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We investigate the use of hybrid equations of state in binary neutron-star simulations in full general relativity,
where thermal effects are included in an approximateway through the adiabatic index Γth. We employ a newly
developed finite-temperature equation of state derived in the Brueckner-Hartree-Fock approach and carry out
comparisons with the corresponding hybrid versions of the same equation of state, investigating how different
choices of Γth affect the gravitational-wave signal and the hydrodynamical properties of the remnant. We also
perform comparisons with the widely used Steiner-Fischer-Hempel equation of state, detailing the differences
between the two cases. Overall, we determine that when using a hybrid equation of state in binary neutron-star
simulations, the value of the thermal adiabatic index Γth ≈ 1.7 best approximates the dynamical and
thermodynamical behavior of matter computed using complete, finite-temperature equations of state.
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I. INTRODUCTION

The numerical simulation of neutron-star (NS) mergers
requires as a most essential input the equation of state
(EOS) of the stellar matter under the relevant conditions of
particle composition, partial densities, and temperature.
Comparing and contrasting the results of simulations

and the observed gravitational-wave signal, then allows us
to constrain theoretical models for the EOS and extract
quantitatively the essential features of the EOS. The
availability of such data has already permitted this selection
process and, in the future, rapid progress is to be expected
toward the identification of “the” EOS of dense nuclear
matter [1,2].
Theoretical EOSs have been computed in various appro-

aches, in particular for cold nuclear matter, but much less for
hot matter up to the temperatures (about 50 MeV) occurring
during the merger. In this article we propose and analyze a
finite-temperature EOS derived within the Brueckner-
Hartree-Fock (BHF) many-body approach that has already
been shown to satisfy all current experimental and obser-
vational constraints on nuclear matter [3], in particular those
imposed by the merger event GW170817 [4,5].
We perform here the first binary NS merger simulations

with this EOS and investigate, in particular, the effects of
different approximations for the treatment of finite temper-
ature in the simulations, following Ref. [6]. The motivation
is to understand how much the widely used “hybrid-EOS”
approach impacts the gravitational-wave properties in binary

NS mergers; indeed, since this approach remains the only
viable choice when using a zero-temperature EOS, it is
important to examine which differences are to be expected
with respect to simulations where finite-temperature versions
of the same EOS are employed. In this context, the under-
standing of the best setup to be used in the approximate
description is of great importance and can be carried out only
by considering the full temperature-dependent EOS. In
particular, we have carried out a number of simulations of
merging NSs in full general relativity, employing two fully
tabulated, temperature-dependent EOSs and a neutrino-
leakage scheme for the treatment of neutrinos. At the same
time, we have performed similar simulations employing
hybrid EOSs whose cold part is represented by the slice at
T ¼ 0 of the temperature-dependent EOSs and where we
have considered a variety of values for the thermal adiabatic
index Γth. In this way, and summarizing the results of a
number of simulations, we conclude that the value of Γth ≈
1.7 best approximates the complete, finite-temperature EOS
in binary NS simulations.
The article is organized as follows. We first review in

Sec. II the computation of the EOS in the BHF formalism,
with different approximations for the finite-temperature
part. Our numerical setup and methods are introduced in
Sec. III. Results of the simulations are presented in Sec. IV,
and conclusions are drawn in Sec. V. Technical details
regarding the evaluation of gravitational-wave signal prop-
erties are given in the Appendix.
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II. EQUATION OF STATE AT FINITE
TEMPERATURE

A. The microscopic BHF approach: The V18 EOS

We only provide here a brief overview of the
formalism, and refer to the various indicated references

for full details, while a more detailed analysis can be
found in [7]. We here compute the EOS in the BHF
approach for asymmetric nuclear matter at finite temper-
ature [8–16]. The essential ingredient of this approach is
the interaction matrix K, which satisfies the following
equations

KðnB; xp;EÞ ¼ V þ V Re
X
1;2

j12ið1 − n1Þð1 − n2Þh12j
E − e1 − e2 þ i0

KðnB; xp;EÞ ð1Þ

and

U1ðnB; xpÞ ¼ Re
X
2

n2h12jKðnB; xp; e1 þ e2Þj12ia; ð2Þ

where nðkÞ is a Fermi distribution, xp ≡ np=nB is the
proton fraction, and np and nB are the proton and the total
baryon number densities, respectively. (In the following,
we will also use the notation ρi ≡mNni and ρ≡mNnB for
the rest-mass densities, where mN ¼ 1.67 × 10−24 g is the
nucleon mass). Here, E is the starting energy and eðkÞ≡
k2=2mþ UðkÞ is the single-particle energy. The multi-
indices 1,2 denote in general momentum, isospin, and spin.
In the present calculations, we adopt the Argonne V18 [17]
potential as a realistic nucleon-nucleon interaction V
supplemented with compatible microscopic three-nucleon
forces derived by employing the same meson-exchange
parameters as the two-body potential [18–21].
Regarding the extension to finite temperature, we use the

so-called frozen-correlations approximation [9–12,16], and
approximate the single-particle potentials Un;pðkÞ by the
ones calculated at T ¼ 0. Within this approximation, the
nucleonic free energy density has the following simplified
expression,

fN ¼
X
i¼n;p

�
2
X
k

niðkÞ
�

k2

2mi
þ 1

2
UiðkÞ

�
− Tsi

�
; ð3Þ

where

si ¼ −2
X
k

ðniðkÞ ln niðkÞ þ ½1 − niðkÞ� ln ½1 − niðkÞ�Þ

ð4Þ

is the entropy density for the component i treated as a free
Fermi gas with spectrum eiðkÞ. From the total free energy
density f ¼ fN þ fL including lepton contributions, all
relevant observables can be computed in a thermodynami-
cally consistent way; namely one defines the chemical
potentials

μi ¼
∂f
∂ni ; ð5Þ

which allow one to calculate the composition of betastable
stellar matter, and then the total pressure p and the specific
internal energy ε,

p ¼ n2B
∂ðf=nBÞ
∂nB ¼

X
i

μini − f; ð6Þ

ε ¼ f þ Ts
ρ

; s ¼ −
∂f
∂T ; ð7Þ

so that e≡ ρð1þ εÞ is the total energy density.
In practice, numerical parametrizations for the free

energy density of symmetric nuclear matter (SNM) and
pure neutron matter (PNM) were given in Ref. [7], and for
asymmetric nuclear matter a parabolic approximation for
the xp dependence is used [13,22–24],

fðnB; T; xpÞ ≈ fSNMðnB; TÞ
þ ð1 − 2xpÞ2½fPNMðnB; TÞ − fSNMðnB; TÞ�:

ð8Þ

This specifies the V18 EOS for arbitrary values of baryon
density, proton fraction, and temperature, which can then
be employed in merger simulations, or simply for comput-
ing the mass-radius relation of cold and hot NSs by solving
the Tolmann-Oppenheimer-Volkov (TOV) equations for
charge-neutral betastable matter including leptons. We
also report that the V18 EOS becomes acausal at nB ¼
0.75 fm−3 (ρ ≈ 1.3 × 1015 g=cm3; see, e.g., Ref. [25]); this
density, however, is far from ever being reached in the
simulations (see Fig. 4 and related discussion).
Since our EOS accounts only for homogeneous matter in

the core region of the NS, we properly extend the EOS, for
every temperature and proton fraction, with an EOS for the
crust, which we define as that covering the range in rest-
mass densities ρ≲ 1014 g=cm3. In particular, we choose
the Shen EOS [26] for that purpose. Furthermore, an arti-
ficial low-density background atmosphere, ρ≲ 103 g=cm3,
evolved as discussed in [27], is used in all our simulations.
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B. The phenomenological SFHo EOS

As an alternative to the temperature-dependent V18 EOS
and to extend and strengthen the results of our compari-
son we have also considered the phenomenological Steiner-
Fischer-Hempel (SFHo) EOS [28,29]. We recall that
phenomenological approaches are commonly used in
simulations of core-collapse supernovae and NS mergers,
where a wide range of densities, temperatures, and charge
fractions describing both clustered and homogeneous
matter has to be covered. Some of the most commonly
used finite-temperature EOSs are the ones by Lattimer and
Swesty [30] and Shen et al. [31]. In both cases, matter is
modeled as a mixture of heavy nuclei treated in the single-
nucleus approximation, α particles, and free neutrons and
protons immersed in a uniform gas of leptons and photons.
In the former case, nuclei are described within the liquid-
drop model, and a simplified Skyrme interaction is used for
nucleons; in the latter case a relativistic mean field (RMF)
model based on the TM1 interaction [32] is used for
nucleons. In both approaches, all light nuclei are ignored,
except for alpha particles. This drawback has been over-
come in the SFHo EOS model of Hempel and Schaffner-
Bielich (HS) [28] and Hempel et al. [29], which goes
beyond the single-nucleus approximation, and takes into
account a statistical ensemble of nuclei and interacting
nucleons. Nuclei are described as classical Maxwell-
Boltzmann particles, and nucleons are treated within the
RMF model employing different parametrizations.
Here, we adopt the new SFHo EOS [33], which is

based on the HS EOS but implemented with a new RMF

parametrization fitted to some NS radius determinations.
The new RMF parameters are varied to ensure that
saturation properties of nuclear matter are correctly repro-
duced. In particular, the nuclear incompressibility K ¼
245 MeV turns out to be compatible with the currently
acceptable range of 240� 20 MeV [34], which agrees with
that predicted from the giant monopole resonances.
Moreover, the new parametrization ensures that the sym-
metry energy at saturation density J ¼ 32.8 MeV is well
within the empirical range 28.5–34.9 MeV [35], and that
the NS maximum mass MTOV ¼ 2.06 M⊙ is (marginally)
compatible with the currently strongest observational con-
straint M > 2.14þ0.10

−0.09 M⊙ [36].
As an illustration of the properties of the two temper-

ature-dependent EOSs, Fig. 1 shows the pressure p and
energy density e of betastable matter as a function of the
baryon number density for both the V18 and SFHo EOSs.
In particular, in the left panel we display the energy density
(solid curves) and pressure (dashed curves) as a function of
the baryon density obtained at T ¼ 0 for the V18 case and
the SFHo EOS. We notice that the V18 EOS is stiffer than
SFHo and this will play an important role in the discussion
and interpretation of the simulation results. In the right
panel, on the other hand, we display the thermal contri-
butions to the betastable EOS defined as

pthðρ; TÞ≡ pðρ; TÞ − pðρ; 0Þ; ð9Þ

ethðρ; TÞ≡ ρ½εðρ; TÞ − εðρ; 0Þ�; ð10Þ

FIG. 1. Left panel: pressure p and energy density e of betastable matter at T ¼ 0 as a function of the baryon number density. Right
panel: thermal pressure and internal energy density, Eqs. (9), (10) at different temperatures. Results with V18 and SFHo EOSs are
compared.
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for different temperatures (T ¼ 30; 50 MeV) and where eth
is the internal energy density. One can notice that in the
V18 case the overall thermal effects are smaller than in
SFHo, of the order of a few percent at high density, even at
the fairly high temperature T ¼ 50 MeV considered here
(see [37] for a study on uncertainties of finite-temperature
properties of neutron matter). In Ref. [7] we examined in
detail for the V18 case the intricate interplay between the
nucleonic and leptonic contributions to the betastable EOS,
which are of equal importance.

C. Hybrid-EOS approach

An approach often employed in simulations of NS
mergers [6,38–52] is the so-called “hybrid EOS,” in which
pressure and the specific internal energy can be expressed
as the sum of a “cold” contribution obeying a zero-
temperature EOS, and of a “thermal” contribution obeying
the ideal-fluid EOS (see [53] for details). In this approach,
the relation between the thermal pressure and the internal
energy density of betastable matter can be expressed as

pthðρ; TÞ ¼ ethðΓth − 1Þ; ð11Þ

where Γth is the thermal adiabatic index appearing in the
ideal-fluid approximation. In a temperature-dependent
approach, this quantity becomes dependent on density
and temperature, i.e., Γth ≡ 1þ pth=eth, and this depend-
ence is illustrated in Fig. 2 with dashed curves for the V18
(left panel) and for the SFHo EOS (right panel). Note that
there is a clear density dependence, whereas the temper-
ature dependence turns out to be less pronounced. Overall,

the thermal adiabatic index remains above 1.5 at all
densities in the SFHo case, but decreases below 1.5 in
the V18 case, consistent with the thermal pressures shown
in Fig. 1.
In temperature-dependent EOSs to be used in numerical

simulations, the adiabatic index is usually not defined for
betastable matter (featuring different proton fractions in hot
and cold matter), but can be computed at constant proton
fraction as

Γthðρ; TÞ≡ 1þ pðρ; xβ; TÞ − pðρ; xβ; 0Þ
ρ½εðρ; xβ; TÞ − εðρ; xβ; 0Þ�

; ð12Þ

where xβ is the betastable proton fraction at either
(ρ; T > 0) or (ρ; T ¼ 0). This leads to different numerical
values that are also displayed in Fig. 2, where the solid
(dash-dotted) curves display results with xβ taken at
T > 0 ðT ¼ 0Þ for the V18 (left panel) and the SFHo
EOS (right panel), respectively. We note that this procedure
yields values 1.5≲ Γth ≲ 1.7 for the V18 EOS, and
1.6≲ Γth ≲ 1.8 for the SFHo EOS, whereas the average
value for the betastable matter is smaller in both cases. We
point out, however, that in the merger simulations the
matter in the early remnant is usually not in beta equili-
brium and therefore all the values shown in Fig. 2 can only
give qualitative indications of effective Γth values. This will
be discussed in more detail later.
In fact, three-dimensional hydrodynamical calculations

of NS mergers in the conformally flat approximation of
general relativity reported in Ref. [6] have questioned the
validity of a constant-Γth approximation in the hybrid-EOS

FIG. 2. Adiabatic index of betastable matter, Eq. (12), as a function of density at different temperatures. Dashed curves show results
obtained from betastable hot and cold matter, while for the solid (dash-dotted) curves the proton fraction is fixed to the one of betastable
hot (cold) matter (see discussion in the text).
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approach (originally chosen as Γth ≈ 1.5 [38]), especially in
the postmerger phase, where thermal effects are most
relevant. Strong variations were found in both the oscil-
lation frequency of the forming hypermassive NS (HMNS),
and the delay time between the merger and black-hole
formation, with respect to the simulations with a fully
consistent treatment of the temperature. It is one of our
goals here to reconsider—by comparing and contrasting
fully general-relativistic simulations with temperature-
dependent and hybrid EOSs—the issue of the most
appropriate constant value of Γth to be employed when
adding a thermal component to the EOS.

D. Macroscopical properties of the V18
and SFHo EOSs

Given the widespread recent use of hybrid EOSs
[41–52,54–56] and the scarcity of fully temperature-
dependent EOSs (that are effectively restricted to a handful

]29,33,57–60 ]), the determination of the most realistic
value to be used for Γth is not purely academic. Indeed,
even at the lowest-order approximation, Γth has an impact
on the stability of the merger remnant and hence of its
lifetime before collapsing to a black hole. This is most
easily shown in Fig. 3, which reports sequences of non-
rotating equilibriummodels as a function of the central rest-
mass density (or baryon number density) for the V18 EOS
(left panel) and the SFHo EOS (right panel). Different
curves refer to different temperatures (i.e., T ¼ 0 and
T ¼ 50 MeV), using the exact temperature dependence
and three different choices of constant Γth ¼ 1.1, 1.5, 1.75.
In other words, we use Eq. (10) at T ¼ 50 MeV and the

estimate of the thermal adiabatic index to compute the
thermal contribution to the pressure, Eq. (11).1

Note the weak dependence of the maximum TOV mass
on the temperature, so that for the V18 EOS we have
that MTOVðT ¼ 0Þ≡MTOV ¼ 2.387 M⊙ at a central rest-
mass density ρc¼1.58×1015 g=cm3 (corresponding to a
baryon number density nc¼0.96 fm−3), while MTOVðT¼
50MeVÞ¼2.372M⊙ at ρc¼1.53×1015 g=cm3 (nc ¼
0.93 fm−3). This is mainly due to the competition of three
different effects for fixed density and increasing temper-
ature, namely (a) the increase of the thermal pressures
of neutrons and protons, (b) the increase of the isospin
symmetry due to betastability, which reduces the baryonic
pressure, and (c) the increase of the lepton thermal pressure.
In particular, the V18 EOS is characterized by large values
of the symmetry energy which increases with temperature
and density, and this is due to the strongly repulsive
character of the microscopic three-body forces. This
implies a strong increase of the isospin symmetry with
temperature and density [7].
In Fig. 3, left panel, the Γth ¼ 1.5 approximation at T ¼

50 MeV happens to yield a very similar result as the full
calculation; hence we can conclude that for the V18 EOS,
the value of the adiabatic thermal index Γth ¼ 1.5 repre-
sents the best approximation for betastable matter at finite
temperature as it is the one that best mimics the effects
of a full temperature dependence. The proton fraction xp
corresponding to betastability is quite different at T ¼ 0

FIG. 3. Gravitational mass as a function of the central rest-mass density for T ¼ 0 and T ¼ 50 MeV with full temperature treatment,
and different choices of constant Γth ¼ 1.1, 1.5, 1.75 at T ¼ 50 MeV. Dashed orange and green lines, together with the shaded regions
of the same color, refer to the observational constraints of Refs. [36,61], respectively.

1For this plot, a cold crust is attached to the isothermal NS
interior at nB¼0.08 fm−3, corresponding to ρ≈1.32×1014 g=cm3.
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and finite T at given baryon density, and therefore the Γth
computed in this way is different from the one calculated at
the same xp in both cold and hot matter, using either the xp
of cold matter or the one of hot matter in Eq. (12). The latter
is the choice made in the numerical simulations and,
according to Fig. 2, typical values of Γth ∼ 1.7 in this
choice correspond to typical values of Γth ∼ 1.5 in the
betastable procedure, which is the one used in Fig. 3.
On the other hand, Γth ¼ 1.1 and 1.75 predict lower and

higher MTOV, respectively, according to the lower and
higher thermal pressure they provide. One can appreciate
the opposite effects of pth and eth on the maximum mass:
When including only eth (Γth ¼ 1.1 curves featuring very
small pth), MTOV decreases with respect to the cold
MTOVðT ¼ 0Þ, whereas including also pth [fully tabulated
(FT), Γth ¼ 1.5, 1.75 curves]MTOV increases again. For the
V18 FT EOS there is nearly compensation between both
effects due to a relatively low thermal pressure induced by a
strong change of the proton fraction in hot vs cold matter,
and the related changes of hadronic and leptonic contri-
butions to the pressure that compete with each other, as
explained before.
The right panel of Fig. 3 reports the corresponding

results for the SFHo case, and in this case we can note a
larger temperature dependence of the maximum TOV mass
when compared to the V18 case; in turn, this relates to the
higher thermal pressure and adiabatic index for the SFHo.
This is due to the smaller change of the proton fraction with
increasing temperature, which causes a larger thermal pres-
sure, at variance with the V18-EOS case. Consequently, the
full calculation at T ¼ 50 MeV seems to be better repro-
duced by the Γth ≃ 1.7 approximation here.
The maximum masses are then MTOVðT ¼ 0Þ≡

MTOV ¼ 2.058 M⊙, with a central rest-mass density ρc ¼
1.90 × 1015 g=cm3 (nc ¼ 1.15 fm−3), and MTOVðT ¼
50 MeVÞ ¼ 2.126 M⊙, with ρc ¼ 1.68 × 1015 g=cm3

(nc ¼ 1.02 fm−3). These values, together with other useful
information such as the rotation frequencies at the mass-
shedding limit, are summarized in Table I.

Finally, we note that the merger remnant is expected to
be rotating differentially and to support a mass which is
upper bounded by the threshold mass to prompt collapse to
a black hole, that can be estimated to be [62]

Mth ¼ MTOV

�
3.06 −

1.01
1 − 1.34MTOV=RTOV

�
: ð13Þ

For the V18 EOS, the threshold mass amounts to Mth ¼
3.04 M⊙ with MTOV=RTOV ¼ 0.324, whereas in the SFHo
case Mth ¼ 2.86 M⊙, being MTOV=RTOV ¼ 0.295 (in
geometrized units with c ¼ 1 ¼ G ¼ M⊙).

III. INITIAL DATA AND NUMERICAL
PROCEDURE OF MERGER SIMULATIONS

The mathematical and numerical setup considered here
is similar to the one discussed in great detail in Ref. [63];
we review here only the main aspects and differences with
respect to this reference, referring the interested reader to
the latter for additional information. We consider initial
data for irrotational binary neutron stars computed using
the multidomain spectral-method code LORENE [64,65]. All
initial data have been modeled considering a zero-temper-
ature, beta-equilibrated cut of the full EOS table (which
will be labeled from now on as “cold EOS”), and involve, in
our case, equal-masses binaries with a gravitational mass
M ¼ 1.35 M⊙ at infinite separation (corresponding to a
total baryonic massMB ¼ 2.97 M⊙ with the V18 EOS and
MB ¼ 2.96 M⊙ with the SFHo EOS, as Table I), and an
initial separation between the stellar centers of 45 km.
We then proceed to study two different implementations

of our finite-temperature EOS:
(a) The FT case, in which a local temperature is obtained

by inverting the eðρ; xp; TÞ entries in the EOS table, using
the values of the internal energy density e, rest-mass density
ρ, and proton fraction xp obtained through the solution
of the hydrodynamics equations at a given time step. This
temperature is then used to obtain the total pressure
pðρ; xp; TÞ from the same EOS table.
(b) The “hybrid-EOS” method discussed in Sec. II C,

where finite-temperature effects caused in particular by
shock heating during the postmerger phase are taken into
account by enhancing the zero-temperature EOS with an
ideal-fluid contribution [38,53]. In this method, the local
pressure is approximated by

p ¼ pc þ ρðε − εcÞðΓth − 1Þ; ð14Þ

using the values εcðρÞ and pcðρÞ of the cold EOS table for
betastable matter and the local propagated values of ρ and
ε. In this case no local temperature (and no proton fraction)
can be extracted during the simulation. The adiabatic index
Γth is a constant both in space and time, constrained
mathematically and from first principles to be 1 ≤ Γth ≤ 2
[66]. However, in order to properly compare a simulation of

TABLE I. Properties of the maximum-mass configurations of
both static and maximally rotating stars with Kepler frequency at
temperatures T ¼ 0 and 50 MeV: gravitational and baryonic
masses M and MB, and the equatorial radius R.

EOS f (Hz) T (MeV) M (M⊙) MB (M⊙) R (km)

V18 0 0 2.387 2.913 10.86
0 50 2.372 2.785 11.40

1770 0 2.845 3.385 14.17
1590 50 2.724 3.102 15.00

SFHo 0 0 2.058 2.448 10.30
0 50 2.126 2.450 11.81

1741 0 2.472 2.911 13.73
1376 50 2.413 2.726 15.98

FIGURA, LU, BURGIO, LI, and SCHULZE PHYS. REV. D 102, 043006 (2020)

043006-6



type (b) with the corresponding simulation of type (a), the
cold part of the hybrid EOS is chosen to match the T ¼ 0
slice of the temperature-dependent EOS. In this way, the
solutions of type (a) and (b) are identical during the inspiral
—when shocks are absent or minute and confined to the
stellar surfaces—but start to differ after the merger, when
thermal effects develop. Clearly, we consider the simula-
tions of type (a) as the most realistic ones and iterate the
values of Γth in simulations of type (b) to find the closest
match in the bulk behavior of the matter.
Overall, for our V18 EOS we consider five different

binary merger simulations, namely the reference FT case
[i.e., one simulation of type (a)] and four additional
simulations in which the value of Γth is varied [i.e., four
simulations of type (b)]. In particular, we consider the
limiting case of Γth ¼ 1.1, representative of the cold case
with almost absent thermal effects: the case Γth ¼ 1.5,
which best approximates the V18 EOS in the betastable
regime at T ¼ 50 MeV according to Figs. 2 and 3, the case
Γth ¼ 1.7, which best approximates the FT results in the
simulations, and, finally, the case Γth ¼ 1.75 with the
largest thermal contributions, which also represents a
common choice in the literature (see Refs. [6,55] for
discussions on the use of different Γth). In addition, we
also perform three more simulations with the SFHo EOS,
one in the FT regime and two using the hybrid-EOS
approach with Γth ¼ 1.5 and Γth ¼ 1.75.
All simulations are performed in full General Relativity

using the fourth-order finite-differencing code of McLachlan

[67], which is part of the publicly available Einstein Toolkit
[68]. The code solves the CCZ4 formulation of the Einstein
equations [69–71], with a “1+log” slicing condition and a
“Gamma driver” shift condition (see, e.g., Refs. [72,73]).
The general-relativistic hydrodynamics equations are
solved using the WhiskyTHC code [27,74,75], which uses
either finite-volume or high-order finite-differencing high-
resolution shock-capturing methods. We employ, in par-
ticular, the local Lax-Friedrichs Riemann solver and the
high-order MP5 primitive reconstruction [76,77]. For the
time integration of the coupled set of hydrodynamic and
Einstein equations we use the method of lines with an
explicit third-order Runge-Kutta method, with a Courant-
Friedrichs-Lewy number of 0.15 to compute the time step.
Although matter compression and shocks increase the

temperature of the remnant to several tens of MeV [78],
neutrino emission acts as a cooling mechanism and is
implemented in the temperature-dependent simulations, as
only in the latter the electron fraction is consistently
evolved in time. In these cases, we treat the effects on
matter due to weak reactions using the gray (energy-
averaged) neutrino-leakage scheme described in
Refs. [79,80], and evolve free-streaming neutrinos accord-
ing to the M0 heating scheme introduced in Refs. [48,80].
To ensure the nonlinear stability of the spacetime

evolution, we add a fifth-order Kreiss-Oliger-type artificial
dissipation [81]. We employ an adaptive-mesh-refinement

approach, where the grid hierarchy is handled by the Carpet
driver [82]. Such a hierarchy consists of six refinement
levels with a grid resolution varying from h5 ¼ 0.16 M⊙
(i.e., ∼236 m) for the finest level, corresponding to about
40 points covering the NS radius on the equatorial plane at
the beginning of the simulation for both the V18 and SFHo
models, to h0 ¼ 5.12 M⊙ (i.e., ∼7.5 km) for the coarsest
level,whoseouter boundary is at1024 M⊙ (i.e.,∼1515 km).
To reduce computational costs, we adopt a reflection
symmetry across the z ¼ 0plane.While theV18 simulations
presented here follow the remnant evolution for a timescale
of at least 20 ms, the SFHo simulations are stopped a few
milliseconds after the collapse to a black hole.
Before concluding this section, a couple of remarks are

useful. First, the hybrid-EOS simulations are carried out
using the betastable tables at T ¼ 0, so that the simulation
is “forced” to treat betastable matter corrected with the
already-described finite-temperature effects. The FT simu-
lation, on the other hand, is free to drive away from the
betastable condition, and indeed this is what happens
starting from the very beginning, as we will discuss in
the next section. Second, the simulations employing the
V18 EOS discussed here represent the first application of
such recently derived and publicly available temperature-
dependent EOS [83].

IV. NUMERICAL RESULTS

In the following we present the results of our binary NS
merger simulations. Technical details regarding the extrac-
tion of the gravitational-wave signal are given in the
Appendix.

A. Bulk dynamics

Following the considerations made in Sec. II for the V18
EOS and the chosen total binary mass 2.7 M⊙, the merger
simulations do not feature an immediate collapse to a black
hole, but produce a metastable HMNS up to the largest time
t ≈ 20 ms that we reached in the simulations. At that time,
the remnant is still stabilized by differential rotation and
finite-temperature contributions to the pressure. This fea-
ture seems to be compatible with the multimessenger
analysis of the GW170817 event [84]. On the other hand,
the simulations performed with the SFHo EOS lead to a
rather rapid collapse into a black hole, which seems to be in
contrast with the expected amount of mass ejected in the
GW170817 event.
Figure 4 shows in the two top panels the evolution of the

maximum rest-mass density, ρmax, for the different cases we
have studied, while the third and fourth panels report the
evolution of both the maximum and the density-weighted-
average temperature

hTi≡
R
dVρTR
dVρ

; ð15Þ

where the average is performed on the z ¼ 0 plane, after
applying a low-density threshold of 1013 g=cm3 to avoid
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contamination from the very light but very hot matter
ejected; only for the SFHo case, we change this threshold to
1010 g=cm3 in order to also calculate the averaged quan-
tities even after the collapse. A lighter color is chosen for
the inspiral phase, where such temperatures are meant as
representative only and do not reflect an accurate descrip-
tion of the thermodynamics of the matter. A similar
behavior (and even larger inspiral temperatures) has been
found also for other temperature-dependent EOSs, e.g.,
Refs. [85–87]. In the lowest panel we also show for both FT
EOSs the density-weighted-average relative deviation from
beta stability

�
ΔYeβ

Ye

�
≡

R
dVρ jYeβ−Yej

YeβR
dVρ

; ð16Þ

where Yeβðρ; TÞ represents the electron fraction calculated
pointwise on the z ¼ 0 plane assuming beta equilibrium at
the local density ρ and temperature T. For the V18 EOS it
stabilizes at a fairly large reduction of about 40%, which
will be discussed later in more detail. We set our time
coordinate such that t ¼ tmerg ¼ 0, where tmerg is the time
of the merger and corresponds to the maximum of the
gravitational-wave amplitude, for all the cases we study.
When considering V18-EOS simulations, we find that,

unsurprisingly, the Γth ¼ 1.1 simulation produces the
remnant with the highest maximum rest-mass density

(ρmax ≈ 1015 g=cm3), which decreases to about 0.94 ×
1015 g=cm3 with increasing Γth. Indeed, this is simply
the consequence of the fact that increasing the thermal
support against gravity leads to a less dense remnant.
Interestingly, the temperature-dependent EOS leads to a
remnant with an even smaller maximum rest-mass density
(ρmax ≈ 0.88 × 1015 g=cm3) than the hybrid-EOS cases.
This feature points to a systematic difference between
the two types of simulations: While the hybrid method is by
construction based on an EOS of cold betastable matter
with thermal corrections, the full simulation produces
matter strongly out of beta equilibrium, see the lowest
panel of Fig. 4, as will be analyzed later.
On the other hand, the simulations carried out with the

SFHo EOS show that the remnant collapses into a black
hole after a time which strongly depends on the chosen
thermodynamical treatment. In particular, the collapse
takes place at t ≈ 13 ms for the FT EOS and at t ≈ 7 ms
or t ≈ 14 ms for the cases in which Γth ¼ 1.50 or
Γth ¼ 1.75, respectively. Furthermore, before collapse,
the fluctuations of the rest-mass density and temperature
are more violent than for the V18 EOS during this
metastable phase. While we focus here on the dependence
of the collapse time on the temperature treatment, it has also
been found to depend sizeably on the numerical resolution
(see, e.g. Refs. [41,52]), which we have not been able to
study here due to lack of numerical resources.

FIG. 4. Maximum values of rest-mass density (upper panels) and temperature (third and fourth panels from the top, only for the
simulations using the FT EOSs) as a function of time. The evolution of the average temperature hTi, Eq. (15), is also displayed. A lighter
color is chosen for the inspiral phase, where such temperatures are meant as representative only and do not reflect an accurate description
of the thermodynamics of the matter. The average deviation from betastability, Eq. (16), is also represented in the lowest panel for both
FT EOSs.
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As mentioned previously, in addition to the maximum
temperature for the FT simulations, whose values during
the postmerger phase peak at around 70 and 110 MeV for
the V18 and SFHo EOS respectively, we also report the
density-weighted-average temperature. Note that for both
EOSs, even during the inspiral, the average temperature is
much smaller than the maximum values, which, especially
during the inspiral, are reached only in small zones of the
computational domain, as will be illustrated in Fig. 8.
We also confirm that, while during the inspiral phase

there is no great deviation from betastability, with average
values mostly below 5%, the postmerger remnant manifests
important differences with respect to the latter, with average
deviations of about 40% and 50% for V18 and SFHo
respectively.

B. Gravitational-wave emission

In Fig. 5 we show the plus polarization of the l ¼ m ¼ 2
component of the gravitational-wave strains, which we
label as h22þ , for all the considered simulations we have
carried out using the V18 and SFHo EOSs. As expected, no
significant differences are found in the inspiral part of the
signal; the only notable feature being that the time of
merger, which we consider as the time corresponding to the
maximum of the strain amplitude, varies slightly when
varying Γth in the hybrid-EOS approach (the maximum
variations are about 0.05 ms with respect to the average
times calculated for both EOSs in the hybrid-EOS
approach). The time of merger measured in the FT runs

for both the V18 and the SFHo EOS differs instead of
≈0.6 ms with respect to the average time calculated in the
hybrid-EOS approach; we believe the small difference
arises from the fact that while in the hybrid-EOS approach
finite-temperature effects during the inspiral are minimized,
the FT approach leads, especially in the final parts of the
inspiral, to a temperature increase which, together with the
slight deviation of betastability, could be responsible for
this feature. On the other hand, as clearly shown in Fig. 5,
we find that all the cases considered here exhibit very
different postmerger profiles.
Figure 6 shows the power spectral density (PSD) plots of

all simulations determined as detailed in the Appendix. In
particular, we choose to study the dominant l ¼ m ¼ 2
mode, and consider the position of the f2 peak (following
the same nomenclature as in Ref. [56]) as a tracker of
the different behaviors. Since especially for the V18-EOS
case with higher Γth it is difficult to distinguish the
dominant f2 peaks, a fitting procedure represents the only
way for an accurate determination of the f2 positions (see
the Appendix for a discussion on the determination of the
values of the peaks). We report in Table II these values,
together with their indetermination, the fmax values for each
simulation, and the emitted gravitational-wave energy EGW
for the l ¼ m ¼ 2 mode, measured as outlined in the
Appendix. In general, f2 decreases and EGW increases with
increasing Γth, while the values of fmax depend only very
weakly on Γth and do not show any specific dependence.
As a result, and accounting for the fact that the determi-
nation of the f2 peak frequency inevitably comes with a

FIG. 5. Gravitational waveforms over a timescale of about 20 ms after the merger for the V18 and SFHo EOSs obtained for
gravitational masses 2 × 1.35 M⊙, comparing different choices of constant Γth ¼ 1.1, 1.5, 1.7, 1.75 and the FT EOSs.
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considerable uncertainty related to the different distribu-
tions of power in the various PSDs, the only robust
conclusion that can be drawn from the data in Table II
is that values of the thermal adiabatic index such that Γth <
1.5 are not in agreement with the results of the FT
simulations. In the following sections we will seek other
and more robust indicators of the optimal value for Γth.
We further note that the values of the f2 frequencies

reported in Table II agree reasonably well with both the
universal relation between f2 and the tidal polarizability
parameter kT2 [56] and the radius of a 1.6 M⊙ NS, R1.6 [88],
which we report for completeness:

f2 ≈ 5.832 − 1.118ðkT2 Þ1=5 ≈ 2.95 ½kHz�; ð17Þ

f2 ≈ 8.713 − 0.4667R1.6 ≈ 2.86 ½kHz�; ð18Þ

where kT2 ¼ 113.08, R1.6 ¼ 12.54 km for the V18 EOS,
while kT2 ¼ 78.75, R1.6 ¼ 11.77 km for the SFHo EOS.
We also find that the simulation employing the V18 EOS

with Γth ¼ 1.1 yields the highest frequency of the f2 peak
(∼230 Hz above the FT value). Such a finding is in
agreement with the behavior of the rest-mass density found
in Fig. 4. In particular, since the frequency of the mode
scales with the square root of the average density (see, e.g.,
Ref. [89]), the behavior of the f2 peak confirms spectro-
scopically that in this case the remnant not only has the
largest central density, but it also has the largest average
rest-mass density and is therefore subject to the fastest
oscillations among all the cases considered.

C. Differential rotation and effective
thermal adiabatic index

In the following we analyze in more detail the properties
of the remnant that is formed after merger. Figure 7, in
particular, shows the one-dimensional radial profiles of the
averaged rest-mass density (left panel) and of the angular
velocity (right panel) for all the cases we have considered at
a time t ≈ 14 ms after the merger. The profiles are obtained
from the values of the corresponding quantity on the
equatorial plane (z ¼ 0) and after averaging in the azimu-
thal direction and over a time window of 1 ms so as to
obtain functions that depend only on the cylindrical radius,
r, from the center of the grid.
In the bottom part of each panel we also report the

fractional differences of the hybrid-EOS profiles with
respect to the fiducial FT ones. Overall, we find that in
the core of the remnant (i.e., r≲ 6 km), differences in

FIG. 6. PSDs of the simulations with the V18 and SFHo EOSs, at a distance of 100 Mpc. Vertical dashed lines of different colors
indicate the frequency f2. The sensitivity curve (magenta color) of Advanced LIGO is displayed for reference.

TABLE II. GW properties of NSs for the considered EOSs:
instantaneous frequency at amplitude maximum fmax, frequency
of the f2 peak, and the total emitted energy EGW.

Simulation fmax (kHz) f2 (kHz) EGW (1052 erg)

V18—FT 1.77 2.81� 0.02 5.28
V18—Γth ¼ 1.75 1.79 2.82� 0.08 5.84
V18—Γth ¼ 1.7 1.77 2.78� 0.07 5.68
V18—Γth ¼ 1.5 1.79 2.84� 0.01 4.97
V18—Γth ¼ 1.1 1.81 3.04� 0.01 4.46
SFHo—FT 1.95 3.44� 0.01 6.89
SFHo—Γth ¼ 1.75 1.92 3.34� 0.01 7.80
SFHo—Γth ¼ 1.5 1.93 3.57� 0.01 6.38
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density remain below 10% for the cases Γth ¼ 1.5, 1.7,
1.75, while they increase below ρ ≈ 2 × 1014 g=cm3.
Interestingly, the case Γth ¼ 1.1 always shows the largest
differences and the case Γth ¼ 1.7 the smallest fractional
differences in the core area, which is dynamically the most
important one.
In order to determine which values of Γth best approxi-

mate the FT behavior, we compute such values pointwise
according to Eq. (12), using the local values of ρ, xp, and T
obtained in the FT simulations and the FT tables to com-
pute p and ε. Note, however, that while Γth is used in
simulations where the betastability is enforced throughout
the evolution, this way of computing Γth ignores the

betastability condition of cold matter, since xp—which is
evaluated pointwise in the FT simulations—is not the
proton fraction of cold betastable matter. The method is
most close to the fixed-xp prescription used in Fig. 1 with
xβðT > 0Þ, but the FT xp is not the one of hot betastable
matter either. As a result, it can only give an approximate
indication of the “best” value to be used in hybrid-EOS
calculations (see also the previous discussion in Sec. II D).
Figure 8 shows in the top-left quadrants the values of the

“local” Γth on the z ¼ 0 plane at time t ¼ 9 ms after the
merger. Other quantities reported are the distributions of the
rest-mass density ρ (top-right quadrants), the temperature T
(bottom-right quadrants), and the deviation of the electron

FIG. 7. Average rest-mass density and angular velocity for the different V18-based EOSs as a function of the radial coordinate r
(z ¼ 0) at t ¼ 14 ms.

FIG. 8. Distributions of Γth, Eq. (12), (upper-left side of the figures), rest-mass density (upper right), temperature (lower right), and
deviation from betastability (lower left), in the z ¼ 0 plane at t ≈ 9 ms after the merger.
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fraction from its betastable value, jYeβ − Yej=Yeβ (bottom-
left quadrants). Note that while in the hybrid-EOS simu-
lations Γth is, by construction, constant over the computa-
tional domain, in the FT case the computed value with
the V18 EOS (right panel) is generally Γth ≲ 1.6 for
ρ≲ 5 × 1013 g=cm3, and very close to Γth ≃ 1.7 for higher
densities and hence in the core of the HMNS.
On the other hand, the SFHo simulation (right panel)

exhibits a slightly different behavior, with Γth ≳ 1.7 in the
density region 1014 ≲ ρ=g=cm3 ≲ 1015 and with the high-
est-density region being instead dominated by values
Γth ≲ 1.65. This behavior confirms qualitatively the con-
clusions drawn from Fig. 6, namely, that a value of the
thermal adiabatic index Γth ≈ 1.7 provides a good match to
the postmerger spectroscopic properties observed in the
two FT EOSs.
The temperature distributions reported in Fig. 8 show the

typical appearance of two hot spots of more than 50 MeV
[44,90], whose temperature evolution was shown in Fig. 4
and whose appearance can be associated with the con-
servation of the Bernoulli constant (see [44] for a detailed
discussion). The two hot spots eventually merge into an
axisymmetric structure after t ≃ 22 ms. Also quite evident
from the bottom-left quadrants is that the matter after the
merger is significantly out of beta equilibrium, especially in
the low-density layers of the HMNS. Averaged values were
plotted in Fig. 4. As discussed above, this deviation limits
the validity of the comparison of the dynamical and
thermodynamical properties of the matter between simu-
lations carried out with the FT EOSs and with hybrid EOSs.
It is also clearly visible from the top-left quadrants in

Fig. 8 that the local value Γth is far from being constant, but
depends strongly on the density, temperature, and proton
(electron) fraction at each point of the computational
domain. Notwithstanding these limitations, we can never-
theless attempt to identify in FT simulations a reference
value of Γth by considering a spatial average and by
inspecting how much this average varies with time. For
this purpose we calculate, on the equatorial plane (z ¼ 0)
and at each time t after the merger, the density-weighted
spatial average of Γth as [cf. Eq. (15) for the density-
weighted-average temperature]

hΓthi≡
R
dVρΓthR
dVρ

; ð19Þ

where, again, the average is performed after applying a
low-density threshold of 1013 g=cm3 to avoid contamina-
tion from the dynamically unimportant matter. We have
verified that the results are insensitive to changes of this
threshold, with deviations of Γth of the order 3 × 10−3 when
1012 g=cm3 is chosen instead.
Figure 9 reports the evolution of the average thermal

adiabatic index, in a time window between 5 and 10 ms
after merger, which corresponds to the time interval when

the fluctuations of Γth for the SFHo EOS are minimal and a
comparison between FT and hybrid EOSs is more reason-
able. We notice that, for both EOSs, hΓthi ≃ 1.7, and that
the corresponding time and spatial averages for the V18
and the SFHo EOS are hΓ̄thi ¼ 1.705 and hΓ̄thi ¼ 1.690,
respectively (indicated by arrows). These averages include
also the initial time interval, 2≲ t=ms≲ 5, when the
HMNS has just been formed and the dynamics is still
very far from being quasistationary (light-colored curve
segments). As a further confirmation of our results, we also
report the average of Γth calculated using the values of p
and e evaluated employing xβ at T ¼ 0 (instead of the local
value of xp), as we have done in Fig. 2 (dash-dotted
curves). We find also in this case good agreement with the
value 1.7 for both EOSs.
Figure 10 shows a selection of Γth isocontours on the

z ¼ 0 plane for the time window between 5 and 10 ms also
considered for Fig. 9. We find that the distribution shown in
Fig. 8 remains robust for the time window considered; in
particular, for both V18 and SFHo the Γth distribution peaks
off-center. We notice that V18 is characterized by two
stable and narrow peak structures at about 3 and 7 km,
while SFHo shows a broader peak region, approximately
comprised between 3 and 6 km. The high-density regions
also show important differences being characterized by
higher Γth for V18 and values even lower than 1.5 for
SFHo. The latter case shows local strong oscillations
about the center which are evident for the first ms of
the time window we show, representing a residual of the
stronger oscillations affecting the previous part of the
simulation.

FIG. 9. The average Γth, Eq. (19), as a function of time for the
FT V18 and SFHo simulations. Time averages related to the total
time interval considered here are represented as arrows in the plot.
Dot-dashed curves represent the average values of Γth calculated
using Eq. (12) with xp ¼ xβðρ; T ¼ 0Þ, as described in the text.

FIGURA, LU, BURGIO, LI, and SCHULZE PHYS. REV. D 102, 043006 (2020)

043006-12



In summary, on the basis of the various measurements
and diagnostics discussed so far, we conclude that using a
hybrid EOS to simulate the merger of binary NS systems,
the value of thermal adiabatic index Γth ≈ 1.7 best approx-
imates the dynamical and thermodynamical behavior of
matter computed using complete, finite-temperature EOSs.

V. CONCLUSIONS

Hybrid EOSs, in which thermal contributions are arti-
ficially added in terms of an ideal-fluid EOS, are widely
adopted in the numerical modeling of merging binary NSs.
This is in part due to the smaller computational costs that
are associated with hybrid EOSs, but, more importantly, it
is the consequence of the scarcity of full temperature-
dependent EOSs that can be employed in numerical
simulations. The use of such hybrid EOSs, however, also
raises the fundamental problem of deciding which value
should be given and kept constant—both in space and time
—to the thermal adiabatic index Γth, which is instead
expected to change both in space and time.
In order to address this point, and hence determine the

optimal value for Γth, we have carried out a number of
simulations of merging neutron stars in full general
relativity, employing two fully tabulated, temperature-
dependent EOSs and a neutrino-leakage scheme for the
treatment of neutrinos. The first of these temperature-
dependent EOSs, the V18 EOS, has been derived in the
BHF formalism that fulfills all the current constraints
imposed by the nuclear phenomenology, and also respects
recent observational limits on the maximum NS mass and
deformability; the V18 EOS has been employed here for
the first time in merger simulations. The second temper-
ature-dependent EOS, the SFHo EOS, is based on a RMF

model which takes into account a statistical ensemble of
nuclei and interacting nucleons; the SFHo EOS has been
employed routinely in the past to model merging NS
binaries.
Together with the temperature-dependent EOSs, we have

also performed similar simulations employing hybrid EOSs
where we have considered a variety of values for the
thermal adiabatic index Γth and where the cold part is given
by the slice at T ¼ 0 of the temperature-dependent EOSs.
In this way, we have been able to construct instances of the
binaries that were virtually the same during the inspiral—
when thermal effects are dynamically unimportant—and
that start to differ from the merger, as the thermal
contributions from the two classes of EOSs are important
and different.
We have then used and monitored a number of different

quantities relative either to the matter sector—e.g., rest-
mass density, temperature, electron fraction, angular
velocity of the merged object—or to the gravitational-field
sector—e.g., gravitational waves and PSDs of the post-
merger signal. Furthermore, we have performed measure-
ments of the effective thermal adiabatic index and followed
its distribution in space and its evolution in time. The
importance of ambiguities in its definition due to the loss
of beta equilibrium during the postmerger simulation have
been evidenced. In this way, and collecting the informa-
tion from all of these quantities, we have concluded that a
value of Γth ≈ 1.7 best approximates the complete, finite-
temperature EOS in binary NS simulations. This value is
similar to the standard one employed in numerical simu-
lations so far (i.e., Γth ¼ 1.75–1.80), but also importantly
lower. Futurework will be aimed at increasing the robustness
of this finding by employing other temperature-dependent
EOSs, including those presented recently in Ref. [7].

FIG. 10. Isocontours of Γth as a function of cylindrical radius r and time t for the V18 and SFHo FT simulations.
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APPENDIX A: GRAVITATIONAL-WAVE SIGNAL

We extract the gravitational-wave signal using the
standard Newman-Penrose formalism [91]: We calculate
the Newman-Penrose scalar ψ4 at different surfaces of
constant coordinate radius r using the Einstein Toolkit
module WeylScal4. In particular, ψ4 is related to the second
time derivatives of the gravitational-wave polarization
amplitudes hþ and h× by

ψ4 ¼ ḧþ − iḧ× ¼
X∞
l¼2

Xl

m¼−l
ψlm
4 ðt; rÞ−2Ylmðθ;ϕÞ; ðA1Þ

where the double dot represents the second time derivative
and we have introduced also the MULTIPOLE expansion
of ψ4 in spin-weighted spherical harmonics [92] of spin
weight s ¼ −2 (such decomposition is performed by the
module MULTIPOLE). As the dominant mode is l ¼ m ¼ 2,
we restrict our analysis only to the latter; i.e., we assume

hþ;× ¼
X∞
l¼2

Xl

m¼−l
hlmþ;×ðt; rÞ−2Ylmðθ;ϕÞ ≈ h22þ;×−2Y22ðθ;ϕÞ:

ðA2Þ

The fixed-frequency integration described in [93] is carried
out in order to double integrate ψ4 in time. We then align
our waveforms, as in [56], to the “time of the merger”,
which we set as t ¼ 0 and we define as the time when the
GW amplitude

jhj≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þ þ h2×

q
ðA3Þ

is maximal. We also compute the phase of the complex
waveform, which we label with χ ¼ arctanðh×=hþÞ, and

the instantaneous frequency of the gravitational waves
defined as in [94],

fGW ≡ 1

2π

dχ
dt

: ðA4Þ

We identify, as in [56], fmax ≡ fGWðt ¼ 0Þ as the instanta-
neous frequency at amplitude maximum.
The total emitted energy for the l ¼ m ¼ 2 mode is

EGW ¼ R2

16π

Z
dt

Z
dΩ j _hðt; θ;ϕÞj2; ðA5Þ

where Ω is the solid angle and R represents the source-
detector distance.
We also consider the PSD of the effective amplitude

defined as

h̃ðfÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh̃þðfÞj2 þ jh̃×ðfÞj2

2

s
; ðA6Þ

where h̃þ;×ðfÞ are the Fourier transforms of hþ;×,

h̃þ;×ðfÞ≡
Z

dt e−i2πfthþ;×ðtÞ ðA7Þ

for f ≥ 0, and h̃þ;×ðfÞ≡ 0 for f < 0. We determine the
position of the f2 peak of the PSD, after applying a
symmetric time-domain Tukey filter with parameter α ¼
0.25 to the waveforms, in order to compute PSDs without
the artificial noise due to the truncation of the waveform.
We then fit our data with the analytic function [55]

S2ðfÞ ¼ A2Ge−ðf−F2GÞ2=W2
2G þ AðfÞγðfÞ; ðA8Þ

where

AðfÞ≡ 1

2W2

½ðA2b − A2aÞðf − F2Þ þW2ðA2b þ A2aÞ�;

ðA9Þ

γðfÞ≡ ð1þ e−ðf−F2þW2Þ=sÞ−1ð1þ eðf−F2−W2Þ=sÞ−1:
ðA10Þ

The peak frequency is then determined by

f2 ≡
R
dfS2ðfÞfR
dfS2ðfÞ

: ðA11Þ

This fitting procedure manifests an intrinsic uncertainty
due to both the choice of the fitting functions and para-
meters, and the integration interval, which we estimate as
�10 Hz. Such indetermination is later added in quadrature
to a systematic deviation of the value we find for f2
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from the nearest (local) maximum of the PSD curve. The
latter estimate coincides with the deviation with respect
to the global maximum of the PSD for all the cases
considered apart from the Γth ¼ 1.75 case, where the
presence of a second narrower peak located at lower
frequencies determines a higher indetermination. The case

Γth ¼ 1.7 also shows the same feature, with the two peaks
being indistinguishable with respect to each other. Table II
reports the total indetermination for each case, namely, the
sum in quadrature of the intrinsic uncertainty and the
deviation with respect to the global maximum of the PSD
curves.
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