
 

Coulomb-nuclear interference effects in proton-proton scattering:
A simple new eikonal approach
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We present a simple new approach to the treatment of Coulomb-nuclear interference and form-factor
effects in high-energy proton-proton scattering in the context of an eikonal model for the spin-averaged
scattering amplitude. We show that the corrections to the nuclear and Coulomb amplitudes do not depend
sensitively on the details of the eikonal amplitude and can be taken as universal, and present
parametrizations for the necessary corrections. We also present a simple model for the nuclear scattering
amplitude useful for data analysis at small momentum transfer which builds in the proper nuclear phase and
the diffraction zeros in the real and imaginary parts of the amplitude.

DOI: 10.1103/PhysRevD.102.036025

I. INTRODUCTION

The interplay of Coulomb and nuclear interactions in
the scattering of charged particles has been studied
by many authors ([1–9] and further references therein)
with particular emphasis on the use of Coulomb-nuclear
interference effects to determine the real part of the
nuclear scattering amplitude in proton-proton and
proton-antiproton scattering at high center-of-mass ener-
gies W ¼ ffiffiffi

s
p

and small squares of the covariant momen-
tum transfer q2 ¼ jtj. The results most used in recent
analyses of spin-averaged high-energy data appear to be
those of Cahn [3] as modified by Kundrát and Lokajiček
[5]. In their approach, the Coulomb and purely nuclear
effects are separated out in a spin-independent scattering
amplitude, with its components expressed in terms of
convolutions involving the nuclear and Coulomb ampli-
tudes with the effects of the proton electromagnetic form
factors included. The result is rather cumbersome to use,
especially because the way in which the amplitudes are
separated leaves long-range effects associated with the
Coulomb amplitude in some terms. Questions have also

been raised about the treatment of the form factors
[10,11]; see also [12,13] for further references.
In the present paper, we present an analysis of the

Coulomb and form-factor effects in pp scattering based
on an eikonal model for the spin-averaged pp scattering
amplitude in the limit in which spin effects can be ignored,
as discussed in the Appendix. Possible spin effects
were considered in detail by Buttimore, Gotsman, and
Leader in [6] using a small-jtj or small-q2 expansion. We
show in the Appendix that these effects are likely to be
negligible at the energies of current interest in pp
scattering, W ≳ 100 GeV.
Our eikonal approach is based on a realistic model which

fits the pp and p̄p data from 4.5 GeV to cosmic ray
energies, and is consistent with the phase constraints
imposed by analyticity [14]. The model allows us to
calculate the Coulomb and form-factor effects in the
scattering without significant approximation at any value
of q2 for which it holds, extending beyond the first
diffraction minimum in the differential cross section. No
small-q2 expansion such as those used in [6] and, over an
extended range, in [7], is necessary.
Our separation of the various effects in the scattering is

different from that of Cahn [3], with long-range effects
appearing only in a pure Coulomb scattering term with
unmodified form factors, and—to high accuracy—with the
remaining effects isolated in a nearly model-independent
phase factor that modifies the purely nuclear term,

fðs; q2Þ ≈ −
2η

q2
F2ðq2Þ þ eiΦtotðs;q2ÞfNðs; q2Þ: ð1Þ
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As is usual in the treatment of infinite-range Coulomb
scattering, an irrelevant overall phase has been absorbed. In
contrast to [6], we can treat the various corrections to the
spin-independent terms completely, without their expan-
sion in t and α ln jtj.
The advantage of this form of the amplitude is that the

Coulomb term is real, making it clear that the Coulomb-
nuclear interference depends only on the real part of the
second term, that is, on the real part of fNðs; q2Þ with a
(small) admixture of the imaginary part dependent on the
phase Φtotðs; q2Þ. The latter is essentially model indepen-
dent for any eikonal model consistent with the measured
pp total cross sections, the forward slope parameters
B ¼ −d log ðdσ=dq2Þ=dq2, and the diffractive structure
at larger q2. We find that Φtotðs; q2Þ is small and easily
parametrized in the q2 region inside the first diffrac-
tion zero.
In the following sections, we first discuss the separation

of the various effects in the scattering in Sec. II A, and then
evaluate the Coulomb scattering term in eikonal form in
Sec. II B, and the form-factor effects in Sec. II C. We show,
in particular, that the Coulomb and form-factor effects
combine to high accuracy to give a combined amplitude
of the form −ð2η=q2ÞF2

Qðq2ÞeiΦc;FF , where η ¼ α=v ≈ α,
FQðq2Þ is the charge form factor of the proton, andΦc;FF is
a known phase.
We evaluate the remaining nuclear-dependent term in

Sec. II D, where we show that the effects of the Coulomb
interaction and the form factors combine at small q2 to
simply multiply the nuclear amplitude by a phase factor
e−ΔΦðs;q2Þ. The Coulomb and modified nuclear amplitudes
can then be combined in the form in Eq. (1), with an overall
phase absorbed. We also present an accurate—and essen-
tially model-independent—parametrization of the phase
Φtot in Eq. (1) valid from energies below 100 GeV to
20 TeV or above. The result is a very simple implementa-
tion of the Coulomb and form-factor corrections in the
complete scattering amplitude.
In Sec. III, we apply these results to analyze a model

used in recent fits to Coulomb-nuclear interference at very
high energies [13,15] in which the phase of the nuclear
amplitude is taken as constant. We show that this leads to
effective real parts of the scattering amplitude significantly
larger than the actual real parts. It is very simple to improve
the model at high energies by using an approximate nuclear
phase that takes into account the zeros in the real and
imaginary parts of fNðs; q2Þwhich lie within or close to the
region in q used in the fits, and give parametrizations of the
locations of those zeros in our eikonal model valid from
∼500 GeV to above 20 TeV.
Finally, for completeness, we discuss the connection

of the spin-averaged scattering amplitude to the com-
plete spin-dependent elastic scattering matrix in the
Appendix.

II. ANALYSIS

A. Background

In the absence of significant spin effects—thought to be
very small at high energies—the spin-averaged differential
cross section for proton-proton scattering can be written in
terms of a single spin-independent amplitude,

fðs; q2Þ ¼ i
Z

∞

0

db bð1 − e2iðδtotc ðb;sÞþδNðb;sÞÞÞJ0ðqbÞ; ð2Þ

as sketched in the Appendix. Here q2 ¼ −t is the square of
the invariant momentum transfer, b is the impact parameter,
δtotc ðb; sÞ is the full Coulomb phase shift including the
effects of the finite charge structure of the proton, δNðb; sÞ
is the nuclear phase shift, and

δtotc ðb; sÞ ¼ δcðb; sÞ þ δFFc ðb; sÞ; ð3Þ
where δc gives the phase shift for a pure Coulomb
interaction, and δFFc accounts for the effects of the form
factors at large momentum transfers or short distances. This
form, with (approximately) additive phase shifts, and that
in Eq. (2), can be derived in the context of potential
scattering through a Glauber-type treatment [16] of the
eikonal function.
With our normalization, the differential elastic scattering

amplitude is

dσ
dq2

ðs; q2Þ ¼ πjfðs; q2Þj2: ð4Þ

The finite proton charge structure appears through the
charge form factors FQðq2Þ measured in electron-proton
scattering [17]. Only the charge form factor appears. The
magnetic moment scattering with form factor FMðq2Þ
appears only in the spin-dependent part of the scattering
amplitude and does not contribute to Coulomb-nuclear
interference in the spin-averaged cross section except
through interference effects in the average of the spin-
dependent terms, thought to be very small and neglected
here; see, e.g., [6,18]. This is discussed further in the
Appendix. The exact spin-averaged Coulomb amplitude for
proton-proton scattering should therefore reduce to

fBc ðs; q2Þ ¼ −
2η

q2
F2
Qðq2Þ ð5Þ

in Born approximation.
Equation (2) can be rearranged in the form

fðs;q2Þ

¼fcðs;q2Þþ i
Z

∞

0

dbbe2iδcðb;sÞð1−e2iδ
FF
c ðb;sÞÞJ0ðqbÞ

þ i
Z

∞

0

dbbe2iδcðb;sÞþ2iδFFc ðb;sÞð1−e2iδNðb;sÞÞJ0ðqbÞ: ð6Þ
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Here fcðs; q2Þ is the Coulomb amplitude without form
factors. The second term in Eq. (6), which we will label
fFFc , accounts for the effects of the form factors on the
Coulomb scattering, strongly reducing the 1=q2 falloff of
the pure Coulomb term at large q2 ¼ jtj. The final term fN;c

includes the effects of the nuclear scattering as modified by
the Coulomb and form factor effects. We will consider
these individually in the following subsections. The pure
nuclear amplitude fNðs; q2Þ is just

fNðs; q2Þ ¼ i
Z

∞

0

db bð1 − e2iδNðb;sÞÞJoðqbÞ: ð7Þ

B. Coulomb scattering

The Coulomb phase shift depends on the parameter
η ¼ z1z2α=v, v ¼ 2pW=ðW2 − 2m2Þ the velocity of either
particle in the rest frame of the other, here expressed in
terms of the total center-of-mass energy W ¼ ffiffiffi

s
p

and the
corresponding proton momentum p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2=4 −m2

p
;

clearly η ≈ α ≪ 1 for protons at high energies. The phase
shift for the orbital angular momentum L is given to leading
order in α by ([19], Sec. 14.6)

e2iδc ¼ ΓðLþ 1þ iηÞ
ΓðLþ 1 − iηÞ ¼ exp

�
2i
XL
k¼1

arctan
η

k

�
ð8Þ

¼ exp

�
2i
XL
k¼1

�
η

k
−
1

3

η3

k3
þ � � �

��

≈ exp 2i

�
η lnLþ ηγ þO

�
η

L
; η3

��
: ð9Þ

Thus, for L ¼ pb large, b the impact parameter in the
scattering, the Coulomb phase factor to first order in η is

e2iδcðb;sÞ ¼ e2iηðlnpbþγÞ ¼ ðpbÞ2iηe2iηγ; ð10Þ

where γ ¼ 0.5772… is Euler’s constant.
The result for fcðs; tÞ follows from Eq. (2) for pure

Coulomb scattering, δFFc ¼ δN ¼ 0. This gives

fcðs; tÞ ¼ i
Z

∞

0

db bð1 − e2iδcðs;bÞÞJ0ðqbÞ

⟶ −ie2iηγ
Z

∞

0

db bðpbÞ2iηJ0ðqbÞ; ð11Þ

where we have dropped the delta function in q associated
with the 1 in the first term in the integrand and restricted our
attention to angles away from the extreme forward direc-
tion, q > 0. This is the usual restriction for Coulomb
scattering, necessitated by the infinite range of the inter-
action and the associated failure of the term e2iδc to vanish
for b → ∞ ([19], Sec. 14.6).

To evaluate the apparently divergent integral in
Eq. (11), we note that the phase factor in Eq. (8) and
the scattering amplitude in Eq. (11) are analytic in η and the
phase is nonsingular and nonzero for jℑηj < Lþ 1 or
jℑηj < pbþ 1. We can therefore take ℑη≳ 1

2
initially for

pp scattering (η ¼ þα=v). The integral then converges and
gives [Eq. (10.22.43) of [20]]

fcðs; tÞ ¼ −
2η

q2

�
4p2

q2

�
iη

e2iηγ
Γð1þ iηÞ
Γð1 − iηÞ ð12Þ

¼ −
2η

q2

�
4p2

q2

�
iη

¼ −
2η

q2

�
1 − cos θ

2

�
−iη

; ð13Þ

where we have expanded the ratio of gamma functions
Γð1� iηÞ to first order in η. The result is analytic in η,
and can be continued back to ℑη ¼ 0, giving the usual
Coulomb amplitude, but with the relativistic rather than
nonrelativistic value of η.
We can obtain the same result by introducing a con-

vergence factor e−ab in the integrand for η real and then
using the second form of the result in Eq. 13.2(3) of [21].
This gives

Z
∞

0

db b1þ2iηe−abJ0ðqbÞ

¼ 1

ða2 þ q2Þ1þiη Γð2þ 2iηÞ

× 2F1

�
1þ iη;−

1

2
− iη; 1;

q2

q2 þ a2

�
: ð14Þ

Taking the limit a → 0 using the limiting form of the
hypergeometric function for unit argument and the dupli-
cation formula for gamma functions reproduces the result
in Eq. (12).
Cahn [3] obtained a similar result with the factor

ð2p=qÞ2iη replaced by ðλ=qÞ2iη through somewhat loose
arguments by starting with a screened Coulomb interaction
with 1=q2 → 1=ðq2 þ λ2Þ in Born approximation. The
difference is a phase factor e2iη ln 2p=λ with a phase which
diverges for λ → 0. This is a standard problem. The same
phase appears in all terms in Eq. (6), so the phase does not
affect the cross section and can be absorbed if it is done
consistently in Eq. (6). This phase is model dependent in
general. Bethe, for example, uses a Gaussian cutoff in
Eq. (4.28) of [1]. Islam [4] used a similar form to evaluate
the Coulomb amplitude. The results in both cases differ
from that in Eq. (12) only by (different) infinite phases in
the Coulomb limit.
As noted above, magnetic-moment scattering does

not contribute to the spin-independent part of the scatter-
ing amplitude. Its contribution to the spin-dependent
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amplitude is also suppressed by an angular factor propor-
tional to

ffiffiffiffiffi
q2

p
at small q2. The factor 1=q2 from the

photon propagator therefore partially cancels and the
amplitude is suppressed relative to the charge-scattering
term for q2 → 0. The magnetic form factors F2

Mðq2Þ
further suppress the scattering at large q. As a result,
the magnetic terms do not contribute significantly to the
scattering in the region of interest here. This result is
general, and holds also for scattering through higher
multipoles in the case of particles of higher spin
(Secs. 4b and 4c of [18]). The potential interference
effects of the magnetic terms with spin-dependent terms
in the nuclear scattering studied in [6] are also expected to
be negligibly small at high energies as discussed in the
Appendix.

C. Form-factor corrections to Coulomb scattering

We turn now to the evaluation of the second integrals in
Eq. (6) which contains the effects of the form factors on the
Coulomb scattering. We will use the standard form

FQðq2Þ ¼
μ4

ðq2 þ μ2Þ2 ð15Þ

for the proton charge form factor with μ2 ¼ 0.71 GeV2.
We will write the q2-dependent factors in the initial Born
amplitude as

α

q2
F2ðq2Þ ¼ α

q2
−

α

q2

�
1 −

μ8

ðq2 þ μ2Þ4
�

¼ α

q2
−
X3
m¼0

α
μ2m

ðq2 þ μ2Þmþ1
: ð16Þ

Applying an inverse Bessel transform to the second term,
which we identify as the leading term in an expansion of the
eikonal in terms of 2δFFc , gives

2δFFc ¼ −
X4
m¼1

α

2mΓðmþ 1Þ ðμbÞ
mKmðμbÞ ð17Þ

as the eikonal function for the form-factor corrections,
where we have used the result in Eq. (10.22.46) of [20] and
the symmetry K−νðzÞ ¼ KνðzÞ in evaluating the integrals.
Substituting the form-factor term in Eq. (6) and expand-

ing to leading order in δFFc , allowed because the form-factor
terms are small and compact in impact-parameter space, we
obtain a sum of integrals of the form

1

2mΓðmþ 1Þ e
2iηγ

Z
∞

0

db bðpbÞ2iηðμbÞmKmðμbÞJ0ðqbÞ

¼ 1

μ2

�
2p
μ

�
2iη
e2iηγ

Γðmþ 1þ iηÞΓð1þ iηÞ
Γðmþ 1Þ 2F1

�
mþ 1þ iη; 1þ iη; 1;−

q2

μ2

�
ð18Þ

¼
�

4p2

q2 þ μ2

�
iη

e2iηγ
μ2m

ðq2 þ μ2Þmþ1

Γðmþ 1þ iηÞΓð1þ iηÞ
Γðmþ 1Þ 2F1

�
mþ 1þ iη;−iη; 1;

q2

q2 þ μ2

�
; ð19Þ

where the result follows from Eq. 13.45(1) of [21] and a
standard linear transformation on the resulting hypergeo-
metric function.
The parameter η is very small. Setting it equal to zero in

the remaining hypergeometric function, expanding appro-
priately elsewhere, and summing over m, we find that the
form-factor correction to the leading Coulomb amplitude is

−
X3
m¼0

α

�
4p2

q2 þ μ2

�
iη μ2m

ðq2 þ μ2Þmþ1

¼ −
α

q2

�
4p2

q2 þ μ2

�
iη
�
1 −

μ8

ðq2 þ μ2Þ4
�
½1þOðηÞ�:

ð20Þ

Supplying the necessary overall factors and adding the
unmodified Coulomb term, the full Coulomb amplitude
with the form-factor corrections becomes

fcðs; q2Þ þ fFFc ðs; q2Þ

¼ −
2η

q2

�
4p2

q2

�
iη
�
1 −

�
q2

q2 þ μ2

�
iη

þ
�

q2

q2 þ μ2

�
iη μ8

ðq2 þ μ2Þ4
�
: ð21Þ

The form-factor corrections do not have the simple form
of the pure Coulomb amplitude multiplied by F2ðq2Þ
assumed, for example, by Cahn [3] when the phase factors
are included. However, the limiting behaviors of the full
amplitude are evident from Eq. (21). For q2 ≪ μ2, the last
two terms in this expression cancel, and the full result
approaches the pure Coulomb amplitude as expected from
the infinite range of that interaction. In the opposite limit,
q2 ≫ μ2, the first two terms eventually cancel to an extra
OðηÞ, while the last term approaches the pure Coulomb
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result multiplied by F2ðq2Þ. All terms are important for
intermediate q2.
We can see the structure of Eq. (21) more clearly by

looking separately at the amplitude and phase of the factor
which multiplies the Coulomb amplitude − 2η

q2 e
iη ln 4p2=q2 :

mag½·� ¼ μ8

ðq2 þ μ2Þ4 ½1þOðη2Þ� ð22Þ

arg½·� ¼ − arctan

�
η

�ðq2 þ μ2Þ4
μ8

− 1

�
ln

q2

q2 þ μ2

�
ð23Þ

¼ −η
�ðq2 þ μ2Þ4

μ8
− 1

�
ln

q2

q2 þ μ2

×

�
1þO

�
η2

ðq2 þ μ2Þ4Þ
μ8

��
: ð24Þ

The approximation in the last line is valid in the region
of small q2 where Coulomb-nuclear interference is signifi-
cant, with q2 < μ2.
We remark that other parametrizations of the proton

charge form factor consistent with the dispersion relations
for that quantity—expressions involving sums or integrals
of inverse powers of quantities ðq2 þ λ2Þ—lead to results
of the same general form, but involving further sums or
integrals. The differences among the common parametri-
zations are unimportant.
Using the results in Eqs. (21)–(23), we obtain finally for

the form-factor corrections to the Coulomb amplitude for
η=F2

Qðq2Þ ≪ 1,

fcðs;Q2Þ þ fFFc ðs; q2Þ ¼ −
2η

q2
F2
Qðq2ÞeiΦc;FF ; ð25Þ

Φc;FFðs; q2Þ ≈ η ln
4p2

q2
− η

�ðq2 þ μ2Þ4
μ8

− 1

�
ln

q2

q2 þ μ2
;

ð26Þ

where we have used the (standard) parametrization for
charge form factor in Eq. (15).

D. Coulomb and form-factor corrections
to the nuclear amplitude

We turn next to the final term in Eq. (6), the amplitude
for the nuclear scattering including the effects of the
Coulomb phase shifts and the form-factor corrections,

fN;cðs; q2Þ ¼ þi
Z

∞

0

db be2iδcðb;sÞþ2iδFFc ðb;sÞ

× ð1 − e2iδNðb;sÞÞJ0ðqbÞ; ð27Þ

where δcðb; sÞ ¼ η lnpbþ ηγ and δFFc ðb; sÞ is given in
Eq. (17). The form-factor effects can be isolated subject to
Coulomb and nuclear corrections by expanding to first
order in δFFc , but we have not found this to be especially
useful. The Coulomb effects are of course long range, and a
similar expansion of those terms is not useful.
A simple approximation to the integral in Eq. (27) is to

replace the Coulomb and form-factor phases in that
expression by their values at the peak of the uncorrected
eikonal distribution, and factor the resulting constant phase
out of the integral. This approximation, originally sug-
gested by Bethe [1], works well for the slowly varying
Coulomb factor. It is less accurate when the form-factor
term is included as that expression varies significantly over
the same range in impact parameter as the eikonal term
itself, and affects the value of the integral. The dependence
of the Bessel function J0ðqbÞ in Eq. (27) also introduces
strong dependence on q2 as that quantity increases, leading
to diffraction zeros in the real and then the imaginary parts
of the amplitude, so the Bethe approximation is only valid
at small q2.
We note for completeness that the location of the peaks

in both the imaginary and real parts of the nuclear
distribution is at bpeak ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtot=4π

p
at q2 ¼ 0 [14]. The

q2 dependence of the Bessel function, J0ðqbÞ ¼
1 − 1

4
q2b2 þ � � � introduces a term proportional to b2 in

first order, and shifts the peak to a location determined by
the logarithmic slope parameter B, with

fN;cðs; q2Þ ≈
�
e2iδcðb;sÞþ2iδFFc ðb;sÞ

���
b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtotðsÞ=4π

p

þ 1

2
q2Be2iδcðb;sÞþ2iδFFc ðb;sÞ

���
b¼

ffiffiffiffiffiffiffi
BðsÞ

p
�

× fNðs; q2Þ þOðq4Þ ð28Þ

in the Bethe approximation.
Rather than using this approximation, our approach has

instead been to use our existing eikonal fit to pp scattering
[14], evaluate the integral in Eq. (27) directly, and then
compare the results to a direct evaluation of the nuclear
amplitude itself, Eq. (7). Any fit to the pp scattering
amplitude consistent with unitarity can be put in eikonal
form, and a similar analysis made. However, we stress that
successful fits cannot deviate substantially from our fit,
which describes the scattering reasonably well from 5 GeV
to the TeV range. In particular, we calculate the modified
amplitude in Eq. (27) numerically using the eikonal model
in [22] and relate the result in phase-amplitude form to the
pure nuclear amplitude.
Our results for the ratio jfN;cðs; q2Þ=fNðs; q2Þj of the

ratio of magnitudes of the nuclear amplitude with Coulomb
and form-factor corrections to the pure nuclear amplitude is
shown in Fig. 1. As expected, and seen in the upper half of
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the figure, the ratio is very close to unity at small q2 where
the amplitudes should differ by a pure phase in the Bethe
approximation, but differs substantially at large q2 where
that approximation fails and the diffraction structure of the
amplitudes is important. As seen in the lower half of the
figure, the corrections are a small fraction of a percent for
q2 < 0.2 GeV2, the range used in typical analyses, and less
that 0.1% near q2 ¼ 0. We will ignore these corrections,
and treat the ratio of amplitudes as a pure phase.
We show the difference ΔΦNðs; q2Þ ¼ ΦN;c −ΦN

between the phases of the corrected and pure nuclear
amplitudes,

ΔΦNðs; q2Þ ¼ arg fN;cðs; q2Þ − arg fNðs; q2Þ
¼ arg ðfN;cðs; q2Þ=fNðs; q2ÞÞ ð29Þ

in Fig. 2. The energy dependence of this difference is due
mostly to the factor ðpbÞ2iη in the Coulomb phase in
Eq. (27); the same dependence on p appears in the
Coulomb and form-factor term in Eq. (21), and will drop
out in the differential cross section.
The dependence of ΔΦNðs; q2Þ on s and q2 is described

very well by an expression quadratic in q2 and linear in the
momentum pðWÞ,

ΔΦNðs; q2Þ ≈ a1 þ a2q2 þ a3q4

þ ðb1 þ b2q2 þ b3q4Þ logp: ð30Þ

The parameters in the fit are given in Table I.
We compare these results with those obtained in the

Bethe approximation in Fig. 3. While differences do not
appear to be large, they are significant on the scale of
the final phase differences in Fig. 4. In that figure, we show
the total phase difference Φtotðs; q2Þ between the Coulomb
and nuclear parts of the scattering amplitude when it is
written so that the Coulomb term is real with the phase
ð4p2=q2Þiη absorbed,

fðs; q2Þ ¼ −
2η

q2
F2ðq2Þ þ eiΦtotðs;q2ÞfNðs; q2Þ; ð31Þ

Φtotðs;q2Þ¼ΦN;cðs;q2Þ−ΦNðs;q2Þ−Φc;FFðs;q2Þ: ð32Þ

The main energy dependence of ΦN;cðs; q2Þ through the
factor p2iη in the integrand for fN;cðs; q2Þ, Eq. (27), cancels
with the corresponding factor in Φc;FF; the residual energy
dependence arises from that in the nuclear part of the
integrands.

0.00 0.05 0.10 0.15 0.20
0.00

0.05

0.10

0.15

0.20

q2, GeV2

D
iff
er
en
ce

of
nu
cl
ea
r
ph
as
es

FIG. 2. The differences of nuclear phases ΔΦNðs; q2Þ ¼
arg ðfN;cðs; q2ÞÞ − arg ðfNðs; q2ÞÞ at (top to bottom) at 13000
(purple), 8000 (red), 1800 (blue), 546 (black), and
100 (brown) GeV.
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FIG. 1. The ratios of magnitudes jfNcðs; q2Þj=jfNðs; q2Þj at 100
(brown), 546 (black), 1800 (blue), 8000, (red) and 13000 (purple)
GeV, top to bottom on the right-hand side of the lower figure, top
to bottom on the left in the upper figure.

TABLE I. The parameters in the fit in Eq. (30) to the phase
difference.

Parameter Value, radians

a1 0.02346
a2 −0.08661
a3 0.34517
b1 0.01530
b2 0.00280
b3 −0.08678
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The form of the amplitude in Eq. (31) is particularly
convenient. The Coulomb amplitude is real, so the only
source of Coulomb-nuclear interference in the differential
cross section is through the real part of the nuclear
term. The phase Φtot is quite small as seen in Fig. 4,
so the main effect of the phase factor eiΦtotðs;q2Þ ¼ 1þ
iΦtotðs; q2Þ þ � � � is to mix a small component of
ℑfNðs; q2Þ into the real part ℜfNðs; q2Þ. While fraction-
ally small, it is still significant because ℑf ≫ ℜf in the
interference region. This structure is not immediately
evident when the Coulomb and nuclear phases are
included separately on those terms. The change in the
imaginary part of the amplitude is small, given by the
product of ℜfN and Φtot.
Separating out these correction terms, we can write the

complete amplitude as

fðs; q2Þ ¼ −
2η

q2
F2ðq2Þ −Φtotðs; q2ÞℑfNðs; q2Þ

þ iΦtotðs; q2ÞℜfNðs; q2Þ þ fNðs; q2Þ: ð33Þ

In this form, the pure nuclear amplitude is displayed
separately. However, it is important to recognize that the
corrections will affect any attempt to determine fN by
fitting data away from the main Coulomb-nuclear inter-
ference region, and must be taken into account, as must the
tail of the Coulomb term.
The effect of the correction is illustrated in Fig. 5, where

we compare the real parts of the nuclear amplitude with and
without the phase correction. The final correction is not
large. A reasonable first approximation is in fact to ignore
the correction and take the full amplitude simply as the sum
of the (real) leading-order Coulomb term with form factors
and the uncorrected nuclear amplitude. However, in the
present form, the corrections are very simple to include, and
should be used. The simplicity is striking relative to the
treatment of the corrections in [3,5].
We emphasize that the corrections shown in Fig. 4 are

very stable and do not change for reasonable changes in
the eikonal model. This is to be expected: in the Bethe
approximation, the corrections to the nuclear phase are
independent of the details of the model, and require only
that the eikonal amplitude be strongly peaked in impact
parameter space. This is a generic feature of realistic
scattering amplitudes at high energies. We note also that
the corrections depend mostly on the imaginary part of the
nuclear impact parameter distribution, which is dominant at
high energies and well determined by fits to the total cross
section and the slope parameter B. We give an example of
an alternative model in the next section; the changes in the
corrections are indiscernible in the equivalent of Fig. 4.
In Fig. 6 we show the effects of the Coulomb-nuclear

interference on the final cross section, plotting the ratio
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FIG. 4. Total phase differences Φtotðs; q2Þ, Eq. (32), between
the nuclear and Coulomb amplitudes at 100 (brown), 546 (black),
1800 (blue), 8000 (red), and 13000 (purple) GeV, top to bottom
on the right.
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FIG. 5. Comparison of the real part of the actual nuclear
amplitude at 13 TeV (solid blue curve) with the effective real
part including the Coulomb and electromagnetic form-factor
corrections, Eqs. (31) and (32) (dashed red curve).
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FIG. 3. Phases in the Bethe approximation of Eq. (28) (dashed
curves) compared to the exact phases (solid curves) at, top to
bottom, 13000 (purple), 1800 (blue), and 100 (brown) GeV.
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ðdσ=dq2 − dσN=dq2Þ=ðdσN=dq2Þ as a function of q2

at 13 TeV (lower red curve). We also show the ratio
of cross sections in the absence of interference, ðdσc=dq2þ
dσN=dq2Þ=ðdσN=dq2Þ−1¼ðdσc=dq2Þ=ðdσN=dq2Þ (upper
blue curve), where dσc=dq2 is the Coulomb cross section.
The interference effects are small, at most ∼2% at the dip at
q2 ¼ 0.0045 GeV2, that is, of order η ≈ α, and are signifi-
cant only at very small values of q2. This is the result of the
1=q2 falloff of the Coulomb amplitude further suppressed
by the effects of the proton charge form factors. For
comparison, the statistical uncertainties in the measured
cross sections in [13] vary from ∼0.5% at the dip to ∼1%
for q2 ≈ 0.2. The results are similar at lower energies, with
the only significant sensitivity in the region of the dip.

III. AN APPLICATION AND SIMPLE MODEL
FOR THE AMPLITUDES

As an application of these results, we consider a model
which has been used frequently in the analysis of exper-
imental data, e.g., the TOTEM data at 8 and 13 TeV; see
[13,15] and earlier references therein. In this model, the
phase of the nuclear amplitude is taken as a constant
independent of q2. It is determined simply by the ratio ρ of
the real to the imaginary parts of the nuclear amplitude in
the forward direction, corresponding to a phaseΦNðs;q2Þ≡
π
2
−arctanρðsÞ and fNðs; q2Þ ¼ eiΦN jfNðs; q2Þj. This is
clearly unrealistic in general, but may be adequate in a
small region near q2 ¼ 0.
We will consider two versions of this model. In the first,

we write the complex eikonal amplitude in Eq. (2) approxi-
mately in terms of its dominant imaginary part multiplied
by a constant phase and properly normalized,

ið1 − e2iðδtotc þδNÞÞ
→ ie−i arctan ρℑið1 − e2iðδtotc þδNÞÞ= cos ðarctan ρÞ: ð34Þ

This form allows us to calculate the Coulomb and form-
factor corrections to the nuclear phase. As discussed above,
the results are essentially identical to those obtained using
the full amplitude shown in Fig. 4 even though the real parts
of the amplitudes and the cross sections differ. This is as
expected given the Bethe argument.
Since the corrections are effectively model independent,

we can proceed to a simpler construction used in various
experimental analyses and write the constant-phase ampli-
tude approximately in terms of the standard small-q2

expansion of the nuclear scattering cross section,

dσ
dq2

ðs; q2Þ ≈ Ae−Bq
2þCq4−Dq6þ���; 0 ≤ q2 ≪ 1; ð35Þ

where B is the usual slope parameter andC;D;… introduce
curvature in dσ=dq2. Taking the square root and introduc-
ing a phase, we have

ffiffiffi
π

p
fNðs; q2Þ ≈

ffiffiffiffi
A

p
eiΦNe−

1
2
ðBq2−Cq4þDq6−���Þ: ð36Þ

We will initially take ΦN as constant, with ΦN ¼
π
2
− arctan ρ. This is the form assumed, for example, in

the TOTEM analyses of Coulomb-nuclear interference
[13,15], with ρ used as a parameter in fitting the data in
the interference region. Note that this form, with ΦN
constant, does not allow for zeros and the associated
changes in sign of the real and imaginary parts of the
amplitude as at the diffraction zeros in fN , so is restricted to
small q2.
The expansion in Eq. (35) and its range of validity were

investigated in detail in [23], where exact expressions were
given for the parameters B, C, and D in the eikonal
approach. As noted there, the predicted values of those
parameters were consistent with the results obtained by the
TOTEM collaboration in their fits to their TeV data [24].
The next term in the series becomes important near the
upper end of the range of q2 used in the TOTEM fits,
with errors in the fitted cross section comparable to, or
larger than, the uncertainties in the experimental results.
In general, fits based on Eq. (35) should use q2 ≲

0.1–0.15 GeV2 at the higher energies; TOTEM used values
of q2 up to 0.2 GeV2. This use of a too-wide range of q2 is
also common in analyses at lower energies; corrections to
the quoted results were considered in detail in [22].
It is straightforward to estimate the value of the next

coefficient in the series using the calculated value
of the local slope parameter Bðq2Þ [23] at a small
value of q2 such as q20 ¼ 0.01 GeV2. Since Bðq20Þ ¼
−d logðdσ=dq2Þ=dq2jq2

0
≈

B − 2Cq20 þ 3Dq40 − 4Eq60 þOðq80Þ, we can express E in
terms of Bðq20Þ and the known values of B, C, and D. We
will not use this refinement here, though it extends the
range of validity of the expansion to approximately that
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FIG. 6. Plots of the cross section ratio ðdσ=dq2 − dσN=dq2Þ=
ðdσN=dq2Þ (lower red curve) and the corresponding ratio with the
Coulomb-nuclear interference term dropped (upper blue curve) in
pp scattering in the eikonal model at 13 TeV.
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used in [13,15,24], but will follow the procedures used
there and simply fit the exact eikonal amplitudes at 8 and
13 TeVusing the expression in Eq. (36). The fitted values of
A and B do not differ significantly from the exact values.
C changes by a few percent, and D changes significantly.
The results are consistent with those found by the TOTEM
collaboration.
We compare the results for ℜfNðs; q2Þ obtained using

the fits and Eq. (36) with the exact eikonal results at 8 and
13 TeV in Fig. 7. The real parts in the constant phase
approximation (top blue curves) are systematically larger
than the exact results (bottom red curves), suggesting that
this approach will lead to reduced values of ρ when used to
fit data. A better approximation is needed.
As is evident from Fig. 5, the real part of the nuclear

amplitude drops rapidly with increasing q2, and
actually changes sign in the region used in the TOTEM
analyses. We therefore propose a simple approximation
for the phase which takes this behavior into account.
Since ΦNðs; q2Þ ¼ π

2
− arctan ρðs; q2Þ, we concentrate on

ρðs; q2Þ ¼ ℜfNðs; q2Þ=ℑfNðs; q2Þ. At high energies, ℜfN
has a zero at small q2, ℜfNðs; q2RÞ ¼ 0. Similarly,
ℑfNðs; q2I Þ ¼ 0 at the first diffraction dip in dσ=dq2 at

q2I > q2R [25]. Taking these zeros into account, we
write

ρðs; q2Þ ≈ ρðsÞ 1 − q2=q2R
1 − q2=q2I

: ð37Þ

This form reduces to ρ ¼ ρðsÞ at q2 ¼ 0 and has the proper
zeros built in, with ΦNðs; q2Þ ¼ π=2 at q2R and fNðs; q2RÞ
purely imaginary, and ΦN ¼ 0 at q2I and fN real. The value
of ρ can again be used as a fitting parameter.
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FIG. 7. Comparison of the real part of the nuclear amplitude
with Coulomb and form-factor corrections included (bottom red
curves) with the corresponding real part of the amplitude in the
constant phase approximation (top blue curves) at W ¼ 8 TeV
(top figure) and 13 TeV (bottom figure).
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We compare the actual and approximate values of
ρðs; q2Þ in the eikonal model [14] at 8000, 1800, and
546 GeV in Fig. 8. The approximate results—and the
corresponding results forℜfNðs; q2Þ—are quite accurate at
the higher energies, and still good in the 500 GeV region.
They are much better than the results obtained with the
so-called “standard phase” used in some analyses which
takes only the diffraction zero in the imaginary part of the
amplitude into account (Sec. 6.1.3 of [13]), and then only
approximately.
We note that the errors in Fig. 8 can be essentially

eliminated by multiplying the expression in Eq. (37) by
a factor ð1 − aq2Þ with an appropriate value of the
coefficient a. This is useful in obtaining accurate fits to
ρðs; q2Þ. However, the approximate expression in Eq. (37)
requires knowledge only of the location of the zeros inℜfN
and ℑfN . In particular, q2I can be estimated from the
diffraction structure of the cross section, while, roughly,
q2R ≈ q2I =3 at high energies in the eikonal model.
The actual location of the zeros in the real and

imaginary parts of fNðs; q2Þ in the eikonal model [14]
are plotted in Fig. 9. The curves in the figure correspond to
a fit with

q2RðWÞ ¼ aR þ bR logW þ cRlog2W;

q2I ðWÞ ¼ aI þ bI logW þ cIlog2W: ð38Þ

The parameters in the fit are given in Table II. We note that
the fit becomes inaccurate at energies below a few hundred
GeV, where the zeros are displaced by small contributions
from exchange terms dependent on inverse powers of W;
see e.g., [14].
These results can be used in conjunction with the

expansion in Eq. (36) to construct nuclear amplitudes with
a realistic q2 dependence and phase at small q2, again
retaining ρ ¼ ρðsÞ as a parameter to be used in fitting data.
With the phase ΦN ¼ π

2
− arctan ρðs; q2Þ calculated using

the expression for ρ in Eq. (37), the diffraction zeros in the
real and imaginary parts of the amplitude are built in, and
the magnitude of the amplitude is simply

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dσ=dq2

p
.

IV. CONCLUSIONS

We have presented a very simple way of calculating
Coulomb and form-factor corrections to the pp scattering
amplitude in the context of an eikonal model. As we have
emphasized, our approach is much simpler than that of
Cahn [3] and Kundrát and Lokajiček [5] which seem to
have become standard in the analysis of Coulomb-nuclear
interference effects at high energies. It is essentially model
independent, with the corrections holding for any reason-
able eikonal model which fits the total pp scattering cross
section and the forward slope parameter B and gives a
reasonable description of dσ=dq2.
We have given parametrizations of corrections that hold

at least from 100 GeV to 20 TeV, and illustrated the
magnitude of the effects in the effective real part of the
nuclear amplitude which interferes with the Coulomb
amplitude in an appropriate phase convention. We have
used the results to investigate the constant-phase approxi-
mation used in recent analyses of very-high-energy scatter-
ing, and introduced a very simple model for the correct q2

dependence of the phase based on the location of the zeros
in the real and imaginary parts of the nuclear component of
the amplitude.
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FIG. 9. Location in q2 of the zeros in the real and imaginary
parts of the nuclear amplitude in the eikonal model as functions of
W. The points give the actual values of q2 at the zeros in the
eikonal model; the lines correspond to the fits in the text.

TABLE II. The parameters in the fit to the locations in q2 of the
zeros in the real and imaginary parts of the eikonal scattering
amplitude in W given in Eq. (38).

Parameter Value, GeV2

aR 0.4514
bR −0.03484
cR 0.000386
aI 2.9464
bI −0.4481
cI 0.01916
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APPENDIX: THE EFFECTIVE SPIN-AVERAGED
EIKONAL AMPLITUDE

It is generally assumed that spin effects will be very
small at very high energies, with the scattering dominated
by absorptive effects that are insensitive to spin. However, a
complete description of the pp scattering matrix involves a
number of spin-dependent amplitudes. These are conven-
iently labeled by the helicities of the incident and final
protons following Jacob and Wick [26]. For a process
aþ b → cþ d where the initial and final particles have
helicities λa, λb, λc, λd, the scattering amplitude fλc;λd;λa;λb
assumes the form

fλc;λd;λa;λbðs; q2Þ ¼
i
2p

X
j

ð2jþ 1Þðδλaλcδλbλd − Sλc;λd;λa;λbÞ

× djλa−λb;λc−λdðcos θÞ; ðA1Þ

where j is the total angular momentum and the functions
djλa−λb;λc−λdðcos θÞ are the standard rotation coefficients in
the convention of Rose [27]. The differential cross sections
for specific helicity states are

dσλc;λd;λa;λb=dq
2 ¼ π

p2
jfλc;λd;λa;λbðs; q2Þj2; ðA2Þ

while the spin-averaged differential cross section is

dσ
dq2

¼ π

p2

1

ð2sa þ 1Þð2sb þ 1Þ
X

λc;λd;λa;λb

jfλc;λd;λa;λbðs; q2Þj2:

ðA3Þ

The number of independent S-matrix elements for
total angular momentum j is restricted by time reversal
ðSjλa;λb∶λc;λd ¼Sjλc;λd;λa;λbÞ, parity ðS

j
−λc;−λb;−λa;−λb¼Sjλc;λd;λa;λbÞ,

and, for pp scattering, the identity of the particles,
ðSjλa;λb;λc;λd ¼ Sjλc;λd;λa;λbÞ, leaving five independent ele-
ments. These are conventionally taken, following
Sec. IV of [28], as

Sj1
2
;1
2
;1
2
;1
2

; Sj1
2
;−1

2
;1
2
;−1

2

; Sj1
2
;1
2
;−1

2
;−1

2

; Sj1
2
;−1

2
;−1

2
;1
2

; and Sj1
2
;1
2
;1
2
−1
2

:

ðA4Þ

The first two, and the equal corresponding diagonal
amplitudes Sj−1

2
;−1

2
;−1

2
;−1

2

; Sj−1
2
;1
2
;−1

2
;1
2

, involve no helicity flips

and are expected to be dominated at high energies by
diffractive scattering, with no significant dependence on the
helicities involved. Under this condition, those S-matrix
elements and the corresponding scattering amplitudes are
all approximately equal.
The independent diagonal scattering amplitudes are

f1
2
;1
2
;1
2
;1
2
ðs; q2Þ ¼ i

2p

X
j

ð2jþ 1Þ
�
1 − Sj1

2
;1
2
;1
2
;1
2

�
dj0;0ðcos θÞ

ðA5Þ

≈ i
Z

∞

0

db b

�
1 − S1

2
;1
2
;1
2
;1
2
ðs; bÞ

�
J0ðqbÞ;

ðA6Þ

f1
2
;−1

2
;1
2
;−1

2
ðs; q2Þ ¼ i

2p

X
j

ð2jþ 1Þ
�
1 − Sj1

2
;−1

2
;1
2
;−1

2

�
dj1;1ðcos θÞ

ðA7Þ

≈ i
Z

∞

0

db b

�
1 − S1

2
;−1

2
;1
2
;−1

2
ðs; bÞ

�
J0ðqbÞ:

ðA8Þ

In these expressions, we have converted the sums over j
to integrals over the impact parameter b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðjþ 1Þp
=p,

and used asymptotic relations between the rotation coef-
ficients and Bessel functions derivable from known results
on the relation between Jacobi polynomials and Bessel
functions for j large (Sec. 8.1 of [29]). These relations are
discussed in detail in Secs. IIIA and IIID of [30], where the
rotation coefficients are expressed for large j in terms of
series of Bessel functions.
In the limit of no significant helicity dependence, the

S-matrix elements in Eqs. (A6) and (A8) have a common
limit Sðb; sÞ,

S1
2
;1
2
;1
2
;1
2
ðs; bÞ ≈ S1

2
;−1

2
;1
2
;−1

2
ðs; bÞ ≈ Sðs; bÞ: ðA9Þ

It follows that the diagonal scattering amplitudes can all be
expressed in terms of a single helicity-independent ampli-
tude fðs; q2Þ, with

f1
2
;1
2
;1
2
;1
2
ðs; q2Þ ¼ f−1

2
;−1

2
;−1

2
;−1

2
ðs; q2Þ ≈ f1

2
;−1

2
;1
2
;−1

2
ðs; q2Þ

¼ f−1
2
;1
2
;1
2
;−1

2
ðs; q2Þ ≈ fðs; q2Þ; ðA10Þ

where

fðs; q2Þ ¼ i
Z

∞

0

db bð1 − Sðs; bÞÞJ0ðqbÞ: ðA11Þ

Neglecting the presumably very small helicity-flip
amplitudes, the spin-averaged differential cross section
in Eq. (A3) becomes simply
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dσ
dq2

≈ πjfðs; q2Þj2: ðA12Þ

This was the form used in the text, and used without
discussion in most treatments of Coulomb-nuclear interfer-
ence at high energies. In the limit described, it is not necessary
to distinguish the two independent diagonal amplitudes, and
the off-diagonal elements of the scattering matrix become
relevant only when polarization and spin-correlation phe-
nomena, presumably small, are studied, as in [6].
In the absence of Coulomb effects, the total nuclear cross

sections for specific initial helicity states are related
through standard unitarity arguments and the optical
theorem to the imaginary parts of the corresponding
diagonal amplitudes fλa;λb;λa;λbðs; q2Þ at q2 ¼ 0,

σtot;λa;λbðsÞ ¼ 4πℑfλa;λb;λa;λbðs; 0Þ: ðA13Þ

Since, in the limit discussed above, these amplitudes have
the common value fðs; q2Þ, the total cross section for the
nuclear scattering averaged over the initial helicities is just

σtot ¼ 4πℑfNðs; 0Þ; ðA14Þ

where we have included the label N. This is usual
connection.
As emphasized by Buttimore, Gotsman, and Leader in [6],

double nuclear helicity-flip amplitudes can interfere with the
corresponding magnetic interactions between the protons,
and, if large enough, can potentially disrupt the extraction of
the ρ parameter from interference effects in the small-q2

scattering region when ρ is small. It is therefore useful to
estimate the size of these helicity-dependent amplitudes.
In the high-energy regime with which we are concerned,

the leading contributions to those amplitudes are expected
to arise mainly from the Regge exchange amplitudes
associated with the ρ and ω trajectories. The presence of

these exchanges in pp scattering is well established, and
the magnitude of the exchange amplitudes can be deter-
mined from the total cross sections. It is known, in
particular, that the amplitudes decrease in magnitude with
increasing energy as sαð0Þ−1 with αð0Þ ≈ 1=2 the Regge
intercept at q2 ¼ 0.
The complete helicity-dependent Regge amplitudes for

these exchanges can be constructed using the methods of
King, Durand, and Wali [31]. The helicity structure is
essentially determined by the leading physical resonance
associated with the trajectory, that is, the vector ρ and ω
mesons in the present case. These amplitudes therefore
have the same structure as the electromagnetic interactions
[18], and can interfere with them.
From the results on the exchange amplitudes in [14], we

find that the real parts of those amplitudes at q2 ¼ 0 are
about 70% of the real part of the spin-independent
amplitude at W ¼ 50 GeV; this ratio decreases to 8% at
100 GeV, and 0.3% at 1 TeV. We expect the magnetic parts
of the exchange amplitudes to have similar magnitudes.
The expected interference effects between the exchange
amplitudes and the electromagnetic magnetic-moment
amplitude should be reduced by similar factors relative
to the Coulomb-nuclear interference term in the charge
sector. The contributions to the cross sections are further
reduced at small q2 by the factor q2=4m2 familiar for pure
magnetic moment scattering. We conclude that these effects
are negligible at high energies and that the potential
problem noted in [6] does not actually exist at these
energies. The magnetic scattering can therefore be
neglected, as in the main text.
The estimated contribution of the helicity-dependent

exchange amplitudes themselves to the cross section
through either single- or double helicity-flip terms is also
small, on the order of 4% at 10 GeV, decreases rapidly with
increasing energy, and can also be neglected.
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