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We demonstrate the scale invariance of the vacuum Bianchi type IX equations and use this to argue for
the possibility of multifractal turbulence as a realization of the suggestion by Belinski that there will be a
fragmentation of local regions of inhomogeneous Mixmaster chaos on approach to an initial inhomo-
geneous cosmological singularity. Differences between the gravitational and hydrodynamical situations are
outlined. Various potential obstacles to this picture of gravitational turbulence are discussed together with
links to preinflation.
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I. INTRODUCTION

We have recently explored the potential effects of
synchronisation of Mixmaster oscillations between differ-
ent regions of an inhomogeneous Mixmaster universe on
approach to the initial cosmological singularity [1]. Here,
we consider another generalization of the standard picture
of Bianchi type IX evolution toward the singularity in the
inhomogeneous generalization. Belinski [2] has suggested
that there could be further added structure to the general
inhomogeneous Mixmaster oscillations in the form of the
transport of energy from large to small scales leading (like
in any complex nonlinear system with infinite number of
degrees of freedom) to the endless generation of excitations
of smaller and smaller spatial scales. This process can be
called the fragmentation of the Mixmaster oscillatory
regime and its rise is supported by the mathematical fact
of the monotonic increase of spatial gradients of the metric
on approach to the singularity that was observed by Kirillov
and Kochnev [3,4] and by Montani [5,6]. A further
discussion of this fragmentation idea appears in the book
[7], see also Ref. [8].
This phenomenon is reminiscent of three-dimensional

fluid turbulence but with no minimum dissipative scale and
so the energy transport continues down to zero scale. The
approach to the singularity at t ¼ 0 produces an infinite
number of subdivisions of each local inhomogeneous
Mixmaster dynamical region and fragmentation continues
ad infinitum. There will only be a cutoff to this process and
to the downward energy transfer if there is a minimum
length scale where dissipation of the gravitational wave
energy can occur; by particle production of gravitons, or
other degrees of freedom; or if there is a bounce [9,10] at a
minimum nonzero radius; or if the oscillations cease
because of asymptotic dominance of the local dynamics
by a massless scalar field or the kinetic energy of a scalar
field with a nonzero potential.

Another ingredient that is potentially relevant, and
maybe even related, are spikes and their oscillations,
[11,12]. In the next section we provide some more rigorous
basis for our proposal.

II. TYPE IX SCALING AND
MULTIFRACTAL BEHAVIOR

The spatially homogeneous diagonal Bianchi IX metric
is

ds2 ¼ dt2 − γabðtÞeaμebνdxμdxν; ð1Þ

where

γabðtÞ ¼ diag½a2ðtÞ; b2ðtÞ; c2ðtÞ�; ð2Þ

and

eaμ ¼

0
B@

cos z sin z sin x 0

− sin z cos z sin x 0

0 cos x 1

1
CA: ð3Þ

The general relativistic field equations in vacuum
Bianchi type IX with scale factors aðtÞ, bðtÞ, cðtÞ in
comoving proper time t, [7,13,14], are

ð _abcÞ· ¼ 1

2abc
½ðb2 − c2Þ2 − a4�; ð4Þ

ða _bcÞ· ¼ 1

2abc
½ða2 − c2Þ2 − b4�; ð5Þ

ðab_cÞ· ¼ 1

2abc
½ða2 − b2Þ2 − c4�; ð6Þ
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2a2b2c2
ða4 þ b4 þ c4 − 2a2b2

− 2a2c2 − 2b2c2Þ: ð7Þ

Equation (7) is also expressed more simply before
integration as,

1

a
d2a
dt2

þ 1

b
d2b
dt2

þ 1

c
d2c
dt2

¼ 0: ð8Þ

Now consider the scaling behavior of these equations by
a power, h, of a constant positive scaling factor A. We set

ða; b; cÞ → Ahða�; b�; c�Þ; ð9Þ

t → Aht�: ð10Þ

Then, Eq. (4) transforms in the � variables to (where 0
denotes d=dt�),

Ahða0�b�c�Þ0 ¼
Ah

2a�b�c�
½ðb2� − c2�Þ2 − a4��; ð11Þ

for arbitrary constants, A and h. The same invariance holds
for Eqs. (5) and (6) by cyclically permuting letters a, b, and
c. The first integral, Eq. (7), transforms as,

1

A2h

�
a0�
a�

þ b0�
b�

þ c0�
c�

�
2

¼ 1

A2h
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�
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þ
�
b0�
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�
2

þ
�
c0�
c�

�
2
�

þ 1

2a2�b2�c2�A2h ða4� þ b4� þ c4� − 2a2�b2� − 2a2�c2� − 2b2�c2�Þ;

ð12Þ

and again we see it has the same invariance, as expected,
because Eq. (7) is a first integral of Eqs. (4)–(6), and the
equation is scale invariant under all A and h scaling
transformations. The same scaling is seen more obviously
from Eq. (8). The “toy” type IX model created by Fleig and
Belinski [15] does not have this scaling property. This is not
surprising as the equations were created by setting cðtÞ ¼ 0
and so the scale invariance in Eq. (9) is obviously broken.
The scale invariance of these equations has important

consequences. Parisi and Frisch [16–18] famously consid-
ered a similar problem in the context of scale invariance of
the Euler and Navier-Stokes equations and its relation to the
presence of turbulencewith multifractal structure. The scale
invariance property of the vacuum type IX equations we
have shown means that in the inhomogeneous generaliza-
tion of the Mixmaster model there can exist many different

values of h, each occurring say with some probabilityPrðhÞ
on any fixed scale r. So, a turbulent situation appears as a
superposition of many different scale-invariant flows. In
order to maintain scale invariance when averaging corre-
lation functions one need PrðhÞ ≃ rfðhÞ, for some unknown
function fðhÞ so that the scale invariance holds for the
distribution PrðhÞ also. Parisi and Frisch took fðhÞ to be
3 −DðhÞ, with DðhÞ taken to be the fractal (Hausdorff)
dimension of the scale invariant solution with scaling
exponent h. Hence, this scenario is referred to as multi-
fractal turbulence and we see that it arises in the inhomo-
geneous extension of the vacuum Bianchi type IX
equations. In the hydrodynamic problem, a further con-
straint is introduced by using the Kolmogorov constraint
that there is scale-invariant energy flow per unit time from
large to small scales. This requires constant energy flow
rate, v2=t ≃ v3=r, through scale r, so v ∝ r1=3 independent
of the scaling parameters: the famous Kolmogorov
spectrum.
We know that a turbulent inertial region requires a lower

length limit cutoff where dissipation of the energy injected
on large scales can occur. Of course, in the hydrodynam-
ical case this scale breaks the scale invariance but the
situation may be simpler in the cosmological case as it is
not obvious if a lower length scale exists as a cutoff to
the turbulent fragmentation. There are three simple
possibilities:
(a) The lower length cutoff is the Planck scale,

lpl ≃ 10−33 cm. However, if this is the case there will
be a very small number of oscillations (of order 10)
between the present and the Planck time (a mean
expansion scale factor change of order 1060) as they
occur in lnðln tÞ time—far too few to set up a well-
developed inertial regime for some type of gravita-
tional turbulence.

(b) The fragmentation degenerates into the formation of
some organized objects, for example, as gravitational
solitonic structures in which there is a balance between
gravity and dispersion, which act a limiting case
[19,20]. They may also be related to the synchroniza-
tion process outlined in Ref. [1]. This scenario also
appears in other aspects of hydrodynamic turbulence
studies. The Kolmogorov-Hinze theory of the frag-
mentation of droplets in a chaotic turbulent flow is
relevant [21,22]. Using Kolmogorov’s classic velocity
spectrum, they derived a criterion for the maximum
size of droplet that will not undergo fragmentation
when the turbulent flow intensity exceeds the surface
tension [23]. Many theoretical and experimental stud-
ies have been made of the details of this process and
the generalizations and limitations of the Kolmogorov-
Hinze picture [24]. It is suggestive of an analogy in the
cosmological picture where Weyl curvature oscilla-
tions overcome self-gravity to perpetuate anisotropic
stretching and fragmentation of regions.
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(c) There is no lower limit and the chaotic oscillations and
turbulent behaviour continue all the way to t ¼ 0. This
results in an infinite number of spacetime oscillations
of the scale factors a, b, c in t time (or equivalently
a�; b�;c� in t� time) but with the conceptual problem of
what is the meaning of the model at times earlier than
the Planck time when less than one photon is present
inside the horizon and so statistical mechanics is
meaningless (and perhaps the concept of space and
time oscillations as well (but see Ref. [25]) in a
nonquantum gravitational form.

We should also mention the potential links to the study of
the preinflationary structure of the very early universe, see
for example Ref. [26]. Preinflation can imprint particular
fluctuation scales when density perturbations cross the
horizon and provide a way to access information about the
preinflationary (possibly chaotic) structure of the very early
universe. Our study has focused on the multifractal evo-
lution on approach to an initial singularity (t → 0) and so
any remnant of preinflation has to look at the evolution in
the opposite time-sense where the fragmentation process

will run in reverse. Again, as we have stressed above, any
interval of Mixmaster evolution not including t ¼ 0 creates
a finite number of oscillations and fragmentations and so as
t grows there may be a residual effect of early fragmenta-
tion but it will not have been in the fully developed
gravitational turbulence range. This may repay further
investigation.
In this paper we have tried to provide some simple

underpinning for the idea that there is random fragmenta-
tion of Mixmaster dynamics in different regions on
approach to the singularity in an inhomogeneous version
of the Bianchi type IX universe when the inhomogeneities
are still not too large.
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