of (96) with (93). We have thus verified that the condition
of dynamic stability of the Israel-Stewart theory coincides
with the condition of maximum entropy in equilibrium.

E. The problem of the instability for large deviations

Equation (93) is the condition for s̃ to be the maximum
value of s0 for small deviations from equilibrium. However,
it is not guaranteed that this maximum is absolute. In fact,
Hiscock and Lindblom [42] have shown that, for suffi-
ciently large deviations from equilibrium, the system can
still admit runaway solutions. Let us analyze the behavior
of s0, given in (92), for an arbitrarily large v.
We can split the entropy density as

s0 ¼ s0I þ s0II; ð99Þ

where s0I is the zerothþ first order contribution, given by
Eq. (37), and

s0II ¼ −
β1γ

2Θ
ðq1q1 − q0q0Þ ð100Þ

is the second-order contribution. To make a parametric
study, we take as a prescription for β1 the generic
expression

β1 ¼
b

ρþ P
; ð101Þ

where b ≥ 0 is a free constant coefficient. With calculations
which are analogous to those made in Sec. III one can
obtain the expression
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s0II
s̃
¼−

b
2
v2ð1−v2Þ−1=2ð1þv2Þ−5=4

�
1−

v2

3

�
−3=4

: ð102Þ

Plugging this formula into (99) and recalling (37), we
obtain

s0

s̃
¼
�
1þ2−b

2
v2
�
ð1−v2Þ−1=2ð1þv2Þ−5=4

�
1−

v2

3

�
−3=4

:

ð103Þ

In Fig. 3 we show how the profile of s0=s̃ varies for
different values of b. For b < 1 the stability condition (93)
for small deviations from equilibrium is not fulfilled and
the state v ¼ 0 is a minimum. The situation b ¼ 1 is the
case in which the second order expansion of s0 around
v ¼ 0 is zero. We see that the next nonvanishing order in v,
the fourth order, is still positive: the perfect fluid state is still
a minimum, and therefore is unstable. For 1 < b < 4 the
second order term of the expansion is negative, thus v ¼ 0
is a maximum. However, it is a local maximum, because for
large v2 the positive divergence of s0I still dominates over
the negative contribution of s0II . For the critical value b ¼ 4

the two divergences compensate each other exactly and we
have s0 → 0 as v → �1. For b ≥ 4 the theory is stable for
any homogeneous deviation from equilibrium and v ¼ 0 is
likely to be the absolute maximum of the entropy (to be
certain one should also make a study involving non-
homogeneous configurations).
Therefore, we have shown that the condition (93) is not

enough to guarantee that the entropy is a Lyapunov

function over the whole configuration space, but there is
an interval of values of the parameter b (1 < b < 4) in
which the homogeneous perfect fluid is only a point of
local maximum.
Again, we remark that to study the stability of the theory

there is no need to know the details of the equations of
motion of the fluid. In fact, we have not invoked their
hyperbolic nature or their telegraph-type form. The only
property needed is to know that they are constructed in a
way to ensure that the entropy current (92) has a non-
negative divergence.

F. The effect of the particle conservation

In their analysis, Hiscock and Lindblom [42] consider
the case b ¼ 5 and, even if they are working with an
ultrarelativistic gas and they impose b > 4, they still find
that the model is unstable for large deviations from
equilibrium. The key difference with our case is that they
have a conserved particle number, while we are working at
zero chemical potential. The conservation of the particle
number has the effect of increasing the instability for
large v.
To show this, we first note that (73) implies in the

homogeneous case

n0 ¼ γn ¼ const: ð104Þ

Now, since equation (34) is a consequence only of the
structure of the energy-momentum tensor and not of the
equation of state, it holds also when the particle number is
conserved. Therefore, assuming the ideal gas law (valid in
the nondegenerate limit)

P ¼ nΘ; ð105Þ

we obtain

Θ ¼ γ
E
n0

1þ v2

3 − v2
; ð106Þ

which is Eq. (15) of [42]. This relation implies that the
temperature diverges when v2 → 1. This is the key differ-
ence with respect to our case at zero chemical potential,
because in that case all the rest-frame thermodynamic
quantities remain finite also when the fluid approaches
the speed of light.
To see the implications on the stability, we insert (106)

into (100). As a result, the Lorentz factors cancel out and s0II
is now finite even for v2 ¼ 1−. The second-order contri-
bution to the entropy is, therefore, no longer able to
compensate the divergence of the first-order term s0I and
the fluid is unstable for any b when sufficiently large
deviations from equilibrium are considered, in agreement
with [42].
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FIG. 3. The normalized Israel-Stewart entropy per unit volume
s0=s̃ as a function of the velocity v, as given by Eq. (103), for
b ¼ 0, 1, 3, 4, 5. We see that the local stability condition b > 1
obtained by Hiscock and Lindblom [18] corresponds to the
requirement that the equilibrium state v ¼ 0 is a local maximum
of the entropy. However, if we want to ensure the global stability,
this maximum must be a global maximum and we need to impose
the stronger requirement b ≥ 4.
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To complete the comparison, in Fig. 4 we show the
profile of s0ðvÞ for the fluid considered by [42]. The
analytical formula is not reported here, but it can be easily
obtained by following analogous steps to those which lead
to (103), knowing that the equilibrium entropy per particle
associated with the equation of state (105) is

s
n
¼ − ln

�
n
Θ3

�
þ const: ð107Þ

We see from figure 4 that s0ðvÞ has a minimum in
jvj ¼ vc ≔ 0.51188, which is the critical velocity at which
the fluid becomes unstable. Now the thermodynamic origin
of the instability of Israel-Stewart is clear: for jvj < vc the
direction of positive entropy growth points toward v ¼ 0,
thus jvj decreases. On the other hand, for v > vc, the speed
has to increase to enforce the validity of the second law.
Thus, the bifurcation found by [42] at jvj ¼ vc is a direct
result of the entropy profile given in Fig. 4 and of the
strict obedience of the system to the second law of
thermodynamics.

VII. FIRST-ORDER THEORIES IN MORE
GENERAL FRAMES

There is increasing attention on new first-order theories
which have been proved to be causal and stable, if the
transport coefficients are appropriately tuned [9,20]. The
idea is to use alternative hydrodynamic frames to both
Eckart’s and Landau-Lifschitz [19,21]. In this final section
we show that the stability of these theories is enforced by

allowing for small violations of the second law of
thermodynamics.

A. A model for bulk viscosity

To simplify our analysis we restrict our attention to a
purely bulk-viscous fluid. The stress-energy tensor we
consider is

Tμν ¼ ðρþ PþAÞuμuν þ Pgμν: ð108Þ

The equilibrium perfect-fluid energy-momentum tensor is
still the one we presented in Sec. II B. The deviations from
equilibrium, instead of being located in a viscous stress
contribution, are given by a correction A to the internal
energy of the fluid,

Tμν ¼ Auμuν: ð109Þ

Instead of the standard dependence of the viscous stresses
on ∇μuμ only, the nonequilibrium correction to the energy
density is assumed to be

A ¼ χ1
uμ∇μρ

ρþ P
þ χ2∇μuμ: ð110Þ

The transport coefficients χ1 and χ2 are functions of ρ. The
entropy current is assumed to have the form

sμ ¼
�
sþA

Θ

�
uμ; ð111Þ

which, then, implies that the nonequilibrium correction is

σμ ¼ A
Θ
uμ: ð112Þ

By using the conservation of the energy-momentum
(∇μTμν ¼ 0), it can be shown that the equation for the
entropy production reads

Θ∇μsμ ¼ −A
uμ∇μΘ

Θ
: ð113Þ

It is now immediate to see that to ensure the validity of the
second law (16) for any fluid configuration we need to
impose

χ1 ≤ 0 χ2 ¼ 0: ð114Þ

However, following the argument of Kovtun [9], one may
consider that, since (111) is just an approximate formula for
the entropy current, its four-divergence needs to be only
approximately non-negative. In particular, if one considers
that the deviations from equilibrium are small, then the
effect of the dissipative terms on the hydrodynamic
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FIG. 4. Israel-Stewart entropy density s0, given in Eq. (92), for
a nondegenerate ultrarelativistic homogeneous heat-conducting
gas with conserved particle number, zero total momentum and
β1 ¼ 5=ðρþ PÞ. This is the case considered by Hiscock and
Lindblom [42]. We have imposed E ¼ n0 ¼ 1 and we have set the
units in a way that s0ð0Þ ¼ 1. As can be seen, v ¼ 0 is only a
local maximum of the entropy density and this is the origin of the
instability for large deviations from equilibrium.
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evolution are small and we can impose the perfect-fluid
relation

uμ∇μρ ≈ −ðρþ PÞ∇μuμ ð115Þ

as approximately satisfied. Therefore, using the definition
(110), at the lowest order we can replace A in (113) with
the approximate expression

A ≈ ðχ1 − χ2Þ
uμ∇μρ

ρþ P
: ð116Þ

The constraint of non-negative entropy production, then,
requires only

χ1 − χ2 ≤ 0: ð117Þ

As can be seen, this is a much weaker constraint than (114).
Indeed, the only way to make the theory stable is to impose
that the two separate conditions (114) are both violated,
while keeping (117) fulfilled. In particular, Bemfica et al.
[20] have derived the stability conditions

χ2 > χ1 > 0: ð118Þ

Thus we see that a necessary condition of stability is that
the second law is not exactly respected, but it holds only as
an approximation (see also [22]). Our goal in the next
subsection is to explain why this is the case.

B. Thermodynamic analysis

Similarly to what we did in the previous sections, we
consider a homogeneous portion of the fluid and we impose
for simplicity Pj ¼ 0. Then it is immediate to see that there
is no way for the fluid to change its velocity. This implies
that the relevant degrees of freedom of the fluid element are
only two (ρ and A) and we have only one relevant
constraint ðEÞ. Again, we are dealing with a 1D manifold
of dynamically allowed states. We parametrize it with A
and we use the constraint equation (28) to write ρ as a
function of A:

ρ ¼ E −A: ð119Þ

From (111), we immediately obtain

s0 ¼ sþA
Θ
: ð120Þ

With calculations analogous to those made in the previous
sections we can obtain the formula for the entropy density
as a function of the parameter of the curve:

s0 ¼ s̃

�
1 −

A
4E

��
1 −

A
E

�
−1=4

: ð121Þ

The graph of this function is shown in Fig. 5.
Also in this case the perfect fluid state (given by A ¼ 0)

is a saddle point of the entropy and not its maximum.
Therefore, if we enforce the entropy production to be
strictly non-negative, a perturbation which makes the
system start with A ≠ 0 is not allowed to decay but can
only grow. This tells us that it is necessary to violate the
second law of thermodynamics to ensure that the perfect
fluid state is a stable equilibrium configuration.
Let us study more in detail the evolution of small

homogeneous perturbations around A ¼ 0. We consider
perturbations of the generic hydrodynamic function f to
have the form

δfeΓt; ð122Þ
where δf is an infinitesimal constant, and we impose that
these perturbations preserve the constraints (thus they are
dynamically allowed). From (110) we can write the
perturbation A at the first order as

δA ¼ 3χ1
4E

Γδρ: ð123Þ

Note that the perturbation of ∇μuμ is exactly zero because
the fluid remains at rest. If we vary (119) we obtain
δρ ¼ −δA, which, plugged in the equation above, gives

Γ ¼ −
4E
3χ1

: ð124Þ
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FIG. 5. The normalized entropy per unit volume s0=s̃ as a
function of the dimensionless parameter A=E as given by
Eq. (121). For A ¼ 0 the fluid is in local thermodynamic
equilibrium. We see that, also in this case, the entropy, restricted
to the manifold of the dynamically allowed states, is not maximal
in equilibrium. Thus if the second law was exactly respected, the
theory of Bemfica et al. [20] would necessarily be unstable.
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The condition for the perturbation to decay is Γ < 0, which
implies χ1 > 0. Thus we recover one of the two stability
conditions (118) found by Bemfica et al. [20]. On the other
hand, if we want the second law to be strictly satisfied, then
we need impose Γ ≥ 0, which in turn implies χ1 < 0. In this
case we recover the first condition of (114).
The reason why in this configuration there is such a

strong contradiction between the stability criteria and the
second law is that we have constructed the system in a way
to enforce∇μuμ ¼ 0, while imposing uμ∇μρ ≠ 0. Thus, the
approximate relation (115) does not hold for this initial
condition and (116) is no longer valid.
We remark that the amount of entropy which is annihi-

lated is a second order in A. However, the entropy current
(111) is only an approximation to the first order in A of the
physical entropy current. Then, as we explained in Sec. V,
this violation should not be considered a reason of concern,
but, instead, represents the fundamental origin of the
success of the theory.

VIII. CONCLUSIONS

In relativity, spatial gradients become linear combina-
tions of derivatives in both space and time when one moves
from one reference frame to the other. The number of
degrees of freedom of the relativistic models of dissipation
is, then, larger with respect to the Newtonian counterpart.
This implies that the state-space has a bigger dimension and
hosts a wide set of configurations which do not have a
Newtonian analogue. We have shown that the instability of
the Eckart [11] and Landau and Lifshitz [12] theories arises
from the fact that it is always possible to find a dynamically
allowed path in this extended state space along which the
total entropy grows with no bound.
This fact tells us that the instability of both Eckart and

Landau-Lifshitz theories has a purely thermodynamic
nature: the assumed equilibrium state of the fluid (such
as, for example, an homogeneous perfect fluid configura-
tion) is not the maximum of the total entropy, but only a
saddle point. The unstable modes evolve along the direc-
tions in the state space in which the entropy takes larger
values with respect to the value assumed in the (supposed)
equilibrium state. This also shows that the reason why these
fluids do not obey the Onsager regression hypothesis (as
has been pointed out by Garcia-Perciante et al. [36]) is that
an equilibrium state does not exist and the entropy is not a
Lyapunov function of the system.
We have then proved that the conditions for stability

obtained by Hiscock and Lindblom [18] are the require-
ments for the second-order theory to produce a system with
a maximum entropy state (for small deviation from
equilibrium). The second-order contributions act in a
way to compensate the explosion of the fist-order theory.
In addition, we have seen that the same study can also be
used to prove the possible instability of the Israel and
Stewart [6] theory for large deviations from equilibrium. In

fact, we have verified that the critical speed vc ¼ 0.51188
found by Hiscock and Lindblom [42] at which a homo-
geneous heat-conducting ultrarelativistic fluid becomes
unstable marks a saddle point of the entropy above which
the latter starts growing with no bound, producing the
instability. Finally, we have shown that the first-order
theory of Bemfica et al. [20] does not restore the concavity
of the entropy, but deals with the stability problem by
allowing for small violations of the second law. In this kind
of first-order theories the strict obedience to the second-
principle would lead again to the (nonphysical) explosion
of small perturbations.
Themainmessage of the present analysis is that, assuming

a first-order expansion of the entropy current, one is
selectively removing second-order contributions to the total
entropy of the fluid. In this way, the concavity properties of
the entropy are altered and, as a consequence, the absolute
maximum is typically converted into a (nonphysical) saddle
point. The instability, then, arises when the second law is
imposed, enforcing the growth of the approximated entropy
at all the orders. In this way, the thermodynamic principle
which originally was ensuring the Lyapunov stability of the
system is converted into the main source of instability,
pushing the system along the non-physical growing branches
which depart from the equilibrium state.
There are only two possible solutions to this problem.

The first is to retain all the second-order contributions
(which leads to the higher order formulations like Israel and
Stewart [6] and Carter [8]) the second is to break the second
law of thermodynamics at the second order (which leads to
the first-order theories in more general frames proposed by
Bemfica et al. [20]).
Finally, our discussion also clarifies that in relativity the

approach of extended irreversible thermodynamics [34,35],
which promotes the dissipative terms to degrees of free-
dom, is a mathematical necessity. Even the first-order
theories, which are not explicitly designed according to
this philosophy, implicitly contain this assumption, which
manifests itself as soon as the fluid is set into motion. Once
this general fact is accepted, all the interpretative difficul-
ties disappear and thermodynamics rules once again.
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APPENDIX: INSTABILITY OF THE DIFFUSION
EQUATION IN RELATIVITY

In this appendix we study the instability of the diffusion
equation in special relativity. Despite its simplicity, this
example provides physical intuition of how, changing
reference frame, one might produce unexpected

WHEN THE ENTROPY HAS NO MAXIMUM: A NEW … PHYS. REV. D 102, 043018 (2020)

043018-15



instabilities. A detailed analysis of the mathematical
aspects of the problem can be found in Kostädt and Liu
[33], who proved that all the problems concerning the
diffusion equation in relativity arise from its ill-posedness
in the boosted frame. They also showed that the instability
mechanisms of Landau and Lifshitz [12] are formally
identical to those of the diffusion equation, ensuring the
generality of the results of the present appendix.

1. The role of the relativity of simultaneity

Consider a one-dimensional medium whose temperature
field Θ obeys the diffusion equation (in rest frame of the
medium)

∂Θ
∂t ¼ D

∂2Θ
∂x2 ; ðA1Þ

where D is, for simplicity, a constant. We ignore for the
moment the issues related with causality, accepting the idea
that signal propagation in this medium can be superluminal.
We are interested in the evolution of Θ, as seen by an
observer who is moving with velocity v ≠ 0 with respect to
the medium. The associated Lorentz transformation is

t0 ¼ γðt − vxÞ x0 ¼ γðx − vtÞ; ðA2Þ

with

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ðA3Þ

implying

∂
∂t ¼ γ

� ∂
∂t0 − v

∂
∂x0

� ∂
∂x ¼ γ

� ∂
∂x0 − v

∂
∂t0

�
: ðA4Þ

In the boosted frame, Eq. (A1) now reads

∂Θ
∂t0 − v

∂Θ
∂x0 ¼ Dγ

�∂2Θ
∂x02 − 2v

∂2Θ
∂t0∂x0 þ v2

∂2Θ
∂t02

�
: ðA5Þ

Note that Eq. (A1) was of the first order in the reference
frame of the medium, but it becomes of the second order in
any other reference frame, due to the presence of the third
term in the right-hand side of (A5). Therefore, if in the rest-
frame of the medium the state is entirely specified once we
know the value of Θ everywhere at the initial time, in any
other frame we need to know both Θ and ∂Θ=∂t0. The
principle of relativity has enlarged the state-space, increas-
ing the number of degrees of freedom of the system, as we
discussed in Sec. II B.
The origin of the problem is the relativity of simultaneity

[43], namely the fact that events which are simultaneous in
a given reference frame may not be simultaneous in an
other one. In fact, if there was an absolute notion of

simultaneity, which would imply that t0 ¼ t0ðtÞ, we would
have

∂
∂x ¼ ∂x0

∂x
����
t

∂
∂x0 þ

∂t0
∂x

����
t

∂
∂t0 ¼

∂x0
∂x

����
t

∂
∂x0 ðA6Þ

and the second derivative in time in equation (A5) would
not appear.
In some astrophysical contexts [44], diffusion-type

models for relativistic dissipation are included in numerical
simulations assuming that in the reference frame consid-
ered in the simulation (which does not necessarily coincide
with the rest-frame of the medium) the evolution can be
approximated as quasistatic. This assumption is then used
to neglect the term ∂2

t0Θ in (A5). The resulting system is,
then, not structurally different from a Newtonian model (it
has the same number of degrees of freedom) and stability
can be restored.

2. Stability analysis

Let us study the evolution of homogeneous configura-
tions in the frame which is moving with respect to the
medium. Equation (A5) reduces to

∂Θ
∂t0 ¼ Dγv2

∂2Θ
∂t02 ; ðA7Þ

whose general solution is

Θðt0Þ ¼ Θ0 þ
_Θ0

Γþ
ðeΓþt0 − 1Þ; ðA8Þ

where we have defined

Γþ ¼ 1

Dγv2
> 0: ðA9Þ

The space of the initial conditions is determined by two
parameters (Θ0 and _Θ0), instead of only one. Furthermore,
we see that, whenever _Θ0 ≠ 0, the solution diverges for
large times. Hence, we have verified that the existence of
unstable solutions arises directly from the possibility of
setting the time-derivative of Θ freely and is, therefore, a
pure consequence of the relativistic extension of the
state-space.
To understand how the instability can develop in a

boosted reference frame, while it does not appear in the
frame of the medium, let us examine solutions given by
initial conditions of the type

_Θ0 ¼ ΓþΘ0: ðA10Þ

Going to the medium rest-frame, using the transformation
rule (A2), we immediately see that these solutions have the
form
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Θðt; xÞ ¼ Θ0eΓþγðt−vxÞ; ðA11Þ

which is obviously a solution of (A1). We see that along
surfaces at constant time the space dependence of Θ is

Θðt; xÞ ∝ e−Γþγvx: ðA12Þ

This means that (assuming v > 0 for definiteness) the
unstable solutions in the boosted frame correspond to
configurations in the frame of the medium in which an
infinite amount of energy is shifting uniformly to the right
in the spacetime diagram, coming from x ¼ −∞. This
again shows how the relativity of simultaneity, making even
the notion of homogeneity frame-dependent, is a key
ingredient to make the instability possible.
It is interesting to note that in the Newtonian limit

(v → 0) the growth rate diverges (and does not go to zero as
one might intuitively think), Γþ → þ∞. This happens also
in the theories of [11,12]. The reason is that, since the
Newtonian theory has less degrees of freedom than the
relativistic one, we cannot obtain it just by taking the limit
of the equations of motion, but we also need to make a
particular choice for the initial conditions.
This can be understood by considering again Eq. (A7),

evaluated at t0 ¼ 0:

∂2Θ
∂t02 ð0Þ ¼

_Θ0

Dγv2
: ðA13Þ

If we take the limit v → 0, while keeping _Θ0 fixed and
finite, we find

∂2Θ
∂t02 ð0Þ → ∞: ðA14Þ

We, thus, obtain a fast diverging solution. However, we
know that in the Newtonian limit _Θ0 cannot be set
arbitrarily, but must be zero, as predicted by (A1).
Therefore, to obtain the Newtonian theory, we need to
send v → 0, while selecting the initial condition for _Θ0

directly from the Newtonian equation (A1). This gives the
expected result:

∂2Θ
∂t02 ð0Þ ¼ 0: ðA15Þ

3. The Cattaneo hyperbolic model

The Cattaneo equation [45] is a modified diffusion
equation that ensures finite signal propagation speed.
This equation, as shown by Israel and Stewart [6], arises
naturally from a relativistic thermodynamic approach, and
includes a relaxation term with a timescale τ > 0,

τ
∂2Θ
∂t2 þ ∂Θ

∂t ¼ D
∂2Θ
∂x2 : ðA16Þ

It is known (see e.g., [33]) that the foregoing equation
(which now is of the second order in the time-derivative
even in the rest-frame) admits a signal propagation which
cannot exceed the speed

cII ¼
ffiffiffiffi
D
τ

r
; ðA17Þ

called second-sound speed. It is, then, clear that the theory
is compatible with causality requirements if and only if

cII ≤ 1: ðA18Þ

We can easily verify that this modification solves also the
stability problems. In fact, from (A4), we find

τ
∂2Θ
∂t2 ¼ τγ2

�∂2Θ
∂t02 − 2v

∂2Θ
∂t0∂x0 þ v2

∂2Θ
∂x02

�
: ðA19Þ

The equation for the homogeneous solutions (A7), then,
becomes

τγ
∂2Θ
∂t02 þ ∂Θ

∂t0 ¼ Dγv2
∂2Θ
∂t02 ; ðA20Þ

whose general solution is

Θðt0Þ ¼ Θ0 þ
_Θ0

Γ−
ðeΓ−t0 − 1Þ; ðA21Þ

with

Γ− ¼ 1

γðDv2 − τÞ : ðA22Þ

The stability requirement is Γ− < 0, which (imposed for
every v2 < 1) implies (A18).

4. Connection between causality and stability

Olson and Hiscock [17], Hiscock and Lindblom [18]
have shown that, in Israel-Stewart-type theories, stability
and causality are essentially equivalent. As we saw in the
foregoing subsection, the Cattaneo equation is no exception
and we can use it to give a simple physical intuition of this
connection.
Let us consider a temperature profile of the form

Θ ¼ Θ0eΓγðt−vxÞ Θ0 > 0: ðA23Þ

Clearly, if Γ > 0 the underlying theory of which this profile
is solution is unstable in the boosted frame.
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Neglecting overall additive constants, the energy per unit
length (measured in the rest-frame of the medium) is

ρ ¼ cvΘ; ðA24Þ

where cv is the specific heat (note that this is one of the
approximations one needs to invoke in order to derive
(A1) ). Now, let us define the function

EðtÞ ≔
Z þ∞

t
ρðx; tÞdx; ðA25Þ

which measures the amount of energy contained in the half-
line x > t at the time t. Since the half-line x > t1 is the
causal past of x > t2 (for t1 < t2), then, if the theory
is causal, we need to have Eðt1Þ ≥ Eðt2Þ, because no
energy can be transferred to a region from outside its past

light-cone. Therefore, if the theory is causal, it must be
true that

dE
dt

≤ 0: ðA26Þ

On the other hand, it is immediate to verify that

EðtÞ ¼ Eð0ÞeΓγð1−vÞt; ðA27Þ

which proves that if the theory is unstable (Γ > 0), then it is
not causal (dE=dt > 0).
This argument shows that in a causal theory there is not

enough energy to develop instabilities of the form (A23). In
fact, it is necessary to allow for superluminal transport of
energy to transfer the energy from x ¼ −∞ to the bulk of
the system sufficiently fast (in the rest-frame of the
medium) to produce the instability.
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