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Because of the long-range nature of the gravitational interaction, self-gravitating systems never reach
thermal equilibrium in the thermodynamic limit but remain trapped in nonequilibrium stationary states, or
quasiequilibrium states. Here, we deal with quasiequilibrium self-gravitating systems by representing them
as a collection of smaller subsystems that remain infinitely close to equilibrium. These subsystems
represent regions from where thermalization spreads later over the whole system. Such a methodological
attitude allows representing their statistical properties as a superposition of statistics, i.e., superstatistics. It
has the advantage of producing Tsallis distributions, widely used in fitting observational data, as a special
case of a more general family of distributions, while relying only on conventional statistical mechanics.
Focusing on the three universality classes of superstatistics, namely, χ2, inverse-χ2, and log-normal
superstatistics, we discuss the velocity distributions arising in this picture and confront them with
independent numerical simulations. Then, we study the consequences on typical phenomena arising in self-
gravitating systems. We discuss the Jeans instability in the classical regime, for a static and an expanding
universe, and extend our results to the quantum regime by applying the Wigner-Moyal procedure. Our
results reveal that quasiequilibrium systems remain stable for larger perturbations, as compared to
equilibrium systems, meaning that a larger mass is needed to initiate the gravitational collapse. This is
particularly relevant for Bok globules because their mass is of the same order as their Jeans mass; hence, a
small deviation from equilibrium may lead to a different prediction for their stability. We also discuss the
Chandrasekhar dynamical friction in a quasiequilibrium medium and analyze the consequences on the
decay of globular orbits. Our results suggest that the superstatistical picture may offer a partial solution to
the problem of the large timescales shown by numerical N-body simulations and semianalytical models.
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I. INTRODUCTION

Enormous progress has been achieved in dealing with
self-gravitating systems when, despite the apparent diffi-
culties associated with the long-range nature of the gravi-
tational interaction, statistical mechanics tools have been
employed. Although such a progress is unquestionable, our
current understanding of self-gravitating systems remains
far from complete, and whether actual statistical mechanics
theories can adequately explain their dynamical behavior is
still a matter of debate. At the heart of this debate lie a
number of peculiar—and even exotic—properties exhibited
by self-gravitating systems [1], such as negative specific
heats, the inequivalence of statistical ensembles, and non-
ergodicity. Furthermore, in the infinite particle limit,
N → ∞, self-gravitating systems never reach the thermo-
dynamic equilibrium, characterized by the Maxwell-
Boltzmann (MB) velocity distribution, but remain trapped
in a stationary nonequilibrium state [2], i.e., a quasiequili-
brium or quasi-stationary state.

For finite N, the evolution of a self-gravitating system
proceeds in two steps [3,4]. Starting from a nonstationary
initial condition, the system first undergoes a relaxation
regime that drives it to a stationary state which, in general,
is nonthermalized. The system stays in this quasiequili-
brium state for a certain time, say τðNÞ. Then, the quasi-
stationary state starts evolving in a second regime, and the
system is expected to evolve toward the maximum entropy
configuration, that is, to thermal equilibrium when this is
well defined. In the limit N → ∞, however, the lifetime of
the stationary state diverges, i.e., τ → ∞, and the thermo-
dynamic equilibrium is never reached. This requires going
beyond the realm of equilibrium statistical mechanics and
exploring statistical methods inherent to nonequilibrium
systems.
One fruitful route that has been widely explored in the

past years consists in changing the paradigm with which
one approaches such systems to the so-called nonextensive
statistical mechanics (NSM) [5]. The latter is an extension
of statistical mechanics based on the Tsallis entropy, i.e., a
one-parameter generalization of the entropy. The motiva-
tion behind this program is that self-gravitating systems*kam.ourabah@gmail.com
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constitute a special case of a wider class of systems
characterized by long-range (and unscreened) interactions;
that is, d-dimensional systems where the interparticle
potential decays at large distance r as 1=rα with α ≤ d.
Beyond gravitational systems, these include, for example,
unscreened Coulomb systems [6], two-dimensional vorti-
ces [7], or wave-particle interactions [8]. In this case, the
interactions are of a nonextensive nature; i.e., their energy
grows faster than linearly with the volume, making the
employment of NSM quite natural.
A number of successes have been achieved in this

direction, either in reproducing observational data [9–15]
or revisiting key phenomena [16–25] and clarifying fun-
damental statistical and thermodynamic aspects [26,27] of
gravitational systems. Despite these successes, such a
program faces some limitations as well. On the one hand,
Tsallis distributions arising in the framework of NSM seem
not universal enough to cover the rich behavior of self-
gravitating systems, as indicated by a number of observa-
tions [28] and simulations [29]. On the other hand, the
recourse to NSM, as a universal framework for self-
gravitating systems, is not immune from a number of
conceptual difficulties that call into question its universal
validity. For instance, the origin of the parameter q that
underpins these distributions remains to date unclear, and it
is generally taken as a free parameter. Besides, velocity
distributions arising in NSM are characterized by diverging
moments for some parameter values [30,31], and the
nonadditive nature of the entropy may potentially result
in thermodynamic inconsistencies [32,33].
Here, we suggest a different perspective that allows

reproducing Tsallis distributions as a special case of a more
general family of distributions, while relying solely on
conventional statistical mechanics. In this approach, quasi-
equilibrium states are taken quite literally; that is, the self-
gravitating system in a quasi-stationary state is represented
as a collection of smaller regions, considered large enough
to be treated statistically, that remain infinitely close to
equilibrium. These regions form subsystems from where
thermalization spreads later over the entire system. Clearly,
this picture assumes a form of slow modulation [34]; the
temperature is assumed to vary on a long timescale which is
much larger than the local relaxation time for each region to
reach local equilibrium. This allows decomposing the
dynamics of the system over two scales: at the level of
these small regions, the temperature is nearly constant, and
equilibrium statistical mechanics holds. At a larger scale,
however, one has to account for the temperature distribu-
tion across different regions. Such a methodological atti-
tude is known as superstatistics since it requires dealing
with a superposition of statistics. The main idea has a long
tradition in the statistical mechanics literature [35–38], but
it was first crystallized in a single formalism in Ref. [39].
The paper is organized as follows. In Sec. II, we present

the three universality classes of distributions arising in this

picture and validate them by independent numerical sim-
ulations of self-gravitating systems. We also work out some
results for future needs. In the subsequent sections, we
analyze the consequences of these quasiequilibrium dis-
tributions in typical phenomena arising in self-gravitating
systems. In Sec. III, we analyze the gravitational instability
in the classical regime, for a static and an expanding
universe. In Sec. IV, we extend our results to the quantum
regime, by using the Wigner-Moyal procedure and con-
sidering quantum statistics. In Sec. V, we examine the
Chandrasekhar dynamical friction and compute the
dynamic friction timescale for globular clusters spiraling
to the galactic center. We summarize our main results and
discuss prospects for future research in Sec. VI.

II. QUASIEQUILIBRIUM DISTRIBUTIONS

The superstatistics concept can nicely be introduced by
considering the adiabatic ansatz [40]: consider a system
that, during its evolution, travels within its state space X,
which is divided up into small cells, each characterized by a
sharp value of some parameter β. Within each cell, the
system is described by the conditional probability pðAjβÞ
to be found in a specific state A ∈ X. As β varies
adiabatically across the different cells, the joint distribution
of finding the system in the state Awith a sharp value of β is
pðA; βÞ ¼ pðAjβÞpðβÞ, viz., the De Finetti-Kolmogorov
relation. The probability pðAÞ for finding the system in the
state A is obtained by eliminating the nuisance parameter β
through marginalization and reads as a superposition of
statistics. That is,

pðAÞ ¼
Z

pðAjβÞpðβÞdβ: ð1Þ

Here, we are mainly interested in the velocity distribu-
tions (that is, A≡ v) that are characteristic of a quasiequi-
librium system, i.e., a system made up of small regions at
different (inverse) temperatures, that is, β≡ 1=kBT (here-
after, we set kB ¼ 1). Note, however, that the formalism is
much more general and such a parameter may equally well
represent any other fluctuating intensive quantity. One may
think, for instance, of a fluctuating chemical potential or an
energy dissipation rate in a turbulent fluid.
It is clear from Eq. (1) that the temperature distribution

determines the form of the emergent velocity distribution
pðvÞ. While, in each small region, one has local equilib-
rium and pðvjβÞ corresponds to a Gaussian (MB distribu-
tion), the emergent distribution pðvÞ may deviate from it
significantly. Then, the question is which forms of pðβÞ are
relevant for quasiequilibrium systems.
In principle, there are infinitely many possible temper-

ature distributions, but it is known that three universality
classes arise as universal limit statistics in majority of
known systems; the χ2 distribution, the inverse-χ2 distri-
bution, and the log-normal distribution. These universality
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classes can be obtained from purely probabilistic argu-
ments, relying on the Central Limit Theorem [41] or from
the entropy maximization scheme [42]. The emergence of
these three classes in typical situations can also be under-
stood from the shape of the velocity distributions they
produce, as discussed below. These three classes are the
following:
(a) χ2 superstatistics.—In this case, the inverse temper-

ature β follows a χ2 distribution of degree n,

fðβÞ ¼ 1

Γðn
2
Þ
�

n
2β0

�
n=2

βn=2−1e−
nβ
2β0 ; ð2Þ

where β0 ≡ hβi is the average of β. The corresponding
(d-dimensional) emergent velocity distribution, i.e.,
marginal distribution, follows from Eq. (1) as

BðvÞ ¼
Z

∞

0

dβfðβÞ
�
βm
2π

�
d=2

exp

�
−
βmv2

2

�

¼
�
β0m
πn

�
d=2 Γðnþd

2
Þ

Γðn
2
Þ
�
1þ β0

n
mv2

�
−nþd

2

: ð3Þ

The latter can be mapped onto the Tsallis distribution
(q Gaussian), emerging within the formalism of NSM,
with an entropic index q ≔ 1þ 2=ðnþ dÞ and an
effective inverse temperature β̃ ≔ β0ðnþ dÞ=n. In the
statistics literature, distributions in the form of Eq. (3)
are known as Students t distributions. They constitute
a special case of the Burr-type III distribution [43].

(b) Inverse-χ2 superstatistics.—In this case, the temper-
ature (β−1) itself is χ2 distributed. Then, β follows an
inverse-χ2 distribution,

fðβÞ ¼ β0
Γðn

2
Þ
�
nβ0
2

�
n=2

β−n=2−2e−
nβ0
2β : ð4Þ

The corresponding velocity distribution in this case
reads as

BðvÞ ¼ 2β0
Γðn

2
Þ
�
m
2π

�
d=2
�
β0n
2

�
n=2
�
mv2

β0n

�2−dþn
4

×K2−dþn
2
ð
ffiffiffiffiffiffiffiffiffiffiffi
nmβ0

p
jvjÞ; ð5Þ

where KαðxÞ is the modified Bessel function of the
second kind.

(c) Log-normal superstatistics.—In this case, β follows a
log-normal distribution,

fðβÞ ¼ 1ffiffiffiffiffiffi
2π

p
sβ

exp

�−ðln β
μÞ2

2s2

�
; ð6Þ

with an average of β given by β0 ¼ μes
2=2. In this last

case, there is no closed-form expression for the

corresponding velocity distribution BðvÞ, but it can
easily be computed numerically.

Note that there is a substantial and increasing empirical
evidence for these three universality classes, i.e., Eqs. (2),
(4), and (6), in nonequilibrium systems: χ2 superstatistics
corresponds to the statistics arising from NSM and has been
observed in many situations [5]. Experimental evidence of
log-normal superstatistics has been reported in the context
of Lagrangian and Eulerian turbulence [41,44,45], space
plasmas [31], and other systems [46], while candidate
systems for inverse-χ2 superstatistics have been discussed
in Refs. [47,48].
The universality of these three classes can be understood

from the velocity (or energy) distributions they generate,
that cover the main families of distributions encountered in
nature: for large jvj, velocity distributions corresponding to
χ2 superstatistics exhibit power-law tails, those associated
with inverse-χ2 superstatistics decay exponentially, and
log-normal superstatistics produces truncated power laws.
Such rich behavior may offer new perspectives, that go
beyond the usual scenario of NSM, in covering typical non-
Gaussian distributions observed in self-gravitating systems.
Examples of (one-dimensional) velocity distributions

emerging from the three universality classes, i.e., χ2

[Eq. (3)], inverse-χ2 [Eq. (5)], and log-normal (computed
numerically), are shown in Fig. 1. To facilitate the
comparison between the different classes, we parametrize
the distributions via the parameter q ≔ hβ2i=hβi2 (different
from the entropic index used in NSM, as explained below).
The latter is a measure of the temperature inhomogeneity in
the system and reduces to 1 for a completely thermalized
state, i.e., when fðβÞ shrinks to a Dirac delta, recovering
therefore a Gaussian distribution for BðvÞ. It can easily be
expressed, for the three classes, in terms of the parameters
of fðβÞ, as follows:

q ≔
hβ2iχ2
β20

¼ 1þ 2

n
ðn > 2Þ;

q ≔
hβ2iinvχ2

β20
¼ n

n − 2
;

q ≔
hβ2iLN
β20

¼ es
2

: ð7Þ

As it can be seen from Fig. 1, the superstatistical velocity
distributions, especially those associated with the χ2 and
log-normal classes, exhibit heavy tails; a typical feature
of quasiequilibrium self-gravitating systems, as indicated
by observations and simulations. To test the ability of these
distributions to account for deviations from the MB
distribution in quasiequilibrium self-gravitating systems,
we confront them by the results of simulations presented
in Ref. [4], that show a substantial deviation from the
Gaussian distribution. The latter are produced using the
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widely employed public code GADGET-2 (available here
http://www.mpa-garching.mpg.de/gadget/), by fixing dif-
ferent initial conditions according to the so-called water-
bag model. In Fig. 2, we show the best fits obtained with
the three universality classes of superstatistics, i.e., χ2

[Eq. (3)], inverse-χ2 [Eq. (5)], and log-normal (computed
numerically). One may see that the three classes exhibit
similar profiles, typical of quasi-stationary states.
At this stage, one should note that, even in the case where

the superstatistical distributions are not accessible in closed
form, as in the case of log-normal superstatistics, the
velocity moments hvli are accessible in an analytical form.
The latter can be simply expressed as

hvli≡
Z

vlBðvÞddv ¼ ⟪vliMBifðβÞ; ð8Þ

where h•iMB stands for an average over the (d-dimensional)
MB velocity distribution and h•ifðβÞ is an average over

the (inverse) temperature distribution fðβÞ. By combining
the moments of the three distributions, i.e., Eqs. (2), (4),
and (6),

hβliχ2 ¼
Γðn

2
þ lÞ

Γðn
2
Þ
�
2

n

�
l
βl0;

hβliinvχ2 ¼
Γðn

2
þ 1 − lÞ
Γðn

2
Þ

�
n
2

�
l−1

βl0;

hβliLN ¼ elðl−1Þs2=2βl0; ð9Þ

with those of the MB (Gaussian) distribution

hvliMB ¼ ðlþ d − 2Þ!!
ðβmÞl=2 ð10Þ

(l even), one readily obtains all superstatistical velocity
moments in an exact form. Especially useful for future
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FIG. 2. Examples of non-Gaussian velocity distributions associated with quasiequilibrium self-gravitating systems. The open circles
correspond to time-averaged velocity distributions, simulated using the public code GADGET-2 [4], with different water-bag initial
conditions. The solid lines represent the best fits obtained with χ2 (black), inverse-χ2 (blue), and log-normal (red) superstatistics.
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FIG. 1. Examples of one-dimensional superstatistical velocity distributions for (a) χ2, (b) inverse-χ2, and (c) log-normal
superstatistics, with different values of q ≔ hβ2i=β20 [cf. Eq. (7)], in a logarithmic scale to better highlight the tails. We set β0m ¼ 1.
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needs are the second-order moments. The latter can be
expressed (assuming isotropic pressure, so that the dyadic
product can be contracted: v ⊗ v → v2), for the three
universality classes, as

hv2iχ2 ¼
n

n − 2
hv2iMB ðn > 2Þ;

hv2iinvχ2 ¼
nþ 2

n
hv2iMB;

hv2iLN ¼ es
2hv2iMB; ð11Þ

which can be rewritten in terms of q ≔ hβ2i=β20
[cf. Eq. (7)] as

hv2ii ¼ d · ϕiðqÞ
T0

m
ði ¼ 1; 2; 3Þ; ð12Þ

where T0 ≡ β−10 is the mean temperature and

ϕ1ðqÞ≡ 1

2 − q
ð1 < q < 2Þ;

ϕ2ðqÞ≡ 2q − 1

q
;

ϕ3ðqÞ≡ q; ð13Þ

with i ¼ 1, 2, and 3 corresponding, respectively, to χ2,
inverse-χ2, and log-normal superstatistics. Note that, for the
three superstatistics, one has ϕiðqÞ ≥ 1, indicating that the
presence of temperature inhomogeneities tends to increase
the velocity dispersion. In the limit of a fully thermalized
state, i.e., q → 1, the distribution fðβÞ shrinks to a Dirac
delta centered at β0 and hv2ii (i ¼ 1, 2, 3) reduces to the
MB second-order moment, i.e., hv2i ¼ d · T0=m.
Before closing this section, a few remarks are in order.

First, note that we are implicitly adopting here the so-called
type-B formulation of superstatistics, i.e., we are consid-
ering locally normalized equilibrium distributions that
are averaged over fðβÞ [see, for example, Eq. (3)]. The
other alternative, known as type-A superstatistics (see, for
instance, Refs. [39,49]), consists in working with un-
normalized canonical distributions and normalizing the
marginal distribution at the very end, by introducing a
multiplicative factor. One may, however, easily switch from
one formulation to the other by properly redefining the
distribution fðβÞ. Note also that, because we are adopting
type-B formulation, the parameter q used here [Eq. (7)], in
the case of χ2 superstatistics, differs from the entropic index
used in NSM. The latter is obtained via the transforma-
tion q → 1þ ½2ðq − 1Þ�=½2þ dðq − 1Þ�.

III. JEANS MECHANISM IN THE
CLASSICAL REGIME

In this section, we analyze the consequences of the
superstatistics scenario on the Jeans instability. The latter is

the mechanism causing the gravitational collapse of inter-
stellar gas clouds and subsequent star formation. It occurs
when the internal pressure of a region filled with matter is
not strong enough to prevent gravitational collapse. The
earliest understanding of the mechanism can be traced back
to 1902 with the seminal work of Jeans [50], who showed
the existence of a physical cutoff, today known as the Jeans
wavelength λJ, such that perturbations with wavelengths
larger than λJ may grow exponentially in time. The
phenomenon, although known for a long time, has attracted
recently increased attention either from the perspective of
accounting for new effects that may significantly influence
the collapse condition, such as the presence of dissipation
[51] and viscosity [52], or revisiting the mechanism in other
paradigms, such as modified gravity theories [53,54] and
the framework of NSM [17,21].
We discuss here the Jeans mechanism in a quasiequili-

brium self-gravitating system, as defined above. To do
so, we consider an infinite self-gravitating collisionless
neutral gas, subjected to a constant gravitational potential
Φ0 ¼ cste. Initially, the gas is assumed at rest in a
quasiequilibrium state, with a constant mass density ρ0
and a mean temperature T0. In such a stationary non-
equilibrium state, the distribution has the form of BðvÞ ¼
hfMBðvÞifðβÞ [cf. Eq. (1)], where fMBðvÞ is the equilibrium
MB distribution and h•ifðβÞ denotes the average over the
temperature distribution fðβÞ. In the collisionless regime,
the space-time evolution of the one-particle distribution
function fðr; v; tÞ is given by the collisionless Boltzmann
(Vlasov) equation

∂fðr; v; tÞ
∂t þ v ·

∂fðr; v; tÞ
∂r −∇Φ ·

∂fðr; v; tÞ
∂v ¼ 0: ð14Þ

We restrict ourselves to the case of linear perturbations that
remains tractable analytically and write the distribution
function as

fðr; v; tÞ ¼ BðvÞ þ δfðr; v; tÞ; ð15Þ

where jδfj ≪ B. In this case, one may linearize Eq. (14)
and couple it with the Poisson equation for the gravitational
potential to form a closed set of equations as

∂δf
∂t þ v ·

∂δf
∂r −∇Φ ·

∂B
∂v ¼ 0;

∇2Φ ¼ 4πGρ0

Z
δfd3v; ð16Þ

where G is the gravitational constant and Φ denotes the
perturbation of the gravitational field. Note that, in Eq. (16),
we used the so-called Jeans swindle by considering that the
gravitational potential is sourced only by the fluctuations
around the uniform background density. Indeed, one may
observe that the condition Φ0 ¼ cste. (∇Φ0 ¼ 0) does not
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satisfy the Poisson equation, because it would imply a
vanishing mass density. The usual way to overcome this
inconsistency is to use the Jeans swindle by assuming that
the homogeneous density ρ0 does not contribute to the
gravitational potential. Note, however, that such a trick can
be avoided, either by the introduction of a container and the
consideration of an inhomogeneous distribution of matter
[55] or by taking into account the expansion of the Universe
(to be discussed next).
The above set of equations (16) may be solved simulta-

neously by performing a decomposition in Fourier modes.
That is,

δf ∼ eiðk·r−ωtÞ and Φ ∼ eiðk·r−ωtÞ: ð17Þ

We consider here, without loss of the generality, the x axis
to be along the direction of the wave-vector k and let
v≡ vx. Equation (16) yields

1 −
Ω2

k2

Z ∂B=∂v
v − ω=k

d3v ¼ 0; ð18Þ

where Ω ¼ ð4πGρ0Þ1=2 is the Jeans frequency. Note that,
according to Eq. (17), for ω2 > 0 (ω real), one has an
oscillatory regime, while for ω2 < 0 (ω imaginary), one has
an exponential regime, responsible for the Jeans instability.
The boundary separating the two regimes is obtained by
setting ω ¼ 0 in Eq. (18). Bearing in mind that

∂BðvÞ
∂v ¼ ∂hfMBðvÞifðβÞ

∂v ¼
	∂fMBðvÞ

∂v



fðβÞ
; ð19Þ

and using Eq. (12), one readily obtains the Jeans wave
number for the tree universality classes of superstatistics as

kðqÞJ ¼ ϕiðqÞ−1=2kJ; kJ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGmρ0

T0

s
; ð20Þ

where kJ is the Jeans wave number for an equilibrium
configuration, i.e., assuming the MB velocity distribution.
Note that in the particular case of χ2 superstatistics Eq. (20)
reduces to the Jeans wave number arising in the framework
of NSM, addressed by many authors from the kinetic [17]
or the hydrodynamic [22] point of view.
One may observe that, since thermal fluctuations tend to

increase the second-order velocity moment [see Eq. (12)],
one has in general kðqÞJ < kJ, indicating that the presence
of temperature inhomogeneities tend to stabilize the self-
gravitating system for smaller values of k. From Eq. (20),

one may define the Jeans wavelength λðqÞJ ≡ 2π=kðqÞJ ,

such that perturbations with wavelengths λ < λðqÞJ yield
harmonic oscillations while perturbations with wave-

lengths λ> λðqÞJ experience exponential growth. One may

equivalently express the Jeans mass, defined as the mass

initially contained in a sphere of diameter λðqÞJ , as

MðqÞ
J ¼ ϕ3=2

i MJ; MJ ≡ π

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ρ0

�
πT0

Gm

�
3

s
: ð21Þ

The latter is of a more practical usefulness in probing the
stability of interstellar clouds; if the mass of the cloud
exceeds the Jeans mass MðqÞ

J , the cloud will experience
gravitational collapse. Figure 3 shows the Jeans mass (21),
for the three universality classes, as a function of q ≔
hβ2i=β20. One may observe that the temperature inhomo-
geneities tend to increase the Jeans mass, reducing there-
fore the process of star formation. For the same strength of
fluctuations (the same q), the class of χ2 superstatistics
induces the most significant effect on the Jeans mass, while
the class of inverse-χ2 superstatistics has the least impact
on it.
It is customary to write the Jeans mass/length in terms of

the mean molecular mass μmp, where μ is the mean
molecular weight and mp is the proton mass. The Jeans
length and the Jeans mass can therefore be written as

λðqÞJ ∼
1.06pc
μ2

�
ϕiðqÞT0

10 K

�
1=2
�

n
104 cm−3

�
−1=2

MðqÞ
J ∼

155.98
μ2

M⊙

�
ϕiðqÞT0

10 K

�
3=2
�

n
104 cm−3

�
−1=2

: ð22Þ

In Table I, we give estimations of the Jeans mass, in the
absence and presence of temperature inhomogeneities, for a
number of astrophysical systems. For the sake of illus-
tration, we choose the intermediate value q ¼ 1.1. One may
appreciate that even relatively small deviations from the
equilibrium state, i.e., q ¼ 1, may lead to a significant
modification of the Jeans mass. This is particularly relevant

2

log-normal

inverse 2

stable

unstable

1.0 1.1 1.2 1.3 1.4 1.5
1.0

1.5

2.0

2.5

q

M
Jq

M
J

FIG. 3. Effect of temperature inhomogeneities on the Jeans
mass for the three universality classes of superstatistics, as a
function of q ≔ hβ2i=β20.
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for Bok globules (clouds of interstellar gas and dust with
temperatures of around 10 K) because their mass is of the
same order as their corresponding Jeans mass; thus, a small
deviation from the equilibrium configuration may lead to a
different prediction for their stability.
As is clear from the discussion above, the Jeans criterion

for gravitational collapse is not sensitive to the exact form
of the velocity distribution but depends only on its first
moments [cf. Eq. (20)]. Also, it is worth analyzing more
generally the dispersion relation (18) for the different
superstatistics and studying the instability growth rate.
Since we are mainly interested in the unstable modes,
we set ω ¼ iγ (γ ≥ 0) and substitute into Eq. (18). After
simple algebraic rearrangements, the dispersion relation
(18) can be written as

k2

k2J
¼ 1 −

ffiffiffi
π

2

r Z
∞

0

dβfðβÞ
�
β

β0

�
3=2 γkJ

Ωk
e

β
2β0

γ2k2
J

Ω2k2

×

"
1 − erf

 ffiffiffiffiffiffiffi
β

2β0

s
γkJ
Ωk

!#
; ð23Þ

where erfðxÞ is the Gauss error function, defined as

erfðxÞ ¼ 2ffiffiffi
π

p
Z

x

0

exp ð−t2Þdt: ð24Þ

Note that in the limit of thermal equilibrium, i.e., for
fðβÞ → δðβ − β0Þ, it reduces to the standard result [56]:

k2

k2J
¼ 1 −

ffiffiffi
π

p 1ffiffiffi
2

p γkJ
Ωk

e
γ2k2

J
2Ω2k2

�
1 − erf

�
1ffiffiffi
2

p γkJ
Ωk

��
: ð25Þ

We have solved Eq. (23) numerically for fðβÞ correspond-
ing to the three universality classes of superstatistics, i.e.,
Eqs. (2), (4), and (6). The results are shown in Fig. 4. One
may appreciate that the three classes produce qualitatively
the same effect; i.e., they tend to decrease the growth rate, a
feature that is commonly attributed [17] to the special class
of Tsallis statistics arising in the context of NSM.
It is worth examining two extreme situations where the

dispersion relation (18) can be analyzed in closed form, for
the three superstatistics. On the one hand, in the limit of
high-frequency ω, as there are no singularities, it is possible
to integrate Eq. (18) along the real axis. By Taylor
expanding ð1 − vk=ωÞ−1 and using the moments of
fðβÞ, i.e., Eq. (12), one has

TABLE I. Estimation of the Jeans mass of different astrophysical objects, for the three universality classes of superstatistics, with
q ¼ 1.1.

Object T0 (K) n (108 m−3) MJðM⊙Þ Mχ2

J ðM⊙Þ Minvχ2

J ðM⊙Þ MLN
J ðM⊙Þ

Bok globules 10 100 11.24 13.16 12.81 12.97
Diffuse molecular clouds 30 50 82.63 96.77 94.15 95.33
Diffuse hydrogen clouds 50 5.0 795.13 931.27 905.98 917.33
Giant molecular clouds 15 1.0 206.58 241.95 235.38 238.33
HII regions 104 10−3 3.79 × 109 4.44 × 109 4.32 × 109 4.37 × 109

Fermi bubbles 108 10−4 3.79 × 1017 4.44 × 1017 4.32 × 1017 4.37 × 1017

Intracluster medium 107 10−5 1.20 × 1018 1.40 × 1018 1.37 × 1018 1.38 × 1018
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FIG. 4. Unstable branches of the dispersion relation (23) computed numerically for the three universality classes of superstatistics. One
may see that the three classes have qualitatively the same effect, i.e., they tend to decrease the growth rate.
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ω2

Ω2
¼ 3ϕiðqÞ

k2

k2J
− 1; ð26Þ

which reduces to the standard dispersion relation for q ¼ 1.
In the other extreme, corresponding to low-frequency
perturbations, by using the asymptotic relation [54]

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞

xe−
x2
2

b − x
dx ≈

b≪1
1þ i

ffiffiffi
π

2

r
b ð27Þ

and considering unstable modes (ω ¼ iγ), Eq. (18) can be
written as

γ

Ω
¼ αiðqÞ

ffiffiffi
2

π

r
k
kJ

�
1 −

k2

k2J

�
; ð28Þ

where we have defined

α1ðqÞ≡
Γ½ 1

q−1�
Γ½3

2
þ 1

q−1�
1

ðq − 1Þ3=2 ;

α2ðqÞ≡
Γ½ q

q−1�
Γ½ q

q−1 −
1
2
�

ffiffiffiffiffiffiffiffiffiffiffi
q − 1

q

s
;

α3ðqÞ≡ q−3=8; ð29Þ
with i ¼ 1, 2, and 3 corresponding, respectively, to χ2,
inverse-χ2, and log-normal superstatistics. One may easily
check that αiðqÞ < 1 (i ¼ 1, 2, 3), indicating that temper-
ature inhomogeneities tend to decrease the growth rate, as
observed in Fig. 4.
Note that, besides the kinetic approach adopted here, the

other route for studying the Jeans instability involves the
hydrodynamic (fluidlike) formulation. It is instructive to
briefly comment on this alternative approach in the super-
statistics scenario. In the hydrodynamic formulation, the
Poisson equation is coupled to the continuity equation and
Euler equation, as

∂ρ
∂t þ∇ðρvÞ ¼ 0

∂v
∂t þ ðv ·∇Þv ¼ −

1

ρ
∇P −∇Φ; ð30Þ

where v is the fluid velocity and P is the pressure, related to
the temperature via an equation of state (EoS). In the
superstatistics formalism, one may use Eq. (12) to express
the pressure as follows:

P ¼ 1

3
ρhv2ii ¼ ϕiðqÞ

ρ

m
T0: ð31Þ

That is, the pressure is linked to the mean temperature T0

through an effective isothermal EoS. By combining
Eq. (31) with the hydrodynamic model (30), one readily
ends up with the Jeans wave number (20) obtained from our
kinetic approach.

Finally, and for the sake of completeness, let us discuss
the Jeans mechanism in an expanding universe background
and show how the formalism of superstatistics can be
implemented in this scenario. We will be mostly following
Ref. [57] but considering a quasiequilibrium state. For an
expanding universe, one has to account for the cosmic scale
factor aðtÞ through the Friedmann and acceleration equa-
tions. For a matter dominated Universe, the latter read as

�
_a
a

�
2

¼ 8πG
3

ρ;
ä
a
¼ −

4πG
3

ρ; ð32Þ

where the dots denote derivatives with respect to time t.
Equation (32) can be solved to give the mass density ρ as a
function of the cosmic scale factor as

ρ ¼ ρ0

�
a0
a

�
3

; ð33Þ

where ρ0 and a0 are the values of the mass density and the
scale factor at t ¼ 0. Note that, accordingly, ρ is only a
function of time and the unperturbed gravitational potential
is now depending on the space coordinate and reads as

Φ0ðr; tÞ ¼
2π

3
Gρr2; ð34Þ

such that the recourse to the Jeans swindle is no longer
necessary. From another hand, one has also to account for
the universe expansion in the distribution function itself.
In the superstatistical scenario, one has locally equilibrium
MB distributions, that are averaged over fðβÞ, i.e.,
BðvÞ≡ hfMBifðβÞ. However, since each region is experi-
encing the universe expansion, by virtue of the Hubble’s
law _r ¼ ð _a=aÞr, the local equilibrium distribution must
read as [57]

fMBðr; v; tÞ ¼
�
mβðtÞ
2π

�
3=2

exp

�
−
mβðtÞ
2

�
v −

_a
a
r

�
2
�
:

ð35Þ

Notice the time dependence of the inverse temperature β,
due to the universe expansion. In fact, during the universe
expansion, the dispersion velocity is proportional to the
inverse of the cosmic scale factor, i.e., σðtÞ ∝ 1=aðtÞ, and,
accordingly, the inverse temperature scales as βðtÞ ∝ a2ðtÞ.
Bearing this in mind and proceeding as previously (see, for
example, Ref. [57] for the detailed calculations in the case
of the MB distribution), one easily obtains the evolution of
the density contrast δρ ≡ ρ̄=ρ, defined as the ratio of the
perturbed and unperturbed densities, as

τ2δ00ρ þ
4

3
τδ0ρ −

2

3

�
1 −

3λ2J
5λ20τ

2
3

�
δρ −

4λ2J
25λ20τ

2
3

¼ 0; ð36Þ
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where

τ≡
ffiffiffi
3

2

r
Ωt λ0 ≡ 2πa0

jqj ; λðqÞJ ≡ 10π

3Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕiðqÞT0

m

r
: ð37Þ

Above, the primes represent derivatives with respect to the
dimensionless time τ, and q is the comoving wave number,
i.e., related to the physical wave number k through
k≡ q=aðtÞ. The solution of Eq. (36) involves Bessel
functions of the first kind JαðxÞ and is given by [57]

δρ ¼ τ−
1
6

�
C1J5

2

�
Λ
τ
1
3

�
þC2J−5

2

�
Λ
τ
1
3

��
þ 2

5

�
1þ 5τ

2
3

3Λ2

�
; ð38Þ

where C1 and C2 are integration constants and

Λ≡
ffiffiffiffiffi
18

5

r
λðqÞJ

λ0
: ð39Þ

For large values of Λ, the Bessel functions produce
oscillations, while for small values of Λ, the first term in
Eq. (38) gives two solutions, one decaying as 1=τ and the
other growing as τ2=3. Beside, because of the last term, the
density contrast δρ grows with time for small values of Λ,
giving rise to Jeans instability. When q ≔ hβ2i=β20 departs
from the equilibrium value q ¼ 1, Λ increases, preventing
therefore the Jeans instability from occurring, as discussed
previously for a static background.
Note that we are considering here, for simplicity, the

case of neutral matter, making therefore abstraction of the
potential role played by electromagnetic fields. In many
astrophysical situations, however, electromagnetic fields
play an important role and may significantly modify the
Jeans criterion (see, for instance, Refs. [58–62]). This has
important implications in the dynamics of comets, plan-
etary rings, and the formation of stars and planets.
Depending on the electrical conductivity of the matter,
the pressure produced by magnetic fields tends to counter-
balance the gravitational attraction, yielding larger thresh-
old wavelengths for the onset of instability [59]. The effect
of electromagnetic fields is, however, independent on
temperature inhomogeneities. It can be accounted for, in
the kinetic picture adopted here, by introducing the
corresponding potential in the Vlasov equation (14).
Although this would alter the Jeans criterion (20), the
conclusion drawn here, i.e., that thermal fluctuations tend
to stabilize the system, remains nonetheless valid.

IV. JEANS MECHANISM IN THE QUANTUM
REGIME: WAVE-KINETIC APPROACH

In the preceding section, we discussed the Jeans mecha-
nism in a classical context. It is worth extending the
previous analysis to the quantum regime. In modeling
quantum self-gravitating systems, one usually adopts the

Schrödinger-Newton (SN) model (sometimes referred
to as the Schrödinger-Poisson model), by coupling the
Schrödinger equation with the Poisson equation, describing
the self-gravitating potential, as follows:

iℏ
∂ψ
∂t ¼

�
−
ℏ2

2m
∇2 þmΦ

�
ψ ;

∇2Φ ¼ 4πmGjψ j2: ð40Þ
Such an approach was first considered in studying self-
gravitating boson stars [63]. It also enters in dark matter
models [64]; it describes fuzzy dark matter and approx-
imates classical cold dark matter for masses sufficiently
large.
In the commonly adopted treatment [65–67], Eq. (40) is

written in a hydrodynamic form upon introducing the so-
called Madelung transformation [68]. Such an approach,
however, does not account for kinetic effects as those
associated with a finite temperature and temperature
fluctuations. Kinetic effects can nonetheless be introduced
by adopting a wave-kinetic approach (see, for instance,
Ref. [69] for a pedagogical review in the context of cold
atomic gases). To elaborate on this, let us rewrite the above
system (40) as a single integrodifferential equation

iℏ
∂ψ
∂t ¼

�
−
ℏ2

2m
∇2 −m2G

Z jψðr0; tÞj2
jr − r0j dr0

�
ψ : ð41Þ

A kinetic treatment, similar to the one presented in Sec. III
for the Vlasov dynamics, can be realized by relying on the
use of the Wigner function Wðr;q; tÞ,

Wðr;q; tÞ ¼
Z

ψ�ðr − s=2; tÞψðrþ s=2; tÞ expðiq · sÞds;

ð42Þ
where q is the particle momentum. The Wigner function
([70]) is simply the Fourier transform of the autocorrelation
function corresponding to the wave function ψðr; tÞ. Note
in passing that the Wigner function is not a bona fide
distribution and should be regarded as a quasi-distribution,
since it can take negative values. It is nonetheless a very
useful mathematical tool, especially well suited for under-
standing the quantum/classical transition. By applying the
so-called Wigner-Moyal procedure [71], Eq. (41) provides
the evolution of the Wigner function as (detailed calcu-
lations can be found, for instance, in Refs. [70,72])

iℏ

� ∂
∂tþ vq · ∇

�
W ¼ −4πm2G

Z
nðk; tÞ
k2

ΔWeik·r
dk

ð2πÞ3 ;

ð43Þ
where vq ≡ ℏq=m is the particle velocity and

ΔW ¼ W− −Wþ; W� ≡Wðq� k=2; r; tÞ: ð44Þ
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In Eq. (43), nðk; tÞ is the Fourier transform of the (number)
density, defined as

nðr; tÞ ¼ jψðr; tÞj2 ¼
Z

Wðr;q; tÞ dq
ð2πÞ3 : ð45Þ

Equation (43) provides the full phase-space description of
the self-gravitating system and can be treated similarly to
the Vlasov equation (14). As in the classical regime, we
restrict ourselves to linear perturbations and write the
Wigner distribution as W ¼ W0 þ δW (δW ≪ W0),
where W0 is the stationary distribution describing the
quasiequilibrium self-gravitating system and δW is a small
perturbation assumed to evolve in space and time as
approximately eiðk·r−ωtÞ. Accordingly, the density pertur-
bation follows as δn ∼ eiðk·r−ωtÞ. Then, Eq. (43) gives

δW ¼ −
4πGm2

k2
ΔW0

ℏðω − k · vqÞ
δnðkÞ: ð46Þ

Integrating over the momentum and using Eq. (45), one has

1þ 4πm2G
k2

Z
ΔW0

hðω − k · vqÞ
dq

ð2πÞ3 ¼ 0: ð47Þ

Let us introduce the parallel and perpendicular compo-
nents of the particle velocity and momentum as

vq ¼ v
k
jkj þ v⊥; q ¼ qk

k
jkj þ q⊥ ð48Þ

and write Eq. (47) in terms of the parallel velocity
distribution

G0ðqkÞ≡
Z

W0ðqk;q⊥Þ
dq⊥
ð2πÞ2 ð49Þ

as follows:

1þ Ω2

ω2

Z
G0ðvÞdv

ð1 − kv=ωÞ2 − ℏ2k4=4m2ω2
¼ 0: ð50Þ

The latter is the quantum analog of the integral dispersion
relation (18). By Taylor expanding the integrand in Eq. (50)
for v ≪ ω=k, one has

ω2 ¼ −Ω2 þ 3hv2ik2 þ ℏ2k4

4m2
; ð51Þ

where hv2i is the second-order moment of the stationary
distribution G0. Equation (51) is the quantum counterpart
of the dispersion relation (26). It indicates that, in addition
to thermal effects, the Jeans instability is also saturated by
quantum effects that scale as approximately k4.

Assuming a quasiequilibrium state, described by a
superstatistical distribution, i.e., GðvÞ reads as an equilib-
rium distribution averaged over the temperature distribution
[cf. Eq. (1)], one may, using Eq. (51), analyze the effect of
the temperature inhomogeneity on the Jeans criterion in the
quantum regime. For classical (distinguishable) particles,
the equilibrium distribution corresponds to the MB dis-
tribution, and hv2i is given by Eq. (12). It is, however,
worth studying the case of quantum particles by identifying
the equilibrium distribution, associated with each small
region pðvjβÞ, with the quantum-mechanical expressions
for the equilibrium distribution, namely [73], pðvjβÞ≡
2m3f̂ðqÞ=2πℏ3 with f̂ðqÞ corresponding to the Fermi-
Dirac (FD) or the Bose-Einstein (BE) distribution.
The case of fermions is particularly relevant. It is of

interest, for instance, in dealing with fermionic clouds of
dark matter [74] supposed to be associated with the known
dwarf spheroidal galaxies in the vicinity of the Milky Way
[75,76]. In this case, using the FD distribution and working
out hv2i as previously (see, for instance, Ref. [73]), one has

hv2i ¼
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9v4F
25

þ
�

3

βm

�
2

s +
fðβÞ

; ð52Þ

where vF is the Fermi velocity, i.e., related to the Fermi
energy via EF ¼ mv2F=2. Equation (52) remains valid from
the case of completely degenerate (zero temperature)
fermions, where the velocity dispersion arises solely from
the Pauli exclusion principle, that is, hv2i ¼ 3v2F=5, all the
way to the classical limit, that is, hv2ii ¼ 3ϕiðqÞT0=m
[cf. Eq. (12)]. For intermediate cases (quasi-degenerate
fermions), where both thermal and quantum statistical
effects come into play, one may obtain closed-form
expressions by retaining the appropriate leading terms:
when thermal effects are dominant, one may expand
Eq. (52) to find

hv2ii ≈ 3

�
ϕiðqÞ

T0

m
þ v4F

50

m
T0

�
; ð53Þ

which shows a quantum correction to the classical result
[cf. Eq. (12)]. In the opposite limit (for highly degenerate
fermions), one may also expand Eq. (52) to obtain

hv2ii ≈ 3

�
v2F
5
þ 5

2v2F
ξiðqÞ

�
T0

m

�
2
�
; ð54Þ

where ξiðqÞ ≥ 1 read as

ξ1ðqÞ≡ 1

6 − 7qþ 2q2
ð1 < q < 3=2Þ;

ξ2ðqÞ≡ 6þ 2

q2
−
7

q
;

ξ3ðqÞ≡ q3; ð55Þ
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with i ¼ 1, 2, and 3 corresponding, respectively, to χ2,
inverse-χ2, and log-normal superstatistics. Here, again, one
may check that the temperature inhomogeneities tend to
increase the velocity dispersion, i.e., Eqs. (53) and (54), that
remain larger than their equilibrium counterparts (q ¼ 1),
hence stabilizing the self-gravitating system in the quantum
regime as well.
One may follow similar lines of reasoning for bosons, by

identifying f̂ðqÞ with the BE distribution. At low temper-
ature, however, bosons are expected to form Bose-Einstein
condensates, in which case temperature effects and, a for-
tiori, temperature fluctuations are irrelevant. When temper-
ature effects are dominant, one has, at this order of
approximation, essentially Eq. (53), upon identifying the
Fermi energy with an equivalent energy scale [77]
ϵq ≡ ℏ2

2m ð6π2n=gÞ2=3, where g is the factor accounting for
the degeneracy of the particles spin states.
Before closing this section, it is instructive to note the

generality of the present approach. In fact, the applicability
domain of the SN equation (41) goes far beyond the
scenario of a self-gravitating system discussed here and
covers a wide spectrum of laboratory systems that can be
described by a formally identical equation [78]. These
systems include, for instance, quantum plasmas [79] and
atomic molasses in magneto-optical traps [80]. The super-
statistical wave-kinetic approach we went through here
remains equally well applicable for those systems and
allows for the introduction of temperature fluctuations or
inhomogeneities in such different contexts.

V. CONSEQUENCES ON DYNAMICAL
FRICTION

When a massive body of massM moves through a cloud
of lighter bodies of typical mass m, the light bodies tend to
accelerate (due to the gravitational interaction), gaining
therefore momentum and kinetic energy. By virtue of the
conservation of energy and momentum, the heavier body
will loose kinetic energy and momentum by an amount to
compensate, resulting in slowing its motion. This loss of
energy and momentum of a moving body, through gravi-
tational interactions with surrounding matter in space, is
known as dynamical friction (DF). It plays a fundamental
role in the evolution of many-body astrophysical systems,
such as globular clusters (GCs) [81], radio galaxies in
galaxy clusters [82], and nonlinear gaseous media [83].
The first understanding of this process is due to

Chandrasekhar [84] who showed that the DF deceleration
on a body of mass M moving with velocity vM in a
homogeneous and isotropic distribution of identical par-
ticles of mass m reads as

dvM
dt

¼ −16π2ðlnΛÞG2Mmn0

R vM
0 fðvÞv2dv

v3M
vM; ð56Þ

where lnΛ is the Coulomb logarithm, i.e., the factor by
which small-angle collisions are more effective than large-
angle collisions, n0 is the number density of the surround-
ing particles, and fðvÞ is their velocity distribution. In the
usual treatment of DF, the medium is considered to be
completely thermalized, and the distribution fðvÞ is iden-
tified with the equilibrium MB distribution, although the
effect of the more general class of Tsallis distributions
arising in the framework of NSM has been recently
analyzed in the literature [25]. In this section, we will
study the DF mechanism in a quasiequilibrium medium,
where the velocity distribution corresponds to one of the
three universality classes of superstatistics, and examine the
consequences of these distributions on the decay of
globular orbits.
To proceed, we identify the velocity distribution fðvÞ

with one of the families of superstatistical distributions, i.e.,
fðvÞ≡ BðvÞ. Integrating Eq. (56), and using the definition
of BðvÞ, we obtain the generic equation

dvM
dt

¼ −
4π lnΛG2MρðrÞ

v3M
HiðXMÞvM; ð57Þ

where i ¼ 1, 2, and 3 refer, respectively, to χ2, inverse-χ2,
and log-normal superstatistics. For the first two classes of
superstatistics, we obtain closed-form expressions for the
functions HiðxÞ, accounting explicitly for the effect of
temperature inhomogeneities: Forχ2 superstatistics,wehave

H1ðxÞ ¼
ðq − 1Þ3=2ffiffiffi

π
p 4x3Γð3

2
þ 1

q−1Þ
3Γð 1

q−1Þ

×2F1

�
3

2
;
3

2
þ 1

q − 1
;
5

2
; ð1 − qÞx2

�
; ð58Þ

while for inverse-χ2 superstatistics, we obtain

H2ðxÞ ¼
BqðxÞx3 þ CqðxÞx

4q−2
q−1

Aq
; ð59Þ

where

Aq ≡ 3
ffiffiffi
π

p
2

ð2q − 1ÞΓ
�

q
q − 1

�
;

BqðxÞ≡ ð4q − 2Þ
ffiffiffiffiffiffiffiffiffiffiffi
q

q − 1

r
Γ
�
qþ 1

2q − 2

�

× 2F1

�
3

2
;
5

2
;
3

2
−

q
q − 1

;
qx2

q − 1

�
;

CqðxÞ≡ 3ðq − 1Þ
�

q
q − 1

�
q=ðq−1Þ

Γ
�
qþ 1

2 − 2q

�

× 2F1

�
1þ q

q − 1
;
1

2
þ q
q − 1

; 2þ q
q − 1

;
qx2

q − 1

�
:

ð60Þ
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Above, 2F1ða; b; c; zÞ denotes theGaussian hypergeometric
function. For the third class of superstatistics, i.e., for log-
normal superstatistics, one has

H3ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π lnðqÞp Z
∞

0

dβ
β
e−

lnðβ ffiffiqp
=β0Þ2

2 lnðqÞ

�
erfðx

ffiffiffiffiffiffiffiffiffiffi
β=β0

p
Þ

−
2xffiffiffi
π

p
ffiffiffiffiffi
β

β0

s
e−βx

2=β0

�
; ð61Þ

for which there is no closed-form expression, so it will be
treated numerically. Figure 5 shows the functions HiðxÞ
(i ¼ 1, 2, 3) corresponding to the three universality classes,
i.e., Eqs. (58), (59), and (61), for different values of q ≔
hβ2i=β20. Onemay see that the three universality classes have
qualitatively the same effect on HiðxÞ. In the limit q ¼ 1
(thermal equilibrium), the three functions reduce to

lim
q→1

HiðxÞ ¼ erfðxÞ − 2xffiffiffi
π

p e−x
2 ði ¼ 1; 2; 3Þ; ð62Þ

and Eq. (57) reduces to the standard result [84].
To illustrate the physical effect that emerge from this

modification, let us discuss in some detail the case of a GC
orbiting through the galaxy field. Because of its interaction
with the stellar medium, the GC experiences DF; it loses
energy and spiral toward the galaxy center. The time
required for the cluster to reach the galaxy center is
extremely sensitive to the stellar velocity distribution
fðvÞ through the function HðxÞ and scales as approxi-
mately 1=Hð1Þ [25].
In light of Fig. 5, one may conclude that the super-

statistical distributions tend to increase this timescale. More
precisely and to provide a quantitative analysis, we con-
sider the case of a GC, initially on a circular orbit of radius
ri, and following Ref. [25], we assume a mass density
distribution of the galaxy given by

ρðrÞ ¼ 1

4πG

�
vc
r

�
2

; ð63Þ

where vc stands for the circular speed. The frictional force
felt by the GC moving through the stellar field with speed
vc reads as [25]

F ¼ −G lnΛ
�
M
r

�
2

Hið1Þ; ð64Þ

where HiðxÞ (i ¼ 1, 2, 3) are given in Eqs. (58), (59), and
(61), for the three universality classes. The dragging force
being tangential to the cluster orbit, the GC gradually loses
angular momentum per unit mass L at a rate dL=dt ¼
Fr=M. Since L ¼ rvc, Eq. (64) gives

r
dr
dt

¼ −
�
GM
vc

�
lnΛHqð1Þ: ð65Þ

The latter equation can be easily solved, with the initial
condition rð0Þ ¼ ri, to give the time by which the GC
reaches the galaxy center as follows:

tðqÞi ¼ vcr2i
2GM lnΛHqð1Þ

: ð66Þ

In the limit q → 1, the latter reduces to the standard result
[84], corresponding to the equilibrium MB distribution. In
Fig. 6, we show the relative deviation

δtiðqÞ≡ tiðqÞ − t0
t0

; ð67Þ

where t0 is the DF timescale corresponding to a
Maxwellian distribution, i.e., t0 ¼ limq→1 tiðqÞ (i ¼ 1, 2,
3), as a function of q ≔ hβ2i=β20, for the three universality
classes of superstatistics. One may see that, for the three
universality classes, as q departs from the equilibrium value
q ¼ 1, the time by which the GC reaches the galaxy center
increases. The superstatistics scenario appears therefore (as
recently discussed for Tsallis statistics [25]) as a possible
remedy to the problem of the large timescales [85] derived
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FIG. 5. The functions HiðxÞ corresponding to (a) χ2 superstatistics [Eq. (58)], (b) inverse χ2 superstatistics [Eq. (59)], and (c) log-
normal superstatistics [Eq. (61), computed numerically], for different values of q ≔ hβ2i=β20.
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through numerical simulations or semianalytical models
that do not concur with the Chandrasekhar model.
Before closing this section, a remark is in order. Note

that, although in the special case of χ2 superstatistics the
velocity distribution corresponds to the Tsallis distribution
arising in NSM, our prediction for the DF timescale of GC
in this case differs from the one obtained in Ref. [25] in the
context of NSM. Our results agree qualitatively, but the
timescale obtained therein increases much more rapidly as
the distribution departs from the Maxwellian distribution.
This is because, to map the velocity distribution corre-
sponding to the χ2 class [cf. Eq. (3)] onto the q Gaussian
used in NSM, one has not only to reparametrize the
parameter q but also the inverse temperature that is
redefined as β̃ ≔ β0ðnþ dÞ=n (see Sec. II). Note in this
regard that the temperature definition in the framework of
NSM (whether it should be identified with the inverse
of the Lagrange multiplier β or not) is to date a matter of
debate [86,87], and one may make different predictions
according to the definition adopted. The superstatistical
picture dispels this ambiguity by regarding such distribu-
tions as a manifestation of a nonequilibrium situation. In a
nonequilibrium state, attributing a single temperature to the
whole system is elusive. Nonetheless, the stationary dis-
tributions in this case depend only on the mean temperature
T0, that is clearly defined, and the parameter q, measuring
the temperature dispersion around its mean value.

VI. CONCLUSIONS

In this analysis, we were dealing quite generally with
self-gravitating systems that, due to the long-range nature
of the gravitational interaction, remain trapped in a non-
equilibrium stationary state. The system is understood as a
collection of small regions or subsystems that remain
infinitely close to equilibrium. Such subsystems represent
regions from where thermalization spreads later over the

entire system. At the level of these regions, the whole
machinery of equilibrium statistical mechanics holds, but
each subsystem has a different temperature assigned
to it, according to some probability density. The statistical
properties of the system follow as a superposition of
statistics, i.e., superstatistics. This methodological attitude
allows reproducing the distributions arising in the context
of nonextensive statistical mechanics (NSM), that have
been widely explored in self-gravitating systems and in
fitting observational data [9–15], only as a special case of a
more general family of distributions, while the method
relies on conventional statistical mechanics and does not
introduce any free parameter.
We focus here on the three universality classes of

superstatistics, namely, χ2, inverse-χ2, and log-normal
superstatistics. These classes arise as universal limit sta-
tistics in the majority of known superstatistical systems and
can be derived from purely probabilistic arguments [41] or
from the maximum entropy principle [42]. The velocity
distributions corresponding to these classes cover the
asymptotic behavior of the main families of distributions
encountered in nature, that is, power laws, truncated power
laws, and exponential decays. We worked out the velocity
distributions corresponding to the three universality classes
and confronted them with independent numerical simula-
tions of self-gravitating systems. Then, we explored the
consequences of this picture in typical phenomena arising
in self-gravitating systems.
We discussed the Jeans instability in this picture, in the

classical regime, considering a static and an expanding
universe and extended our approach to the quantum regime
by considering the Wigner-Moyal procedure and the effect
of quantum statistics. In both cases, our results show that
quasi-stationary self-gravitating systems are generally more
stable than equilibrium systems, indicating that a larger
mass is needed to initiate the gravitational collapse, in
agreement with previous studies [17,22] using the NSM
distributions in the superthermal regime. This result is
particularly relevant in the case of Bok globules because
their mass and their corresponding Jeans mass are of the
same order; hence, a small deviation from equilibrium may
lead to a different prediction for their stability. We also
examined the Chandrasekhar dynamical friction in a
quasiequilibrium medium and analyzed the consequences
on the decay of globular orbits. Our results show that the
time by which globular clusters reach the galaxy center
increases in the superstatistical scenario, offering a poten-
tial solution to the problem of the large timescale [85]
shown by numerical N-body simulations and semianalyt-
ical models.
Our main result is that the typical behavior, usually

attributed to the special class of Tsallis distributions
emerging in the framework of NSM, is rather a general
feature of nonequilibrium systems in a stationary state.
Thus, the superstatistical picture presents itself as a
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FIG. 6. The relative deviation of the DF timescale δtiðqÞ
[cf. Eq. (67)], as a function of q ≔ hβ2i=β20, for the three
universality classes of superstatistics.
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promising alternative to handle such systems inasmuch
as it is able to produce a wider class of distributions,
while overcoming potential problematic aspects and
open problems appearing in the NSM context, such as
the definition of a physical temperature [86,87], the
stability of the averaging schemes [88,89], and possible
inconsistencies associated with the nonadditive entropy
maximization [90,91].
The present study naturally opens up new prospects for

future research. First, a closer examination of the ability of
the superstatistical distributions to account for results of
N-body simulations of self-gravitating systems and obser-
vational data will be welcome, especially in the cases that
seem to go beyond the scope of Tsallis distributions
[28,29]. This would pave the way for a more complete
understanding of the emergence of these distributions in
astrophysical situations. Furthermore, the use of the super-
statistical kinetic approach presented here, especially in the
quantum regime, can be found simple and meaningful in

many relevant physical situations. As shown recently [78],
the applicability domain of the Schrödinger-Newton equa-
tion goes far beyond the scenario of a self-gravitating
system discussed here and covers a large spectrum of
systems that can be described by a formally identical
equation. These systems include quantum plasmas,
Bose-Einstein condensates with or without long-range
dipolar interactions, and atomic molasses in magneto-
optical traps. The method worked out here remains appli-
cable in such different contexts and allows to account for
fluctuations of the temperature or the chemical potential
(see, for instance, Ref. [92] for a superstatistical approach
to a fluctuating chemical potential in the context of quark
matter). Besides, as these systems manifest similar elemen-
tary excitations, e.g., electron oscillations in a quantum
plasma (plasmons), hybrid-phonon modes, or Bogoliubov
excitations, the superstatistical approach presented here
may allow identifying the signature of nonequilibrium
stationary states in the corresponding dispersion relations.
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