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Detection and parameter estimation of binary neutron star merger remnants can shed light on the physics
of hot matter at supranuclear densities. Here we develop a fast, simple model that can generate gravitational
waveforms, and show it can be used for both detection and parameter estimation of postmerger remnants.
The model consists of three exponentially damped sinusoids with a linear frequency-drift term. We test the
model against nine equal-mass numerical-relativity simulations selected for emission of gravitational
waves for 225 ms. The median fitting factors between the model waveforms and numerical-relativity
simulations exceed 0.90. We detect remnants at a postmerger signal-to-noise ratio of >7 using a
Bayes-factor detection statistic with a threshold of 3000. We can constrain the primary postmerger
frequency to +]4% at postmerger signal-to-noise ratios of 15 with an increase in precision to £{3% for
postmerger signal-to-noise ratios of 50. The tidal coupling constant can be constrained to i?z% at
postmerger signal-to-noise ratios of 15, and +5% at postmerger signal-to-noise ratios of 50 using a

hierarchical inference model.
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I. INTRODUCTION

Gravitational waves have been directly detected from the
inspiral of binary neutron star mergers [1,2]. The post-
merger remnant may promptly collapse into a black hole, or
form a hot, differentially rotating neutron star [3,4], which
emits gravitational waves, e.g., [5-8]. Numerical-relativity
simulations of postmerger remnants show relationships
between the gravitational-wave spectra and a number of
progenitor properties through quasiuniversal relationships,
e.g., [9-18]. Of particular interest is the relationship
between the progenitor tidal coupling constant and the
primary postmerger oscillation frequency for baryonic
equations of state [14,16,17,19], which can be used to
place constraints on the tidal coupling constant.

Gravitational-wave spectra generated from numerical-
relativity simulations show consistent features related to the
dynamics of the surviving remnant. A dominant peak,
designated as fpe [20], is produced by the fundamental
oscillations of the bar-mode deformed postmerger remnant,
e.g., [9,21-24]. The frequencies of four possible peaks can
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be labeled as (f2_, fopirai» fpeak: S2+0) in ascending order
[15]. The peaks at frequencies f>_g, f».o may result from
coupling between a quasiradial oscillation mode and f ek
[25]. The peak at frequency f, may result from the
slower rotation rate of tidally deformed matter at the outer
edges of the postmerger remnant [15]. See Refs. [13,16] for
an alternative proposed explanation of the frequency peaks.

In this paper, we develop a Bayesian detection and
parameter-inference pipeline. Normally these pipelines
require a large bank of waveforms. Numerical-relativity
simulations cannot be used to generate these waveforms as
each simulation requires ~O(10°) CPU hours to complete
[16]. We develop a fast, simple model of gravitational
waves for postmerger remnants that phenomenologically
incorporates the main frequencies previously mentioned.
Our model produces waveforms in a time frame that is
suitable for use in detection and parameter estimation of
binary neutron star postmerger remnants.

We match nine equal-mass numerical-relativity wave-
forms with gravitational-wave emission for 225 ms with
fitting factors of 0.92-0.97. This model addresses the two
restrictions that prevent matched filtering of postmerger
gravitational-wave strain: computational time and poor
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fitting factors. Our model is derived from a hybrid of
the two models outlined in Refs. [26,27]. Our model is
agnostic to the locations of the frequency peaks and uses
Bayesian statistics to determine the actual peak frequencies.
Furthermore, the addition of a frequency drift term allows
for secular changes in the frequency peak locations. With
postmerger signal-to-noise ratios of >15, the model can
localize the primary postmerger frequency to +145% at
95% confidence, reducing to :I:gg% at postmerger signal-
to-noise ratio of 50. Using the hierarchical model devel-
oped in Ref. [28] we can then constrain the tidal parameters
and compactness of the progenitor neutron stars. The tidal
coupling constant is constrained to j:?z% at postmerger
signal-to-noise ratios of 15 for a 95% confidence interval.
At postmerger signal-to-noise ratios of 50 this tightens
to +5%.

In Sec. II we outline the model and associated methods
used in this paper. In Sec. III we validate the model fits in
the time and frequency domains and quantify the goodness
of the fits. In Sec. IV we use a Bayes factor detection
statistic to determine at what postmerger signal-to-noise
ratios a detection occurs and test how the model performs
due to uncertainty in the inspiral coalescence time. In
Sec. V we calculate posteriors of the dominant postmerger
frequency and introduce the hierarchical model from
Ref. [28] to find the equation of state parameters for the
progenitors. We find constraints on both the tidal coupling
constant and the compactness of the progenitors.

II. METHODOLOGY

We adopt a model for the postmerger gravitational-wave
signal consisting of three exponentially damped sinusoids
[26] with additional linear frequency drift terms [27]. The
plus, i (6, t), polarization of the gravitational-wave strain
is extracted from the right circular polarization, h(8, ), as
follows:

h0.1) = h,(0.1) —ih,(0.1) (1)

h;(0.1) —ih; .(0.1), (2)
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h; (0.t) = Hw;exp [_Ti] cos (2zf t[l +a;t] +y ;).  (3)
i

Here, @ = {H,w;.T;.f;,a;.w;.j € [0,2]} are the model
parameters where H is the amplitude scaling factor and w;
is the relative scaling factor for each mode, j € [0, 2], such
that ) ;w; = 1. The initial frequency of each mode is
given by f;, T; are the damping times, y; are the initial
phases, and qa; are the frequency drift terms. The time, 7, is
defined such that = O corresponds to the coalescence time
when the maximum of A2 (0,1) + h%(0,t) occurs, e.g.,

[16,17,28,29]. The cross polarization of the jth mode is
generated by a 7/2 phase shift on /; (6, 1). Setting a; = 0
allows detection of signals corresponding to the cross-
polarization model in Ref. [26]. These equations are a
subset of the plus polarization model in Ref. [27] with the
quadratic drift term set to zero and no explicit modulation
of spectral peaks.

We use nine postmerger numerical-relativity simulations
from Ref. [30] (see Appendix A for details), selecting only
simulations with equal-mass progenitors where a nascent
neutron star survives for at least ~25 ms. For equal-mass
systems, the tidal parameter of the neutron stars is related to
the dimensionless compactness, C = GM/(Rc?), and the
second Love number, k,, as follows:

-2
A — gkzc_s, (4)

1
K';F = §k2C_5, (5)

where A is the quadrupolar tidal deformability and K is
the total quadrupolar tidal coupling constant. Here, M is the
neutron star mass, R is the neutron star radius, G is the
gravitational constant, and c is the speed of light. The tidal
properties of the progenitors can be estimated from the
dominant postmerger frequency using relations found from
numerical-relativity simulations with baryonic equations of
state [16,18] (although see Refs. [18,31,32] for the conse-
quences of a phase transition to strange matter). We discuss
this more in Sec. V.

We inject numerical-relativity waveforms at various
postmerger signal-to-noise ratios into a three-detector net-
work (LIGO Hanford, Livingston, and Virgo) at design
sensitivity for each interferometer [33,34]. We inject the
postmerger signal at a fixed time and fixed sky position,
assuming that we know the coalescence time from the
inspiral stage. In Sec. IV we test this assumption by
determining the uncertainty in the coalescence time for
various signal-to-noise ratios. We use the BILBY package
[35] with the DYNESTY sampler [36] to sample posteriors,
p(0]d), of the model parameters using the likelihood,
L(d|@), as follows:

plold) = 1070 ©
z- A d0L(d)0)x(0), (7)

L(d|0) o< exp[—(d(1) = h(8,1),d(1) = 1(0,1))]. (8)

Here, d(t) = s(t) + n(t) is the numerical-relativity wave-
form, s(), injected into noise, n(z). We simulate ten
different Gaussian noise realizations with BILBY, to exam-
ine the response of the model to variations in detector noise.
We limit this to ten noise realizations to keep the
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FIG. 1.

Waveform reconstruction of numerical-relativity postmerger signal injections. Top panels: time (left) and frequency (right)

domain reconstructions of a numerical-relativity simulation using the SLy equation of state with equal mass, 1.35 M, neutron stars
(waveform SLy-M1.350-A390). The postmerger waveform (black curve) is injected at a postmerger signal-to-noise ratio of 50. The
reconstructed waveforms are shown in blue. Bottom panels: same as the top panels except the injected waveform is using the LS220
equation of state with equal mass, 1.35 M, neutron stars (waveform LS220-M1.350-A684). The reconstructed waveforms are shown in
orange. Noise sensitivity curves are shown for Advanced LIGO (dashed black) and Advanced Virgo (dotted black) for plots on the right.

computation time manageable. The priors on the model
parameters are z(€). The noise-weighted inner product in
Eq. (8) is defined by
_ h (f)s(f)

<h1’ h2> 4R6/ df Sh(f) ’ (9)
where S, is the detector’s noise power spectral density.
We use a sampling frequency of 8192 Hz to eliminate
aliasing of the upper sidebands. We use constrained priors
to sort the maximum amplitude for %; (6, f), such that
17+ (0, f)lmax > 1741 (0. f)|max- This ensures that the
mode zero (j = 0) exponentially damped sinusoid corre-
sponds to the dominant postmerger frequency. Full details
on the priors are given in Appendix B. The optimal
postmerger signal-to-noise ratio, poy., is calculated from
the quadrature sum of the optimal postmerger signal-to-
noise ratio for each of the three detectors, p, ; as follows:

p%pt = Z pcz)pt,i’ (10)

ieHLV

for + > 0. The matched filter signal-to-noise ratio for a
single detector is given by

(11)

III. MODEL VALIDATION

Figure 1 shows the posterior waveforms in the time and
frequency domain for the plus polarization of two numeri-
cal-relativity postmerger simulations. The two gravita-
tional-wave simulations, SLy-M1.350-A390 (THC:0036:
RO3, top) and LS220-M1.350-A684 (THC:0019:R05, bot-
tom), are injected at a postmerger signal-to-noise ratio of
50. These waveforms are chosen for compatibility with the
inferred properties of A from GW170817 [1,32,37-40].
SLy-M1.350-A390 is a simulation of equal progenitor
mass 1.35 M, neutron stars with tidal deformability, A =
390.1 (kI = 73.14) and SLy equation of state. Similarly,
L.5220-M1.350-A684 has masses of 1.35 M, A = 683.8
(k] = 128.2) and LS220 equation of state.

We generate posterior waveforms by randomly drawing
samples from the posterior distribution p(@|d). The pos-
terior waveforms are shown as blue (top, SLy-M1.350-
A390) and orange (bottom, L.S220-M1.350-A684) curves
in Fig. 1. The solid black curves show the injected
numerical-relativity waveforms. As can be seen in the
time-response plots (Fig. 1, left), the posterior samples are
tightly clustered around the numerical-relativity simula-
tions, particularly for the first ~15 ms. The phase of
waveform SLy-M1.350-A390 is lost after ~15 ms
(Fig. 1, upper left) though the majority of the spectral
content is contained in the first 5 ms (see Fig. 4). We note
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FIG. 2. Fitting-factor distributions, F(d(r),h(@.1)), for each
postmerger numerical-relativity waveform. The signal-to-noise
ratio for the postmerger gravitational-wave strain for each wave-
form is 50. The upper and lower horizontal bars represent
99.7% confidence intervals. The central horizontal bar shows
the median value. The thick vertical line shows the 95% con-
fidence intervals. The median fitting factors range between 0.92
to 0.97 which corresponds to a reduction in detection rate from
22% down to 9% due to mismatch with the numerical-relativity
injections.

that accumulated phase errors in numerical-relativity
simulations increase over time.

The frequency-response plots are shown on the right side
of Fig. 1, along with the amplitude spectral density of
Advanced LIGO (dashed black curve) and Advanced Virgo
(dotted black curve) at design sensitivity. The primary
frequency peaks are well recovered for both reference
waveforms. Two low frequency peaks of SLy-M1.350-
A390 are resolved in preference to the upper frequency
peak, whereas only one low frequency peak is resolved for
L.S220-M1.350-A684. The other two modes are located at
the main frequency peak of LS220-M1.350-A684.

To measure the extent of the waveform mismatch, we
calculate the noise-weighted fitting factor between the
injected numerical-relativity waveform, d(¢), and the pos-
terior waveform, A(@, 1) [41]:

@ome.n)
VA1) (. 010, 1)

The fitting factor, calculated with noise from one detector at
Advanced LIGO design sensitivity [33], quantifies the loss
in signal-to-noise due to signal mismatch in relation to an
optimal signal-to-noise ratio, Eq. (10).

The median fitting factors are 0.92 and 0.95, for SLy-
M1.350-A390 and LS220-M1.350-A684, respectively.
As the detection rate scales as F> [41], the reduction in

F(d(1),h(0,1) =

detection rate due to the above mismatch is 22% and 14%
respectively for these two waveforms.

The fitting factors for all nine numerical-relativity
simulations are shown in Fig. 2, with each simulation
represented by a different color. Ten different Gaussian
noise realizations are used for each numerical-relativity
simulation. The 99.7% confidence intervals for the fitting
factors are shown by the upper and lower horizontal bars.
The median value is shown by the central horizontal bar,
and 95% confidence intervals are indicated by thick vertical
bars. Finally, the distribution of the fitting factors is shown
by the width of the shaded areas. The lowest fitting factors,
for simulation, SLy-M1.350-A390, have an average match
of 0.92. Other numerical-relativity injections have fitting
factors of 0.95-0.97. The injection with the softest equation
of state underperforms the other injections. This is due to
complex dynamics of the nascent neutron star in the
first ~2 ms.

IV. SENSITIVITY

We calculate the Bayes factor between the signal
hypothesis and a noise hypothesis to evaluate the sensitivity
of our model. We do this by injecting the postmerger signal
SLy-M1.350-A390 into ten different noise realizations at
various signal-to-noise ratios. The results are shown in
Fig. 3. The distribution of the natural logarithm of the
Bayes factor, In(5F), is shown for each postmerger signal-
to-noise ratio along with the 99.7% confidence intervals
(upper and lower horizontal bars) and the median value
(middle horizontal bar). We define that strong evidence for
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5678910 15 20

Post-merger signal-to-noise ratio

FIG. 3. Natural logarithm of the Bayes factor comparing a
signal hypothesis against a noise hypothesis plotted against the
postmerger signal-to-noise ratio. The numerical-relativity wave-
form, SLy-M1.350-A390, is injected into ten different noise
realizations at the specified signal-to-noise ratio. The upper and
lower horizontal bars show the 99.7% confidence intervals of the
log Bayes factor and the central horizontal bar shows the median
value. A postmerger signal-to-noise value of 210 is required to
ensure strong evidence for a signal hypothesis [In(BF) > 8]
across all ten noise realizations. However, there are some noise
realizations where In(BF) > 8 occurs for postmerger signal-to-
noise ratios as low as 7.
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FIG. 4. Variation of fitting factor (hatched blue) and matched
filter signal-to-noise ratio (solid blue) for differing values of the
delay time after the time of coalescence. The shaded regions show
95% confidence intervals. The optimal signal-to-noise ratio is
also shown (solid black). Although the fitting factor is lower
when the entire postmerger signal is used, the matched filter
signal-to-noise ratio is largest. The fitting factor is lower for
smaller delay times due to the complex dynamics of the nascent
neutron star.

a signal hypothesis over a noise hypothesis corresponds
to a Bayes factor exceeding 3000 (In(BF) > 8.0), e.g.,
[42]. In this case a signal hypothesis is 3000 times more
likely than a noise hypothesis. This occurs with postmerger
signal-to-noise ratios of 210 for all tested noise realiza-
tions. There are some noise realizations where the Bayes
factor threshold is exceeded for postmerger signal-to-noise
ratios of ~7-9.

An important consideration for our signal model is the
uncertainty in the coalescence time as measured from the
gravitational-wave inspiral signal. This determines how
close we can get to the true coalescence time for the binary
neutron star merger. In Fig. 4 we investigate the model
performance to uncertainties in the coalescence time. We
show how the fitting factor and matched-filter signal-
to-noise ratio change when starting the adopted model at
various times after the coalescence time. We multiply the
numerical-relativity injection, d(z), by the Heaviside step
function, H (#—t4e1ay ) and evaluate the model, /(6,1 —tyeay )
for 1 > f4c10- The matched filter signal-to-noise ratio is
calculated using Eq. (11) with a single detector at Advanced
LIGO sensitivity. We use numerical-relativity injection,
SLy-M1.350-A390, selected due to compatibility with the
tidal parameters inferred from GW170817. A delay time of
zero includes the entire postmerger waveform, whereas a
delay time of 2 ms excludes the first 2 ms of the injection
after the coalescence time. The fitting factoris lower (~0.91)
for small delay times and increases to ~0.96 at 2 ms. The
fitting factor is lower in the first 2 ms due to complex
dynamics of the nascent neutron star. In Fig. 4, the matched-
filter signal-to-noise ratio is almost monotonically decreas-
ing as expected. Even though the fitting factors are lower at
zero delay time, the matched-filter signal-to-noise ratio is at
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FIG. 5. Uncertainty in coalescence time plotted with signal-to-
noise ratios. The coalescence time uncertainty has been deter-
mined by a Fisher matrix approximation. The left axis is the
signal-to-noise ratio for a two detector network of Advanced
LIGO at design sensitivity for a binary neutron star inspiral. The
right axis is the postmerger signal-to-noise ratio for a three
detector network of Advanced LIGO and Advanced Virgo at
design sensitivity using numerical-relativity simulation SLy-
M1.350-A390. Postmerger signal-to-noise ratios above 6.0 have
coalescence time uncertainties of less than 0.1 ms.

maximum. Therefore, from a sensitivity perspective, a
minimum delay time is preferred.

To estimate the uncertainties of the time of coalescence of
the inspiral signal as a function of the signal-to-noise ratio of
the inspiral signal, we use a Fisher matrix approximation.
We assume that the signal parameters & follow a Gaussian
distribution:

1 S
P(AY) x exp {_EFUAIQIA’W] . (13)

Here, AY; = 9" — 9, & are the best fit inspiral parameters
and I';; = (0h/09,|0h/09;) is the expected Fisher infor-
mation matrix. The estimated errors of the parameters, 9;,
are obtained by taking the diagonal elements of the Fisher
information matrix. The relevant parameters within our
approximation are & = (M,q,qﬁc,f\, t.,H), where M is
the chirp mass, ¢ is the mass ratio, and ¢,. is the phase of
coalescence. The average-weighted tidal deformability is A,
t. is the time of coalescence and H is the amplitude of the
inspiral waveform. We calculate the errors on 9; assuming an
equal mass 1.4 Mg nonrotating progenitor system. The
expected uncertainties for the coalescence time are shown in
Fig. 5. The left axis shows the inspiral signal-to-noise ratio
for an optimally oriented source into a two detector LIGO
network at design sensitivity. We use Fig. 8 from Ref. [43] to
determine the luminosity distance, D;, from the inspiral
signal-to-noise ratio. We calculate the product of D;q =
475 Mpc (at z = 0.1) with the corresponding inspiral signal-
to-noise ratio, Pinspiraio & 7. We inject the numerical-
relativity postmerger waveform, SLy-M1.350-A390, at
luminosity distance, Dj = Dy, (pinspiral.O/pinspiral)’ and
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evaluate the postmerger signal-to-noise ratio using the
Advanced LIGO and Virgo detector network at design
sensitivity. The right axis in Fig. 5 shows the corresponding
postmerger signal-to-noise ratio.

For postmerger signal-to-noise ratios larger than 6, the
uncertainty in the coalescence time is less than 0.1 ms. This
shows that, for postmerger signal-to-noise ratios of interest
in this work, the coalescence time is similarly constrained.
The uncertainty in coalescence time can be related to Fig. 4
to show that the resultant matched filter signal-to-noise
ratio is not significantly reduced due to the uncertainty in
the coalescence time.

V. PARAMETER ESTIMATION

Estimation of the primary postmerger frequency is
another important indicator of the model performance.
We estimate this by calculating posteriors of the peak
frequency, focu, Of the dominant mode. Figure 6 shows
posteriors of f .. as a function of postmerger signal-to-
noise ratio. These have been calculated for an injection
of SLy-M1.350-A390 at postmerger signal-to-noise ratios
of >9. The noise realization was kept the same for all
injections. Blue shading indicates regions of 95% confi-
dence intervals and the median values are shown as blue
dots. The frequency corresponding to the maximum value
of the characteristic strain spectrum of the numerical-
relativity signal, |3, (f)[v/f, is shown as a black horizontal
line. This can be thought of as an approximation of the true
injected value of f ... The f e frequency is constrained
within 95% confidence intervals to 3310 £35 Hz at a
postmerger signal-to-noise ratio of 15 which corresponds
to £13%. At a postmerger signal-to-noise ratio of 50, the
precision increases to 3296 ! Hz (£33%). The posteri-
ors for fy, ay, fi; and a;, determined for all numerical-
relativity injections at a postmerger signal-to-noise ratio of
50, are shown in Figs. 9-17 in Appendix C.

We also analyze injections of SLy-M1.350-A390 using
BAYESWAVE [44,45]. BAYESWAVE uses a variable number
of Morlet-Gabor wavelets to model the signal, where both
the number and the properties of the wavelets are margin-
alized over. This is an established method for postmerger
studies [2,40]. References [46,47] have performed simu-
lations using BAYESWAVE to infer the postmerger properties
of binary neutron star mergers. We compute the posteriors
of the spectral frequency peak, fcu, USing BAYESWAVE
following Ref. [46]. Here, f .., the frequency of the
highest peak in the Fourier power spectrum of the signal,
is determined for each sample from the BAYESWAVE
posterior. For samples that do not have a peak, fpeux 18
computed using random draws from its prior [46]. Figure 6
shows the 95% confidence intervals of [ for each
postmerger signal-to-noise ratio in brown. The median
values are shown as brown crosses. The BAYESWAVE
frequency posteriors are consistent with Refs. [46,47].

3400 7
\ Foeak
\\ BAYESWAVE fpeak
\\ —— Numerical relativity fpeak
33501 \
\
== ST S
————— - ___
= 33001 e nnnnnne 2
o
=
32501
3200

10 15 20 25 30 35 40 45 50
Post-merger signal-to-noise ratio

FIG. 6. Primary postmerger frequency comparison between our
model (blue) and BAYESWAVE (brown). The posteriors are plotted
against the postmerger signal-to-noise ratio for injection SLy-
M1.350-A390. The 95% confidence intervals are shaded. The
median points are shown as blue dots and brown crosses, for our
model and BAYESWAVE, respectively. The frequency correspond-
ing to the peak of the spectral response of the injection is also
shown (solid black line).

The posteriors for f ., are similarly constrained for both
BAYESWAVE and our model for postmerger signal-to-noise
ratios of 220. BAYESWAVE is more constrained for post-
merger signal-to-noise ratios of ~9—-15. Both methods are
able to recover the injected dominant postmerger fre-
quency. BAYESWAVE can generate very high fitting factors;
the fitting factors for SLy-M1.350-A390 at a postmerger
signal-to-noise ratio of 50 are ~0.99. The dimensionality
of BAYESWAVE is ~90 (~18 wavelets) at this postmerger
signal-to-noise ratio. The dimensionality of our adopted
model is 15 with fitting factors of ~0.92 for SLy-M1.350-
A390. Furthermore, BAYESWAVE can generalize to any
signal (e.g., glitches). In contrast, our model has been
developed to suit a postmerger gravitational-wave signal.
The parameters in our model are interpretable: for example,
in Fig. 9, the o value for SLy-M1.350-A390 is —1.60+032
which shows that the frequency of the dominant gravita-
tional-wave mode is decreasing.

The hierarchical model from Ref. [28] allows a
bidirectional relationship between equal mass progenitor
neutron star properties (C,M,x5) and numerical-
relativity postmerger simulations. This is achieved by
a two step process. First, the progenitor properties are
used to solve C(M,k})=C using a power-law relation-
ship. Second, the model parameters, ®, are determined
by solving h. = O@X(C(M,«}),M,«}), where h. is the
numerical-relativity amplitude spectra for the character-
istic strain (h,(f) = |(f)|\/f). Here, X(C(M,«}), M, k})
is a design matrix derived from the progenitor properties
M and «j.

We use the posteriors from Sec. III to calculate the
amplitude of the characteristic spectrum |k (0, f)|/f
and use the trained model, O, to determine the hierarchical
model posteriors on 3 and C. The cross-polarization
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FIG. 7. Tidal coupling constant posteriors versus postmerger
signal-to-noise ratio for numerical-relativity waveform SLy-
M1.350-A390. The tidal coupling constant is inferred from the
hierarchical model [28] using the magnitude of the posterior
waveforms, |h (0, t)|. The 68% (dark blue) and 95% (light blue)
confidence intervals are shown along with the median values
(blue dots). The true value for «} is shown as the solid horizontal

line. The corresponding tidal deformability values are shown on
the secondary vertical axis.

waveforms are discarded because the hierarchical model
only uses the magnitude of the spectra, and |h. (0, f)| =
|h (0, f)|. The hierarchical model, ®, was previously
trained on 35 numerical-relativity simulations from
Ref. [17], a distinct set of numerical-relativity simulations
to those used in this paper. Therefore, this is an out-of-
sample model validation.

Figure 7 shows the inferred posteriors for k) with 68%
and 95% confidence intervals in dark blue and light blue
respectively. The true injected value of «} is shown by the
horizontal solid black line and the median values as blue dots.
The vertical axis shows both the quadrupolar tidal coupling
constant (left axis) and the quadrupolar tidal deformability
(right axis). The values inferred for the tidal parameters of the
progenitor neutron stars are lower than the true value of the
numerical-relativity injection, though the 95% confidence
interval excludes the true value only at a postmerger signal-
to-noise ratio of 50. The tidal coupling constant at a
postmerger signal-to-noise ratio of 15 is constrained at
95% confidence intervals to 68.51“;‘3 , which tightens to
68.51“;’:;‘ for a postmerger signal-to-noise ratio of 50.

There are a number of factors that will impact on the
performance of the hierarchical model. First, the numerical-
relativity spectra from Ref. [17], which were used in
Ref. [28] to train the model, are a distinct set of simulations
to those in use in this paper [30]. Specifically, waveform
SLy-M1.350-A390 is available in both sets of numerical-
relativity simulations (Refs. [17,30]), and, although the
primary postmerger peak occurs at the same frequency, the
spectral response for the other frequencies are different
(fitting factor = 0.90). Second, the simulation outputs can
be dependent on the spatial and temporal resolution, which
can lead to waveform changes related to parameters like

0.181 \;

1 \
© 0171 X
0.161 ——

10 15 20 25 30 35 40
Post-merger signal-to-noise ratio

FIG. 8. Compactness posteriors versus postmerger signal-to-
noise ratio for numerical-relativity waveform SLy-M1.350-A390.
The 68% (dark blue) and 95% (light blue) confidence regions are
shown. The compactness is inferred from the hierarchical model
[28]. The compactness inferred directly from the numerical-
relativity waveform (dashed black line) and the compactness of
the progenitor neutron stars (solid black line) are also shown. See
the text for an explanation of the offset in these two values.

collapse time, primary oscillation frequency and decay time
constants. To ensure the performance of the hierarchical
model, the simulations used in the training set and test set
should be consistent and not contradictory. Third, the
hierarchical model is an approximate model, and was
trained on 35 compatible waveforms; (for details, see
Ref. [28]). Given the small training set, the hierarchical
model results are consistent. The complexity of the model
could be increased as additional consistent numerical-
relativity simulations become available.

Hierarchical model posteriors for the compactness, C,
are shown in Fig. 8. The 68% and 95% confidence intervals
are shaded dark blue and light blue respectively, and the
median values are shown with blue dots. The true value
corresponding to the injected numerical-relativity simula-
tion is shown as a horizontal solid black line. The value
inferred from the numerical-relativity simulation using the
hierarchical model is shown as a horizontal black dashed
line. The hierarchical posteriors for C are clustered around
the value inferred directly from the hierarchical model for
the numerical-relativity simulation. This is expected and
due to the mismatch between the numerical-relativity
injection and the set of numerical-relativity simulations
used to train the hierarchical model. The compactness has

been constrained to 0.16270507 at postmerger signal-to-

noise ratios of 15 tightening to 0.164f8:8832 at signal-to-
noise ratios of 50 to 95% confidence intervals. The
posteriors for the compactness, C, only narrow moderately

as the postmerger signal-to-noise ratio is increased.

VI. DISCUSSION

We use an analytical model to characterize gravitational-
wave strain from nine numerical-relativity simulations
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selected such that the postmerger oscillations persist for
~25 ms. The median noise-weighted fitting factors for the
posterior waveforms range between 0.92-0.97 for injec-
tions with postmerger signal-to-noise ratios of 50. This
corresponds to a loss in detection rate of 22%—12% when
compared to a signal without mismatch. We measure the
Bayes factor in favor of signal detection with numerical-
relativity simulation SLy-M1.350-A390 and find that
successful detections occur with postmerger signal-to-noise
ratios of >10 with possible detections as low as postmerger
signal-to-noise ratios of 7, depending on the specific noise
realization. This indicates that this model could be used for
parameter estimation and detection if a postmerger signal
louder than signal-to-noise ratio of 10 was coincident with
an inspiral detection. We find that this corresponds to a
distance of ~10 Mpc for an optimally oriented system
using a three-detector network (LIGO Hanford, Livingston,
and Virgo) at design sensitivity.

We determine that starting the model at the time of
coalescence results in the maximum matched filter signal-
to-noise ratio even though the fitting factors are lower in the
vicinity of the merger due to the dynamics of the nascent
neutron star. We find that the uncertainty in the time of
coalescence for the inspiral of the progenitor neutron stars
is less that 0.1 ms for a postmerger signal-to-noise ratio of
> 6 and show that this corresponds to a maximum matched-
filter signal-to-noise ratio.

The gravitational-wave strain of the inspiral can con-
strain the equation of state for the cold neutron star at the
high inspiral signal-to-noise ratios (Z200) required for
postmerger detection of the remnant (see Fig. 5). This can
place additional constraints on the priors for the dominant
postmerger frequency. However, a phase transition in the
hot postmerger remnant [18,31,32], and uncertainty in
the numerical-relativity calculations due to computational
trade-offs, may result in a postmerger gravitational-wave
signal that is quantitatively different than the numerical-
relativity simulations. With this in mind, we assume a more
general, agnostic set of priors (see Appendix B).

Using numerical-relativity waveform SLy-M1.350-
A390, selected for its compatibility with A values
determined from GW170817, e.g., [1,32,37-40], we
constrain the primary postmerger frequency to a range
of 3310 Hz+}4 % for 95% confidence intervals at
postmerger signal-to-noise ratios of 15. The precision
increases to 3296 Hz :I:g:% % for postmerger signal-to-
noise ratios of 50.

We show that our model and BAYESWAVE similarly
constrain the dominant postmerger frequency, fpeu, for
postmerger signal-to-noise ratios of =20. For postmerger
signal-to-noise ratio of ~9—15 BAYESWAVE is better able to
constrain f,.... We generate fitting factors of ~0.99 using
BAYESWAVE for SLy-M1.350-A390 at a postmerger signal-
to-noise ratio of 50. The corresponding fitting factors
from our model are =0.92. The dimensionality of the

BAYESWAVE posterior reconstruction is significantly larger
than our analytic; ~90 dimensions for BAYESWAVE cf. 15
for ours. Moreover, our adopted model is interpretable and
can supply additional information about the individual
modes (e.g., frequency drifts and exponential damping
time constants).

We use the hierarchical model from Ref. [28], which has
been trained on numerical-relativity waveforms from
Ref. [17], to determine posteriors for x5 and C. We obtain
95% confidence intervals on 3 (and A) of +7,% at a
postmerger signal-to-noise ratio of 15 with increasing
precision to +5% at a postmerger signal-to-noise ratio of
50. The 95% confidence intervals on C range from £33 % at
postmerger signal-to-noise ratios of 15 to £13% at post-
merger signal-to-noise ratios of 50. However, the injected
value for C is outside the 95% confidence interval.

It should be noted that the inferred posteriors for C are
centered around the compactness value inferred directly
from the numerical-relativity simulation. This indicates that
the offset in the inferred compactness values is caused by
the difference in the SLy numerical-relativity simulations
between Ref. [17] and Refs. [48,49]. Contradictory training
waveforms will increase uncertainties in the hierarchical
model. The 35 numerical-relativity simulations used to
train the hierarchical model were homogeneous, changing
only the equation of state and the progenitor masses
between simulations, keeping other simulation parameters
the same. It should also be emphasized that, because the
numerical-relativity simulations are drawn from indepen-
dent sources, the posteriors of k}(A) and C are true out-of-
sample estimates. We expect the estimates of C and «} to
become more consistent with the injected value as the
training set is increased in size and covers more system and
progenitor properties.

In addition to the aforementioned analytical models
[26,27], other works have generated analytical postmerger
gravitational-wave models. In Ref. [11], a model was
generated for the time-based amplitude and phase of the
complex gravitational-wave strain using a smooth piece-
wise function for the amplitude. The time-based phase was
fit by the combination of a polynomial and exponentially
damped sinusoid using an iterative covariance matrix
adaption evolution search fitting algorithm. The maximum
fitting factors were calculated in the time domain without
noise weighting and are not directly comparable to the
noise-weighted fitting factors calculated with Eq. (9). The
maximum fitting factors were ~0.92-0.98 for 95% of
the 54 waveforms.

A frequency-domain model was introduced in Ref. [50]
from analyzing the major spectral peaks of the whitened
power spectrum. The power of the dominant postmerger
frequency peak was estimated by a trapezoidal structure
and the model parameters were determined with a least-
squares algorithm. No fitting factors were calculated in
this reference, as the goal was estimating source redshifts.
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This model was extended in Ref. [16] to add a Gaussian
component to the fundamental postmerger frequency using
anonlinear least-squares fit. The goal of the fits in Ref. [16]
were qualitative, rather than quantitative and no fitting
factors were stated.

The model used in Ref. [26] consists of three
exponentially damped sinusoids centred at frequencies
(f2-0 fspiral» fpeak) Which are described in Section I. In
contrast, the model introduced in Ref. [27], consists of
two exponentially damped sinusoids, the first centred on
f1 which is modulated by frequency f,, and the second
is centred on the dominant postmerger frequency, f,, with
a linear and quadratic frequency drift terms. This model
produced fits of ~80-94%. In Ref. [51], a frequency-
domain model was developed for a single damped-
sinusoid. This model was based on three or six parameters
and used Bayesian inference to estimate the parameters
for 120 numerical-relativity simulations. They obtained
fitting factors of ~0.60-0.98. Reference [19] parame-
terised the instantaneous amplitude and phase of the
time-based gravitational-wave strain using 172 numeri-
cal-relativity simulations. Their model uses a rational-
polynomial fit based on the progenitor properties (M,
M,, «}) derived in Refs. [14,52,53]. They achieved
fitting factors of ~0.30-0.85 in zero noise.

The fitting factors obtained in our paper compare
favorably to those listed above; our maximum fitting
factors are above 0.93 for all waveforms, cf. [11], and
our minimum fitting factors are above 0.90 across all
waveforms, cf. [19,51]. The fitting factor is more sensi-
tive to deviations in the time-based phase or Fourier phase
response, than it is to amplitude deviations. The fits in
Ref. [19] could possibly be improved by adding in more
flexibility in the phase response. Our model bypasses the
phase matching difficulty by directly fitting the phase
with parameters, (f;.a;,y;), from the injected signals
from all three interferometers. Although Ref. [51] does
directly fit the phase, the first-order model is too restricted
to obtain higher fitting factors and better results may be
obtained by increasing the order of the model. The
number of numerical-relativity simulations used in
Refs. [11,19,51] was significantly larger than the nine
simulations we use here, including additional mass ratios,
spin configurations and eccentricity values. We leave it
for future work to expand the number of numerical-
relativity simulations to test this model.

Although numerical-relativity simulations currently
provide the best estimate of the postmerger gravita-
tional-wave strain, future postmerger signals may not
be consistent with these state-of-the-art simulations.
With this in mind, our model matches the numerical-
relativity simulations well, but it is more flexible than
these simulations. This is important because this method
is a middle ground between simulations of known wave-
forms, and more general (e.g., unmodeled excess power

and BAYESWAVE) methods. Nevertheless, numerical-rela-
tivity simulations are the primary method of investigating
the dynamical physics of the postmerger region and
research into these simulations is vital.
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APPENDIX A: NUMERICAL RELATIVITY
SIMULATIONS

We use nine simulations from the CORE gravitational
wave database [30] for binary neutron star mergers. The
simulations are listed by their equation of state, the

TABLE I. Numerical relativity simulations.

Designator Simulation name Citations [30]
SLy-M1.350-A390 THC:0036:R03 [49]
LS220-M1.350-A684 THC:0019:R05 [57]

MS1b-M1.500-A864 BAM:0088:R01

[38,58]

BHBIp-M1.300-A1046 THC:0002:R01
DD2-M1.250-A1295 THC:0011:R01 [38,58]
MS1b-M1.375-A1389 BAM:0070:R01 [48]
MS1b-M1.350-A1532 BAM:0065:R03 [12]
DD2-M1.200-A1612 THC:0010:R01 [38,58]
2H-M1.350-A2326 BAM:0002:R02 [12]
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progenitor mass, and the quadrupolar tidal deformability.
We limit our simulations to those with equal-mass progeni-
tors for compatibility with the hierarchical model in
Ref. [28]. We choose simulations with the highest
resolution such that the remnant was transmitting gravi-
tational waves for ~25 ms. In some cases increasing the
resolution resulted in a reduced lifetime of the remnant.
Table I shows the simulation designator for this paper, the
name of the waveform in the CORE database, and the
citation for the associated simulation in the metadata (if
available).

APPENDIX B: PRIORS

The priors are listed in Eqs. (B1)—-(B8) with U(a, D)
representing a uniform prior distribution from a to b. The
mode number j is limited to {0, 1,2} and the mode number
i is restricted to {0, 1}. The priors in Egs. (B7) and (B8) are
constrained priors. These restrictions are enforced in
addition to the standard priors. The prior in Eq. (B7)
ensures that the maximum spectral amplitude of each mode
is decreasing. This results in fj converging to the loudest
peak:

logyo H ~U(~24. ~19) (B1)

£, ~U(1000. 5000) (B2)

logio T; ~U(-4.0,03) (B3)

wj~U(-m.7) (B4)

a; ~U(~64,6.4) (BS)

W, ~U(0.0.1.0) (B6)

0 <M> ~U(0.0,100)  (B7)
max [ (f)]f

wo + w; ~1(0.0.1.0) (BS)

w, is calculated as

wy =1 —wy—wy, (B9)

ensuring that ) ;;w; = 1 and w, € [0, 1] as required.

APPENDIX C: POSTERIORS FOR
ALL NUMERICAL-RELATIVITY
INJECTIONS

Selected posteriors for all numerical-relativity simu-
lations are shown in Figs. 9-17. The waveforms are
injected at a postmerger signal-to-noise ratio of 50. The
posteriors shown are f(, g, f1 and a;. The posteriors
are colored as per Fig. 2. The frequency drift term, o,
for the dominant postmerger frequency is negative for
some simulations. Most numerical-relativity simulation
spectrograms show that the dominant frequency is
constant or increases slightly over time, however, many
simulations do show decreasing evolution of the dom-
inant postmerger oscillation frequency, e.g., [58-60].

3357.0973 %4,
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—
P

.

2579.26+14:10
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S [ _3.31419

%}’%Q “ob’@ %‘Q / ¢
fo[He a [Hz] fi[Hz ay [Hz]

FIG. 9. Selected posteriors for numerical-relativity postmerger
injection using the equation of state SLy with equal mass,
1.35 M, neutron stars (waveform SLy-M1.350-A390). The
numerical-relativity simulation was injected at a postmerger
signal-to-noise ratio of 50.
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equal mass, 1.35 M, neutron stars (waveform LS220-M1.350-
A684).
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equal mass, 1.50 M, neutron stars (waveform MS1b-M1.500-
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FIG. 12. As per Fig. 9 using the equation of state BHBIp with
equal mass, 1.30 M, neutron stars (waveform BHBIp-M1.300-
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A1389).

2236777350

—5.34730%

1593.65 452

0.99
497553

i [He|

J1[Hz] ay [He]

FIG. 15. As per Fig. 9 using the equation of state MS1b with
equal mass, 1.35 M, neutron stars (waveform MS1b-M1.350-
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