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A further investigation let us realize that the object we are calculating is not a thermal quarkonium mass shift, but the
fluctuation counterpart to the momentum diffusion (dissipative) coefficient of a single heavy quark κ. We therefore would
now change the title to “Thermal heavy quark self-energy from Euclidean correlators.” In more detail, Eq. (2) would need
revision. The object we consider precisely is

γfund ¼
g2

3Nc
Im

Z
∞

−∞
dshTr½PUð∞; sÞEiðs; 0ÞUðs; 0ÞEið0; 0ÞUð0;−∞Þ�i; ð1Þ

where the chromoelectric fields E and Wilson linesUða; bÞ are in the fundamental representation and P is the path-ordering
symbol, indicating that fields are contour-ordered along the Wilson lines; this equals time ordering for the E fields but not
for the U operators. The real part of the same quantity above is precisely κ [1]. Hence, γfund is related to the real part of the
self-energy of a single heavy quark, though its precise physical interpretation is at the moment unclear. The real-time
calculation in Ref. [2] used a Wilson line in the adjoint representation, i.e.,

γadj ¼
g2

6Nc
Im

Z
∞

−∞
dshTEa;iðs; 0ÞUðs; 0ÞabEb;ið0; 0Þi: ð2Þ

It is γadj which enters in the effective field theory description of heavy quarkonium at finite temperature.
The main message of the paper is that it is γfund that can be analytically continued to the Euclidean correlation function.

So, in Eq. (6), the following replacement should be done, γ → γfund. A computational mistake was performed in the original
version of the paper. Upon rectifying it, Eq. (11) becomes

γLOfund ¼ −
Z

β

0

dτGHQ
ENLOðτÞ ¼ −

g4CF

3
NfðĨ1 þ 4Ĩ2Þ

and Eq. (17)

γLOfund ¼ −2α2sT3ζð3ÞCFNf : ð3Þ

This is different from the result in Ref. [2], i.e.,

γLOadj ¼ −2α2sT3ζð3ÞCF

�
4

3
Nc þ Nf

�
; ð4Þ

since different Wilson lines were used. We have reproduced Eq. (3) by computing Eq. (1) in real time: we sketch that
calculation at the end of this document in Appendix. Before we do so, we describe the changes to our conclusions: our
updated main findings are that the different Wilson-line formulations γfund and γadj give rise to different results at the first
nontrivial order in perturbation theory, and that it is γfund which has a simple analytical continuation, Eq. (6) of the original
paper. The difference between γfund and γadj may be understood physically as follows: γfund is related to the propagation of a
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single heavy quark, which can interact with the medium at any time, whereas γadj describes a QQ̄ pair, which is a medium-
blind singlet before (after) the first (last) E field insertion. Indeed, our explicit evaluation, presented in Appendix, shows
how the difference arises from the Wilson lines before/after the E fields. We plan to return to the physical interpretation of
γfund in a follow-up publication, where we will also touch the issue of the Euclidean mapping for γadj (of relevance for
quarkonium) and that of κ, which we also expect to differ between the two Wilson-line formulations.

We thank Viljami Leino for uncovering the computational mistake that was performed in the original version of the paper.

APPENDIX: DETAILS OF THE REAL-TIME COMPUTATION

To our knowledge, there is no real-time determination of Eq. (1) in the literature; let us thus present it briefly. We find
Coulomb gauge to be a good choice: in this gauge, the A0A0 retarded bare propagator is GR

00ðq0; qÞ ¼ i=q2 and equals the
advanced one. Thus, the spectral density vanishes, making the off-diagonal entries of the propagator matrix in the “12”
formalism of real-time perturbation theory vanish. The lack of frequency dependence of the diagonal elements makes many
diagrams vanish in dimensional regularization (DR). We label the real-time graphs as in Fig. 1 of the original paper, though
the Wilson lines now start and end at t ¼ −∞. The only nonvanishing diagrams in this gauge are then (i), (j), and (k). Of
these, (i) and (k) do not source any gluons from the Wilson lines: they thus contribute equally to γadj and γfund, as the color
trace gives the same result. In this gauge, any difference between the two can thus only arise from diagram (j) and its
equivalent for γadj. We thus show how the Coulomb gauge evaluation of the contribution of this diagram to Eqs. (2) and (1)
yields the difference between γadj and γfund,

1 thus confirming the correctness of our analytical continuation, Eq. (6) of the
original paper, to first nontrivial order in perturbation theory.
In the adjoint case, diagram (j) is shown in Fig. 1. It contributes to

γðjÞadj ¼ −
g4

3Nc
Im

Z
∞

0

dt
Z

t

0

dt0
Z
Q

Z
P
eiq

0te−iðp0þq0Þt0 if
acbfabc

ðp⃗þ q⃗Þ2 ½q
0p0ðq0 − p0ÞG11

ik ðPÞG11
ki ðQÞ

þ 2ip0q̂iq̂jG11
ij ðPÞ − 2iq0p̂ip̂jG11

ij ðQÞ�; ðA1Þ

where we have rewritten the integral over negative and positive times of the contour-ordered operator as twice the positive-
time integral of the forward Wightman operator. Thus, the three fields sourced by the operator, EðtÞ, A0ðt0Þ, and Eð0Þ, are
naturally time ordered and thus of type “1” in the 12 formalism of real-time perturbation theory. In Coulomb gauge, the
A0ðt0Þ field can only connect to another A0 field, which has furthermore to be of type 1 as well, due to the diagonal nature of
the bare temporal propagator matrix. Hence, the three-gluon vertex has to be of type 1, so that the propagators of the
transverse gluons have to be of type “11,” i.e., time ordered. Indeed, the first line of Eq. (A1) is the contribution with two
transverse gluons sourced by the two E fields, as depicted in Fig. 1, while on the final line, they source one transverse and
one temporal gluon. Finally,

R
P ¼ R

dDP=ð2πÞD is the Minkowski D-dimensional integral.
In the fundamental case, one has instead the configurations shown in Fig. 2. They give

γðjÞfund ¼ −
g4

6Nc
Im

Z
∞

0

dt

�Z
t

0

dt0 −
Z

0

−∞
dt0 −

Z
∞

t
dt0

�Z
Q

Z
P
eiq

0te−iðp0þq0Þt0 if
acbfabc

ðp⃗þ q⃗Þ2
× fq0p0ðq0 − p0Þ½G11

ik ðPÞG11
ki ðQÞ þ ϵðt0Þϵðt − t0ÞG>

ikðPÞG>
kiðQÞ� þ 2ip0q̂iq̂jG11

ij ðPÞ − 2iq0p̂ip̂jG11
ij ðQÞg; ðA2Þ

where, as shown in the figure, there are now two possible 12 assignments for the fields sourced by the operator: the E fields
are always of type 1, while the A0 gluon is 1 if it comes fromUð0;−∞Þ orUðs; 0Þ, “2” if fromUð−∞; sÞ. For reasons which
will become clearer soon, we have rewritten this last Wilson line asUð−∞; sÞ ¼ Uð−∞;∞ÞUð∞; sÞ, withUð−∞;∞Þ thus
of type 2 and Uð∞; sÞ of type 1, hence the R∞

t dt0 contribution.2 The first term on the second line describes the diagrams
with two transverse gluons, where we have used the definition G> ¼ G21. For these diagrams, as shown in Fig. 2, we have
two assignments contributing to each of the three dt0 integrations. The relative sign between the two, encoded in the sign

1Reference [2] obtained Eq. (4) in the temporal axial gauge A0 ¼ 0. We also checked that the sum of diagrams (i), (j), and (k) in the
expansion of γadj in Coulomb gauge reproduces Eq. (4).

2In a covariant gauge, the contribution of
R∞
t dt0 vanishes, as expected from the unitarity of the Wilson lines. In Coulomb gauge, one

needs anyway to consider Uð−∞; sÞ as Uð−∞; sþ δþÞUðδþ; sÞ, with δþ arbitrarily small and positive. This avoids the appearance of
ill-defined θð0Þ contributions arising from the time integrations of the bare temporal propagators, which are instantaneous in time.
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functions ϵðt0Þϵðt − t0Þ, arises from the combination of a minus sign from the different color ordering—in the 0 < t0 < t
region—together with another minus sign from the different direction of theWilson lines. The final two terms on the second
line encode the contribution of graphs with a single transverse gluon, for which the lower 2 contour does not contribute. The
overall factor of 1=2 in front of Eq. (A2) with respect to Eq. (A1) arises from color tracing in the different cases.
If we take the difference between Eqs. (A2) and (A1), we obtain Δγ ≡ γfund − γadj. It reads

Δγ ¼ −
g4CFNc

3
Im

Z
∞

0

dt
Z

∞

−∞
dt0

Z
Q

Z
P

ieiq
0te−iðp0þq0Þt0

ðp⃗þ q⃗Þ2
× fq0p0ðq0 − p0Þ½G11

ik ðPÞG11
ki ðQÞ −G>

ikðPÞG>
kiðQÞ� þ 2ip0q̂iq̂jG11

ij ðPÞ − 2iq0p̂ip̂jG11
ij ðQÞg; ðA3Þ

so that the structure of the time integrations simplifies greatly, hence our choice of introducing the
R∞
t dt0 contribution.

Upon using GijðPÞ ¼ ðδij − p̂ip̂jÞGTðPÞ, we find

Δγ ¼ −
2g4CFNc

3
Im

Z
Q

Z
P

2πδðq0 þ p0Þ
ðp⃗þ q⃗Þ2 × fp2

0½G11
T ðPÞG11

T ðQÞ −G>
T ðPÞG>

T ðQÞ�½d − 2þ ðp̂ · q̂Þ2�

þ i½G11
T ðPÞ þ G11

T ðQÞ�½1 − ðp̂ · q̂Þ2�g: ðA4Þ

G>
T ðQÞ ¼ ðθðq0Þ þ nBðjq0jÞÞ2πδðQ2Þ is purely real and thus does not contribute to Δγ. G11

T ðQÞ ¼ iP1=ðq20 − q2Þ þ
ð1=2þ nBðjq0jÞÞ2πδðQ2Þ has both real and imaginary parts, with P a principal-value prescription and nB the Bose-Einstein
distribution, so that

Δγ¼−4
g4CFNc

3

Z
Q

Z
p

2πδðQ2Þ
ðp⃗þ q⃗Þ2

�
1

2
þnBðjq0jÞ

��
P

q20
q20−p2

½d−2þðp̂ · q̂Þ2�þ1− ðp̂ · q̂Þ2
�
¼ 8

3
α2sCFNcζð3ÞT3; ðA5Þ

FIG. 2. Diagrams (j) for γðjÞfund. The graphical notation is the same as in Fig. 1, except that the solid line is now the Wilson line stretching
forward in time from negative to positive infinity passing both E fields (upper contour), to then turn back and return to −∞ (lower
contour). We show two of the six possibilities for the temporal gluon, which can connect as a 1 (2) field to the upper (lower) contour
before, between or after the E fields. We do not show the case where the E fields source one transverse and one temporal gluon; there the
lower contour does not contribute.

FIG. 1. Diagram (j) for γðjÞadj. The vertices with the cross are the E fields, the double line is the adjoint Wilson line, curly lines are
transverse gluons, and the dashed line a temporal gluon. The diagram where one of the E fields sources a temporal gluon is not shown
explicitly. The 1 labels the 12 assignments of the fields.
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where we have also used the p ↔ q symmetry of the integrand. The final integration has been carried out in DR, showing
that Eq. (A5) is equal to the difference between Eqs. (3) and (4), as we set out to prove.
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