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The spectra and correlation of identical particles emitted from small local-equilibrium sources are
considered. The size of the system is defined by the negative part of the parabolic falling chemical potential.
The analytical solution of the problem is found for the case of inclusive measurements. It is shown that in
the case where the size of the system is comparable to the thermal wavelength of the particles, the spectra
and correlation functions are far from the quasiclassical approximation expected for large systems, and
observed femtoscopy scales (interferometry radii) will be essentially smaller than the Gaussian radii of the
source. If the maximum value of the chemical potential approaches the critical one, specific for the system,
one can consider the possibility of Bose-Einstein condensation. In such a case, the reduction of the intercept
of the correlation function for inclusive measurements takes place. The results can be used for the searching
of femtoscopy homogeneity lengths in proton-proton collisions at LHC energies.
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I. INTRODUCTION

During the last few years, intensive femtoscopy study
of proton-proton collisions at the LHC has been provided
by the CMS [1], ATLAS [2], ALICE [3], and LHCb [4]
Collaborations. Some interesting results, such as the
saturation of the femtoscopy scales for increasing particle
multiplicities, peculiarities of the intercept behavior for the
correlation function, and anticorrelations of identical pions
were observed. A decrease of the interferometry radii with
an increase of pair transverse momentum in pþ p colli-
sions was found if a specific selection of events (e.g.,
according to sphericity criteria [3]) is not performed. One
interpretation of the radii behavior is the hydrodynamiza-
tion of the systems created in very high-energy pþ p
events with large multiplicities [1]. In this way, a successive
description of the femtodata on pþ p collisions at

ffiffiffi
s

p ¼
7 TeV in the hydrokinetic model (HKM) has been reached
in Ref. [5]. This is one of the points that allows the CMS
Collaboration to interpret the obtained results [1] for

ffiffiffi
s

p ¼
13 TeV as a consequence of hydrodynamic expansion of
the thermal systems formed in pþ p collisions at LHC
energies.
At the same time, even if one admits the hydrodynamic

scenarios, the description of the spectra and correlations in

pþ p collisions requires an accounting of additional
principal aspects compared to the case of Aþ A collisions
[5]. A description of the latter needs neither an uncertainty
principle explicitly, nor a hypothesis about the presence
of Bose-Einstein condensate (as for the latter, see, e.g.,
Refs. [6–8]), nor any other “nontrivial” physics. The
particle yields and their ratios, hadron and photon spectra,
anisotropic flows vn, quantum statistical correlation func-
tions that bring information about the chaoticity parameter
and interferometry radii, and other observables in Aþ A
collisions are quite successfully described at the top RHIC
energy and all the available LHC energies on the basis
of relativistic viscous hydrodynamics—in particular,
within the integrated hydrokinetic model (iHKM); see
Refs. [9–15]. The reason for the success of standard
hydrodynamic and kinetic methods is that at the active
stage of spectra formation in Aþ A collisions, the thermal/
effective particle wavelengths are much smaller than the
sizes of the system—more precisely, than the correspond-
ing homogeneity lengths [16,17].
One of the peculiarities of the correlation femtoscopy for

pþ p collisions is the smallness of homogeneity lengths
in the strongly interacting system created in these proc-
esses: their typical effective sizes are about 1 fm, which is
comparable with the mean wavelengths of emitted par-
ticles. As was considered in Ref. [18], the standard method
of independent sources [19] is violated because of the
uncertainty principle: one cannot consider the emission of
the particles from different parts of a small system as
independent if the particle wave packets (or the regions
associated with the effective wavelengths of the quanta) are
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essentially overlapping. As the result, in such cases the
visible interferometry scale is reduced as compared to the
geometrical system’s size, and the correlation function is
suppressed: its intercept decreases [18]. It is worth noting
that the approach to the problem of correlation femtoscopy
for small systems, developed in Ref. [18]—the approach
which brings a good description of the 7 TeV pþ p
data [5]—deals, however, with events having small and
fixed multiplicity, and does not use the hypothesis of
thermalization.
In this paper, we propose results for inclusive correla-

tion femtoscopy in an analytically solved model of small
thermal quantum systems. These findings could be applied
for correlation measurements of the homogeneity lengths
[16,17] in pþ p collisions at large mean multiplicities in a
way similar to what is used in Ref. [5].

II. STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS

The main goal of the paper is to investigate the features
of the inclusive spectra and correlations, which appear
due to the smallness of considered quantum systems. For
this purpose, we apply the method of a local-equilibrium
statistical operator [20], which is a tool to obtain the density
matrix ρ̂ on the freeze-out hypersurface using the principle
of maximal entropy SðσÞ. Then the density matrix is
defined by

ρ̂ ¼ 1

Z
e−SmaxðσÞ; ð1Þ

where SmaxðσÞ is a maximum of entropy on the hypersur-
face σ (with timelike normal vector nμ) under conditions
fixed by the local distributions of energy, momentum, and
charge density (see Ref. [21] for details). These constraints
must be taken into account, for example, by the method
of Lagrange multipliers. For simplicity, we consider a real
free scalar field in a (dþ 1)-dimensional space-time which
is associated with the stress-energy tensor T̂μνðxÞ ¼
∂μϕ̂∂νϕ̂ − 1

2
gμνð∂ρϕ̂∂ρϕ̂ −m2ϕ̂2Þ and the current of par-

ticle number density ĴμðxÞ ¼ −iϕ̂†∂μ
⟷

ϕ̂−ðxÞ, where ϕ̂�ðxÞ
are the positive- and negative-frequency parts of the field,
which are defined as follows:

ϕ̂ðxÞ ¼ ϕ̂†ðxÞ þ ϕ̂−ðxÞ

¼ 1

ð2πÞd=2
Z

ddkffiffiffiffiffiffiffi
2k0

p ða†keikx þ ake−ikxÞ: ð2Þ

Then the statistical operator [Eq. (1)] takes the form
[20–22]

ρ̂ ¼ 1

Z
e−

R
dσνðxÞβðxÞnμðxÞT̂μνðxÞþ

R
dσνðxÞμðxÞβðxÞĴνðxÞ; ð3Þ

where βðxÞ ¼ 1
TðxÞ and μðxÞ are Lagrange multipliers,

corresponding to the inverse temperature and the chemical
potential, respectively, and Z is a corresponding partition
function such that Tr½ρ̂� ¼ 1. The creation and annihilation
operators obey the commutation relations:

½ak1 ; a†k2 � ¼ δdðk⃗1 − k⃗2Þ; ½a†k1 ; a
†
k2
� ¼ ½ak1 ; ak2 � ¼ 0:

ð4Þ

Further, we consider an exact-solved model without
internal flows on the hypersurface σμ with a uniform
temperature distribution TðxÞ ¼ T in the moment of time
t ¼ 0. Corresponding to the σ normal vector is nμ ¼ ð1; 0⃗Þ,
so dσμ ¼ nμddx. Thus, using Eqs. (3) and (2), we obtain

ρ̂ ¼ 1

Z
exp

�
−β

Z
ddpp0a†pap

þ β

ð2πÞd
Z

ddxμðxÞ ddkffiffiffiffiffiffiffi
2k0

p ddpffiffiffiffiffiffiffiffi
2p0

p ðk0 þ p0Þ

× e−iðk⃗−p⃗Þx⃗a†pak

�
: ð5Þ

In the nonrelativistic limit, energy and chemical potential
can be decomposed as p0 ¼ mþ p2

2m, μðxÞ ¼ mþ μ0 þ
μ0ðxÞ (restrictions for chemical potential value will be
discussed later). It is easy to see that terms which contain
mass m in the nonrelativistic limit of Eq. (5) are reduced.
For simplicity, we take the chemical potential in parabolic

form μ0ðxÞ ¼ −
P

d
i¼1

xi2

2βR2
i
.

At this point, we are obliged to mention the paper [7]
which, unfortunately, we initially missed while working on
the manuscript. In that article, authors consider a system of
bosons in a self-consistent field of an oscillatory type. Then
a “hybrid” model is constructed, where the lowest energy
level is occupied by a coherent condensate with a fixed
number of particles, while the distribution of particles over
the remaining levels obeys the condition of a grand
canonical ensemble. Despite the similarity in mathematical
formalism, such a formulation of the problem and the
solution method are different from our approach of the
quasiequilibrium statistical operator corresponding to the
entropy maximum under given conditions (physical density
distributions). In such a case, the thermodynamic Wick
theorem takes place in the system, and the chaoticity
parameter is unity, which excludes a coherent condensate.
The introduction of such a condensate into consideration is
a specific separate problem, which we will discuss in this
article later. Further, where appropriate, we will compare
the results in both approaches.
Following Gaudin’s idea [23], modified for the case of

local-equilibrium systems [24], we introduce new operators
which depend on the dimensionless parameter α:
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ρ̂ðαÞ ¼ 1

Z
e−αβÂ; a†kðαÞ ¼ ρ̂ðαÞa†kρ̂ðαÞ−1: ð6Þ

The operator Â here is defined in the following way:

ρ̂ ¼ 1

Z
e−βÂ;

Â ¼
Z

ddp
Xd
i¼1

p2
i

2m
a†pap

þ 1

ð2πÞd
Z

ddx

�
−μ0 þ

Xd
i¼1

x2i
2βR2

i

�

× ddkddpe−iðk⃗−p⃗Þx⃗a†pak: ð7Þ

Using the new operators in Eq. (6), an inclusive spectrum
can be calculated [25]:

nðpÞ ¼ p0
ddN
dpd ¼ Tr½ρ̂a†pap� ¼ Tr½a†pðαÞρ̂ðαÞap�jα¼1

¼ Tr½ρ̂apa†pðα ¼ 1Þ�: ð8Þ
Explicit dependence of the operator a†pðαÞ can be obtained
from the next equation, which follows from definition (6):

∂a†pðαÞ
β∂α ¼ ½a†pðαÞ; A�: ð9Þ

Substituting here the expression (7) and taking into account
the commutation relations in Eq. (4), we get

−
∂a†kðαÞ
β∂α ¼

�Xd
i¼1

k2i
2m

− μ0

�
a†kðαÞ þ

1

ð2πÞd
Z

ddx
Z

ddk0
Xd
i¼1

x2i
2R2

i β
eiðk⃗

0−k⃗Þx⃗a†k0 ðαÞ: ð10Þ

Here it is useful to represent the coordinates xi in the form of the derivative of the exponent with respect to momenta:

x2i e
iðk⃗0−k⃗Þx⃗ ¼ −

∂2

∂k02i eiðk⃗
0−k⃗Þx⃗: ð11Þ

Then, integrating by parts over k02 twice allows us to integrate over xi:

−
∂a†kðαÞ
β∂α ¼

�Xd
i¼1

k2i
2m

− μ0

�
a†kðαÞ −

1

ð2πÞd
Z

ddk0
Z

ddxeiðk⃗
0−k⃗Þx⃗

�Xd
i¼1

1

2R2
i β

∂2

∂k02i
�
a†k0 ðαÞ; ð12Þ

−
∂a†kðαÞ
β∂α þ μ0a

†
kðαÞ ¼

Z
ddk0δdðk⃗0 − k⃗Þ

Xd
i¼1

�
−

1

2R2
i β

∂2

∂k02i þ k2i
2m

�
a†k0 ðαÞ: ð13Þ

It is our basic equation that allows us to find solutions for
inclusive thermal mean values ha†k1ak2i that define single-
and double-particle spectra in the local-equilibrium systems
with a parabolic falling chemical potential.

III. ANALYTIC SOLUTION OF THE PROBLEM

Since the density matrix ρ̂ [Eq. (5)] acting on any state
does not change its particle number, the solution of Eq. (13)
can be expressed as an integral over all creation operators.
Moreover, due to its linearity, the general solution can be
written as

a†kðαÞ ¼
Z

ddk0
X
n

e−αβλnCnðk⃗; k⃗0Þa†k0 ; ð14Þ

where Cnðk⃗; k⃗0Þ are solutions of an oscillator-like equation,

ðλn þ μ0ÞCnðk⃗; k⃗0Þ ¼
�
−

1

2R2
i β

∂2

∂k2i þ
k2i
2m

�
Cnðk⃗; k⃗0Þ: ð15Þ

Since a†kðα ¼ 0Þ ¼ a†k, Cnðk⃗; k⃗0Þ satisfy the additional
condition

X
n

Cnðk⃗; k⃗0Þ ¼ δdðk⃗ − k⃗0Þ: ð16Þ

From Eqs. (15) and (16), it follows that Cn can be
factorized:

Cnðk⃗; k⃗0Þ ¼
X∞

fnig¼0

δn1þn2þ::þnd;n

Yd
i¼1

Cniðki; k0iÞ; ð17Þ

where δi;j is the Kronecker delta. Besides this,
Eq. (15) allows the separation of variables Cniðki:k0iÞ ¼
Aniðk0iÞfniðkiÞ. So, in terms of the variable ki, it is the
Schrödinger equation for a harmonic oscillator. Its solution
is represented by the Hermite functions
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ψnðbxÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p
�

bffiffiffi
π

p
�

1=2
e−b

2x2HnðbxÞ; HnðxÞ ¼ ð−1Þnex2 dn

dxn
ðe−x2Þ; ð18Þ

while Eq. (16) is a completeness of the orthonormal basis

X∞
ni¼0

ψniðbikiÞψniðbik0iÞ ¼ δðki − k0iÞ: ð19Þ

Then, Eqs. (16)–(19) yield

Cniðki:k0iÞ ¼ ψniðbikiÞψniðbik0iÞ; ð20Þ

where b2i ¼ RiΛT ¼ Ri=
ffiffiffiffiffiffiffi
mT

p
, and ΛT is the thermal (Compton) wavelength. The index n in Eq. (15) consists of d

components (n ¼ fn1; n2;…; ndg) running from 0 to infinity, and λn ¼ −μ0 þ
P

d
i¼1 λni . Altogether, the following

notations are used in the paper:

λi ¼ ωi

�
ni þ

1

2

�
; βωi ¼

ΛT

Ri
¼ 1

Ri

ffiffiffiffiffiffiffi
mT

p ; b2i ¼ ΛTRi ¼
Riffiffiffiffiffiffiffi
mT

p : ð21Þ

Now, we are ready to write the solution in Eq. (14) precisely:

a†pðαÞ ¼ eαβμ0
Yd
i¼1

�Z
dki

X∞
ni¼0

e−αωiðniþ1
2
ÞψniðbipiÞψniðbikiÞ

�
a†k; ð22Þ

which allows us to calculate the inclusive spectrum [Eq. (8)],

ha†k1ak2i ¼ hak2a†k1ðα ¼ 1Þi ¼ eβμ0
Yd
i¼1

�Z
dkiMiðk1i; kiÞ

�
hak2a†ki: ð23Þ

Here we introduce a kernel Mðk⃗1; k⃗2Þ:

Miðk1i; kiÞ ¼
X∞
ni¼0

e−βωiðniþ1
2
Þψniðbik1iÞψniðbikiÞ; Mðk⃗1; k⃗Þ ¼

Yd
i

Miðk1i; kiÞ: ð24Þ

Equation (23), with the commutation relations in Eq. (4), leads to the integral equation with a separable kernel with respect
to the spatial components of momenta:

ha†k1ak2ie−βμ0 ¼
Z

ddk
Yd
i¼1

Miðk1i; kiÞha†kak2i þ
Yd
i¼1

Miðk1i; k2iÞ: ð25Þ

The solution of this equation can be found in the form1

ha†k1ak2i ¼
X∞
s¼1

esβμ0
Yd
i¼1

KðsÞ
i ðk1i; k2iÞ ¼

X∞
s¼1

esβμ0KðsÞðk⃗1; k⃗2Þ; ð26Þ

with the recurrent equation on KðsÞ
i ðk1; k2Þ:

1Do not consider s as the number of particles in the system, the decomposition by which is derived in Appendix A.
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Kð1Þ
i ðk1; k2Þ ¼ Miðk1; k2Þ;

KðsÞ
i ðk1i; k2iÞ ¼

Z
dkMiðk1i; kÞKðs−1Þ

i ðk; k2iÞ: ð27Þ

The kernel Miðk1; kÞ can be calculated from the definition in Eq. (24) using Mehler’s formula [26,27]:

X∞
s¼0

usψ sðxÞψ sðyÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πð1 − u2Þ
p exp

�
−
1 − u
1þ u

ðxþ yÞ2
4

−
1þ u
1 − u

ðx − yÞ2
4

�
; ð28Þ

Miðk1i; k2iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2i
2π sinhðβωiÞ

s
exp

�
−ðk21i þ k22iÞ

b2i cothðβωiÞ
2

þ k1ik2i
b2i

sinhðβωiÞ
�
: ð29Þ

One can verify that the solution of Eq. (27) takes the form

KðsÞ
i ðk1i; k2iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i

2π sinhðsβωiÞ

s
exp

�
−ðk21i þ k22iÞ

b2i cothðsβωiÞ
2

þ k1ik2i
b2i

sinhðsβωiÞ
�
: ð30Þ

Equations (26), (27), and (24) lead to the expression for the inclusive spectrum, which in the variables k⃗ ¼ p⃗1þp⃗2

2
and

q⃗ ¼ p⃗1 − p⃗2 takes the form

ha†p1
ap2

i ¼
X∞
s¼1

eβμ0s
Yd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i

2π sinh ðsβωiÞ

s
e−b

2
i k

2
i tanhð

sβωi
2
Þ−b2

i
q2
i

4
cothðsβωi

2
Þ: ð31Þ

This equation corresponds to the one derived in Ref. [28] in the configuration representation for the trapped Bose gas. An
average number of particles in the system can be obtained after integration over momentum:

hNi ¼
Z

ddpha†papi ¼
X∞
s¼1

eβμ0s
Yd
i¼1

1

2 sinhðsβωi
2
Þ : ð32Þ

A necessary condition for convergence of the series is

lim
s→∞

eβμ0s
Y
i

sinhðsβωiÞ−1=2 ¼ lim
s→∞

eβðμ0−dw̄
2
Þs ¼ 0; ð33Þ

which gives a restriction for the maximum value of the chemical potential μ0:

μ0 < μmax ¼
dω̄
2

¼ ω1 þ ω2 þ � � � þ ωd

2
: ð34Þ

The corresponding Wigner function can be obtained in the following way:

fWðp; xÞ ¼
1

ð2πÞd
Z

ddqha†kþq
2

ak−q
2
ie−iq⃗ x⃗; ð35Þ

fWðk; xÞ ¼
1

ð2πÞd
X∞
s¼1

eβμ0s
Yd
i¼1

1

coshðsβωi
2
Þ exp

�
−ðb2i k2i þ x2i =b

2
i Þ tanh

�
sβωi

2

��
: ð36Þ

This result, which follows directly from Eq. (31), was earlier presented in Ref. [7]. One can expect that at some kind of
thermodynamic limit, when the thermal wavelength of the emitting bosons is much smaller than the homogeneity length—
source size, in our case—a quasiclassical limit for the Wigner function (36) should be reached. The naive expectation is that
such a function takes the form of the Bose-Einstein distribution with the corresponding coordinate-dependent chemical
potential. To demonstrate this, one has to consider the thermal (Compton) wavelengths of boson quanta ΛT to be much
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smaller than the size of the system, ΛT=R ¼ βω ¼ 1
R

ffiffiffiffiffi
mT

p ≪ 1. For simplicity, we investigate the isotropic case

(R1 ¼ � � � ¼ Rd ¼ R). In this case, a linear approximation to the hyperbolic functions in Eq. (36) can be applied for s
less than some value—s0, say—such that s0βω ≈ 1

2
. Another criterion for being able to get a quasiclassical limit is

nonpositiveness of the chemical potential, μ0 < 0. Then, one can get from Eq. (36)

fWðk; xÞ ¼
1

ð2πÞd
�Xs0
s¼1

e−ð
k2
2mTþ x2

2R2
−μ0

T Þs þO

�
ΛT

R

�
þ

X∞
s¼s0þ1

eβμ0s
1

coshdðsβω=2Þ exp
�
−ðb2k2 þ x2=b2Þ tanh

�
sβω
2

���
:

ð37Þ

Extending the first sum up to infinity (and subtracting the added terms), we obtain a quasiclassical approximation with
corrections that vanish in the thermodynamic limit when βμ0 ¼ const: < 0 and βω ¼ ΛT

R → 0:

fW;qcðk; xÞ ¼
1

ð2πÞd
X∞
s¼1

	
e
μ0
T −

k2
2mT−

x2

2R2


s ¼ 1

ð2πÞd
1

e
k2
2mTþ x2

2R2
−μ0

T − 1
: ð38Þ

IV. FEMTOSCOPY ANALYSIS

A. Basic notations

To investigate correlations in our model, we have to
calculate the two-particle inclusive spectra [25] on the
freeze-out hypersurface:

nðp1; p2Þ ¼ p0
1p

0
2

d6N
dp3

1dp
3
2

¼ Tr½ρ̂a†p1
a†p2

ap1
ap2

�;

nðpÞ ¼ p0
d3N
dp3

¼ Tr½ρ̂a†pap�; ð39Þ

Cðk; qÞ ¼ nðp1; p2Þ
nðp1Þnðp2Þ

; k ¼ p1 þ p2

2
; q ¼ p1 − p2;

ð40Þ
where Cðk; qÞ is a correlation function (CF), which carries
information about the femtoscopy scales of the system
Rside, Rout, Rlong. The extraction of these radii can be
performed by the Gaussian fit of the CF in the low-q
region [29]:

Cðk; qÞ ¼ 1þ λðkÞe−R2
outq

2
out−R2

sideq
2
side−R

2
longq

2
long : ð41Þ

The value of the CF at zero relative momentum q ¼ 0 is
usually called an intercept, Cðk; 0Þ ¼ 1þ λðkÞ, and λðkÞ is
a chaoticity parameter. In numerical calculations, we
consider only the isotropic systems (R1 ¼ R2 ¼ R3 ¼ R)
and find the interferometry radius by fitting the one-
dimensional projection of the CF (i.e., q1 ¼ q,
q2 ¼ q3 ¼ k2 ¼ k3 ¼ 0) in the range of q limited by the
condition of 1þ λðkÞ > Cðk; qÞ > 1þ 0.7λðkÞ. The
obtained interferometry radius will be addressed as RHBT.

B. Ideal Bose gas femtoscopy

The thermal average of four operators in a noninteracting
boson system in the grand canonical ensemble is reduced to

a sum of the products of two-operator averages by means of
Wick’s theorem:

ha†p1
a†p2

ap3
ap4

i ¼ ha†p1
ap3

iha†p2
ap4

i þ ha†p1
ap4

iha†p2
ap3

i:
ð42Þ

Moreover, for the grand canonical ensemble of ideal Bose
gas in a finite volume, the partition function of the whole
ensemble factorizes over all possible energy levels, which
means that Wick’s theorem is applicable even for each of
these levels independently. Consequently, to examine the
correlation of the system, one needs to calculate only two-
operator averages:

Cðk; qÞ ¼ ha†k1ak2iha
†
k2
ak1i

ha†k1ak1iha
†
k2
ak2i

þ 1: ð43Þ

As a result, in contrast to Ref. [7], where the coherent
condensate is postulated from the very beginning, in a pure
thermal system, which is presented at the freeze-out stage
as the local-equilibrium free Bose gas, the chaoticity
parameter λðpÞ≡ 1. In our approach, the ground state of
the system is described by the grand canonical ensemble,
which implies any number of particles occupying this state,
so the consideration of a coherent condensate (if it appears)
should be different from just postulating its existence with a
fixed particle number as in Ref. [7]. We will discuss the
possibility of a scenario with a coherent condensate in the
next subsection.
Aiming to show the importance of quantum effects in

small systems for the femtoscopy analysis, we compare the
correlation functions in quantum and quasiclassical
approaches. For this purpose, the pointlike bosons with
the masses of K and/or π mesons are considered on the
freeze-out hypersurface with the temperature T ¼ Tf:o: ¼
155 MeV (∼1012 K); then, the thermal wavelengths of
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quanta are ΛK
T ¼ 1ffiffiffiffiffiffiffi

mKT
p ≈ 0.75 fm for kaons and Λπ

T ≈
1.35 fm for pions. Figure 1 shows the dependence of the
correlation functions on the relative momentum q of kaon
pairs at the half-momentum k ¼ 0.15 GeV=c and negative
chemical potential μ0 ¼ −0.1μmax in both approaches.
Three different homogeneity scales are considered:
R ¼ 0.75 fm, R ¼ 1.25 fm, and R ¼ 3 fm. For sizes of
about 1 fm, which are typical for pþ p collisions [30], the
quantum corrections are substantial, as one can see. At the
same time, for R ¼ 3 fm the corrections are fairy small, so
that for sizes typical for Aþ A collisions they can be
ignored, except for the case when μ0 → μmax [see Eq. (34)].
The femtoscopic analysis of high-energy pþ p colli-

sions accompanied by relatively large multiplicities has to
be carried out more carefully, since the particle density is
high (μ → μmax), and most bosons occupy the lowest

energy level. In Appendix B, the average number of
particles on this level is found, and it can be described
by Eq. (B8):

hN0i ¼
1

eβðμmax−μ0Þ − 1
: ð44Þ

Note that the same formula follows generally from Eq. (32)
when the thermal wavelengths of quanta exceed the
geometrical size of the system ΛT ≳ R [e.g., T → 0 or
R → 0, after the linearization of sinhðnβωÞ]. The total
number of bosons on this level still strongly depends on the
constant part of the chemical potential μ0. It is worth noting
that the momentum spectrum ha†k1ak2i of the lowest energy
level [Eq. (B7); see Appendix B] factorizes over k1 and k2,
so that the correlation function (43) in one-level approxi-
mation is constant, CðqÞ ¼ 2. That leads to an important
consequence that is shown in Fig. 2(a)—specifically, a
broadening of the complete correlation function with the
increase of the chemical potential (when the impact of the
ground state increases). It means that interferometry radii
obtained from the Gaussian fit of the real correlation func-
tion can be noticeably smaller than those formally related to
the isotropic Gaussian source, fG ∼ expð−x2=2R2Þ, with a
naive correlation function for an independent boson emis-
sion, CðqÞ ¼ 1þ λ exp ð−R2q2Þ, and λ ¼ 1 for a fully
chaotic emission.
At the end of this section, let us emphasize again that

even a large number of bosons at the lowest level in an ideal
Bose gas, concentrated in an effectively limited volume and
considered in the grand canonical ensemble, does not bring
coherence in the system.

C. Coherence state approach

Now we approach a very important point: When occu-
pation numbers at the ground state become dominant, it can
lead to significant overlap between wave packets of bosons,

(a)

(b)

FIG. 2. (a) Quantum statistical CFs for the different chemical potentials with a disordered condensate (solid lines) and for a Gaussian
source related to the geometrical size R (blue dashed line) at k ¼ 0.3 GeV=c, R ¼ 1.5 fm, and T ¼ 155 MeV. The solid lines
correspond to different chemical potentials, and therefore to different average numbers of particles in the system hNi. (b) CF of the
systems with the same k, R, and T as in (a) in the partial coherent state approach.
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FIG. 1. Quantum (solid lines) and quasiclassical (dashed lines)
kaon correlation functions for different sizes of the system
at T ¼ 155 MeV and k ¼ 0.15 GeV=c. The chemical potential
is negative, μ0 ¼ −0.1μmax (N ≃ 1). Blue lines correspond to
R ¼ 0.75 fm, red lines to R ¼ 1.25 fm, and green lines to
R ¼ 3 fm.
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and coherence in the system may develop [18,31,32]. The
strongly overlapping bosons can hardly be considered as
fully independently emitted, and even rather small inter-
actions between them can bring correlations of the phases
of the wave packets [18]. In that case, systems with high
multiplicities, μ0 close to μmax, and R≲ ΛT ¼ 1ffiffiffiffiffi

mT
p , have to

be described by a density matrix of partially coherent
thermal states.2

According to the general idea described in Ref. [33] (see
also Ref. [34]), creation (annihilation) operators at the
freeze-out stage split into a quantum part, associated with
q-numbers (operators) bp and some c-numbers dpðΔtfÞ,
where Δtf is the freeze-out duration time. In the case of
slow adiabatic freeze-out, dpðΔtf → ∞Þ → 0, while in the
fast freeze-out scenario that takes place in pþ p collisions,
the coherent condensate, if it appears, might give a nonzero
contribution to observed spectra (see details in Ref. [33]).
Since an area of our interest is small systems, it is
reasonable to consider a fast freeze-out scenario with a
near simultaneous decay of the boson coherent field into
free particles: dpðΔtf → 0Þ ¼ dp ≠ 0.
The description of a trapped Bose condensed gas in

atomic physics is usually followed with the problem of
fluctuations in the occupancy of the ground state N̄0

[28,35]. Specifically, the description of such systems using
the grand canonical ensemble predicts a variance propor-
tional to the square of this quantity: hðN0 − N̄0Þ2igce ¼
N̄0ðN̄0 þ 1Þ, which can be derived from the distribution in
Eq. (B12). The problem appears from the discrepancy with
the experimental settings, as in the process of cooling, the
number of particles in the system is conserved, and an
appropriate description should be made in the canonical
ensemble. Usually, the energy exchange of the system with
the environment is small, and the microcanonical ensemble
has to be used instead (see, for example, Ref. [36]).
In the high-energy pþ p collisions at the LHC, we

describe not a single event (single collision) with some
known number of particles, but rather millions of them in a
wide range of event-by-event multiplicities (from a few to a
few hundred). In addition, detectors typically cannot detect
the whole system formed in pþ p collisions, but only part
of it. In this open subsystem, the energy and even net
quantum numbers fluctuate quite significantly. Moreover,
the temperature at the freeze-out in these processes is about
1012 K. Of course, this forces us to base the inclusive
measurements on the grand canonical ensemble, possibly
with some modifications.
Instead of GCE, we propose to use a new conception of

partially coherent ensemble (PCE) that is applied if the
mean occupancy of the ground state exceeds some critical

value Nc. The latter depends on the peculiarity of (weak)
interaction in the Bose gas, that makes it not quite ideal.
Depending on whether the condition hN0i > Nc is satis-
fied, we attribute the ensemble either to the PCE or to the
GCE. In the case of the PCE, the lowest state transforms
into a Glauber coherent state in a way when all the mean
values in the GCE and PCE are the same.3

In a partial coherent ensemble, the ground state is a
Glauber coherent state, and its wave function is given in the
Fock representation by

jγi ¼ exp

�
−
jγj2
2

�X∞
n0¼0

γn0ffiffiffiffiffiffiffi
n0!

p jn0i: ð45Þ

The description of all excited states remains the same as
in the GCE. Then the action of the annihilation (creation)
operator on a single ensemble element factorizes into the
two parts which were discussed before:

apjii ¼ ðbp þ dpÞjγijiiex ¼ ðbp þ dpÞjii; ð46Þ

where the c-number dp is an eigenvalue of the annihilation
operator ap corresponding to the coherent state in Eq. (45),
and the bp quantum operator acts only on exited states. To
define the dp number, it is more natural to use annihilation
(creation) operators which decrease (increase) the occu-
pancy numbers of a three-dimensional harmonic oscillator
state aj. Such operators are connected with those in
the momentum space ap through the Hermite functions
[Eq. (18)]:

ap ¼
X∞

j1;j2;j3¼0

ψjðpÞaj;

ψj ¼ ψ j1ðb1p1Þψ j2ðb2p2Þψ j3ðb3p3Þ: ð47Þ

Then, according to Eqs. (45) and (47), the absolute value of
dp can be expressed by the following average:

hγja†p1
ap2

jγi ¼ d�p1
dp2

¼ ψ0ðp1Þψ0ðp2Þjγj2: ð48Þ

We, however, still did not fix the value of jγj2, and to do
that, we postulate that the one-particle inclusive spectra
[Eq. (31)] and the Wigner function [Eq. (36)] in both
ensembles must be the same. This condition is satisfied if
we fix jγj2 ¼ hN0i from Eq. (B8). When this is done, it is
possible to calculate the contribution from the excitation to
the inclusive spectra hb†p1

bp2
i:

2To distinguish averages with this new density matrix from
those of the grand canonical ensemble, we will use the pce
subscript. (Averages in the grand canonical ensemble, where we
think it is important, will be labeled with the gce subscript.)

3A similar, to some extent, approach was proposed in Ref. [7],
where the number of bosons in the lowest energy state is fixed,
while occupancies of the exited states obey GCE statistics. In that
model, however, the particle number variance at the ground state
and that at Nc are both zero.
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ha†p1
ap2

igce ¼ ha†p1
ap2

ipce ¼ hðb†p1
þ d�p1

Þðbp2
þ dp2

Þipce ¼ d�p1
dp2

þ hb†p1
bp2

ipce;
hb†p1

bp2
ipce ¼

X
i≠0

ψ iðp1Þψ iðp2Þha†iaiipce ¼
X
i≠0

ψ iðp1Þψ iðp2Þha†iaiigce: ð49Þ

As we already mentioned, it is reasonable to expect that
coherence develops only if the number of bosons occupy-
ing the ground state exceeds some critical valueNc. Indeed,
it is hard to imagine a coherent state of one (on average)
particle.4 In this paper, we do not discuss the exact
dependencies of this number on different parameters (such
as the size of the system); we keep it in our numerical
examples to be fixed at Nc ¼ 2. That means that the

consideration described in this subsection is applicable,
as we suggest, only when hN0i > Nc [see Eq. (B13) in
Appendix B]. This condition creates some restriction on the
chemical potential μ0 (or average number of particles in
the whole system hNi). For example, in Figs. 2(b), 3(b),
and 4(b), where the size (R ¼ 1.5 fm) and temperature
(T ¼ 155 MeV=c) are fixed, we start our description from
hNi ¼ 5 as a minimal value which satisfies the mentioned
condition. One can extract some values of N0 from Table I
using the relation f0 ¼ hN0i=hNi [the analytic form for f0
follows from Eqs. (32) and (44)]. Indeed, from the first
column, it follows that hN0i ≈ 0.4 × 5 ¼ 2 ¼ Nc particles.
For the larger multiplicities, that number only grows.

(a)

(b)

FIG. 3. (a) The fraction of the coherent condensate f0 ¼ hNcoh
0 i=hNi as a function of 1=βω ¼ R=ΛT at different mean boson numbers

hNi. (b) The k dependence of chaoticity parameter λðkÞ in the grand canonical ensemble with a coherent condensate for different hNi.

(a) (b)

FIG. 4. Results of the HBT fit of the pion CF at low q for the small source size of R ¼ 1.5 fm at T ¼ Tf:o: ¼ 155 MeV=c. The plot in
(a) corresponds to the fully chaotic systems, and (b) shows systems with the coherent condensate.

4For the coherent state described by Eq. (45), the probability of
detecting m particles obeys the Poisson distribution Pðm; nÞ ¼
e−n nm

m!
with the average n ¼ jγj2.
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D. Femtoscopy in the coherent approach

Introducing the new ensemble in the previous subsec-
tion, we break Wick’s theorem of the grand canonical
ensemble, which means that we have to modify the
correlation function defined by Eq. (40). Let us rewrite
the two-particle inclusive spectra [Eq. (39)] in a represen-
tation described by Eq. (47):

ha†p1
a†p2

ap1
ap2

ipce
¼

X
i;j;k;l

ψ iðp1Þψjðp2Þψkðp1Þψ lðp2Þha†ia†jakalipce: ð50Þ

To simplify this expression, we take a few steps: We
distinguish terms which involve a†0, a0 operators, apply
Wick’s theorem to the other terms,5 and then express two-
operator averages of excited states (ai, i ≠ 0) through the
one-particle inclusive spectra by means of Eq. (49). After
these calculations, we get

ha†p1
a†p2

ap1
ap2

ipce
¼ha†p1

ap1
igceha†p2

ap2
igceþha†p1

ap2
igceha†p1

ap2
igce

þjψ0ðp1Þj2jψ0ðp2Þj2ha†0a†0a0a0ipce−2jd�p1
dp2

j2

¼ha†p1
a†p2

ap1
ap2

igceþjψ0ðp1Þj2jψ0ðp2Þj2ha†0a†0a0a0ipce
−2jd�p1

dp2
j2: ð51Þ

An average of four operators on the right side of this
equation is an expectation value of n20 taken from the
coherent state [Eq. (45)]. It is known that this state is
described by the Poisson distribution with both average and
variance equal to jγj2 ¼ hN0i; then

ha†0a†0a0a0ipce ¼ hN0iðhN0i þ 1Þ;
ha†p1

a†p2
ap1

ap2
ipce ¼ ha†p1

a†p2
ap1

ap2
igce

− jd�p1
dp2

j2
�
1 −

1

hN0i
�
: ð52Þ

The last equation, together with Eqs. (39), (40), (42), and
(48), was used in numerical calculations in Figs. 2(b), 3(b),
and 4(b).

E. Comparison of results

In Fig. 2, one can see how the condensation affects the
CF. For small numbers of particles, the contribution to the
CF from the condensate is negligible, and the CF behaves
in the same way as in chaotic systems [compare Figs. 2(a)
and 2(b)]. It is easy to see that in the case where a
condensate occurs, the intercept is less then 2 and is
determined by the condensate contribution to the inclusive
spectrum. The latter is controlled by the constant part of
the chemical potential μ0, the ratio of the thermal wave-
length to the size of the system ΛT

R ¼ βω, and the average
momentum of the pair k. Correlation functions in both
approaches were built according the procedure described in
previous subsections. Chemical potentials (see Table I)
were found numerically to guarantee proper values of hNi.
Additionally, we give corresponding condensate contribu-
tions to the spectrum f0 ¼ hN0i=hNi, which grow with the
increase of multiplicity.
In Fig. 3(b), one can see that at low k, the chaoticity

parameter λðkÞ decreases in systems with a coherent
condensate when μ0 approaches μmax, and so hNi grows.
It might be associated with similar experimental observa-
tions for pþ p collisions reported by the CERN ATLAS
[2] and LHCb [4] Collaborations. At small multiplicities,
the condensate contribution is small [see Fig. 3(a)], and
λðkÞ stays close to unity, which is typical for chaotic
systems. One can see from Fig. 3(b), as was also mentioned
in Ref. [7], that the difference between the chaoticity
parameters in systems with high and low levels of coher-
ence vanishes quite quickly with the increase of the
momenta of a measured boson pair k. This happens, as
follows from Eq. (B7), due to the localization of the
condensate in a low kinematic region of

ffiffiffiffiffiffiffiffi
hk2i

p
∼ 1ffiffiffiffiffiffiffi

RΛT
p ,

whereas the exited states shift the same average to the
higher momenta. Let us mention that color lines on the plot
correspond to the fixed values of hNi—that, however,
means that the chemical potential μ0ðhNi; βωÞ has to be
defined numerically for each point of the plot
independently.
Figure 3(a) demonstrates the fraction f0 of the average

number of particles in the coherent condensate hN0i

TABLE I. Relative chemical potentials μmax−μ0
μmax

and ground state occupancies f0 at different multiplicities hNi of the
pion systems with R ¼ 1.5 fm and T ¼ 155 MeV. Such parameters correspond to the value T=ω ≈ 1.12
(μmax ≈ 207.6 MeV) in Fig. 3(a).

hNi 5 20 40 80 160 250
μmax−μ0
μmax

3.02 × 10−1 4.69 × 10−2 2.09 × 10−2 9.87 × 10−3 4.80 × 10−3 3.04 × 10−3

f0 0.40 0.77 0.88 0.94 0.97 0.98

5For the ideal gas, each energy level can be considered as an
independent grand canonical ensemble, since excited states in the
introduced partially coherent and grand canonical ensemble are
the same; then we can apply Wick’s theorem for them, but not for
the ground state.
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compared to hNi for the different multiplicities available
for the pþ p collisions at LHC, and different sizes and
temperatures of the system. For the real experimental data,
we expect to consider sizes R ≈ 1.5 fm, temperatures of
freeze-out T ¼ 150–165 MeV, and multiplicities hNi ≈
5–20 identical bosons (π� mesons). We, however, demon-
strate much wider sets of parameters in order to compare
results with N in Ref. [7],6 which should coincide, since
mathematically both approaches provide the same number
of particles in the ground state (or the average number in
our case), which certainly cannot be said about fluctuation.
Since T=ω ¼ R=ΛT ¼ R

ffiffiffiffiffiffiffi
mT

p
, the plot in Fig. 3(a) can

be applied for both K and π mesons, and one can fix R to
find the “critical” temperature TcðμÞ, where f0 becomes
substantial; or fix T, for example, at the typical freeze-out
temperature Tf:o: ¼ 155 MeV and consider the plot as
f0ðRÞ to determine if coherence could develop in the system.
As we see in Fig. 2, the presence of a coherent

condensate changes not only intercept but also the shape
of the correlation functions. The latter affects the femto-
scopy radii RHBT. In the systems with a coherent con-
densate, the radii RHBT, as one can see from Fig. 4, are
higher than in those (with the same multiplicities) where the
coherence does not develop. Also, as is demonstrated in
Fig. 4(b), the RHBTðkÞ in the partial coherent approach
oscillate near some fixed value which can be defined from
the asymptotic behavior of this dependence, while in a fully
chaotic system, the femtoscopy radii at low- and high-k
regions can differ a lot. This happens because in low-k
regions, the correlation function is suppressed in the
presence of the condensate, while this is not the case in
a pure ideal gas, where the contribution from the lowest
level at small k reduces the interferometry radius. At high
momenta k, the plots in both Fig. 4(a) and 4(b) converge to
the same constant value for all multiplicities, which can be
found from Eq. (31) if one aborts series on the first term and
neglects the condensate terms in the CF [Eq. (52)]. Then, in
this approximation,

Cðk; qÞ ¼ CðqÞ ¼ 1þ e
− q2RΛT
sinhðΛTR Þ ð53Þ

which corresponds to RHBT ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
RΛT

sinhðΛTR Þ
q

and λðkÞ ¼ 1 [see

Fig. 3(b)]. For large systems with R ≫ ΛT , this limit can be

simplified to RHBT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RΛTðΛT

R Þ−1
q

¼ R.

V. CONCLUSIONS

In this paper, we have studied the Bose-Einstein corre-
lations in small local-equilibrium systems in a simple
model having an exact analytic solution. We have con-

sidered a free scalar field on the freeze-out hypersurface
with a uniform temperature. It is shown that in systems
comparable in size with the thermal wavelength of emitted
bosons, quantum corrections to the two-particle correlation
functions of identical particles are substantial. Qualita-
tively, interferometry radii of the considered systems are
smaller than those formally related to the Gaussian source
with the same radii as geometrical sizes of the system. This
difference increases in systems with higher multiplicities.
In the case of strong overlap of the wave packets in the

ground state in most of the events—the overlapping that
happens because the thermal wavelengths of the quanta are
larger or similar compared with the geometric size of the
system and/or because the chemical potential in the center
of the system approaches its maximal value—the coherent
Bose-Einstein condensate can appear. It leads to a reduction
of the intercept of the inclusive correlation function. Note
that this effect of the reduction of the femtoscales and
suppression of the correlation functions compared with a
naive picture of independent boson emission from a
Gaussian source of the same effective size was found in
a nonthermal model in Ref. [18]. Now, in the local-
equilibrium thermal model, we have demonstrated in
addition that the chaoticity parameter decreases when the
multiplicity grows. It might be associated with similar
experimental observations for pþ p collisions reported by
the CERN ATLAS [2] and LHCb [4] Collaborations.
The results found in this paper for the model of a small

thermal source are planned to be applied for the analysis of
femtoscopic phenomena in pþ p collisions at the LHC.
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APPENDIX A: MULTIPLICITY DISTRIBUTION

One can expect that the inclusive two-point operator
average (in the case of p1 ¼ p2, it is the inclusive distri-
bution function) fðp⃗1; p⃗2Þ ¼ ha†p1

ap2
i might be expressed

through theN-particle “distribution functions” fNðp⃗1; p⃗2Þ ¼
ha†p1

ap2
iN . To establish this relation, we expand the grand

canonical ensemble in a set ofN-particle canonical ensembles
by means of projection operators PðNÞ:

PðNÞ ¼ 1

N!

Z
dp⃗1…dp⃗Na

†
p1
…a†pN j0ih0jap1

…apN
: ðA1Þ

Inserting the completeness relation 1 ¼ P∞
N¼0 P

ðNÞ into
Eq. (8), we get

6In Ref. [7], the ground state is occupied by the fixed number
of particles.
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fðp⃗1; p⃗2Þ ¼
X∞
N¼0

ha†p1
ap2

PðNÞi

¼
X∞
N¼0

Trðρ̂PðNÞÞ
Trðρ̂Þ

Trðρ̂a†p1
ap2

PðNÞÞ
Trðρ̂PðNÞÞ ; ðA2Þ

note that Trðρ̂PðNÞÞ
Trðρ̂Þ ¼ pðNÞ is a probability that the system

consists of N particles, and
Trðρ̂a†p1ap2PðNÞÞ

Trðρ̂PðNÞÞ ¼ fNðp⃗1; p⃗2Þ is a
distribution function in the canonical ensemble. Then

fðp⃗1; p⃗2Þ ¼
X∞
N¼0

pðNÞfNðp⃗1; p⃗2Þ: ðA3Þ

If p1 ¼ p2 ¼ p, after integration over the momentum p, we
get the obvious relation

hNi ¼
X∞
N¼0

pðNÞN: ðA4Þ

Similarly to the calculations in the main part of the article, we
can derive an integral equation for Trðρ̂a†p1

ap2
PðNÞÞ. For this

aim, we use the following permutation relation:

PðNÞa†k ¼ a†kP
ðN−1Þ: ðA5Þ

Strait calculations [see Eqs. (23)–(25)] lead to

Trðρ̂a†p1
ap2

PðNÞÞe−βμ0 ¼
Z

dk⃗Mðp⃗1; k⃗ÞTrðρ̂a†kap2
PðN−1ÞÞ þ Trðρ̂PðN−1ÞÞMðp⃗1; p⃗2Þ; ðA6Þ

fNðp⃗1; p⃗2ÞpðNÞe−βμ0 ¼ pðN − 1Þ½Mðp⃗1; p⃗2Þ þ
Z

dk⃗Mðp⃗1; k⃗ÞfN−1ðk⃗; p⃗2Þ�: ðA7Þ

For the case N ¼ 1 (f0ðk⃗1; k⃗2Þ ¼ 0), we can see that

f1ðp⃗1; p⃗2Þpð1Þe−βμ0 ¼ pð0ÞMðp⃗1; p⃗2Þ: ðA8Þ

Equations (A8) and (27) allow us to write a solution of Eq. (A6) in the following way:

pðNÞfNðp⃗1; p⃗2Þ ¼
XN
s¼1

esβμ0pðN − sÞKðsÞðp⃗1; p⃗2Þ; ðA9Þ

or in terms of the number of particles in the system:

pðNÞ ¼ 1

N

XN
s¼1

esβμ0pðN − sÞ
Yd
i¼1

1

2 sinhðsβωi=2Þ
; N > 0; ðA10Þ

which can be used as a recurrent equation for pðNÞ. We can also rederive Eq. (26), summing up by the N in Eq. (A9):

ha†p1
ap2

i ¼
X∞
N¼1

pðNÞfNðp⃗1; p⃗2Þ ¼
X∞
N¼1

XN
s¼1

esβμ0pðN − sÞKðsÞðp⃗1; p⃗2Þ

¼
X∞
s0¼1

es
0βμ0Kðs0Þðp⃗1; p⃗2Þ

X∞
N0¼0

pðN0Þ ¼
X∞
s¼1

esβμ0KðsÞðp⃗1; p⃗2Þ: ðA11Þ

APPENDIX B: GROUND STATE SPECTRUM

In order to obtain a contribution to the boson spectrum
and correlations from the ground state, “0,” in the grand
canonical ensemble [Eq. (5)], let us introduce the projection
operator on this state Pð0Þ:

ha†k1ak2i0 ¼ ha†k1ak2Pð0Þi ¼ hak2Pð0Þa
†
k1
ðα ¼ 1Þi; ðB1Þ

PðmÞ ¼
X∞
N¼0

1

N!
jn1 ¼m;…; nN ¼mihn1 ¼m;…; nN ¼mj:

ðB2Þ

The general idea in further calculations is to get an integral
equation similar to Eq. (25), but with another kernel
M0ðk⃗1; k⃗2Þ. First, we need to determine the permutation
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relation between the creation operator a†k and the projection
operator PðnÞ. Explicit calculations give

PðnÞa
†
k ¼

Z
dk⃗0

Yd
i¼1

ψnðbikiÞψnðbik0iÞa†k0PðnÞ; ðB3Þ

ha†k1ak2i0 ¼ eβμ0
Yd
i¼1

ð
Z

dkiMi;0ðk1i; kiÞÞ

× ðha†kak2i0 þ δðk⃗2 − k⃗ÞÞ; ðB4Þ

Mi;0ðk1i; k2iÞ ¼ e−
1
2
βωiψ0ðbik1iÞψ0ðbik2iÞ;

M0ðk⃗1; k⃗2Þ ¼
Yd
i

Miðk1i; k2iÞ: ðB5Þ

Due to the orthonormality of Hermitian functions
[Eq. (18)], the recurrent relations [Eq. (27)] simplify to
the following:

KðsÞ
0 ðk⃗1:k⃗2Þ ¼ M0ðk⃗1:k⃗2Þ; ðB6Þ

which together with Eq. (18) yields

ha†k1ak2i0 ¼
X∞
s¼1

eβμ0s
Yd
i¼1

biffiffiffi
π

p e−
1
2
βωise−b

2
i p

2
i−

b2
i
q2
i

4

¼ b1…bd
πd=2

e−
P

d
i¼1

b2i
k2
1i
þk2

2i
2

eβðμmax−μ0Þ − 1
; ðB7Þ

hN0i ¼
Z

dpha†papi0 ¼
1

eβðμmax−μ0Þ − 1
: ðB8Þ

As soon as macroscopical description of the lowest
energy state is relevant only when it is occupied by a
large number of particles N0, it is reasonable to find
the distribution of this number in the grand canonical
ensemble [Eq. (5)]. For this purpose, we can use Eq. (A10),
but with the kernels in Eq. (B6), which is the same as
analytical continuation of the low-temperature limit,

pðN0Þ ¼
1

N0

XN0

s¼1

esβμ0pðN0 − sÞ
Yd
i¼1

e−sβωi=2

¼ 1

N0

XN0

s¼1

e−sβðμmax−μ0ÞpðN0 − sÞ; ðB9Þ

which allows us to express pðN0Þ through pð0Þ:

pðN0Þ ¼ e−N0βðμmax−μ0Þpð0Þ: ðB10Þ

The probability pð0Þ can be found from the normalization

X∞
N0¼0

pðN0Þ ¼ pð0Þ
X∞
N0¼0

ðe−βðμmax−μ0ÞÞN0

¼ pð0Þ
1 − e−βðμmax−μ0Þ ¼ 1; ðB11Þ

pðN0Þ ¼ e−N0βðμmax−μ0Þð1 − e−βðμmax−μ0ÞÞ: ðB12Þ

One can verify that

X∞
N0¼0

pðN0ÞN0 ¼
1

eβðμmax−μ0Þ − 1
¼ hN0i: ðB13Þ
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