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We examined the effects of the weak magnetic field on the properties of heavy quarkonia immersed in a
thermal medium of quarks and gluons and studied how the magnetic field affects the quasifree dissociation
of quarkonia in the aforementioned medium. For that purpose, we have revisited the general structure of
gluon self-energy tensor in the presence of a weak magnetic field in thermal medium and obtained the
relevant structure functions using the imaginary-time formalism. The structure functions give rise to the real
and imaginary parts of the resummed gluon propagator, which further give the real and imaginary parts of
the dielectric permittivity. The real and imaginary parts of the dielectric permittivity will be used to evaluate
the real and imaginary parts of the complex heavy quark potential. We have observed that the real part
of the potential is found to be more screened, whereas the magnitude of the imaginary part of the potential
gets increased on increasing the value of both temperature and magnetic field. In addition to this, we have
observed that the real part gets slightly more screened while the imaginary part gets increased in the
presence of a weak magnetic field as compared to their counterparts in the absence of a magnetic field (pure
thermal). The increase in the screening of the real part of the potential leads to the decrease of binding
energies of J=Ψ andϒ, whereas the increase in the magnitude of the imaginary part leads to the increase of
thermal width with the temperature and magnetic field both. Also the binding energy and thermal width in
the presence of a weak magnetic field become smaller and larger, respectively, as compared to that in the
pure thermal case. With the observations of binding energy and thermal width in hand, we have finally
obtained the dissociation temperatures for J=Ψ and ϒ, which become slightly lower in the presence of a
weak magnetic field. For example, with eB ¼ 0m2

π the J=ψ and ϒ are dissociated at 1.80Tc and 3.50Tc,
respectively, whereas with eB ¼ 0.5m2

π they dissociated at slightly lower values 1.74Tc and 3.43Tc,
respectively. This observation leads to the slightly early dissociation of quarkonia because of the presence
of a weak magnetic field.

DOI: 10.1103/PhysRevD.102.036020

I. INTRODUCTION

Lattice QCD predicted that at sufficiently high temper-
atures and/or densities the quarks and gluons confined
inside hadrons get deconfined into a medium of quarks and
gluons coined as quark-gluon plasma. In the past few
decades a large number of experiments has been involved
in identifying this new state of matter in ultrarelativistic
heavy-ion collisions (URHICs) at RHIC and LHC.
However, for the noncentral events in URHICs, a strong
magnetic field is generated at the very early stages of the
collisions due to very high relative velocities of the
spectator quarks with respect to the fireball. Depending

on the centralities of the collisions, the strength of the
magnetic fields may vary from m2

π (∼1018 G) at RHIC to
10 m2

π at LHC [1,2]. Motivated by this, in the recent past
many theoretical works have started emerging to explore
the effects of this strong magnetic field on the various QCD
phenomena [3–6]. Earlier the nascent strong magnetic field
was thought to decay very fast with time, resulting in the
magnetic field of weaker strength. However, it was later
found that the realistic estimates of electrical conductivity
of the medium may elongate the lifetime of the magnetic
field [7–9]. It thus becomes imperative to investigate the
effects of both strong and weak magnetic fields on the
signature of the novel matter produced in URHICs.
The heavy quarkonium is one of the probes to study the

properties of nuclear matter under extreme conditions of
temperature and magnetic field, because the heavy quark
pairs are formed in URHICs on a very short timescale
∼1=2mQ (where mQ is the mass of the charm or bottom
quark), which is similar to the timescale at which the
magnetic field is generated. Therefore the study of the
effects of the magnetic field on the properties of heavy
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quarkonia is worthy of investigation. We have recently
studied the properties of quarkonia in a strong magnetic
field. However, as we know the quarkonia, the physical
resonances of QQ̄ states, are formed in the plasma frame at
a time, tF (=γτF), which is the order of 1 − 2fm depending
on the resonances and their momenta. By the time elapsed,
the magnetic field may become weak, so in our present
study, we aim to understand theoretically the properties
of heavy quarkonia and their dissociation in the presence
of a weak magnetic field [T2 > jqfBj, T2 > m2

f, where jqfj
(mf) is the absolute electric charge (mass) of the fth quark
flavor]. As we know that, in order to study the dissociation
of quarkonia, the perturbative computation of the heavy
quarkonium potential is needed.
Our understanding of heavy quarkonium has taken a

major step forward in computing effective field theories
(EFT) from the underlying theory—QCD, such as non-
relativistic QCD (NRQCD)[10] and potential NRQCD
[11], which are synthesized successively by separating
the intrinsic scales of heavy quark bound states (e.g., mass,
velocity, binding energy) as well as the thermal medium-
related scales (e.g., T, gT, g2T) in the weak-coupling
system, in overall comparison with ΛQCD. However, in
the relativistic collisions that are created at URHICs, the
separation of scales in an EFT is not always apparent,
meaning it is often difficult to construct a potential model.
An alternative approach is a first-principle lattice QCD
simulation in which one studies spectral functions derived
from Euclidean meson correlation [12]. The construction of
spectral functions, however, is problematic because the
temporal range at large temperatures decreases. For this
reason studies of quarkonia using finite temperature poten-
tial models are useful as a complement to lattice studies.
The perturbative computations of the potential at high
temperatures show that the potential of QQ̄ is complex
[13], where the real part is screened due to the existence of
deconfined color charges [14] and the imaginary part [15]
assigns the thermal width to the resonance. Therefore the
physics of quarkonium dissociation in a medium has been
refined in the last two decades, where the resonances were
initially thought to be dissociated when the screening is
strong enough, i.e., the real part of the potential is too weak
to keep theQQ̄ pair together. Nowadays, the dissociation is
thought to be primarily because of the widening of the
resonance width arising either from the inelastic parton
scattering mechanism mediated by the spacelike gluons,
known as Landau damping [13] or from the gluo-dissoci-
ation process during which the color singlet state undergoes
into a color octet state by a hard thermal gluon [16]. The
latter processes take precedence when the medium temper-
ature is lower than the binding energy of the particular
resonance. This dissociates the quarkonium even at lower
temperatures where the probability of color screening is
negligible. Recently one of us estimated the imaginary part
of the potential perturbatively, where the inclusion of a

confining string term makes the (magnitude) imaginary
component smaller [17,18], compared to the medium
modification of the perturbative term alone [19]. Gauge-
gravity duality also indicates that in a strong coupling
limit the potential also develops an imaginary component
beyond a critical separation of the QQ̄ pair [20,21].
Moreover, lattice studies have also shown that the potential
may have a sizable imaginary part [22]. There are, however,
other processes that may cause the depopulation of the
resonance states either through the transition from ground
state to the excited states during the nonadiabatic evolution
of quarkonia [23] or through the swelling or shrinking of
states due to the Brownian motion of QQ̄ states in the
parton plasma [24]. Very recently the change in the
properties of heavy quarkonia immersed in a weakly
coupled thermal QCD medium has been described by hard
thermal loop (HTL) permittivity [25]. They used the
generalized Gauss law in conjunction with linear response
theory to obtain the real and imaginary parts of the heavy
quark potential, where a logarithmic divergence in the
imaginary part is found due to string contribution at large r.
They have circumvented by regularizing the weak infrared
diverging (1=p) term in the resummed gluon propagator by
choosing the regulation scale in terms of Debye mass.
There is another recent work [26], where a nonperturbative
term induced by the dimension-two gluon condensate
besides the usual HTL resummed contribution is included
in the resummed gluon propagator to obtain the string
contribution in the potential, in addition to the Karsch-
Mehr-Satz potential [27].
The above-mentioned studies are attributed for a thermal

medium in the absence of a magnetic field. However, as
mentioned earlier that a magnetic field is also generated in
the heavy ion collisions, thus the influence of a homo-
geneous and constant external magnetic field on the heavy
meson spectroscopy has been investigated quantum
mechanically subjected to a three-dimensional harmonic
potential and Cornell potential plus spin-spin interaction
term [28,29]. Further, the effect of a constant uniform
magnetic field on the static quarkonium potential at zero
and finite temperature [30] and on the screening masses
[31] have been investigated. The momentum diffusion
coefficients of heavy quarks in a strong magnetic field
along the directions parallel and perpendicular to the
magnetic field at the leading order in QCD coupling
constant has been studied [32]. Recently we have explored
the effects of a strong magnetic field on the properties of the
heavy quarkonium in finite temperature by computing the
real part of the QQ̄ potential [33] in the framework of
perturbative thermal QCD and studied the dissociation of
heavy quarkonia due to the color screening. Successively,
we made an attempt to study the dissociation of heavy
quarkonia due to Landau damping in the presence of a
strong magnetic field by calculating the real and imaginary
parts of the heavy quark potential in the presence of a
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strong magnetic field [34]. The complex heavy quark
potential in the presence of a strong magnetic field has
also been obtained in [35]. Very recently we have also
investigated the strong magnetic field-induced anisotropic
interaction in heavy quark bound states [36]. The effects of
a strong magnetic field on the wakes in the induced charge
density and in the potential due to the passage of highly
energetic partons through a thermal QCD medium has also
been investigated [37]. Recently, the dispersion spectra of a
gluon in a hot QCD medium in the presence of a strong as
well as a weak magnetic field limit is studied [38]. The
effect of the strong magnetic field on the collisional energy
loss of heavy quark moving in a magnetized thermal
partonic medium has been studied [39]. Also the aniso-
tropic momentum diffusion and the drag coefficients of
heavy quarks have been computed in a strongly magnetized
quark-gluon plasma beyond the static limit within the
framework of Langevin dynamics [40].
In the present study, we aim to obtain the complex heavy

quark antiquark potential in an environment of temperature
and weak magnetic field. For that purpose, we first start
with the evaluation of gluon self-energy in the similar
environment using the imaginary-time formalism. As the
quark loop is only affected with the magnetic field, thus the
quark loop in the said environment is now dictated by both
the scales, namely the magnetic field as well as the
temperature, whereas for the gluon loop, the temperature
is the only available scale in the medium as the gluon loop
is not affected with the magnetic field. Furthermore, we
have revisited the general structure of the gluon self-energy
tensor in the presence of a weak magnetic field in the
thermal medium and obtained the relevant structure func-
tions. Hence the real and imaginary parts of the resummed
gluon propagator have been obtained, which give the real
and imaginary parts of the dielectric permittivity. The real
and imaginary parts of the dielectric permittivity will in
turn give the real and imaginary parts of the complex heavy
quark potential. The real part of the potential is used in the
Schrödinger equation to obtain the binding energy of heavy
quarkonia, whereas the imaginary part is used to calculate
the thermal width. Finally, we have obtained the dissoci-
ation temperatures of heavy quarkonia and studied how the
dissociation temperatures get affected in the presence of the
magnetic field.
Thus, our work proceeds as follows. In Sec. II, we will

calculate the gluon self-energy in a weak magnetic field
wherein we will discuss the general structure of gluon self-
energy and resummed gluon propagator at finite temper-
ature in the presence of a weak magnetic field and will
calculate the relevant form factors in Secs. II. A and II. B,
respectively. Thus, the real and imaginary parts of the
resummed gluon propagator will give the real and imagi-
nary parts of the dielectric permittivity in Sec. III. A, which
gives the real and imaginary parts of complex heavy quark
potential in Sec. III. B. We will use the real and imaginary

parts of the potential to obtain the binding energy and
thermal width in Secs. IV. A and IV. B, respectively, which
will then give the dissociation temperatures of heavy
quarkonia in Sec. IV C. Finally, we will conclude our
findings in Sec. V.

II. GLUON SELF-ENERGY IN A WEAK
MAGNETIC FIELD

In this section we will evaluate the gluon self-energy in a
weak magnetic field. As we know that for the evaluation of
gluon self-energy, we need to evaluate both the quark loop
and gluon loop contributions in the presence of a weak
magnetic field. Because of a weak magnetic field, only the
quark loop will be affected, whereas the gluon loop remains
as such. Now, we will first start with the quark-loop
contribution to gluon self-energy

iΠμν
abðQÞ ¼ −

Z
d4K
ð2πÞ4 Tr½igtbγ

νiSðKÞigtaγμiSðPÞ�

¼
X
f

g2δab
2

Z
d4K
ð2πÞ4 Tr½γ

νiSðKÞγμiSðPÞ�; ð1Þ

where P ¼ ðK −QÞ and TrðtatbÞ ¼ δab
2
. The SðkÞ is the

quark propagator in a weak magnetic field which can be
written up to the order of OðqfBÞ2 as [41]

iSðKÞ¼ i
ð=KþmfÞ
K2−m2

f

−qfB
γ1γ2ð=Kk þmfÞ
ðK2−m2

fÞ2

−2iðqfBÞ2
½K2⊥ð=Kk þmfÞþ=K⊥ðm2

f−K2
kÞ�

ðK2−m2
fÞ4

; ð2Þ

where mf and qf are the mass and charge of the fth flavor
quark. According to the following choice of metric tensors:

gμνk ¼ diagð1; 0; 0 − 1Þ;
gμν⊥ ¼ diagð0;−1;−1; 0Þ;

the four-momentum suitable in a magnetic field directed
along the z axis, nμ ¼ ð0; 0; 0;−1Þ, is given by

Kμ
k ¼ ðk0; 0; 0; kzÞ; ð3Þ

Kμ
⊥ ¼ ð0; kx; ky; 0Þ; ð4Þ

K2
k ¼ k20 − k2z ; ð5Þ

K2⊥ ¼ k2x þ k2y: ð6Þ

Equation (2) can be recast in the following form:

iSðKÞ ¼ S0ðKÞ þ S1ðKÞ þ S2ðKÞ; ð7Þ
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where S0ðKÞ is the contribution of the order O½ðqfBÞ0�,
S1ðKÞ is the contribution of the orderO½ðqfBÞ1�, and S2ðKÞ
is the contribution of the order O½ðqfBÞ2�. Using Eq. (7),
the Eq. (1) can be written as

ΠμνðQÞ¼−
X
f

ig2

2

Z
d4K
ð2πÞ4Tr½γ

νfS0ðKÞþS1ðKÞþS2ðKÞg

× γμfS0ðPÞþS1ðPÞþS2ðPÞg�: ð8Þ

After simplifying, the above gluon self-energy given by
Eq. (8) can be expressed as follows:

ΠμνðQÞ¼Πμν
ð0;0ÞðQÞþΠμν

ð1;1ÞðQÞþ2Πμν
ð2;0ÞðQÞþO½ðqfBÞ3�;

ð9Þ

where

Πμν
ð0;0ÞðQÞ ¼ −

X
f

ig2

2

Z
d4K
ð2πÞ4 Tr½γ

νS0ðKÞγμS0ðPÞ�; ð10Þ

Πμν
ð1;1ÞðQÞ¼−

X
f

ig2

2

Z
d4K
ð2πÞ4Trfγ

νS1ðKÞγμS1ðPÞg; ð11Þ

Πμν
ð2;0ÞðQÞ ¼ −

X
f

ig2

2

Z
d4K
ð2πÞ4 Tr½γ

νS2ðKÞγμS0ðPÞ�: ð12Þ

The term Πμν
ð0;0Þ is of the order O½ðqfBÞ0�, where Πμν

ð1;1Þ and
Πμν

ð2;0Þ both are of the order O½ðqfBÞ2�. The term that is of

the orderO½ðqfBÞ1� vanishes. Substituting the values of S0,
S1, and S2 in Eqs. (10)–(12) by comparing Eq. (2) with
Eq. (7), we get

Πμν
ð0;0ÞðQÞ ¼

X
f

ig2

2

Z
d4K
ð2πÞ4

Tr½γνð=K þmfÞγμðPþmfÞ�
ðK2 −m2

fÞðP2 −m2
fÞ

¼
X
f

i2g2
Z

d4K
ð2πÞ4

½PμKν þ KμPν − gμνðK · P −m2
fÞ�

ðK2 −m2
fÞðP2 −m2

fÞ
; ð13Þ

Πμν
ð1;1ÞðQÞ ¼ −

X
f

ig2ðqfBÞ2
2

Z
d4K
ð2πÞ4

Tr½γνγ1γ2ð=Kk þmfÞγμγ1γ2ðPk þmfÞ�
ðK2 −m2

fÞ2ðP2 −m2
fÞ2

¼
X
f

2ig2ðqfBÞ2
Z

d4K
ð2πÞ4

½Pμ
kK

ν
k þ Kμ

kP
ν
k þ ðgμνk − gμν⊥ Þðm2

f − Kk · PkÞ�
ðK2 −m2

fÞ2ðP2 −m2
fÞ2

; ð14Þ

Πμν
ð2;0ÞðQÞ ¼ −

X
f

2ig2ðqfBÞ2
2

Z
d4K
ð2πÞ4

Tr½γνfK2⊥ð=Kk þmfÞ þ =K⊥ðm2
f − K2

kÞgγμðPþmfÞ�
ðK2 −m2

fÞ4ðP2 −m2
fÞ

¼ −
X
f

4ig2ðqfBÞ2
Z

d4K
ð2πÞ4

�
Mμν

ðK2 −m2
fÞ4ðP2 −m2

fÞ
�
; ð15Þ

where

Mμν ¼ K2⊥½PμKν
k þ Kμ

kP
ν − gμνðKk · P −m2

fÞ�
þ ðm2

f − K2
kÞ½PμKν⊥ þ Kμ

⊥Pν − gμνðK⊥ · PÞ�: ð16Þ

Here the strong coupling g runs with the magnetic field and
temperature both, which is recently obtained in [42]

αsðΛ2; eBÞ ¼ g2

4π
¼ αsðΛ2Þ

1þ b1αsðΛ2Þ lnð Λ2

Λ2þeBÞ
; ð17Þ

with

αsðΛ2Þ ¼ 1

b1 ln
�

Λ2

Λ2

MS

� ; ð18Þ

whereΛ is set at 2πT, b1¼ 11Nc−2Nf

12π , andΛMS ¼ 0.176 GeV.
Before evaluating further,wewill first discuss the structure

of gluon self-energy in a thermalmedium in the presence of a
weak magnetic field in the next subsection.

A. Structure of gluon self-energy and resummed
gluon propagator for thermal medium in the

presence of a weak magnetic field

In this subsection, we will briefly discuss the general
structure of a gluon self-energy tensor and a resummed
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gluon propagator for a thermal medium in the presence of a
weak magnetic field. The general structure of gluon self-
energy in a thermal medium defined by the heat bath in a
local rest frame, uμ ¼ ð1; 0; 0; 0Þ, and in the presence
of a magnetic field directed along the z direction, nμ ¼
ð0; 0; 0;−1Þ is recently obtained as follows [38]:

ΠμνðQÞ ¼ bðQÞBμνðQÞ þ cðQÞRμνðQÞ þ dðQÞMμνðQÞ
þ aðQÞNμνðQÞ; ð19Þ

where

BμνðQÞ ¼ ūμūν

ū2
; ð20Þ

RμνðQÞ ¼ gμν⊥ −
Qμ

⊥Qν⊥
Q2⊥

; ð21Þ

MμνðQÞ ¼ n̄μn̄ν

n̄2
; ð22Þ

NμνðQÞ ¼ ūμn̄ν þ ūνn̄μffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ; ð23Þ

the four vectors ūμ and n̄μ used in the construction of the
above tensors are defined as follows:

ūμ ¼
�
gμν −

QμQν

Q2

�
uν; ð24Þ

n̄μ ¼
�
g̃μν −

Q̃μQ̃ν

Q̃2

�
nν; ð25Þ

where g̃μν ¼ gμν − uμuν and Q̃μ ¼ Qμ − ðQ:uÞuμ. Using
the properties of projection tensors, the form factors that
appear in (19) can be obtained as

bðQÞ ¼ BμνðQÞΠμνðQÞ; ð26Þ

cðQÞ ¼ RμνðQÞΠμνðQÞ; ð27Þ

dðQÞ ¼ MμνðQÞΠμνðQÞ; ð28Þ

aðQÞ ¼ 1

2
NμνðQÞΠμνðQÞ: ð29Þ

Now we can obtain the resummed gluon propagator in a
thermal medium in the presence of a weak magnetic field.
The general form of the resummed gluon propagator in
Landau gauge can be written as [38]

DμνðQÞ ¼ ðQ2 − dÞBμν

ðQ2 − bÞðQ2 − dÞ − a2
þ Rμν

Q2 − c

þ ðQ2 − bÞMμν

ðQ2 − bÞðQ2 − dÞ − a2

þ aNμν

ðQ2 − bÞðQ2 − dÞ − a2
: ð30Þ

The point to be noted here is that we required only the “00”
component of the resummed gluon propagator for deriving
the heavy quark potential. Hence the “00” component of
the propagator can be obtained as

D00ðQÞ ¼ ðQ2 − dÞū2
ðQ2 − bÞðQ2 − dÞ − a2

; ð31Þ

where R00 ¼ M00 ¼ N00 ¼ 0. Now wewill obtain the form
factors that appear in the above propagator (31). We will
first start with the form factor a, which can be obtained
using Eq. (29) with Eq. (9) as

aðQÞ ¼ a0ðQÞ þ a2ðQÞ; ð32Þ
where a0 is of the order ofOðqfBÞ0 and a2 is of the order of
OðqfBÞ2. An important point to be noted here is that the zero
magnetic field contribution of form factor a vanishes, that is
a0 ¼ 0, whereas a2 gives the contribution of orderOðqfBÞ2.
However, the contribution of form factor a in the denom-
inator of the propagator (31) appears as a2, which becomes
of the order of OðqfBÞ4. Since in the current theoretical
calculation we are considering contributions up toOðqfBÞ2,
sowe can neglect the contribution that appears from the form
factor a. Thus, the “00” component of the resummed gluon
propagator up to OðqfBÞ2 can be written as

D00ðQÞ ¼ ū2

ðQ2 − bÞ ; ð33Þ

so we end up with only one form factor b, which we will
evaluate in the next subsection.

B. Real and imaginary parts of the form factor bðQÞ
In this subsection, we will calculate the real and

imaginary parts of the form factor b. Using Eq. (26), the
form factor b can be evaluated as follows:

bðQÞ¼BμνðQÞΠμνðQÞ;

bðQÞ¼ ūμūν
ū2

ΠμνðQÞ;

¼
�
uμuν
ū2

−
ðQ ·uÞuνQμ

ū2Q2
−
ðQ ·uÞuμQν

ū2Q2
þðQ ·uÞ2QνQμ

ū2Q4

�

×ΠμνðQÞ;
¼uμuν

ū2
ΠμνðQÞ; ð34Þ
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where we have used transversality condition QμΠμνðQÞ ¼
QνΠμνðQÞ ¼ 0, to arrive at Eq. (34). Thus using Eq. (9), the
form factor b can be written up to O½ðqfBÞ2� as

bðQÞ ¼ b0ðQÞ þ b2ðQÞ; ð35Þ

where the form factors b0 and b2 are defined as follows:

b0ðQÞ ¼ uμuν
ū2

Πμν
ð0;0ÞðQÞ; ð36Þ

b2ðQÞ ¼ uμuν
ū2

½Πμν
ð1;1ÞðQÞ þ 2Πμν

ð2;0ÞðQÞ�: ð37Þ

1. Form factor b0ðQÞ (order of O½ðqfBÞ0�)
Here we will solve the form factor b0. Using Eq. (36), the

form factor can be written as

b0ðQÞ ¼ uμuν
ū2

Πμν
ð0;0ÞðQÞ

¼
X
f

i2g2

ū2

Z
d4K
ð2πÞ4

½2k20 − K2 þm2
f�

ðK2 −m2
fÞðP2 −m2

fÞ
: ð38Þ

Now we will solve the form factor b0 using the imaginary-
time formalism, the detailed calculation for which has been
shown in Appendix A. Thus, the real and imaginary parts of
the form factor b0 in the static limit are given as follows:

Re b0ðq0 ¼ 0Þ ¼ g2T2
Nf

6
; ð39Þ

�
Im b0ðq0; qÞ

q0

�
q0¼0

¼ g2T2Nf

6

π

2q
: ð40Þ

Now we will evaluate the gluonic contribution. The
temporal component of gluon self-energy due to the
gluon-loop contribution can be calculated as [43,44]

Π00ðq0; qÞ ¼ −g2T2
Nc

3

�
q0
2q

ln
q0 þ qþ iϵ
q0 − qþ iϵ

− 1

�
; ð41Þ

which gives the real and imaginary parts of form factor b0
due to the gluonic contribution in the static limit

Re b0ðq0 ¼ 0Þ ¼ g2T2

�
Nc

3

�
; ð42Þ

�
Im b0ðq0; qÞ

q0

�
q0¼0

¼ g2T2

�
Nc

3

�
π

2q
: ð43Þ

Now we add the quark and gluon-loop contributions
together to obtain the real and imaginary parts of form
factor b0 in the static limit as follows:

Re b0ðq0 ¼ 0Þ ¼ g2T2

�
Nc

3
þ Nf

6

�
; ð44Þ

�
Im b0ðq0; qÞ

q0

�
q0¼0

¼ g2T2

�
Nc

3
þ Nf

6

�
π

2q
: ð45Þ

Thus we can see that the form factor b0 is independent of
the magnetic field as it is O½ðqfBÞ0� and depends only on
the temperature of the medium. This form factor b0
coincides with the HTL form factor ΠL in the absence
of the magnetic field [43,44].

2. Form factor b2ðQÞ (order of O½ðqfBÞ2�)
Here we will discuss the form factor b2, which is of

the order of O½ðqfBÞ2�. Using Eq. (37), the form factor is
given by

b2ðQÞ¼ uμuν
ū2

½Πμν
ð1;1ÞðQÞþ2Πμν

ð2;0ÞðQÞ�

¼
X
f

i2g2ðqfBÞ2
ū2

�Z
d4K
ð2πÞ4

	 ð2k20−K2
k þm2

fÞ
ðK2−m2

fÞ2ðP2−m2
fÞ2

−
ð8k20K2⊥Þ

ðK2−m2
fÞ4ðP2−m2

fÞ

�

: ð46Þ

We have calculated the real and imaginary parts of the form
factor b2 in Appendix B, which gives the real and
imaginary parts of the form factor b2 in the static limit
as follows:

Reb2ðq0¼0Þ¼
X
f

g2

12π2T2
ðqfBÞ2

X∞
l¼1

ð−1Þlþ1l2K0

�
mfl

T

�
;

ð47Þ
�
Imb2ðq0; qÞ

q0

�
q0¼0

¼ 1

q

�X
f

g2ðqfBÞ2
16πT2

X∞
l¼1

ð−1Þlþ1l2K0

�
mfl

T

�

−
X
f

g2ðqfBÞ2
96πT2

X∞
l¼1

ð−1Þlþ1l2K2

�
mfl

T

�

þ
X
f

g2ðqfBÞ2
768π

ð8T − 7πmfÞ
m2

fT

�
; ð48Þ

where K0 and K2 are the modified Bessel functions of the
second kind.
After obtaining the real and imaginary parts of the form

factor b0 and b2, we can write the real and imaginary parts
of form factor b using Eq. (35) as follows:
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Re bðq0 ¼ 0Þ ¼ g2T2

�
Nc

3
þ Nf

6

�
þ
X
f

g2

12π2T2
ðqfBÞ2

X∞
l¼1

ð−1Þlþ1l2K0

�
mfl

T

�
; ð49Þ

�
Imbðq0; qÞ

q0

�
q0¼0

¼ g2T2

�
Nc

3
þ Nf

6

�
π

2q
þ 1

q

�X
f

g2ðqfBÞ2
16πT2

X∞
l¼1

ð−1Þlþ1l2K0

�
mfl

T

�

−
X
f

g2ðqfBÞ2
96πT2

X∞
l¼1

ð−1Þlþ1l2K2

�
mfl

T

�
þ
X
f

g2ðqfBÞ2
768π

ð8T − 7πmfÞ
m2

fT

�
; ð50Þ

where Eq. (49) is the real part of the form factor in the static
limit which gives the Debye screening mass in the presence
of a weak magnetic field as follows:

M2
D ¼ g2T2

�
Nc

3
þNf

6

�

þ
X
f

g2

12π2T2
ðqfBÞ2

X∞
l¼1

ð−1Þlþ1l2K0

�
mfl

T

�
: ð51Þ

Thus, it is observed that the Debye screening mass of the
thermal medium in the presence of a weak magnetic field is
affected by both the temperature and the magnetic field.
Now in order to see how the Debye mass is changed in the
presence of a weak magnetic field we have mentioned the
leading order result of the Debye mass for the thermal
medium in the absence of magnetic (termed as “Pure
Thermal”) [45]

M2
DðPure ThermalÞ ¼ g2T2

�
Nc

3
þ Nf

6

�
: ð52Þ

In the left panel of Fig. 1, we have quantitatively studied the
variation of the Debye mass with the varying strength of
a weak magnetic field for a fixed value of temperature.

We have observed that the debye mass is found to increase
with the varying strength of the magnetic field. On the other
hand, in the right panel of Fig. 1, we have studied the
variation with the temperature for a fixed value of the
magnetic field and observed that the Debye mass is also
found to increase with increasing temperature, but the
increase of the Debye mass with temperature is fast as
compared to the slow increase with a magnetic field. In
addition to this, we have also made a comparison of the
Debye mass in the presence of the magnetic field with the
one in the absence of the magnetic field and observed that
the Debye mass in the presence of a weak magnetic field is
found to be slightly higher as compared to the one in a pure
thermal case.

III. MEDIUM MODIFIED HEAVY
QUARK POTENTIAL

In this section we will discuss the medium modification
to the potential between a heavy quark Q and its antiquark
Q̄ in the presence of a weak magnetic field at finite
temperature. Since the mass of the heavy quark (mQ) is
very large, so the requirements mQ ≫ T ≫ ΛQCD and
mQ ≫

ffiffiffiffiffiffi
eB

p
are satisfied for the description of the inter-

actions between a pair of heavy quark and antiquark at
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FIG. 1. Variation of Debye mass with magnetic field (left panel) and with temperature (right panel).
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finite temperature in a weak magnetic field in terms of
quantum mechanical potential, which leads to the validity
of taking the static heavy quark potential. Thus we can
obtain the medium modification to the vacuum potential in
the presence of the magnetic field by correcting both
its short and long-distance parts with a dielectric function
ϵðqÞ as

Vðr;T; BÞ ¼
Z

d3q

ð2πÞ3=2 ðe
iq:r − 1ÞVðqÞ

ϵðqÞ ; ð53Þ

where the r-independent term has subtracted to renormalize
the heavy quark free energy, which is the perturbative free
energy of quarkonium at infinite separation. The Fourier
transform, VðqÞ of the perturbative part of the Cornell
potential [VðrÞ ¼ − 4αs

3r ] is given by

VðqÞ ¼ −
4

3

ffiffiffi
2

π

r
αs
q2

; ð54Þ

and the dielectric permittivity, ϵðqÞ, embodies the effects of
a confined medium in the presence of the magnetic field is
to be calculated next. The important point to be noted here
is that we have taken the Fourier transform of the
perturbative part of the vacuum potential only, the reason
for this is that we cannot use the same screening scale for
both Coulomb and string terms because of the nonpertur-
bative nature of the string term. To include the non-
perturbative part of the potential, we will use the method
of dimension-two gluon condensate.

A. The complex permittivity for a hot QCD medium
in a weak magnetic field

The complex dielectric permittivity, ϵðqÞ, is defined by
the static limit of the “00” component of the resummed
gluon propagator from the linear response theory

1

ϵðqÞ ¼ − lim
q0→0

q2D00ðq0; qÞ: ð55Þ

Now wewill evaluate the “00” component of the resummed
gluon propagator. The real-part of the resummed gluon
propagator in the static limit can be evaluated by using
Eqs. (33) and (49),

ReD00ðq0 ¼ 0Þ ¼ −1
q2 þM2

D
: ð56Þ

The imaginary part of resummed gluon propagator can be
written in terms of the real and imaginary parts of the form
factor by using the following formula [46]

ImD00ðq0; qÞ ¼
2T
q0

Im bðq0; qÞ
ðQ2 − Re bðq0; qÞÞ2 þ ðIm bðq0; qÞÞ2

;

ð57Þ

which can be recast into the following form:

ImD00ðq0; qÞ ¼ 2T
½Im bðq0;qÞ

q0
�

ðQ2 − Re bðq0; qÞÞ2 þ ðq0½Im bðq0;qÞ
q0

�Þ2
;

ð58Þ

and in the static limit the above equation reduces to the
simplified form

ImD00ðq0 ¼ 0Þ ¼ 2T
½Im bðq0;qÞ

q0
�
q0¼0

ðq2 þM2
DÞ2

; ð59Þ

where we have substituted Re bðq0 ¼ 0Þ ¼ M2
D. Using

Eq. (50) and the above Eq. (59), the imaginary part of
the “00” component of the resummed gluon propagator can
be written as follows:

ImD00ðq0 ¼ 0; qÞ ¼
πTM2

ðT;BÞ
qðq2 þM2

DÞ2
; ð60Þ

where we have defined the quantity M2
ðT;BÞ as follows

M2
ðT;BÞ ¼ g2T2

�
Nc

3
þ Nf

6

�

þ
�X

f

g2ðqfBÞ2
8π2T2

X∞
l¼1

ð−1Þlþ1l2K0

�
mfl

T

�

−
X
f

g2ðqfBÞ2
48π2T2

X∞
l¼1

ð−1Þlþ1l2K2

�
mfl

T

�

þ
X
f

g2ðqfBÞ2
384π2

ð8T − 7πmfÞ
m2

fT

�
: ð61Þ

Now we will obtain the real and imaginary parts of
dielectric permittivity, but before evaluating them we will
discuss the procedure to handle the nonperturbative part of
the heavy quark potential. The handling of the nonpertur-
bative part of the potential has recently been discussed in
[26]. The procedure is to include a nonperturbative term in
the real and imaginary parts of the “00” component of the
resummed gluon propagator along with the usual HTL
propagator that we have obtained earlier. The real and
imaginary parts of the nonperturbative (NP) term by using
the dimension-two gluon condensate are given as follows:

ReD00
NPðq0 ¼ 0; qÞ ¼ −

m2
G

ðq2 þM2
DÞ2

; ð62Þ
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ImD00
NPðq0 ¼ 0; qÞ ¼

2πTM2
ðT;BÞm

2
G

qðq2 þM2
DÞ3

; ð63Þ

where m2
G is a dimensional constant, which can be related

to the string tension through the relation σ ¼ αm2
G=2. Thus,

the real and imaginary parts of the “00” component of the
resummed gluon propagator that consists of both the HTL
and the NP contributions can be written as follows:

ReD00ðq0 ¼ 0; qÞ ¼ −
1

q2 þM2
D
−

m2
G

ðq2 þM2
DÞ2

; ð64Þ

ImD00ðq0 ¼ 0;qÞ¼
πTM2

ðT;BÞ
qðq2þM2

DÞ2
þ
2πTM2

ðT;BÞm
2
G

qðq2þM2
DÞ3

: ð65Þ

Now substituting Eqs. (64) and (65) in Eq. (55) gives the
real and imaginary parts of the dielectric permittivity,
respectively,

1

Re ϵðqÞ ¼
q2

q2 þM2
D
þ q2m2

G

ðq2 þM2
DÞ2

; ð66Þ

1

Im ϵðqÞ ¼ −
qπTM2

ðT;BÞ
ðq2 þM2

DÞ2
−
2qπTM2

ðT;BÞm
2
G

ðq2 þM2
DÞ3

: ð67Þ

We are now going to derive the real and imaginary parts of
the complex potential from the real and imaginary parts of
dielectric permittivities, respectively, in the next subsection.
The important point to be noted here is that the non-
perturbative terms in the real and imaginary parts of the
dielectric permittivity will lead to the string contribution in
the real and imaginary parts of the potential.

B. Real and imaginary parts of the potential

Here we will calculate the real and imaginary parts of the
heavy quark potential in the presence of a weak magnetic
field. The real part of the dielectric permittivity in Eq. (66)

is substituted into the definition of potential in Eq. (53) to
obtain the real part of QQ̄ potential in the presence of a
weak magnetic field (with r̂ ¼ rMD)

ReVðr;T;BÞ ¼ −
4

3
αs

�
e−r̂

r
þMD

�

þ 4

3

σ

MD
ð1 − e−r̂Þ; ð68Þ

where the temperature and magnetic field dependence in
the potential enters through the Debye mass. While plotting
the real part of the potential we have excluded the nonlocal
terms which are, however, required to reduce the potential
in the medium Vðr;T; BÞ to the vacuum potential in
ðT; BÞ → 0 limit. In Fig. 2, we have plotted the real part
of the potential as a function of interquark distance (r). In
the left panel of Fig. 2, we have plotted the real part of the
potential for different strengths of a weak magnetic field
such as eB ¼ 0.5m2

π and 2m2
π for a fixed value of temper-

ature T ¼ 2Tc. We observed that on increasing the value of
the magnetic field the real part becomes more screened.
Whereas in the right panel of Fig. 2, the real part is plotted
for different strengths of temperature such as T ¼ 1.5Tc
and T ¼ 2Tc and found to be more screened on increasing
the value of temperature. Thus, the real part of the potential
is found to be more screened on increasing the value of both
temperature and magnetic field. This observation of the real
part of the potential can be understood in terms of the
observation of the Debye mass that is found to be increased
both with temperature and with magnetic field as shown
earlier in Fig. 1.
We have made a comparison in Fig. 3 to see how the

magnetic field will affect the real part of the potential, for
that we have plotted the real part of the potential in the
presence of the magnetic field with the one for a pure
thermal case. As we have seen in the right panel of Fig. 1
that the Debye mass in the presence of the magnetic field is
slightly higher as compared to the Debye mass in a pure
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FIG. 2. Real part of the potential for different strengths of a magnetic field (left panel) and for different strengths of temperature (right
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thermal medium, that leads to the slightly more screening
of the real part of the potential in the presence of a weak
magnetic field as compared to the same in the pure
thermal case.
We will now evaluate the imaginary part of the potential

in the presence of a weak magnetic field. The imaginary
part of the potential is obtained by substituting the
imaginary part of dielectric permittivity from Eq. (67) into
the definition of the potential Eq. (53),

ImVCðr;T; BÞ ¼ −
4

3

αsTM2
ðT;BÞ

M2
D

ϕ2ðr̂Þ; ð69Þ

ImVSðr;T; BÞ ¼ −
4σTM2

ðT;BÞ
M4

D
ϕ3ðr̂Þ; ð70Þ

where the functions ϕ2ðr̂Þ and ϕ3ðr̂Þ are given in [26]

ϕ2ðr̂Þ ¼ 2

Z
∞

0

zdz
ðz2 þ 1Þ2

�
1 −

sin zr̂
zr̂

�
; ð71Þ

ϕ3ðr̂Þ ¼ 2

Z
∞

0

zdz
ðz2 þ 1Þ3

�
1 −

sin zr̂
zr̂

�
; ð72Þ

and in the small r̂ limit ðr̂ ≪ 1Þ, the above functions
become

ϕ2ðr̂Þ ≈ −
1

9
r̂2ð3 ln r̂ − 4þ 3γEÞ; ð73Þ

ϕ3ðr̂Þ ≈
r̂2

12
þ r̂4

900
ð15 ln r̂ − 23þ 15γEÞ: ð74Þ

It is worth mentioning that we considered the imaginary
part of the potential within the small distance limit
(r̂ ¼ rMD ≪ 1), so that it can be viewed as a perturbation.
This could be relevant for the bound states of very heavy
quarks, where Bohr radii, rB (= n2

g2mQ
) of quarkonia, are

smaller than the Debye length, 1
MD

. As we know, the former
(rB) is related to the scales of nonrelativistic heavy quark
bound states in vacuum (T ¼ 0) and the scales associated
with the thermal medium. In fact, the above condition
(rB < 1

MD
) is translated to the hierarchy for the validity of

potential approach (mQ > T or gT).
Similar to the real part of the potential we have plotted

the imaginary part of the potential as a function of
interquark distance (r) in Fig. 4. We have calculated the
imaginary part of the potential for different strengths of a
weak magnetic field such as eB ¼ 0.5m2

π and 2m2
π in the

left panel of Fig. 4. We found that on increasing the value of
magnetic field the magnitude of the imaginary part gets
increased. On the other hand, in the right panel of Fig. 4,
the imaginary part is calculated for different strengths of
temperature such as T ¼ 1.5Tc and T ¼ 2Tc; here also the
imaginary part is found to increase with the temperature.
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FIG. 4. Imaginary part of the potential for different strengths of magnetic field (left panel) and for different strengths of temperature
(right panel).
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Hence the magnitude of the imaginary part of the
potential gets increased with the value of temperature
and magnetic field both. This observation also attributed
to the fact that the Debye mass is found to be increased
with temperature and magnetic field both. Here also we
have calculated the imaginary part of the potential in the
presence of the magnetic field with the one for a pure
thermal case in Fig. 5, where we observed that the
imaginary part of the potential in the presence of a
magnetic field is increased slightly as compared to the
one in a pure thermal case.

IV. PROPERTIES OF QUARKONIA

In this section we first explore the effects of a weak
magnetic field on the properties of heavy quarkonia. The
obtained real and imaginary parts of the heavy quark
potential will be used to evaluate the binding energy and
thermal width of the heavy quarkonia, respectively.

A. Binding energy

In this subsection, we have obtained the binding energy
of J=ψ and ϒ. In order to calculate the binding energy, the
real part of the potential Eq. (68) is put into the radial part of
the Schrödinger equation, which is then solved numerically
to obtain the energy eigenvalues that in turn gives the
binding energies of quarkonia. To see how the presence of a
weak magnetic field affects the binding of quarkonia, we
have plotted the binding energies of J=ψ as a function of
T=Tc for different strengths of the magnetic field in the left
panel of Fig. 6. We observed that the binding energy is
found to decrease with the temperature and magnetic field
both, we can attribute this finding in terms of the increasing
of screening with the temperature and magnetic field that
we have observed in the real part of the potential. The point
to be noted here is that the difference between the values of
binding energies plotted for the magnetic field eB ¼ 0.5m2

π

and eB ¼ 2m2
π is pronounced at a higher temperature, this

is in accordance with the validity of our work in the weak
field limit ðT2 ≫ jqfBjÞ.
In the right panel of Fig. 6, we have also compared the

binding energy of J=ψ in the presence of a weak magnetic
field with the pure thermal case. We found that the binding
energy in the presence of the magnetic field is smaller as
compared to the one in a pure thermal case, this is because
the real part of the potential in the presence of the magnetic
field becomes more screened as compared to the pure
thermal case. The similar observation has also been
observed for ϒ, except that the value of binding energy
for ϒ is higher as compared to the value for J=Ψ. The
variation of binding energy for ϒ is studied in the left and
right panels of Fig. 7.

B. Thermal width

We will now use the imaginary part of the potential
obtained in the presence of a weak magnetic field to
estimate the broadening of the resonance states in a
thermal medium. So using the first-order time-independent
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perturbation theory, the width (Γ) has been evaluated by
folding with [ΦðrÞ],

ΓðT;BÞ ¼ −2
Z

∞

0

ImVðr;T;BÞjΦðrÞj2dτ; ð75Þ

and the wave function ΦðrÞ is taken to be the Coloumbic
wave function for the ground state

ΦðrÞ ¼ 1ffiffiffiffiffiffiffiffi
πa30

q e−r=a0 ; ð76Þ

where a0 is the Bohr radius of the heavy quarkonium
system. Here we have used the imaginary part of the
potential as a perturbation to obtain the thermal width, and
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for that purpose we have obtained the imaginary part of the
potential in the small distance limit.
We have obtained the thermal width numerically and

observed that it depends on the temperature as well as the
weak magnetic field. To explore the effects of the weak
magnetic field on the thermal width of heavy quarkonia, we
have plotted the thermal width of J=ψ and ϒ as a function
of T=Tc for different strengths of the magnetic field in
Figs. 8 and 9, respectively. We observed that the thermal
widths for J=ψ and ϒ get increased with both the temper-
ature and the magnetic field as depicted in the left panels of
Figs. 8 and 9. We can understand this finding in terms of the
increase of the imaginary part of the potential, the magni-
tude of which gets enhanced both with temperature and
magnetic field. We also made a comparison of thermal
width in the presence of a weak magnetic field with its
counterpart in the absence of a magnetic field in the right
panels of Figs. 8 and 9, where we found that the decay
widths for J=Ψ and ϒ get increased in the presence of the
magnetic field as compared to the pure thermal case.

C. Dissociation of quarkonia

In the previous subsections, we have obtained the binding
energies and thermal widths of heavy quarkonia, J=ψ andϒ.
Now we will study the quasifree dissociation of heavy
quarkonia in a thermal QCD medium and see how the
dissociation temperatures of quarkonia are affected in the
presence of a weak magnetic field. For that purpose we use
the criterion on thewidthof the resonance (Γ):Γ ≥ 2 BE [47]
(where BE is the binding energy of the heavy quarkonia) to
estimate the dissociation temperature for J=ψ and ϒ.
We have obtained the dissociation temperatures of J=Ψ

and ϒ in the absence and the presence of a weak magnetic
field in Table I, and observed that the dissociation temper-
atures become slightly lower in the presence of a weak
magnetic field. For example, with eB ¼ 0m2

π the J=ψ and
ϒ are dissociated at 1.80Tc and 3.50Tc, respectively,
whereas with eB ¼ 0.5m2

π the J=ψ and ϒ are dissociated
at 1.74Tc and 3.43Tc. This observation leads to the slightly
early dissociation of heavy quarkonia in the presence of the
weak magnetic field.

V. CONCLUSIONS

In the present theoretical study, we have explored the
effects of a weak magnetic field on the dissociation of

quarkonia in a thermal QCD by calculating the complex
heavy quark potential perturbatively in the aforesaid
medium. For that purpose, we first evaluate the gluon
self-energy in a similar environment using the imaginary-
time formalism. Furthermore, we have revisited the general
structure of the gluon self-energy tensor in the presence of a
weak magnetic field in a thermal medium and obtained the
relevant structure functions that in turn gives rise to the real
and imaginary parts of the resummed gluon propagator,
which give the real and imaginary parts of the dielectric
permittivity. To include the medium modification to the
nonperturbative part of the vacuum heavy quark potential,
we have included a nonperturbative term in the resummed
gluon propagator induced by the dimension-two gluon
condensate besides the usual hard thermal loop resummed
contribution. Thus, the real and imaginary parts of the
dielectric permittivity will be used to evaluate the real and
imaginary parts of the complex heavy quark potential. We
have studied the effects of a weak magnetic field on the real
and imaginary parts of the potential. We have found that the
real part of the potential is found to be more screened on
increasing the values of temperature and magnetic field
both. In addition to this, we have observed that the real part
gets slightly more screened in the presence of a weak
magnetic field as compared to its counterpart in the absence
of the magnetic field. On the other hand, the magnitude of
the imaginary part of the potential gets increased with the
value of both temperature and magnetic field, and its
magnitude also gets increased in the presence of a weak
magnetic field as compared to a pure thermal case. The real
part of the potential is used in the Schrödinger equation to
obtain the binding energy of heavy quarkonia, whereas the
imaginary part is used to calculate the thermal width. We
observed that the binding energies of J=Ψ and ϒ are found
to decrease with the temperature and magnetic field both,
and we can attribute these findings in terms of the
increasing of screening of the real part of the potential.
We also observed that the binding energy of J=Ψ and ϒ in
the presence of the magnetic field are smaller as compared
to the one in the pure thermal case. The increase in the
magnitude of the imaginary part of the potential will lead to
the increase of decay width with temperature and magnetic
field both. The thermal widths for J=Ψ and ϒ get increased
in the presence of the magnetic field as compared to a pure
thermal case. With the observations of binding energy and
decay width in hand, we have finally studied the dissoci-
ation of quarkonia in the presence of a weak magnetic field.
The dissociation temperatures for J=Ψ and ϒ become
slightly lower in the presence of a weak magnetic field. For
example, with eB ¼ 0m2

π the J=ψ and ϒ are dissociated at
1.80Tc and 3.50Tc, respectively, whereas with eB ¼ 0.5m2

π

the J=ψ and ϒ are dissociated at 1.74Tc and 3.43Tc. This
observation leads to the slightly early dissociation of
quarkonia because of the presence of a weak mag-
netic field.

TABLE I. Dissociation temperatures in the absence and the
presence of a weak magnetic field.

Dissociation temperatures Td in Tc

State J=ψ ϒ

Pure thermal (eB ¼ 0Þ 1.80 3.50
eB ¼ 0.5m2

π 1.74 3.43
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In the following appendixes we have shown the explicit
calculations of form factors b0ðQÞ and b2ðQÞ.

APPENDIX A: CALCULATION OF THE FORM
FACTOR b0ðQÞ

In this Appendix, we will use the imaginary-time
formalism to calculate the form factor b0, which is given by

b0ðQÞ ¼
X
f

i2g2

ū2

Z
d4K
ð2πÞ4

½2k20 − K2 þm2
f�

ðK2 −m2
fÞðP2 −m2

fÞ

¼ −Nf
2g2

ū2

Z
d3k
ð2πÞ3 T

X
n

½K2 þ 2k2�
ðK2 −m2

fÞðP2 −m2
fÞ

¼ −Nf
2g2

ū2
½I1ðQÞ þ I2ðQÞ�; ðA1Þ

where we have neglected mf in the numerator in the HTL

approximation and
R

d4K
ð2πÞ4 → iT

R
d3k
ð2πÞ3

P
n, and the I1 and

I2 are given as

I1ðQÞ ¼
Z

d3k
ð2πÞ3 T

X
n

K2

ðK2 −m2
fÞðP2 −m2

fÞ
; ðA2Þ

I2ðQÞ ¼
Z

d3k
ð2πÞ3 T

X
n

2k2

ðK2 −m2
fÞðP2 −m2

fÞ
: ðA3Þ

Now we substitute k0 ¼ iωn, q0 ¼ iω, E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q
,

and E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − qÞ2 þm2

f

q
, and then perform the fre-

quency sum, which gives I1 as

I1ðQÞ ¼ −
Z

d3k
ð2πÞ3 T

X
n

1

ðω2
n þ E2

1Þ

¼ −
Z

d3k
ð2πÞ3

1

2E1

½1 − 2nFðE1Þ�; ðA4Þ

where the first term is the nonleading term in T; thus
retaining only the leading term in T, the I1 becomes

I1ðQÞ ¼
Z

d3k
ð2πÞ3

nFðE1Þ
E1

; ðA5Þ

now taking I2, which becomes

I2ðQÞ¼2

Z
d3k
ð2πÞ3k

2T
X
n

1

ðω2
nþE2

1Þ½ðωn−ωÞ2þE2
2�

¼−
Z

d3k
ð2πÞ3

�
nFðE1Þ
E1

þqcosθ
dnFðE1Þ

dk
1

iω−qcosθ

�
:

ðA6Þ

Substituting I1 and I2 in Eq. (A1), the form factor b0
becomes

b0ðq0;qÞ¼−Nf
2g2

ū2

Z
d3k
ð2πÞ3

dnFðE1Þ
dk

�
1−

q0
q0−qcosθ

�
;

ðA7Þ

where we have again resubstituted q0 ¼ iω. Now we will
evaluate the real and imaginary parts of the form factor b0.
The real part of b0 in the static limit is given by

Re b0ðq0 ¼ 0Þ ¼ −Nf
g2

π2

Z
k2dk

dnFðE1Þ
dk

¼ Nf
g2T2

6
: ðA8Þ

On the other hand, for the evaluation of the imaginary part
of b0 we will use the following identity:

Imb0ðq0; qÞ ¼
1

2i
lim
η→0

½bðq0 þ iη; qÞ − bðq0 − iη; qÞ�; ðA9Þ

along with the following expression:

1

2i

�
1

q0 þ
P

jEj þ iη
−

1

q0 þ
P

jEj − iη

�

¼ −πδ
�
q0 þ

X
j

Ej

�
: ðA10Þ

Thus using the above identities Eqs. (A9) and (A10), the
imaginary part of b0 becomes

Im b0ðq0; qÞ ¼ Nf
2g2

ū2
1

2i
lim
η→0

Z
d3k
ð2πÞ3

dnFðkÞ
dk

×

�
q cos θ

q0 − q cos θ þ iη
−

q cos θ
q0 − q cos θ − iη

�

¼ −Nf
πg2

2π2ū2
q0
q

Z
k2dk

dnFðkÞ
dk

; ðA11Þ

which in the static limit takes the simplified form

�
Im b0ðq0; qÞ

q0

�
q0¼0

¼ g2T2Nf

6

π

2q
: ðA12Þ
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APPENDIX B: CALCULATION OF THE FORM FACTOR b2ðQÞ
Similar to the form factor b0, here we will solve the form factor b2, which is given by

b2ðQÞ ¼
X
f

i2g2ðqfBÞ2
ū2

�Z
d4K
ð2πÞ4

	 ð2k20 − K2
k þm2

fÞ
ðK2 −m2

fÞ2ðP2 −m2
fÞ2

−
ð8k20K2⊥Þ

ðK2 −m2
fÞ4ðP2 −m2

fÞ

�

¼ −
X
f

2g2ðqfBÞ2
ū2

Z
d3k
ð2πÞ3 T

X
n

	
K2 þ k2ð1þ cos2θÞ þm2

fÞ
ðK2 −m2

fÞ2ðP2 −m2
fÞ2

−
8ðk4 þ k2K2Þð1 − cos2θÞ
ðK2 −m2

fÞ4ðP2 −m2
fÞ



; ðB1Þ

where we have used the spherical polar coordinate system for k ¼ ðk sin θ sinϕ; k sin θ cosϕ; k cos θÞ. In order to solve the
form factor b2, we will use the method as shown in [38], which gives

b2ðQÞ ¼ −
X
f

2g2q2fB
2

ū2

�	 ∂
∂ðm2

fÞ
þ 5

6
m2

f
∂2

∂2ðm2
fÞ

Z

d3k
ð2πÞ3 T

X
n

1

ðK2 −m2
fÞðP2 −m2

fÞ

−
	 ∂
∂ðm2

fÞ
þm2

f

2

∂2

∂2ðm2
fÞ

Z

d3k
ð2πÞ3 T

X
n

cos2θ
ðK2 −m2

fÞðP2 −m2
fÞ
�
; ðB2Þ

and now we will perform the following frequency sum:

T
X
n

1

ðω2
n þ E2

1Þ½ðωn − ωÞ2 þ E2
2�
¼ ½1 − nFðE1Þ − nFðE2Þ�

4E1E2

	
1

iωþ E1 þ E2

−
1

iω − E1 − E2




þ ½nFðE1Þ − nFðE2Þ�
4E1E2

	
1

iωþ E1 − E2

−
1

iω − E1 þ E2



: ðB3Þ

Thus, after simplification the form factor b2 becomes

b2ðq0; qÞ ¼
X
f

2g2q2fB
2

ū2

	� ∂2

∂2ðm2
fÞ

þ 5

6
m2

f
∂3

∂3ðm2
fÞ
�Z

d3k
ð2πÞ3

nFðE1Þ
E1

�
q0

q0 − q cos θ
− 1

�

þ
� ∂
∂ðm2

fÞ
þ 5

6
m2

f
∂2

∂2ðm2
fÞ
�Z

d3k
ð2πÞ3

nFðE1Þ
2E3

1

�
q0

q0 − q cos θ

�

−
� ∂2

∂2ðm2
fÞ

þm2
f

2

∂3

∂3ðm2
fÞ
�Z

d3k
ð2πÞ3

nFðE1Þ
E1

cos2θ

�
q0

q0 − q cos θ
− 1

�

−
� ∂
∂ðm2

fÞ
þm2

f

2

∂2

∂2ðm2
fÞ
�Z

d3k
ð2πÞ3

nFðE1Þ
2E3

1

cos2θ

�
q0

q0 − q cos θ

�

: ðB4Þ

Thus, the real part of b2 in the static limit is obtained as [38]

Re b2ðq0 ¼ 0Þ ¼
X
f

g2

12π2T2
ðqfBÞ2

X∞
l¼1

ð−1Þlþ1l2K0

�
mfl

T

�
: ðB5Þ

Now we will evaluate the imaginary part of form factor b2, and for that we write b2 as

b2ðq0; qÞ ¼
X
f

2g2q2fB
2

ū2
½I3ðq0; qÞ þ I4ðq0; qÞ þ I5ðq0; qÞ þ I6ðq0; qÞ�; ðB6Þ

where we have defined the following functions:
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I3ðq0; qÞ ¼
� ∂2

∂2ðm2
fÞ

þ 5

6
m2

f
∂3

∂3ðm2
fÞ
�Z

d3k
ð2πÞ3

nFðE1Þ
E1

�
q cos θ

q0 − q cos θ

�
; ðB7Þ

I4ðq0; qÞ ¼
� ∂
∂ðm2

fÞ
þ 5

6
m2

f
∂2

∂2ðm2
fÞ
�Z

d3k
ð2πÞ3

nFðE1Þ
2E3

1

�
q0

q0 − q cos θ

�
; ðB8Þ

I5ðq0; qÞ ¼ −
� ∂2

∂2ðm2
fÞ

þm2
f

2

∂3

∂3ðm2
fÞ
�Z

d3k
ð2πÞ3

nFðE1Þ
E1

cos2θ

�
q cos θ

q0 − q cos θ

�
; ðB9Þ

I6ðq0; qÞ ¼ −
� ∂
∂ðm2

fÞ
þm2

f

2

∂2

∂2ðm2
fÞ
�Z

d3k
ð2πÞ3

nFðE1Þ
2E3

1

cos2θ

�
q0

q0 − q cos θ

�
: ðB10Þ

Now we will evaluate the imaginary parts of all the above four terms one by one using the identities Eqs. (A9) and (A10).
First we start with I3ðq0; qÞ,

Im I3ðq0; qÞ ¼ X3ðmfÞ
1

2i
lim
η→0

�Z
d3k
ð2πÞ3

nFðE1Þ
E1

�
q cos θ

q0 − q cos θ þ iη
−

q cos θ
q0 − q cos θ − iη

��
; ðB11Þ

where X3ðmfÞ ¼ ð ∂2
∂2ðm2

fÞ
þ 5

6
m2

f
∂3

∂3ðm2
fÞ
Þ. Now Eq. (B11) in the static limit becomes

�
ImI3ðq0; qÞ

q0

�
q0¼0

¼ −
1

4πq
X3ðmfÞ

Z
k2dk

nFðE1Þ
E1

¼ −
1

4πq
X3ðmfÞ

X∞
l¼1

m2
f

2

�
K2

�
mfl

T

�
− K0

�
mfl

T

��

¼ 1

32πqT2

X∞
l¼1

ð−1Þlþ1l2K0

�
mfl

T

�
−

1

192πqT2

X∞
l¼1

ð−1Þlþ1l2K2

�
mfl

T

�
; ðB12Þ

where K0 and K2 are the modified Bessel functions of the second kind. Now we take I4ðq0; qÞ,

Im I4ðq0; qÞ ¼ X4ðmfÞ
1

2i
lim
η→0

�Z
d3k
ð2πÞ3

nFðE1Þ
2E3

1

�
q0

q0 − q cos θ þ iη
−

q0
q0 − q cos θ − iη

��
; ðB13Þ

where X4ðmfÞ ¼ ð ∂
∂ðm2

fÞ
þ 5

6
m2

f
∂2

∂2ðm2
fÞ
Þ and Eq. (B13) takes the following form in the static limit:

�
Im I4ðq0; qÞ

q0

�
q0¼0

¼ −
1

8πq
X4ðmfÞ

Z
k2dk

nFðE1Þ
E3
1

¼ 1

16πq
X4ðmfÞ

�
1þ γE −

πmf

4T
þ log

mf

πT

�

¼ 1

1536πq

ð8T − 7πmfÞ
m2

fT
: ðB14Þ

Similarly the imaginary part of I5ðq0; qÞ and I6ðq0; qÞ,

ImI5ðq0; qÞ ¼ −X5ðmfÞ
1

2i
lim
η→0

�Z
d3k
ð2πÞ3

nFðE1Þ
E1

�
q cos3 θ

q0 − q cos θ þ iη
−

q cos3 θ
q0 − q cos θ − iη

��
; ðB15Þ

where X5ðmfÞ ¼ ð ∂2
∂2ðm2

fÞ
þ m2

f

2
∂3

∂3ðm2
fÞ
Þ, and Eq. (B16) vanishes in the static limit
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�
Im I5ðq0; qÞ

q0

�
q0¼0

¼ 0; ðB16Þ

Im I6ðq0; qÞ ¼ −X6ðmfÞ
1

2i
lim
η→0

�Z
d3k
ð2πÞ3

nFðE1Þ
2E3

1

�
q0cos2θ

q0 − q cos θ þ iη
−

q0cos2θ
q0 − q cos θ − iη

��
; ðB17Þ

where X6ðmfÞ ¼ ð ∂
∂ðm2

fÞ
þ m2

f

2
∂2

∂2ðm2
fÞ
Þ. Equation (B17) also vanishes in the static limit

�
ImI6ðq0; qÞ

q0

�
q0¼0

¼ 0: ðB18Þ

Finally, we substitute Eqs. (B12), (B14), (B16), and (B18) in Eq. (B6) to evaluate the imaginary part of b2ðq0; qÞ, which in
the static limit can be written as

�
Im b2ðq0; qÞ

q0

�
q0¼0

¼ 1

q

�X
f

g2ðqfBÞ2
16πT2

X∞
l¼1

ð−1Þlþ1l2K0

�
mfl

T

�
−
X
f

g2ðqfBÞ2
96πT2

X∞
l¼1

ð−1Þlþ1l2K2

�
mfl

T

�

þ
X
f

g2ðqfBÞ2
768π

ð8T − 7πmfÞ
m2

fT

�
: ðB19Þ

[1] V. Skokov, A. Illarionov, and V. Toneev, Int. J. Mod. Phys.
A 24, 5925 (2009).

[2] V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya,
V. P. Konchakovski, and S. A. Voloshin, Phys. Rev. C 83,
054911 (2011).

[3] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys.
Rev. D 78, 074033 (2008).

[4] V. Braguta, M. N. Chernodub, V. A. Goy, K. Landsteiner,
A. V. Molochkov, and M. I. Polikarpov, Phys. Rev. D 89,
074510 (2014).

[5] D. E. Kharzeev and D. T. Son, Phys. Rev. Lett. 106, 062301
(2011).

[6] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys.
Rev. Lett. 73, 3499 (1994).

[7] K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013).
[8] L. McLerran and V. Skokov, Nucl. Phys. A929, 184 (2014).
[9] S. Rath and B. K. Patra, Phys. Rev. D 100, 016009 (2019).

[10] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D
51, 1125 (1995).

[11] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Nucl. Phys.
B566, 275 (2000).

[12] W.M. Alberico, A. Beraudo, A. De Pace, and A. Molinari,
Phys. Rev. D 77, 017502 (2008).

[13] M. Laine, O. Philipsen, M. Tassler, and P. Romatschke,
J. High Energy Phys. 03 (2007) 054.

[14] T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).
[15] A. Beraudo, J. P. Blaizot, and C. Ratti, Nucl. Phys. A806,

312 (2008).
[16] N. Brambilla, M. A. Escobedo, J. Ghiglieri, and A. Vairo,

J. High Energy Phys. 05 (2013) 130.

[17] L. Thakur, U. Kakade, and B. K. Patra, Phys. Rev. D 89,
094020 (2014).

[18] L. Thakur, N. Haque, U. Kakade, and B. K. Patra, Phys.
Rev. D 88, 054022 (2013).

[19] A. Dumitru, Y. Guo, and M. Strickland, Phys. Rev. D 79,
114003 (2009).

[20] B. K. Patra, H. Khanchandani, and L. Thakur, Phys. Rev. D
92, 085034 (2015).

[21] B. K. Patra and H. Khanchandani, Phys. Rev. D 91, 066008
(2015).

[22] A. Rothkopf, T. Hatsuda, and S. Sasaki, Phys. Rev. Lett.
108, 162001 (2012).

[23] P. Bagchi and A.M. Srivastava, Mod. Phys. Lett. A 30,
1550162 (2015).

[24] B. K. Patra and V. J. Menon, Nucl. Phys. A708, 353 (2002).
[25] D. Lafferty and A. Rothkopf, Phys. Rev. D 101, 056010

(2020).
[26] Y. Guo, L. Dong, J. Pan, and M. R. Moldes, Phys. Rev. D

100, 036011 (2019).
[27] F. Karsch, M. T. Mehr, and H. Satz, Z. Phys. C 37, 617

(1988).
[28] J. Alford and M. Strickland, Phys. Rev. D 88, 105017

(2013).
[29] C. Bonati, M. DElia, and A. Rucci, Phys. Rev. D 92, 054014

(2015).
[30] C. Bonati, M. DElia, M. Mariti, M. Mesiti, F. Negro,

A. Rucci, and F. Sanfilippo, Phys. Rev. D 94, 094007
(2016).

[31] C. Bonati, M. DElia, M. Mariti, M. Mesiti, F. Negro, A.
Rucci, and F. Sanfilippo, Phys. Rev. D 95, 074515 (2017).

DISSOCIATION OF HEAVY QUARKONIA IN A WEAK … PHYS. REV. D 102, 036020 (2020)

036020-17

https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.89.074510
https://doi.org/10.1103/PhysRevD.89.074510
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.73.3499
https://doi.org/10.1103/PhysRevLett.73.3499
https://doi.org/10.1155/2013/490495
https://doi.org/10.1016/j.nuclphysa.2014.05.008
https://doi.org/10.1103/PhysRevD.100.016009
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1016/S0550-3213(99)00693-8
https://doi.org/10.1016/S0550-3213(99)00693-8
https://doi.org/10.1103/PhysRevD.77.017502
https://doi.org/10.1088/1126-6708/2007/03/054
https://doi.org/10.1016/0370-2693(86)91404-8
https://doi.org/10.1016/j.nuclphysa.2008.03.001
https://doi.org/10.1016/j.nuclphysa.2008.03.001
https://doi.org/10.1007/JHEP05(2013)130
https://doi.org/10.1103/PhysRevD.89.094020
https://doi.org/10.1103/PhysRevD.89.094020
https://doi.org/10.1103/PhysRevD.88.054022
https://doi.org/10.1103/PhysRevD.88.054022
https://doi.org/10.1103/PhysRevD.79.114003
https://doi.org/10.1103/PhysRevD.79.114003
https://doi.org/10.1103/PhysRevD.92.085034
https://doi.org/10.1103/PhysRevD.92.085034
https://doi.org/10.1103/PhysRevD.91.066008
https://doi.org/10.1103/PhysRevD.91.066008
https://doi.org/10.1103/PhysRevLett.108.162001
https://doi.org/10.1103/PhysRevLett.108.162001
https://doi.org/10.1142/S021773231550162X
https://doi.org/10.1142/S021773231550162X
https://doi.org/10.1016/S0375-9474(02)01013-8
https://doi.org/10.1103/PhysRevD.101.056010
https://doi.org/10.1103/PhysRevD.101.056010
https://doi.org/10.1103/PhysRevD.100.036011
https://doi.org/10.1103/PhysRevD.100.036011
https://doi.org/10.1007/BF01549722
https://doi.org/10.1007/BF01549722
https://doi.org/10.1103/PhysRevD.88.105017
https://doi.org/10.1103/PhysRevD.88.105017
https://doi.org/10.1103/PhysRevD.92.054014
https://doi.org/10.1103/PhysRevD.92.054014
https://doi.org/10.1103/PhysRevD.94.094007
https://doi.org/10.1103/PhysRevD.94.094007
https://doi.org/10.1103/PhysRevD.95.074515


[32] K. Fukushima, K. Hattori, H. U. Yee, and Y. Yin, Phys. Rev.
D 93, 074028 (2016).

[33] M. Hasan, B. Chatterjee, and B. K. Patra, Eur. Phys. J. C 77,
767 (2017).

[34] M. Hasan, B. K. Patra, B. Chatterjee, and P. Bagchi, Nucl.
Phys. A995, 121688 (2020).

[35] B. Singh, L. Thakur, and H. Mishra, Phys. Rev. D 97,
096011 (2018).

[36] S. A. Khan, B. K. Patra, and M. Hasan, arXiv:2004.08868.
[37] M. Hasan and B. K. Patra, arXiv:1901.03497.
[38] B. Karmakar, A. Bandyopadhyay, N. Haque, and M. G.

Mustafa, Eur. Phys. J. C 79, 658 (2019).
[39] B. Singh, S. Mazumder, and H. Mishra, J. High Energy

Phys. 05 (2020) 068.

[40] B. Singh, M. Kurian, S. Mazumder, H. Mishra, V. Chandra,
and S. K. Das, arXiv:2004.11092.

[41] A. Ayala, C. A. Dominguez, S. Hernandez-Ortiz, L. A.
Hernandez, M. Loewe, D. Manreza Paret, and R. Zamora,
arXiv:1805.07344v2.

[42] A. Ayala, C. A. Dominguez, S. Hernandez-Ortiz, L. A.
Hernandez, M. Loewe, D. Manreza Paret, and R. Zamora,
Phys. Rev. D 98, 031501 (2018).

[43] H. A. Weldon, Phys. Rev. D 26, 1394 (1982).
[44] R. D. Pisarski, Phys. Rev. Lett. 63, 1129 (1989).
[45] E. V. Shuryak, Zh. Eksp. Teor. Fiz. 74, 408 (1978).
[46] H. A. Weldon, Phys. Rev. D 42, 2384 (1990).
[47] A. Mocsy and P. Petreczky, Phys. Rev. Lett. 99, 211602

(2007).

MUJEEB HASAN and BINOY KRISHNA PATRA PHYS. REV. D 102, 036020 (2020)

036020-18

https://doi.org/10.1103/PhysRevD.93.074028
https://doi.org/10.1103/PhysRevD.93.074028
https://doi.org/10.1140/epjc/s10052-017-5346-z
https://doi.org/10.1140/epjc/s10052-017-5346-z
https://doi.org/10.1016/j.nuclphysa.2019.121688
https://doi.org/10.1016/j.nuclphysa.2019.121688
https://doi.org/10.1103/PhysRevD.97.096011
https://doi.org/10.1103/PhysRevD.97.096011
https://arXiv.org/abs/2004.08868
https://arXiv.org/abs/1901.03497
https://doi.org/10.1140/epjc/s10052-019-7154-0
https://doi.org/10.1007/JHEP05(2020)068
https://doi.org/10.1007/JHEP05(2020)068
https://arXiv.org/abs/2004.11092
https://arXiv.org/abs/1805.07344v2
https://doi.org/10.1103/PhysRevD.98.031501
https://doi.org/10.1103/PhysRevD.26.1394
https://doi.org/10.1103/PhysRevLett.63.1129
https://doi.org/10.1103/PhysRevD.42.2384
https://doi.org/10.1103/PhysRevLett.99.211602
https://doi.org/10.1103/PhysRevLett.99.211602

