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For broadband quantum noise reduction of gravitational-wave detectors, frequency-dependent squeezed
vacuum states realized using a filter cavity is a mature technique and will be implemented in Advanced
LIGO and Advanced Virgo from the fourth observation run. To obtain the benefit of frequency-dependent
squeezing, detuning and alignment of the filter cavity with respect to squeezed vacuum states must be

controlled accurately. To this purpose, we suggest a new length and alignment control scheme, using
coherent control sidebands which are already used to control the squeezing angle. Since both squeezed
vacuum states and coherent control sidebands have the same mode matching conditions and almost the
same frequency, detuning and alignment of the filter cavity can be controlled accurately with this scheme.
In this paper, we show the principle of this scheme and its application to a gravitational-wave detector.
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I. INTRODUCTION

Gravitational waves (GWs) were first detected by
Advanced LIGO in 2015 [1] and since then many more
GW observations have been performed by Advanced LIGO
and Advanced Virgo [2]. To increase the number of
detections, the sensitivity of the detectors must be con-
stantly improved. One of the main noise sources which
limits the sensitivity of GW detectors is the so-called
quantum noise. Quantum noise is divided into shot noise,
which limits the sensitivity at high frequency and radiation
pressure noise, which limits the sensitivity at low fre-
quency. An effective way to reduce quantum noise is to
inject squeezed vacuum states into the interferometer [3].
The reduction of quantum noise with squeezing was
realized for the first time at GEO600 [4], and it has been
recently implemented also in Advanced LIGO and
Advanced Virgo since the beginning of the third observa-
tion run (O3) [5,6]. However, conventional frequency-
independent phase squeezed vacuum states increases radi-
ation pressure noise at low frequency while it reduces shot
noise at high frequency. For broadband quantum noise
reduction, frequency-dependent squeezing produced with a
filter cavity is the most promising technique [7]. Advanced
LIGO and Advanced Virgo plan to implement frequency-
dependent squeezing with 300 m filter cavities from the
fourth observation run (0O4) [8]. In order to achieve the
frequency dependence below 100 Hz, the cavity has to be
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operated in a detuned configuration which means off
resonance of the carrier and it needs a storage time of
about 3 ms.

Demonstration of frequency-dependent squeezing below
100 Hz, necessary for broadband quantum noise reduction
in GW detectors, has been recently achieved [9,10].

One of main challenges in the production of frequency-
dependent squeezing by using filter cavities is the length
and alignment control of the filter cavity itself. In fact, since
squeezing is a vacuum state with no coherent amplitude, it
is not suitable to provide the error signals necessary for the
control. The use of auxiliary fields is therefore needed. In
previous experiments [9], the filter cavity was controlled
with an auxiliary green field with a wavelength of 532 nm
while the squeezed field is at the GW detector laser
wavelength, 1064 nm. However, controlling length and
alignment of the filter cavity with the green field does not
ensure the alignment of squeezed field to the filter cavity,
since the overlap of the green and squeezed field can drift.
In addition, fluctuation of the relative phase delay between
green field and infrared induced by anisotropies or temper-
ature dependency of the cavity mirror coating can lead to a
detuning fluctuation [11]. Another challenge of the filter
cavity control with the green field is that phase/frequency
noise on the green field creates real length noise in the filter
cavity due to feedback control [10].

The squeezed field is produced by a parametric down-
conversion process inside an optical parametric oscillator
(OPO). The use of an auxiliary field, which resonates inside
the OPO, ensures that it is perfectly spatially overlapped

© 2020 American Physical Society


https://orcid.org/0000-0003-4424-7657
https://orcid.org/0000-0002-7641-0060
https://orcid.org/0000-0003-3762-6958
https://orcid.org/0000-0003-2542-4734
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.042003&domain=pdf&date_stamp=2020-08-10
https://doi.org/10.1103/PhysRevD.102.042003
https://doi.org/10.1103/PhysRevD.102.042003
https://doi.org/10.1103/PhysRevD.102.042003
https://doi.org/10.1103/PhysRevD.102.042003

NAOKI ARITOMI et al.

PHYS. REV. D 102, 042003 (2020)

with the squeezed field. For the length control of the filter
cavity, a recent work has successfully tested a scheme
which uses an additional auxiliary field injected into the
OPO with a small frequency offset with respect to the
squeezed field [10].

In this paper, we suggest a new length and alignment
control scheme whose error signal is provided by the so-
called coherent control (CC) field. Such field is included in
all the squeezed vacuum sources for GW detectors and it is
used to control the squeezing angle [12]. Since the coherent
control sidebands (CCSBs) are produced inside the OPO
together with the squeezed vacuum states, they have the
same mode matching conditions and almost the same
frequency. The relative frequency of carrier and CCSB
can be controlled accurately with a frequency offset phase
locked loop and can be tuned so that carrier is properly
detuned. Such difference is only a few MHz which makes
any possible effect due to the coating negligible. Therefore,
length and alignment control with CCSB ensure proper
detuning and alignment of the squeezed vacuum states to
the filter cavity.

This paper is organized as follows: in Secs. Il A and 1 B,
the error signal for the length and alignment control of the
filter cavity are theoretically derived. In Sec. IIC, the
application of such control scheme to a GW detector is
presented. In Sec. II D, the coupling between the coherent
control loop and the filter cavity length control loop is
studied. In Sec. IIE, reshaping of frequency-dependent
phase noise and an updated squeezing degradation budget
with this control scheme are presented. In Sec. III, the
computation of noise requirements to ensure the feasibility
of such technique is presented.

II. PRINCIPLE

A. Filter cavity length signal

When coherent control field, which is detuned by Q.
with respect to carrier frequency wy, is injected into OPO, a
sideband which is detuned by —Q. is generated by the
pump field whose frequency is 2w, [12]. The coherent
control field passing through OPO can be written as [13]

e (@0 Q) tHtidec

+ aCC ei(wo_gcc)t+i({/)CC+2(/)pump) s ( 1 )

(1-x?)

where a.. is the amplitude of the coherent control field
without the pump field, x is the OPO nonlinear factor and
$ccs Ppump are the common and relative phase of the
coherent control field and its sideband generated by OPO,
respectively. Note that (1) assumes that Q. is much lower
than the OPO bandwidth ygpg, Q.. <K 7opo- The OPO
nonlinear factor x can be written as

um 1
x= 2 - — (2)

where Py, is the power of the pump field, Py, is the OPO
threshold power, and g is the nonlinear gain. g and @
are determined by the amplitude and phase of the pump
field, respectively. The nonlinear gain g is related to the
generated squeezing o4z without losses as follows [13]:

oqp = 201og;o(2¢/g—1). 3)

¢cc and ¢, are controlled by the coherent control loops
to control the squeezing angle. The squeezing angle is the
relative phase between the local oscillator and the average
of CCSB and can be written as

¢qu =¢ro — Pcc — ¢pumpv (4)

where ¢y o is the phase of the local oscillator (LO). There
are two coherent control loops (we call them CC1 and CC2
in this paper) and ¢y, is kept constant by CC1 and the
relative phase between LO and CC ¢ g — ¢pcc is kept
constant by CC2 to make the squeezing angle ¢, constant.
In this paper, we assume that ¢, is kept O, but has
residual noise around 0, @pump = 6@pump < 1.

To obtain frequency-dependent squeezing from a filter
cavity, the resonance of the filter cavity must be detuned
properly from the carrier. By choosing the frequency of
coherent control field (Q2..) as follows, the coherent control
field can be resonant inside the filter cavity while the
resonance of the filter cavity is properly detuned from the
carrier (Fig. 1):

Q. = n X wgsg + Awye o, (5)

where n is an integer number, wgsg = 27 fpsr = 7c/ Ly, 18
the free spectral range of the filter cavity, L;. is the filter
cavity length, and Awy. is the optimal filter cavity
detuning with respect to carrier. In this condition, the
coherent control sideband at —Q,. is detuned by —2Awy.

Intracavity power

wo w
—— G—

Ach,O Ach,O

FIG. 1. Frequency relationship inside the filter cavity. Red
dashed line is carrier, orange and blue lines are coherent control
sidebands.
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FIG. 2. Phase of the filter cavity reflectivity. The horizontal axis
is the sideband frequency normalized with respect to Awy .
Black dashed lines are the sideband frequency of CCSB.

with respect to the filter cavity resonance and so almost
reflected by the filter cavity. The phase of the filter cavity
reflectivity is shown in Fig. 2. Since the phase of filter
cavity reflectivity for the coherent control field which is on
resonance is sensitive to the detuning fluctuation compared
with the other sideband which is off resonance, the filter
cavity length signal can be obtained by detecting the beat
note of CCSB.

The coherent control sidebands reflected by the filter
cavity is

ECC — a+r+ei(w0+gcc>t+i¢(‘,€
+ a_r_e’(wo_gcc)t+l(¢CC+2§¢pump)’ (6)
where a is

1 X
—_— a_ =a
(1-x?) “(1-x7)

(7)

Ay = Qe

and ry (Awyg.) = ri (Ao o, Awy,) is the complex reflec-
tivity of the filter cavity and can be written as [14]

2—¢€
+Awg g, Awg.) =1 — , 8
rfc( WDfc a)tc) 1+ ié(j:Aa)fC.o, Awfc) ( )
where
— fFSR A%‘, (9)
Vic
+A - A
g(iAwt’c,O’ A(ch) = M ’ (10)

Vfe

with yg. the filter cavity half-bandwidth and A2 the filter
cavity round trip losses. Awy, is a variable which represents
the actual filter cavity detuning. Note that the approxima-
tion in (8) holds for a high finesse cavity near the

resonance, (Q— Awpg)/frsg <1 and 2 +AZ <1
where Q is the sideband frequency and 7, is the filter
cavity input transmissivity.

Amplitude and phase of the filter cavity reflectivity for
CCSB can be written as

pi(Awy) = [ri(FAvg o, Ao )|
2
S pp— (2-c)e . (1)
1 + 5 (iAwfc,O’ A6‘)fc)

oy (Awyg) = arg{ri(FAwg o, Awy)}
= arg{_l +e+ éz(iAwfc,Ov Aa)fc)
+ (2 = €)é(FAwye o, Ao ) }. (12)

Filter cavity length signal can be obtained by detecting
the beat note of the CCSB,

PCC = |a+r+ei(w0+gcc>[ + a_r_ei(”’o_gcc)[+i25(/)pump |2

= (DC term) + 2a,a_Re{r, rte/®%!=25¢um) ) (13)

Demodulating this signal by sin (2Q..f — a_(Awy.)) (in-
phase) and cos (2Q..f — a_(Awy. o)) (quadrature) and low-
passing it, filter cavity length signal as a function of the
filter cavity detuning Awy, is

Pr=—aia_p,(Awg)p_(Awy)
X sin ((X+ (Awfc) —a- (Aa)fc) +a (Awfc,O) - 25¢pump)7
(14)

Po=aya_p, (Awg)p-(Awy,)
X COs (a+ (Awfc) —a_ (Aa}fc) + a—(Awfc,O) - 25¢pump) .
(15)

The relative phase noise of CCSB ¢b,m,, is @ noise source
for the filter cavity length signal. When ¢y, = 0, the
filter cavity length signal (14), (15) normalized with respect
to a,a_ is shown in Fig. 3. The parameters used in this
calculation are shown in Table I.

Filter cavity length noise 0L causes detuning noise
O0Awy, as follows:

SAwy, = Z’—OéLfc. (16)

fc

When Awy. = Awy. o + §Awy., phase response of the filter
cavity reflectivity to the detuning noise can be calculated
from (12),
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FIG. 3. Filter cavity length signal normalized with respect to
a,a_. The horizontal axis is the filter cavity detuning normalized
with respect to Awy. . Red solid and dashed lines are intracavity
power of CCSB and carrier in the filter cavity normalized with
respect to their maximum intracavity power, respectively. Blue
and green lines are the filter cavity length signal (in-phase and
quadrature). The filter cavity length signal (in-phase) becomes 0
when A(l)fc = Awfc,()'

QA
ba(ey) = 242 A0%) oAk
dAwfc Aw=Awy
Q—A . 2 -1 8F
N ((;)ro>+ 1) “ol. (17)
Vi A

where a(Q, Awg,) = arg{rq(Q, Awy.) }, 4 is wavelength of
carrier, and F is filter cavity finesse. Here we assumed
€ < 1, which is true for parameters shown in Table I. The
filter cavity length signal (in-phase) (14) is

TABLE I. Parameters for 300 m filter cavity [15].
Parameter Symbol Value
Filter cavity length L. 300 m
Filter cavity half-bandwidth Ve 2nx573 Hz
Filter cavity detuning Awgy 2mx54 Hz
Filter cavity finesse F 4360
Filter cavity input mirror transmissivity tizn 0.00136
Filter cavity round trip losses AZ 80 ppm
Injection losses Aiznj 5%
Readout losses AZ, 5%
Mode-mismatch losses A2 rc 2%
(Squeezer-filter cavity)

Mode-mismatch losses Ao 5%
(Squeezer-local oscillator)

Frequency-independent phase o 30 mrad
Noise (rms)

Filter cavity length noise (rms) oLy, 1 pm
Generated squeezing O4B 9 dB
Nonlinear gain g 3.6

P

a.a_p.p_ = sin (@ (Awgeg + 6hwx) = a i (Awvg)

— a_(Awg o + 6Awyg) + a_(Awgp))
= 5“(A0)fc,0) - 50‘(—Aa)fc,o)

1064 nm\ / F \ [6L;.
- 20 mma(S57) (5555) ()

Since the relative phase noise of CCSB ¢y, can be
stabilized by CC1 below 1.7 mrad [16], the residual filter
cavity length signal (18) can be obtained with a good
enough SNR. Phase noise of an rf source for the demodu-
lation also becomes a noise source for the filter cavity
length signal. Typical phase noise of an rf source for the
demodulation is several tens of uyrad and much smaller
than (18).

(18)

B. Filter cavity alignment signal

Coherent control sidebands can be also used to control
the alignment of the filter cavity by wavefront sensing [17].

Misalignment of the filter cavity axis with respect to
input beam axis and misalignment of immediately reflected
beam axis with respect to the filter cavity axis can be
represented in terms of dimensionless coupling factors y, y,
as follows:

y = 6x/wo + i60/0,, (19)
Yr = (S.X'//WO + i59'/90, (20)

where w, is the beam radius at the waist position and
0y = A/ww is the beam divergence. 6x and 6x’ represent
the transverse displacement in x axis direction measured at
the waist position of the filter cavity axis with respect to the
input beam axis and the immediately reflected beam axis
with respect to the filter cavity axis, respectively. 50, 66’
represent the tilt around y axis of the filter cavity axis with
respect to the input beam axis and the immediately reflected
beam axis with respect to the filter cavity axis, respectively.
Here, 7z axis is the beam axis and y axis is orthogonal to the
X, z axis. z = 0 is the beam waist position. y, y, can be
written in terms of input, end mirror misalignment of the
filter cavity as follows:

RS0, +60, . R
= — +l
2R — L;

50, — 50y,
0

(21)

2 Wo

Ly.50; — % (56, + 80r) . 200, — 55— (80 — 50)
pu— l

Yr

Wo 90
Ly .2
=|—4+i—)00; -7, 22
<Wo+l90> 7 @)
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FIG. 4. Filter cavity WFS signal as a function of the gouy phase
normalized with \/%mra_. Red line is displacement signal with

O0x = w and blue line is tilt signal with 660 = 6.

where R is the radius of curvature of the input and end
mirrors, 60; and 60 are angular misalignment of input and
end mirrors. The direction of the input and end mirror
misalignment is defined so that the positive direction of the
misalignment causes the displacement of filter cavity axis
in positive direction of x axis.

We only treat x-axis misalignment (Hermite-Gaussian
[HG] 10 mode) and calculations of y-axis misalignment
(HG 01 mode) are entirely analogous.

The wavefront sensing (WFS) signal can be written as
(see Appendix A)

2 : A
Wair = 2a.a- \/;Re({—mr*_(e"”ﬁ +e'y,)
— r+e_i'7]/ - riei”y*}e"mcc’), (23)

where r. =ri(Awyy) and 5 is the gouy phase.
Demodulating (23) by sin (2Q..7 — a_(Awy. o)) (in-phase)
and low-passing it, first term of (23), which is proportional
to filter cavity length signal, will disappear.

WES signal after demodulation is

w \F
= —a_d_
I e +

x {Re(r e~y + rte'y*) sina_(Awy.)

+ Im(r+e_i'77/ + rrey*) cos a_(Awgp)}- (24)

WES signal is shown in Fig. 4. Displacement and tilt signal
of the filter cavity can be obtained with two different gouy
phases.

The fourth term in (A15) is beat note of CCSB HG10
mode and becomes a noise source for the filter cavity length
signal when misalignment of the filter cavity fluctuates.
In order not to spoil the filter cavity length signal (18),
the requirement of maximum rms angular motion of

Interferometer
Interferometer Laser

Filter Cavity
PLL
CCFC
X/
b

Squeezer Laser SHG

e

E >
oMC

Coherent Control Laser

FEzLL[: S— 7

Qce CC2 cc1

FIG.5. An example of experimental setup. Red solid line is the
carrier and red dashed line is the squeezed vacuum states. Orange
line is the coherent control field. Green line is the green pump
field which is produced by the second harmonic generator (SHG)
and injected into the OPO.

filter cavity mirrors 6,,,, should be 6., = 2.7 urad (see
Appendix A) and this is achievable by double pendulum
suspensions in KAGRA [18]. By numerically calculating
ly]* as functions of input, end mirror misalignment, this
requirement corresponds to |y|*> = 0.01. Since this require-
ment is more stringent than the requirement of mode-
mismatch losses (squeezer-filter cavity) which is 2%, we
set the requirement of ¥ as |y|*> = 0.01.

C. Experimental setup

An example of experimental setup when this scheme is
implemented in GW detectors is shown in Fig. 5. There are
three control loops which are CC1, CC2, and the filter
cavity control loop with CCSB (we call it CCFC in
this paper).

CCEFC error signal can be obtained at output mode
cleaner (OMC) reflection since CCSB are almost fully
reflected by OMC while carrier almost transmits through
OMC. The error signal is demodulated by 2Q.. and fed
back to the filter cavity length. The demodulation phase can
be determined by injecting bright carrier field to the filter
cavity and checking the carrier transmission and CCFC
error signal at the same time as shown in Fig. 3. Fine tuning
of the demodulation phase can be done by optimizing GW
sensitivity. CC1 error signal to control the relative phase
between the green field injected into OPO and the coherent
control field can be obtained at OPO reflection and fed back
to the green field path length. CC2 error signal to control
the relative phase between the carrier and the coherent
control field is obtained at OMC transmission and fed back
to phase locked loop (PLL) between interferometer laser
and squeezer laser [19].
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D. Coherent control error signal

Since either of CCSBs enters the filter cavity and senses
the filter cavity length noise, the filter cavity length noise
appears in CC2 loop which controls the relative phase
between CCSB and LO. In the case of GW detectors, the
LO is the interferometer laser. In this section, we will
calculate the CC2 error signal which includes the phase
noise from the filter cavity. For simplicity, here we write
p+(Awg) = ps, as(Awg) = ar and a:(Awg ) = axp.

Signal at OMC transmission is

Pccr
et |aoei((00t+¢LO> + cha+p+ei(m0+gcc>t+i(¢CC+a+)

_|_ cha_p_ei<(”0_gcc)t+i<¢CC+a—+26¢pump) |2
= 27094 Py €08 (Qect — o + Pec + ay)

+ Zchaoa—P— cos (Qcct + (bLO - ¢CC —a_ - 25¢pump)

+ (DC term) + (2Q..term), (25)
where a, is the amplitude of LO and 7. is the trans-
missivity of CCSB from OPO to OMC transmission.

Demodulating (25) by cos (Qc.f + 04y, ) and low-passing
it, where demodulation phase 6y, is

Oum :w’ (26)

we find

. n
Py = 1ecapapy sin <—¢Lo + ¢cc + a0+ day + 5)

. T
— Tec@oa_p— sin (¢pro — ¢ec — a,o—oa_ — )
- 25¢pump)’ (27)
where
g = O, (28)
5ai = a4 — ai.o. (29)

When the squeezing angle ¢, is different from 7z/2
(squeeze quadrature) by 6¢gy,, (4) can be written as

¢sqz = ¢ro — Pcc = g + 5¢sqz- (30)

Assuming 8¢y, 6ts, Sppump << 1, CC2 error signal (27)
can be written as

Py = cha0a+p+[(1 + ap) sin a,o+ {_(1 + ap)5¢sqz
+ 25, (A 0.9) + 95t} c05@y0), (1)

Filter cavity length control loop (CCFC)

@ 2Q0cc
FC error signal

CC2 error signal
0 QCC

Coherent control loop (CC2)

= Frequency-dependent phase noise at the detuning

frequency, third term in eq. (31)

common |= Frequency-independent phase noise, second term

ineq. (31)

Phase noise of CCSB

differential
FC length

->| CC2 phase |—>|

common

FIG. 6. Coupling between CCFC loop and CC2 loop.

where a = a_/a, = x is the unbalance of the amplitude of
CCSB and p = p_/p, is the unbalance of the filter cavity
reflectivity of CCSB. da,(Awy. a, p) is

oa, + apéa_

- (32)

5“1) (Awg. a, :0) =
The first term in (31) is the constant offset, the second term
is the relative phase noise between CC and LO which does
not include the phase noise coming from the filter cavity
(frequency-independent phase noise), the third term is the
phase noise of CCSB coming from the filter cavity length
noise (frequency-dependent phase noise at the detuning
frequency), and the fourth term is the phase noise coming
from the relative phase noise of CCSB. The constant offset
in (31) should be removed to obtain é¢yg,. e, (Awx, a, p)
is the coupling from the CCFC loop which reshapes
frequency-dependent phase noise as explained in the
following section.

E. Reshaping of frequency-dependent phase noise

The CC2 error signal calculated in Sec. II D reshapes
frequency-dependent phase noise which comes from the
filter cavity length noise. This is caused by the coupling
between CCFC loop and CC2 loop as shown in Fig. 6.

The fluctuation of the filter cavity length causes both
differential and common phase noise of CCSB. The
differential phase noise of CCSB is the CCFC error signal
while the common phase noise of CCSB is frequency-
dependent phase noise at the detuning frequency, which
is the second term in (31). This frequency-dependent phase
noise at the detuning frequency couples to the CC2
loop and is suppressed by the feedback loop while the
frequency-dependent phase noise is increased at high
frequency. In this section, we will explain the detail
calculation of the frequency-dependent phase noise with
feedback of CC2 loop.

Calculation of frequency-dependent phase noise is
described in [14] and the calculation of this section will
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use the same formalism. For more details of the compu-
tation, see Appendix B.
Assuming multiple incoherent noise parameters X, in

quantum noise N have small Gaussian-distributed fluctua-
tions with variance 5X2, the average readout noise is given by

. . N(X, +6X,) +N(X, -6X,) .
NavgzNJrZ(( )+ M )—N).

2
(33)

For frequency-independent phase noise, X,, = ¢ whichis the
injection squeezing angle. For the frequency-dependent
phase noise, X,, = Awy.( which is the filter cavity detuning.
First, we will explain about the calculation of frequency-
independent phase noise which is necessary in order to
calculate frequency-dependent phase noise with feedback
from CC2 loop. The transfer matrix of the squeezer can be
written as a function of injection squeezing angle ¢,

S=R (eg 0 )R (34)
- ¢ 0 e—(r -

where R is a rotation matrix and e~ is injection squeezing
level. Frequency-independent phase noise can be repre-
sented by variations of injection squeezing angle, 5¢.

To calculate the effect of phase noise only, we restrict our
discussion to an optimally matched filter cavity and no
injection, readout losses. Noise due to vacuum fluctuations
passing through the squeezer N, can be written as (see
Appendix B)

Ni(¢) = Acos® ¢ +2Bcospsing + Csin®p,  (35)

A= (ﬂ =20 +/)2 20)(cosap —i—ICsinap)z
+ (Ppe* + phe ) (K cosa, —sina, ). (36)

B= (& - )0~ )
x (cosa, + Ksina,)(Kcosa, —sina,),  (37)

C = ( 2 2 +p2 _2”)(0050,7 —I—’CSiHap)z
n ( =20 4 p2 620)(K cos a, —sin ap)z, (38)

where
p:p+:|:p_ p:a+:|:a_
Pm ) s (47 )
P+ = |"fc(i9’ Awfc)|
ay = arg(re(+Q, Awy)). (39)

Q is sideband frequency and was fixed to Awg in
Secs. I A-IID. K is the optomechanical coupling factor
of the interferometer,

QSQL> 2y z
K= < . (40)
Q ) @+,

where Qgqp, is approximately the frequency at which
quantum noise reaches the standard quantum limit and
Yifo 18 the interferometer bandwidth. In the case of KAGRA,
Qgqr, = 27 x 76.4 Hz, yir, = 27 x 382 Hz [15]. When

¢ =0, N(¢ =0)=A and this represents the quantum
noise of an optimally matched filter cavity with no injection
and readout losses, (44) in [14].

From (33), frequency-independent phase noise of N can
be calculated as

Ni(64) + N1 (=50)

5 = Acos? 5¢p + Csin® 5¢p.

Nl.avg (¢)

(41)

Frequency-dependent phase noise can be calculated by
averaging N, (Awg o + dAwg) and Ny (Awg o — SAwy).
However, when there is detuning noise, there is also
feedback from CC2 loop (32). As shown in Fig. 5, this
feedback from CC2 loop is sent to the squeezer laser and
changes the injection squeezing angle ¢. Therefore, the
frequency-dependent phase noise of N; with feedback from
CC2 loop can be calculated as

Nl,avg (d” Awfc,O)
1 .
=—{N

A

+ N, (=0, (Awy.

—oa,(Awye o + 0Awy, a,p), Aoy o + 6Awx,)

— Ay, a,p), Awye g — SAwy) }.
(42)

Note that frequency-dependent phase noise Sa), is small
above cavity pole of the filter cavity ~57 Hz and we
assumed that the gain of the CC2 loop below 57 Hz is large
enough so that the feedback of the CC2 loop is perfect.

Figures 7 and 8 show quantum noise relative to coherent
vacuum with filter cavity length noise 6Lg = 1 pm and
3 pm. The frequency-dependent phase noise with this
scheme and with conventional scheme is shown as purple
line and dotted purple line which are almost overlapping in
Fig. 7. Parameters used in this calculation are shown in
Table 1. The unbalance of the filter cavity relfectivity of
CCSB is p=1.1 and the unbalance of the amplitude
of CCSB is a =047 (g=3.6). As shown in Fig. 7,
frequency-dependent phase noise with this scheme and
conventional scheme is small and almost the same with
oL;. = 1 pm. However, as shown in Fig. 8, frequency-
dependent phase noise with this scheme is suppressed at
low frequency by the feedback from CC2 loop while it is
increased at high frequency.

Effective phase noise at high frequency with feedback
from CC2 loop éa, in (42) can be calculated from (17)
and (32),
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FIG. 7. Quantum noise relative to coherent vacuum with §L;. = 1 pm. Solid purple and black lines are frequency-dependent phase
noise and total noise with this scheme. Dotted purple and black lines are frequency-dependent phase noise and total noise with
conventional scheme. The solid lines and dotted lines are almost overlapping since the effect of frequency-dependent phase noise

is small.
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|5ap(Aa)fc,0 + 6Awy, a, P)|
— 5a(Aa)fc,O) —+ ap5a(_Awfc.0)

2
1064 nm F OLy,
_18mrad( 7 )(4360) <1pm)' (43)

The squeezing angle is affected by misalignment of LO and
CC. The squeezing angle fluctuation at OMC transmission

including the misalignment of LO and CC can be written
as [20]

5¢alignmcnt = ZAU/);CJC/){_}O sin ¢ijv (44)
ij

where A;; ~ 1/100 is the attenuation factor of higher order

modes by OMC and p{©, p° are relative amplitude of CC
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and LO TEM ij mode with respect to TEM 00 mode. ¢;; =

i = @5 and @iP, ¢ are relative phase of CC and LO

TEM ij mode with respect to TEM 00 mode. Considering
only HG10/01 mode and assuming that |p{;C|* = |p[°[> =
102 for i + j = 1, the squeezing angle fluctuation will be
0P tignment ~ O(107™) rad and it is small enough compared
with frequency-independent/dependent phase noise. The
misalignment of CCSB also affects the CCFC loop and this
effect is calculated in Appendix A.

III. NOISE CALCULATION

The requirement of length control of the filter cavity is
O0L;. = 1 pm and the requirement of alignment control of the
filter cavity is |y|> = 0.01. In this section, we show that shot
noise and PLL noise satisfy these requirements. We also show
that backscattering noise of leaked carrier from the interfer-
ometer to the filter cavity does not spoil the quantum noise
above 10 Hz where the quantum noise limits the GW
sensitivity.

A. Shot noise

1. Shot noise for length control

We assume that the power of the coherent control field
after OPO is P, = a2 = 1 uW and the power of the lower
coherent control sideband is P_ = a*P, = 0.22 uW. When
the filter cavity length signal is obtained at OMC reflection,
junk light at OMC reflection including higher order modes
and other rf sidebands contributes to the shot noise.

Shot noise of CCSB and the junk light at OMC reflection
is given by

Pgor = \/2hw0(pip+ +p%P— + Pjunk) = \/2hw0pjunk'
(45)

Here, we assumed that frequencies of carrier, CCSB and
junk light are almost the same and p2 P. < Pjuni- This shot
noise within the filter cavity control bandwidth becomes the
filter cavity length noise by the control loop. This shot noise
is the most fundamental limit of the filter cavity length signal
SNR. From (18), we can compute the maximum power of
this junk light at OMC reflection which allows not to spoil
the filter cavity length signal as follows:

piP-~/ P P_{6a(Awy o) — da(—Awy )}

>4/ 2hw0P_]unkAf7 (46)

P+P— 5L1%c ]:2
h(l)oAf /12

2 2 2\ 2
15 W x P, F 0L, 20 Hz ,
1uW 4360 1 pm Af

(47)

where Af is filter cavity length control bandwidth and set by
requirement of backscattering noise [21]. According to (47),
using parameters in Table I, Py < 15 W in order not to
spoil the filter cavity length signal and this requirement can
be satisfied [22].

2. Shot noise for alignment control

We consider only shot noise of displacement signal of
the filter cavity and the calculation of tilt signal is entirely
analogous. From (24), we can compute the maximum
power of junk light at OMC reflection which allows not
to spoil the filter cavity alignment signal as follows:

2 ox
\/;\/P+P_Clwps W_Q > \/2hw0PjunkAfWFS’ (48)

P.P_  [6x\2
Pk < 0056 = <x>
hawoAfwes \Wo

=660 W

8 P, \2/(6x/wg)*\ [ 1 Hz . (49)

1 uW 0.01 Afwrs
where awpg = 0.42 is the maximum amplitude of the
normalized WFS signal in Fig. 4 and A fwrs is filter cavity
alignment control bandwidth. According to (49), Pjyk <

660 W in order not to spoil the filter cavity alignment
signal and this requirement also can be satisfied.

B. Backscattering noise

The backscatteting noise comes from the leaked carrier
from the interferometer to the filter cavity. The leaked
carrier is injected to the filter cavity and scattered by the
filter cavity length noise and reinjected into the interfer-
ometer. This backscattering noise must be below the
vacuum fluctuation in order not to spoil the quantum noise
of the interferometer [21]. Considering also the safety
factor (Cgy = 1/10) and squeezing enhancement factor
(Cyq, = 1/2 for 6 dB of quantum noise enhancement),

6“(0) V Pleak < Csafequz V Zth’ (50)

Prea < 3.1 x 10710 W

L

where 5a(0) is phase response of carrier to the filter cavity
length noise (17) and Py, is power of the leaked carrier
from the interferometer to the filter cavity. We assumed
that 8L (f) = 107! m/+/Hz above 10 Hz which can be
realized in Advanced LIGO [21]. Given that the carrier
output from the interferometer P ;., = 35 mW in advanced
LIGO [21], 81 dB of isolation factor from faraday isolators is
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required. There is a faraday isolator with more than 40 dB of
isolation factor and with less than 1% of loss [23]. By using
the 2 faraday isolators, more than 80 dB of isolation factor
can be realized with less than 2% of loss and the back-
scattering noise can satisfy the requirement.

C. PLL noise

The PLL which controls the relative phase between the
squeezer laser and the coherent control laser can cause
detuning noise. The PLL frequency noise reflected by the
filter cavity can be written as

SPLL(¢)f
V1+F/fr)?

where filter cavity half bandwidth is f;. = 57.3 Hz and

PLL phase noise is Spy; (¢p) = 5 urad/+/Hz within PLL
control bandwidth ~40 kHz. The PLL phase noise has been
chosen so to have rms of PLL phase noise d¢pp;, = 1 mrad.
The rms of PLL frequency noise within the filter cavity
control bandwidth is

Af
SfpLLfe = \/ A df Sl%LL.fc(f )

_ v
- SPLL(@\//) ARz

= SPLL(¢)ffc\/<Af — fic arctan ﬂ) - (53)

SPLLfe (f) = (52)

ffc

The rms of PLL frequency noise is 6fpyp . = 0.25 mHz.
This corresponds to rms of the filter cavity length noise
SLpyy o = 2.7 x 107'® m which satisfies the requirement.

IV. CONCLUSION

We suggest a new length and alignment control scheme
of a filter cavity with coherent control sidebands which are
already used to control squeezing angle. It assures accurate
detuning and alignment of the filter cavity with respect to
squeezed vacuum states. It is shown that coherent control
loop reshapes frequency-dependent phase noise with this
scheme. The frequency-dependent phase noise at low
frequency is suppressed by feedback from the coherent
control loop while it is increased at high frequency. We also
showed that shot noise and PLL noise with this scheme
satisfy the requirement of length and alignment control of
the filter cavity and backscattering noise of leaked carrier
from the interferometer to the filter cavity does not spoil the
quantum noise above 10 Hz where the quantum noise limits
the GW sensitivity.
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APPENDIX A: CALCULATION OF
WAVEFRONT SENSING

Input beam which includes HG 10 mode can be written
as

o iw
Ein:(UOO U10>< >E0€ ’ (Al)

a

where a), a; are the amplitude of HG 00, 10 mode and Uy,
U, are normalized Hermite-Gaussian modes and can be
written as [24]

Ug(x,y,2) = exp {—i(kz -n(z))

2
aw?(z)
_ (24 y2)<w21(z) N #]((z) )] (A2)

Unle.9) == (jé) exp(in(c) V. (A3)

where H | is the first order Hermite polynomial, w(z) is the
beam radius, 7(z) is the gouy phase, R(z) is the beam radius
of curvature and can be written as

w(z) = woy/1 +22/33, (A4)
n(z) = arctan (z/z), (AS)
R(z) = z(1+ /%), (A6)

20 = kwd/2. (A7)

Filter cavity mode which is displaced in x axis by dx and
tilted around y axis by 60 with respect to input beam can be
written as [17]

ao .
Efc=<U00 U10>M(}’)< )Eoe"’”, (A8)

ap
(A9)

where y is (19) and first order of y is considered.
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Reflection matrix of an optimally aligned filter cavity is

. rog O

0 el
where r, 1. are, respectively, the filter cavity reflectivity
of HG 00 and 10 mode of the coherent control field which

is on resonance. Reflection matrix of a misaligned filter
cavity in the first order of y,y, can be written as

(A10)

. N li
RES(r,v,) = M*(r,) R, *"M(y)

_( Teo rcOy‘Frclj/;5
_(rCOyr'l'rcly*) Teq

). (Al1)

Assuming that ay = 1, a; = 0 for input beam, reflection
beam from the misaligned filter cavity can be written as

Eret = [Uooreo = Uro(reors + rev")|Ege™.  (A12)

We define C and S as
C=rorr+rar, (A13)
S =ryor, +rart (A14)

where 7y, 1y are, respectively, the filter cavity reflectivity
of HG 00 and 10 mode of the coherent control sideband
which is off resonance. From (A12) to (A14), 2Q,. term of
the filter cavity error signal (13) can be written as

P20

=2a, a_Re{r, rte?!}

=2a,a_Re{(Ugro — U1oC)(Ugyrip — UjoS*) e}
=2a,a_Re{(UgUgoreoriy — UpUloraoS*

= UgyUyorsgC + UygUj(CS*)e '} (Al5)

WES signal W is given by the sum of the second and
third terms of (A15). Defining U = Uy U7,
W =2a,a_Re({-Ure(rior; + riyy)
- U*”ﬁo(rcoh + rcly*)}eizgmt)
= 2a,a_Re({-rri(Ur; + U'y,)

— regr Uy = regrigUty* pe2l). (A16)

Differential signal of W in x-axis direction with a quadrant
photo diode is

W — / / dxdy{W(x > 0) = W(x <0)}. (A7)

Since

5 , 0.05
o
® 0.04
2
€
(0]
IS
o
S
T 0 0.03
@
€
S
= 0.023
1S
il
c
[
5 : 0.01
-5 0 5

input mirror misalignment (urad)

FIG. 9. Coupling from input, end mirror misalignment of the
filter cavity to the filter cavity length signal (A20) normalized
with respect to a, a_. The coupling should be smaller than the
filter cavity length signal ~0.023. Input, end mirror misalignment
should be inside the ellipse corresponding to 0.023.

/ / dxdy{U(x > 0) = U(x < 0)} = \/%e—w (A18)

and r,.;, ry; =~ 1 due to gouy phase separation in the cavity,
WES signal can be written as (23).

The fourth term in (A15) is a noise source of the filter
cavity length signal which is the first term in (A15). The
fourth term in (A15) is

2a,a_|U,o|*Re{CS* e}
= 2‘1+a—|U10|2Re{(r60r§0‘7r|2 + rcorﬁﬂﬂ/ + rclr_toy*yj
+rargly]?)e e}, (A19)

Demodulating by sin (2Q..7 — a_(Awy.)), the first term in
(A19) which is proportional to the filter cavity length signal
will disappear. After integration by x, y, (A19) will be

—a,a_{Re(ryy,y + rigr'yy) sina_(Awg)
+Im(ry,7 + rigryr) cos a_(Awy )

+ P sina(Awr.)}. (A20)
where we used r.{, rg; ~ 1. From (21) and (22), (A20) can
be numerically calculated in terms of input, end mirror
misalignment 66;, 50 as shown in Fig. 9. Here we assumed
that R = 415 m and wy = 0.825 cm [25]. (A20) normal-
ized with a, a_ should be smaller than the residual filter
cavity length signal normalized with a,a_ which is
P;/a,a_ =23 mrad. Note that the filter cavity length
signal in (18) is normalized with a,a_p,p_. We consider

042003-11



NAOKI ARITOMI et al.

PHYS. REV. D 102, 042003 (2020)

the maximum angular motion of the filter cavity mirrors
Omax as 607 + 60% = 02, which corresponds to a circle
with radius 6,,,,, in Fig. 9. This circle should be smaller than
the ellipse corresponding to 0.023. 0,,,, can be determined
from the semiminor axis of the ellipse corresponding to
0.023 in Fig. 9, and we obtain the requirement of 6,
as O, = 2.7 prad.

APPENDIX B: CALCULATION OF
QUANTUM NOISE

Calculation of quantum noise in this Appendix is based
on [14]. Quantum noise can be divided into three parts,
noise due to vacuum fluctuations passing through the
squeezer N;, noise due to vacuum fluctuations which do
not pass through squeezer N,, noise due to vacuum
fluctuations in the readout N;.

Quantum noise at the interferometer readout is given by

N(&) = [b;- Ty - v +
EN1+N2 +N3,

by - Ty - 05> +[bg - Ty - w3/

(B1)

where v; = \/2hwyl (i = 1, 2, 3) is vacuum fluctuation
and I is 2 x 2 identity matrix. b; = A o(sin{cos{) is
local oscillator and N({ = 0) is the quantum noise in the
quadrature containing the interferometer signal.

T, is written as

T, = 7w Tito(TooTte + Trnm) Tinj» (B2)
1 0

Tifo = K 1 ’ (B3)
ch = /% Ral, (ppI - imen/2)v (B4)
Too :|ZOO|Rarg(t00)v Tom = |tmm|Rarg(zmm)’ (BS)
T R <€G 0 >R (B6)

inj — Tinj -

J j 0 e ° ¢

where Tigy, Tye, Tinj are transfer matrices of interferom-
eter, optimally matched filter cavity, and injection field,
respectively. Ty, Trnm are mode matching and mode
mismatch matrix.

Tinj» Tro 18 Injection, readout transmissivity and can be

written as
Ty = /1 = AR, (B7)
To =1/1— A%O, (B8)
where A2, AZ are injection, readout losses.

inj’

f00> tmm €an be written as roy = aobf, tym = >3, a,b;,

where a,,, b, are complex coefficients when we express the

squeezed vacuum states and the local oscillator in the basis
of the filter cavity mode and can be written as

Usq, = ZanUn, with Z la,)> =1, (B9)
n=0
Uo=>» byU, with > |b,[>=1, (B10)
n=0 n=0

where U, are the orthogonal basis of spatial modes and U,
is the filter cavity fundamental mode.
T, is written as

Ty = 70 Tito A2 (B11)
Ao = /1= (IR QF + [r2(-Q)P)/2.  (B12)
75(R) =(t0075c(2) + fim ) Ting- (B13)
T is written as
Ty = Ay, (B14)

Quantum noise normalized with respect to shot noise level
used in Sec. IIE is

N= LZ (B15)
Zfla)oALo
For calculation of frequency-dependent phase noise, we
can consider only N; since frequency-dependent phase
noise of N, is negligible compared with N; and Nj; is
independent of the filter cavity. From (B1)-(B8) and (B15),
(35) can be derived.
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